
December 18, 2020 9:17 2050071

OPEN ACCESS

International Journal of Neural Systems, Vol. 31, No. 1 (2021) 2050071 (16 pages)
c© The Author(s)
DOI: 10.1142/S0129065720500719

Dendrite P Systems Toolbox: Representation,
Algorithms and Simulators

David Orellana-Mart́ın∗, Miguel Á. Mart́ınez-del-Amor†, Luis Valencia-Cabrera‡,
Ignacio Pérez-Hurtado§, Agust́ın Riscos-Núñez¶ and Mario J. Pérez-Jiménez‖

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Universidad de Sevilla
Avenida Reina Mercedes s/n, 41012 Sevilla, Spain

∗dorellana@us.es
†mdelamor@us.es
‡lvalencia@us.es
§perezh@us.es

¶ariscosn@us.es
‖marper@us.es

Accepted 30 September 2020
Published Online 16 November 2020

Dendrite P systems (DeP systems) are a recently introduced neural-like model of computation. They
provide an alternative to the more classical spiking neural (SN) P systems. In this paper, we present
the first software simulator for DeP systems, and we investigate the key features of the representation
of the syntax and semantics of such systems. First, the conceptual design of a simulation algorithm is
discussed. This is helpful in order to shade a light on the differences with simulators for SN P systems,
and also to identify potential parallelizable parts. Second, a novel simulator implemented within the P-
Lingua simulation framework is presented. Moreover, MeCoSim, a GUI tool for abstract representation of
problems based on P system models has been extended to support this model. An experimental validation
of this simulator is also covered.

Keywords: Dendrite P systems; spiking neural P systems; simulation; P-Lingua; MeCoSim.

1. Introduction

Membrane Computing is an active field of research
with a large variety of applications in many scientific
areas, ranging from Biology9,10,34 to Robotics and
Engineering.35,44–46 For more insights about Mem-
brane Computing, we refer the reader to Ref. 28.
Three types of models have been extensively studied
in this framework: Cell-like P systems,27 based on
the hierarchical structure of the membranes within

a living cell; Tissue-like P systems,23 based on the
inter-communication between the cells in a biological
tissue and Spiking Neural (SN) P systems,19 inspired
by the electrical impulses that neurons emit as infor-
mation.

The latter adapts the third generation of
neural networks also known as SN Networks
(SNNs).3,11,13–16,47 Information processing in natu-
ral and artificial neural systems has been widely

‡Corresponding author.

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the

Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

2050071-1

https://dx.doi.org/10.1142/S0129065720500719

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

studied within the framework of Neural Systems, sev-
eral modern studies, such as Refs. 1 and 2 among
others, provide promising applications in a large vari-
ety of fields. Similarly, SN P systems have been also
used in many applications,36 such as in fault diagno-
sis of electric power systems,31,42 efficiently solving
computationally hard problems,25,46 and in sev-
eral theoretical results on computational complete-
ness and universality of different variants.17,24,26,37

These applications show a great potential that has
attracted the attention of the researchers in the area,
motivating a deep exploration on the capabilities
of the models. Consequently, several variants have
been studied by giving attention to different aspects
of their definition: changing the number of types of
spikes,18 using a tree-like structure as the topology of
the system,43 adding new connections between neu-
rons,32 using structural plasticity,6 with nonlinear
spiking rules30 or even changing the nature of the
spikes,31 among other changes.

As mentioned above, SN P systems are inspired
on the functioning of neurons, which are the most
important cells of the brain and nervous system,
being interconnected by a complex network where
direction is essential. They play an important role
in receiving sensory stimuli from the external world,
in processing the information encoded by the electri-
cal signals, transforming them into chemical signals
that allow certain commands to be communicated
to other neurons connected to them (by means of
a synapse), in accordance with the order associated
with the network itself.

A neuron consists of three basic elements: den-
drites, axon and soma. It can be thought as a singular
tree which includes the roots (the axon), the trunk
or body (the soma, which contains the nucleus of the
cell, depository of the corresponding genome) and
the branches and leaves (the dendrites). A (presynap-
tic) neuron can communicate with another (postsy-
naptic) neuron by sending an electrical signal, called
action potential, through the entire axon of the presy-
naptic neuron, passing from the synapse and arriv-
ing to the dendrites of the postsynaptic neuron. In
the synapse, the action potential is converted into a
chemical signal in the form of neurotransmitter which
can excite or inhibit the postsynaptic neuron from
firing its action potential. Specifically, the total sum
of dendritic inputs determine whether a neuron will
fire an action potential.

Inspired by the role of the dendrites in the
process of communication among different neu-
rons, a new kind of formal model, called dendrite
P systems and abbreviated as DeP systems, was
recently incorporated in the membrane computing
paradigm.29 In this new dendrite-centered approach,
the role of neurons is simply as storage, since the
information processing is translated to the den-
drites.21 For this, an impulse will be transmitted
when the neurons connected to the dendrites meet
some requirements. It can be seen as a collaboration
between various neurons to emit a new impulse. A
motivation for such a design is that for some applica-
tions, such as computationally hard problems,40 it is
easier to solve problems having cooperating systems.
Thus, DeP systems appear as a promising variant
of P systems capable of reproducing the computa-
tional power of Turing machines, as demonstrated in
Ref. 29.

In order to experiment with membrane systems,
specially with those having a big amount of infor-
mation processors, a software simulator of the cor-
responding variant is needed. Let us recall that
simulators are required mainly because, nowadays,
nor in vitro nor in silico implementation exists. P-
Lingua12 is the de-facto standard software to sim-
ulate P systems. The software consists on a parser
that takes an input file written in the P-Lingua lan-
guage and exports it in a format that a simulator can
understand. The standard distribution of P-Lingua
includes a generic simulator capable of computing
almost every variant of P systems. In Ref. 22 for
instance, a simulator for SN P systems was pre-
sented, defining the corresponding syntax for this
kind of membrane systems in P-Lingua language.
Thanks to this kind of software, big experiments with
SN P systems can be taken over, since the simula-
tion of these systems by hand would be a hard job.
Therefore, it seems straightforward to see that a sim-
ulator of DeP systems will make simulations of these
systems much easier and, therefore, more complex
applications could be assumed.

Two different circumstances can appear while
developing a simulator for a variant of P systems:
(a) the new kind of P systems is similar to previ-
ous variants whose simulator is already implemented,
with only syntactical or very simple semantic addi-
tions. In this case, the simulator can be implemented
as an extension of the previous one, just declaring

2050071-2

December 18, 2020 9:17 2050071

Dendrite P Systems Toolbox: Representation, Algorithms and Simulators

what would happen in the case that the new feature
appears in the definition of the model, and includ-
ing the possible small semantic variants added; and
(b) the variant has many different ingredients from
the variants with existing simulators. Then, a sim-
ulator (and possibly, a parser) from scratch should
be developed. DeP systems have similarities with SN
P systems, but they differ in their treating of infor-
mation, with different rule types, spiking control and
parallel capabilities. Thus, while in SN P each neu-
ron fires its rules independently, according to their
inner contents, in DeP systems the potential con-
flicts caused by the sharing of ingoing synapses by
different neurons prevent such independent behavior.
These aspects made it inadvisable to use the simula-
tor for SN P systems as a base framework to develop
a simulator for DeP systems.

In this work, we present a new methodology to
simulate DeP systems, revisiting the formal defini-
tion of the model and providing a matrix represen-
tation of itself. It also puts special attention in the
conceptual simulation algorithm and the integration
of the simulator implemented inside MeCoSim34 and
P-Lingua.12 The experimental validation of the soft-
ware was also covered within our work, and some
traces of the execution of the software are pro-
vided, preceded by the specification of the example
model in P-Lingua, somehow providing some initial
ideas about what can be done with the simulator.
For further technical information, check MeCoSim
website.49

This paper is organized as follows: DeP systems
are revisited in Sec. 2. Section 3 introduces a matrix
representation and a simulation algorithm for the
model, Sec. 4 presents the simulator developed inside
P-Lingua and MeCoSim, including an experimental
validation of the software. This paper ends with con-
clusions and future work in Sec. 5.

2. Dendrite P Systems

In this section, this new membrane computing-based
model of the neural-like type is depicted. Specifically,
it is inspired from the way that neurons communi-
cate with each other through electrical (action poten-
tial) and chemical (neurotransmitters) signals, where
dendrites play a relevant role as the receiving part of
neurons. Both the syntax and the semantics of the
model are detailed in the following.

2.1. Syntax

Definition 1. A dendrite P system (abbreviated
as DeP system), of degree q ≥ 1, is a tuple of the
form Π = (O, syn, σ1, . . . , σq, iin, iout), where

(1) O = {a} is the singleton alphabet (a is called
spike).

(2) syn ⊆ {1, 2, . . . , q}×{1, 2, . . . , q} with (i, i) /∈ syn
for 1 ≤ i ≤ q, is the set of arcs of a directed graph
(synapses graph). For each node i, 1 ≤ i ≤ q,
of such graph the tuple (i1, . . . , isi) denotes the
nodes verifying (ij , i) ∈ syn and i1 < i2 < · · · <
isi , that is, si is the indegree of node i.

(3) Each node i, 1 ≤ i ≤ q, has associated with an
object, σi, called neuron, in such manner that
σi = (ni, Ri), where

— ni is a natural number.
— Ri is a finite set of rewriting rules of the fol-

lowing form:

(Ei1 , . . . , Eisi
) / ap ← (ac1 , . . . , acsi),

where Eij is a regular expression over O, for
1 ≤ j ≤ si, and p, c1, . . . , csi ∈ N.

(4) iin, iout ∈ {1, 2, . . . , m} indicate the input and
output neurons, respectively.

A DeP system of degree q ≥ 1 can be viewed as
a set of q neurons {σ1, . . . , σq} placed in the nodes
of a directed graph and they are interconnected by
arcs (synapses) belonging to the set syn. Communi-
cations among neurons are materialized by means of
action potentials, by sending an object (called spike),
an abstraction of a quantum of energy, to all neu-
rons linked through a synapse. Neurons from the
set {σi1 , . . . , σisi

} are called prepositive (presynap-
tic or source) neurons of σi. Each neuron σi initially
contains a number, ni, of spikes and a finite set of
rules (called dendrite rules) with the following format
(Ei1 , . . . , Eisi

) / ap ← (ac1 , . . . , acsi). These rules are
inspired by the fact that neurons, through den-
drites, receive signals (synaptic inputs) from prepos-
itive neuron axons, in such a manner that “process-
ing” the received inputs, it will be determined which
potential will be stored in the neuron (such poten-
tial will later determine the neuron’s ability to fire
an action potential at the next step, depending on
the dendrites it is connected to). Finally, iin and
iout are the indices of the input and output neu-
ron, respectively. We assume that a DeP system may

2050071-3

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

receive an external input on its input neuron before
the computation starts, and that the output of the
system is defined as the number of spikes emitted by
the output neuron.

2.2. Semantics

A configuration (or instantaneous description) at any
instant t, denoted by Ct, of a DeP system, Π =
(O, syn, σ1, . . . , σq, iin, iout), is described by the num-
ber of spikes associated with all neurons in the sys-
tem, that is, it is a tuple (n1(t), . . . , nq(t)) of natural
numbers, where ni(t) is the number of spikes in the
neuron σi at the instant t. In the case t = 0, the ini-
tial configuration of the system is obtained as follows:
ni(0) = ni, for 1 ≤ i ≤ q, being σi = (ni, Ri).

A dendrite rule (Ei1 , . . . , Eisi
)/ap ← (ac1 , . . . ,

acsi) in the neuron σi is applicable to a configuration
Ct, if for all j, 1 ≤ j ≤ si, we have: (a) nij (t) ≥ cj

and (b) anij
(t) ∈ L(Eij), that is, if the following con-

junction holds: ani1 (t) ∈ L(Ei1) ∧ · · · ∧ ansi
(t) ∈

L(Esi) ∧ ni1(t) ≥ c1 ∧ · · · ∧ nisi
(t) ≥ csi . Let us

recall that σi1 , . . . , σisi
are the prepositive (presy-

naptic) neurons associated with the neuron σi via
the dendrites from it.

Since it is possible that two or more dendrite rules
associated with a neuron σi can be applied to a given
configuration Ct, then one of them is nondeterminis-
tically chosen. This includes the case when two den-
drite rules have a neuron in common in the left-hand
side of the rule (i.e. in the set of presynaptic neu-
rons). In each neuron, the associated dendrite rules
are applied to a given configuration in a sequential
way (in the sense that only one rule is applied). How-
ever, dendrite rules associated with different neurons
are applied in a simultaneous way, in parallel.

Given a dendrite rule (Ei1 , . . . , Eisi
) / ap ←

(ac1 , . . . , acsi) in the neuron σi, the verification of
the conditions anij

(t) ∈ L(Eij) ∧ nij (t) ≥ cj , for
1 ≤ j ≤ si, so that the rule is applicable to a config-
uration Ct, can, informally, be interpreted as follows:
all the prepositive neurons σij are ready to be fired,
consuming cij spikes of the nij (t) that were in the
configuration Ct. Moreover, by applying the rule, p

spikes will be produced and stored in the neuron σi.
A configuration is a halting configuration if no

rule of the system is applicable to it. A computation
C is a (finite or infinite) sequence of configurations
C = {Cn |n ∈ N} such that: (a) the first term, C0,

is an initial configuration of the system; (b) for each
natural number n, the configuration Cn+1 is obtained
from the previous one, Cn, by applying rules of the
system as described above and (c) if the sequence
is finite (called halting computation), then the last
term of the sequence is a halting configuration. All
the computations start from an initial configuration
and proceed as stated above; only halting computa-
tions give a result, which is encoded by the number
of spikes received and stored by the output neuron
σiout throughout the computation.

3. Conceptual Simulation Algorithm

In this section, a simulation algorithm for DeP sys-
tems is proposed. First, a matrix representation
for DeP systems is provided. Later, the simulation
algorithm is defined at a conceptual level by using
the previously introduced matrix representation of
a model. This type of designs has been successfully
used by simulators for SN P systems in the litera-
ture,48 proving to be highly parallelizable.4,5,7 More-
over, this will help to further analyze the main differ-
ences with simulators of SN P systems, and point out
the challenges for the simulators developed in Sec. 4.
Finally, a discussion on how to parallelize some parts
of the algorithm is provided.

3.1. Algorithm based on matrix
representation

Let us assume that the DeP system to be simulated,
Π, contains m neurons and n rules in total. Specifi-
cally, the number of rules can be also precalculated
by n =

∑m
j=1 |Rj |. Moreover, we will assume that

the time steps are measured by a variable k. The fol-
lowing vectors and matrices are the key ingredients
of the simulation algorithm defined in what follows.

Definition 2. Configuration vector : Ck is a vector
of size m containing all spikes in every neuron at the
kth computation step/configuration, where C0 is the
initial vector containing all spikes in the system at
the initial configuration.

Definition 3. Dendrite transition matrix : DΠ is a
n×m matrix with the following elements:

DΠ[i, j] =

⎧⎪⎪⎨
⎪⎪⎩

cij if rule ri ∈ Rj′ , with (j, j′) ∈ Syn,
is applied consuming cij spikes
in the presynaptic neuron j;

0 otherwise.

2050071-4

December 18, 2020 9:17 2050071

Dendrite P Systems Toolbox: Representation, Algorithms and Simulators

Definition 4. Production transition matrix : PΠ is
a n×m matrix with the following elements:

PΠ[i, j] =

⎧⎪⎨
⎪⎩

pi if rule ri ∈ Rj and it is applied
producing pi spikes in total;

0 otherwise.

Definition 5. Expression matrix : EΠ is a n × m

matrix with the following elements:

EΠ[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Eij if rule ri ∈ Rj′ , with (j, j′) ∈ Syn,
and it has associated the regular
expression Eij for the presynaptic
neuron j;

a∗ if rule ri ∈ Rj′ , with (j, j′) /∈ Syn.

The reason for assigning the regular expression a∗

in nonpresynaptic neurons in Definition 5 will enable
the application of column-wide operations, as will be
explained later in this section.

Definition 6. Rule-neuron indexing vector : RΠ is
a vector of size n that says, for each rule i, to which
rule set Rj belongs to; or in other words, the neuron
where such rule is associated. Thus, if rule ri ∈ Rj ,
then the value at the corresponding position for such
rule is RΠ[i] = j.

Definition 7. Applicability vector : Ak is a vector
of size n that shows, at a given configuration Ck, if
a rule is applicable (having value 1) or not (having
value 0 instead). For simplicity, the values 1 and 0 are
considered equivalent to the Boolean values TRUE
and FALSE, respectively. This vector can be updated
during the simulation of one transition step, so that
its contents can be changed after checking the regular
expressions (when knowing which rules are applica-
ble) and also during spike consumption (when know-
ing which rules will be finally applied). For simplicity,
we will explicitly denote the applicability vector after
checking the regular expressions as A′

k.

The above definitions can be combined with the
following equation. It can be used to calculate a con-
figuration vector for the (k + 1)th step, given a con-
figuration vector (Ck) at the kth step, and PΠ:

Ck+1 = C′
k + Ak · PΠ, (1)

where

• A′
k ← EXPR(Ck, EΠ);

• Ak, C′
k ← DEND(A′

k, Ck, DΠ, RΠ).

The main procedure for simulating just one com-
putation is given in Algorithm 3.1. There are three
auxiliary functions, INIT, EXPR (Algorithm 3.2)
and DEND (Algorithm 3.3). INIT function is used to
initialize the matrix representation described above.
No further details are given for this function, since
the initialization can be easily inferred from the cor-
responding definitions. The main procedure is just
a loop over the time steps, with a limit of L steps.
This parameter is set by the user, and by default is
L =∞. The loop simulates a computation of the sys-
tem, and each iteration computes a transition step.
First, rule applicability is checked by only looking
to the associated regular expressions. This is a very
first step that must be performed before consuming
spikes. Second, the final selection of rules is done
by consuming spikes, determining in this way which
rules can be applied simultaneously provided that
there are enough spikes in the neurons. Third, the
final step after consuming all spikes is to produce
the spikes in the corresponding neuron. This can be
done easily by a vector–matrix multiplication (appli-
cability vector and production matrix).

EXPR function computes the applicability of
rules in a given configuration, looking only at the
associated regular expressions at the expression
matrix EΠ. This is a first step in the selection pro-
cess where we check which rules are candidates to be
executed. This can be easily done by looping over the
columns of the expression matrix (i.e. the rules), and
determining, for each row (i.e. neuron), if the num-
bers of spikes in the current configuration Ck belong
to the language generated by the corresponding reg-
ular expression. In order to implement this operation
as a column-wide conjunction, those rows represent-
ing neurons that are not presynaptic contain the reg-
ular expression a∗. This way, the number of spikes in
these neurons will always satisfy the regular expres-
sion, therefore not affecting the column-wide con-
junction. The output of this function is an applicabil-
ity vector represented by A′

k; that is, it is not a valid
applicability vector yet, but a first approximation.

The calculated applicability vector after EXPR is
then used in the DEND auxiliary function. Although

2050071-5

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

Algorithm 3.1. MAIN PROCEDURE: simulating
one computation
Require: A DeP system Π of degree m, with n rules,

and a limit L of time steps.

Ensure: A computation of the system

1: (DΠ, EΠ, PΠ, RΠ, C0) ← INIT(Π)

2: k ← 0

3: repeat

4: A′
k ← EXPR(Ck, EΠ) � Algo. 3.2

5: (Ak, C′
k) ← DEND(A′

k, Ck, DΠ, RΠ) � Algo. 3.3

6: Ck+1 ← C′
k + Ak · PΠ � Spike production

7: k ← k + 1

8: until k ≥ L ∨Vn
i=1 ¬Ak[i] � Stop condition

9: return C0 . . . Ck−1 � Returns the simulated computation

Algorithm 3.2. EXPR: checking applicability by
regular expressions.
Require: The expression matrix EΠ, and the configura-

tion Ck.

Ensure: Applicability vector A′
k.

1: n ← numrows(EΠ) � Number of rules

2: m ← numcols(EΠ) � Number of neurons

3: for i ← 1 to n do � For each rule

4: A′
k[i] ← Vm

j=1 Ck[j] ∈ L(EΠ[i, j]) � All Regex

5: end for

6: return A′
k

this function loops over the rules in random order,
let us recall that this is different from nondetermin-
ism. In fact, the algorithm uses this approach to
mimic nondeterministic behavior, albeit by accept-
ing the limitations of technology to fully capture the
theoretical underlying concept. When visiting a rule,
it tries to consume the corresponding spikes from
all presynaptic neurons, using in this way a winner-
takes-all strategy. If this is not possible, then the
rule is disabled. To do this, the function uses two
steps: (1) checking if a rule can consume all the cor-
responding spikes and (2) if it is possible, then it
effectively consumes them, otherwise it disables the
rule to avoid further conflicts with other rules. More-
over, following the DeP definition, the function also
disables the applicability of other rules within the
same neuron. Therefore, the random order to loop
the rules is key for the algorithm, and there is a
dependency between iterations, given that a rule can
disable others.

Algorithm 3.3. DEND: checking applicability by
spike consumption.
Require: The dendrite matrix DΠ, the rule-neuron

indexing vector RΠ, an applicability vector A′
k and

the configuration Ck.

Ensure: Updated applicability vector Ak and configu-

ration vector C′
k.

1: n ← numrows(DΠ) � Number of rules

2: m ← numcols(DΠ) � Number of neurons

3: Ak ← A′
k � New copy

4: C′
k ← Ck � New copy

5: for i ← 1 to n in shuffle order do � For each rule

6: if Ak[i] then � Step 1. Test if applicable

7: for j ← 1 to m do � For each neuron

8: if C′
k[j] < DΠ[i, j] then � Rule conflict

9: Ak[i] ← FALSE � Disable rule

10: end if

11: end for

12: end if

13: if Ak[i] then � Step 2. Rule is applied

14: for j ← 1 to m do � For each neuron

15: C′
k[j] ← C′

k[j] − DΠ[i, j] � Consume spikes

16: end for

17: j ← RΠ[i] � Get neuron of the rule

18: for z ← 1 to n do � For each rule in the neuron

19: if z �= i ∧ RΠ[z] = j then

20: Ak[z] ← FALSE � Disable rule

21: end if

22: end for

23: end if

24: end for

25: return Ak, C′
k

3.2. Comparison with spiking neural P
systems

Simulating a transition step requires two phases,
as generally done when simulating other P systems
variants: selection and execution. However, it is
also possible to identify four sub-phases, as shown
below. Some of them can overlap as we will see
later, depending on the semantics requirements of
the model to simulate.

(1) Check-in rule applicability.
(2) Selection of rules to be applied.
(3) Rules’ left-hand side consumption.
(4) Rules’ right-hand side production.

In 2011, a matrix representation of SN P systems
without delays was introduced.48 This representation
has been later on extended to different neural-like

2050071-6

December 18, 2020 9:17 2050071

Dendrite P Systems Toolbox: Representation, Algorithms and Simulators

variants.8,20 A simulation algorithm with such a rep-
resentation uses selection phase with sub-phases 1
and 2, and execution phase with sub-phases 3 and
4. Let us recall the main concepts presented in this
work. A transition step can be simulated by com-
puting the following equation, which is based only
on linear algebra operations:

Ck+1 = Sz
k ·MSNP + Ck, (2)

where

• Sz
k is a spiking vector, which is a Boolean vector of

size n. It says, for each rule, whether it is selected
at step k. Super index z indicates that it is possible
to have more than one spiking vector (given by
nondeterminism), so the zth vector is employed.
• MSNP is the transition matrix, which is an integer

matrix of size n×m. Each row is associated with
a rule, and each rule with a neuron. For each rule
of the form ac → ap, the matrix contains −c in the
column corresponding with the neuron it belongs
to, and +p in the columns of neurons connected
with it.
• Ck is a configuration vector, which is an integer

vector of size m, denoting the amount of spikes
within each neuron at a certain step k.

It can be seen that the matrix-based simulation
algorithm for SN P systems can be easily paral-
lelized in architectures such as GPUs.4,5,7,8 This is
empowered by a key property: the four sub-phases
can be applied one after the other, without overlap-
ping. Thus, each phase can be parallelized indepen-
dently. Moreover, the second sub-phase is the most
complex one, but still can be parallelized.4 The third
and fourth sub-phases can be merged into a simple
vector–matrix multiplication. On the contrary, the
simulation algorithm for DeP requires an overlap-
ping of sub-phases 2 (selection) and 3 (subtraction).
The reason for this is that it cannot select one rule
until being certain that it will consume all the corre-
sponding spikes. This makes the selection phase more
complex, while the execution phase consists in just
sub-phase 4 (production).

3.3. A parallel design

Although the simulation algorithm of DeP systems
is less parallelizable, it is still possible to design par-
allel implementations from some parts as discussed

next. First all, we can identify a high degree of par-
allelism in sub-phase 1, that is, in EXPR function.
Each column can be processed by a parallel map
operation, i.e. the iterations of the for loop in line
3 of Algorithm 3.2 can be executed independently.
The column-wide conjunction in line 4 can be per-
formed by a parallel reduction using the logical and
operator, after applying a map in parallel to check if
the numbers of spikes belong to the languages.

Moreover, sub-phase 4 (line 6 in Algorithm 3.1)
can be easily parallelized, as in the case of SN P sys-
tems, because it is just a vector–matrix multiplica-
tion. Many CPU and GPU algebra libraries already
provide optimized implementations of this operation.
Moreover, in case that production matrix contains a
majority of zero values, it would be possible to use
sparse matrix libraries.

However, for sub-phases 2 and 3 (in DEND func-
tion), we need a highly sequential implementation.
The for loop in line 5 at Algorithm 3.3 cannot be
fully parallelized, unless we precompute partitions of
dependencies between neurons. In other words, if the
implementation knows in advance which neurons will
compete one with each other, then we only need to
perform the random order between those competing
neurons. Neurons without dependency can be run
in parallel, but their rules must be still processed
sequentially (only one rule can be executed within
each neuron). Moreover, the traversing of elements
within the columns (for loops at lines 7 and 14)
could be also parallelized using map and reduction
operations.

4. Software Simulator

The design of new models of computation is a chal-
lenging task, with a number of aspects to consider
and properly define in terms of syntactic, semantic
and dynamic elements involved. The initial descrip-
tion of such computing devices requires a proper
exhaustive formalization, usually clarified with illus-
trative examples. However, despite significant efforts
devoted in the descriptions (to prepare correct def-
initions, proofs of computational results and sound
examples), it is nearly impossible to guarantee the
absence of inaccuracies or ambiguities in the natural
language used. Occasionally, also some errors might
be present in examples and simulation traces, due to
the subtleties of the newly created models.

2050071-7

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

In this context, it is highly advisable for
researchers to have at their disposal some support
in the form of software tools to aid them in conceiv-
ing and defining new models of computation. As it
might be expected, DeP systems are not an exception
to this general need. As a matter of fact, during the
current work certain aspects to improve were found
in the foundational paper. Some of them have been
revised in previous sections (e.g. reinforcing the for-
mal definition of DeP systems), while others will be
described in this section.

However, far from being taken as some type of
criticism over the initial work, these aspects men-
tioned intend to provide a constructive feedback,
highlighting the relevance of software assistants to
help researchers in the tough task of the design
of computing models. Therefore, a significant effort
within this work was devoted to the development of
sound tools to design, debug and simulate DeP sys-
tems. In what follows the approach taken to satisfy
these needs is described, highlighting the main con-
tributions in terms of the software tools provided.

4.1. Approach

When addressing the solution to certain soft-
ware needs, one might consider different strategies
depending on the aspects involved. Apart from other
hybrid initiatives, these main approaches might be
followed:

• Facing a completely new project, developing the
software from scratch.
• Adapting existing solutions to the particular con-

ditions of the new context.

Both alternatives have their strengths and weak-
nesses. Thus, developing a new software product
from the ground implies focusing on the specific
requirements for the problem under study, making
the best decisions in terms of design principles, tech-
nologies applied and internal structures used. On
the other hand, extending available solutions to new
needs enables the developers to take advantage of
certain elements, albeit at the cost of accepting the
restrictions imposed by the existing software.

Along the work presented in this paper, the chal-
lenge was to handle DeP systems, a new model
of computation within membrane computing. This

implied considering a way to write these P sys-
tems, algorithms to capture the dynamics of the sys-
tems and certain tools to debug and perform virtual
experiments through the simulation of such DeP
systems.

As it has been pointed out in previous sections,
there are similarities between SN P systems and DeP
systems. This fact impulsed the bet for the second
approach mentioned, so that a reasonable approach
would be trying to adapt existing software working
with SN P systems.

There are several interesting software products41

to deal with different types of P systems, some
of them providing open source solutions. Among
all of them, a widely used mature software is P-
Lingua framework, well known in membrane com-
puting community, and chosen by the authors of this
paper. This decision was based on the open source
nature of the project, the availability of general-
purpose tools to use in the framework and the famil-
iarity of some of the authors of this paper as devel-
opers involved in such project.

In what follows, some of the main features of the
framework provided by P-Lingua and MeCoSim are
described, before detailing the main contributions
made for the specification and simulation of DeP sys-
tems.

4.2. Framework

The growth of membrane computing theoretical
achievements came along with the evolution of the
related software, from didactic and specific purpose
tools to general-purpose software for a variety of P
systems. Such products provided solutions to sup-
port both the analysis of theoretical aspects and the
modeling and experimentation with real world prob-
lems. In this context, P-Lingua12,33 meant a signif-
icant milestone, providing a uniform framework for
the specification, debugging and simulation of differ-
ent types of P systems. P-Lingua defines a standard
language to define P systems. Additionally, it pro-
vides a number of parsers and simulators for many
variants of these computational devices.

Several products extended the capabilities of the
framework, including features as invariants detection
and model checking tools. As the theoretical stud-
ies by P system experts gave rise to the study of
real world problems, it became clear the need of

2050071-8

December 18, 2020 9:17 2050071

Dendrite P Systems Toolbox: Representation, Algorithms and Simulators

higher-level tools abstracting the users from internal
details of these devices. As a consequence, Membrane
Computing Simulator (MeCoSim34,39) emerged as
such new higher-level layer, built on top of P-Lingua.
It provided a user-friendly visual interface for P sys-
tems designers but, more importantly, a mechanism
for the delivery of end-user applications for peo-
ple outside membrane computing community. Thus,
solutions based on P systems for certain relevant
problems could be defined by the designers, who
would deliver custom apps for experts in the domain
of such problems (ecologists, economists, etc.) These
end-users could use such apps as black boxes, to per-
form their visual experiments for their scenarios of
interest, in order for them to make better decisions
based on the predictions of the models.

In terms of the types of P systems supported,
MeCoSim environment uses the parsing and simula-
tion engines provided by P-Lingua framework. Ini-
tially, it inherited P-Lingua core capabilities in its
version 4.0,50 and later developed a fork for such
engines, with many additional variants of membrane
systems. For an updated list of supported models, the
reader can visit MeCoSim website.49 Besides, for an
overall view of the approach, integrating P-Lingua,
MeCoSim and the connection with high-performance
tools, is provided in Ref. 38.

For those not familiar with this framework, it is
worth recalling the basic elements provided for any
type of P system covered:

• A language to define the P system or family of
P systems under study. Given a certain prob-
lem, a simple text file in P-Lingua language
would include the ingredients of the P system
designed (membrane structures, rules, etc.), pos-
sibly parameterized (e.g. to cover P system fami-
lies).
• A parser for the language dialect in order to con-

trol that the specification provided for a given P
system matches the syntactic and semantic con-
straints imposed by the type of membrane system
used.
• At least one simulator for the variant of P sys-

tem under study. Thus, for a correct model written
in P-Lingua, properly debugged using the parser
for the specified model, the simulator should
be able to simulate the behavior of the sys-
tem (step-by-step or until a given condition is

reached — typically, running for a certain num-
ber of steps, or getting to a halting configuration
where no applicable rules are present).

4.3. Contributions

Once the needs identified were clear, the authors
decided to provide the tools required by the approach
described, developing them under the umbrella of the
environment provided by P-Lingua and MeCoSim.
Then, some components could be re-used, getting
attached to certain general structures, while other
aspects could be handled separately.

To summarize, the following are the main contri-
butions to handle DeP systems with software tools:

• A language to define DeP systems through a new
type of model defined in P-Lingua language, with
its syntax and semantics allowing a special type of
rules.
• Parsing tools for DeP systems providing a mech-

anism to analyze the systems introduced in P-
Lingua language, inform about possible errors (if
any), and build the initial configuration of the sys-
tem (based on the structure and rules specified).
• A simulation engine to simulate the possible com-

putations of the DeP system.
• The integration within P-Lingua and MeCoSim

allowing the use of the command-line and visual
tools for the design, debug, virtual experimenta-
tion and custom apps definition.

In what follows, some aspects about the tools pro-
vided are pointed out, while omitting certain techni-
cal details probably not too interesting for a broad
audience.

Extensions of P-Lingua language
First of all, it is worth recalling that P-Lingua

language presents general mechanisms for the def-
inition of P system elements (structure, objects in
multisets and rules), parameters, iterators and mech-
anisms to define functions following a structured pro-
gramming paradigm. Such elements of the language
have been preserved for the definition of DeP sys-
tems, thus enabling the P systems designers the pos-
sibility to use widely extended elements present in
other types of P systems.

Second, new elements were introduced in the lan-
guage in order to capture the specific ingredients of

2050071-9

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

DeP systems. In this sense, the following elements
have been included:

• Model specification. A new type of model has been
introduced, dendrite. Thus, any DeP system

defined must start with the declaration:
@model <dendrite >

From this line onwards, the parser will be con-
scious of the type of system introduced, and all the
elements defined along the system should match
the valid structures and rules existing in DeP sys-
tems.
• Neurons present in the system. The general syntax

of P-Lingua for the definition of membrane struc-
tures has been adopted, in this case, to specify the
neurons assigned to @mu element:
@mu = 1, 2, 3, 4;

However, when a DeP system is being created
with this syntax, different types of structures are
created (in comparison with those of SN P sys-
tems), taking into account the nature of the neu-
rons involved in this new type of model.
As it can be seen, neurons 1–4 have been defined
for the given DeP system. Some of these neurons
can be marked as input or output neurons:
@min = 1;
@mout = 4;

• Initial multisets. Only objects of type a can be
introduced in the membranes, as it happens in
the case of SN P systems, and the general syntax
for the definition of multisets in different types of
P systems is adopted, with the same restriction
imposed to the definition of SN P systems.
@ms(1) = a*4;
@ms(2) = a*2;

In this example, four spikes are assigned to neuron
1, while two spikes are initially placed in neuron 2,
and no spikes are present in the remaining neurons
(3 and 4).
• Arcs definition. As formally defined in Sec. 2, DeP

systems present a synapses graph, with its set of
arcs representing the connections between source
and target neurons. In the language defined, this
follows the usual syntax present in SN P systems.
@marcs = (1,3);
@marcs += (2,3);
@marcs += (2,4);
@marcs += (3,4);

• Dendrite rules specification. This element is com-
pletely different from other types of rules defined
in P-Lingua for the definition of rules for other
types of P systems. The syntax used aims to be
as close as possible to the definitions given in the
seminal paper of DeP systems, keeping the same
syntactic elements and order of the rules. Thus, a
rule present in neuron 3 like (a4, a2) / a2 ← (a2, a2)
can be expressed in the new dialect of P-Lingua as
follows:
("a{4}","a{2}") [a*2 <-- (a*2, a*2)]’3;

As those familiar with P-Lingua can observe,
new syntactic elements as the reverse arrow or
the parenthesis for the ordered sets of regular
expressions and source spikes to be consumed are
included in the language. Additionally, it is worth
noting the inversion of the roles of left and right
sides of the rules; in this case, the left side is
devoted to the target neuron (identified by 3 in the
example), with right-hand side acting as the source
neurons (with their labels omitted, deduced from
the synapses graph). With respect to the writing of
regular expressions in P-Lingua, as it can be seen,
they are surrounded by parentheses, separated by
commas, each one of them in double quotes, and
following the syntax accepted in Java language.51

Simulation of DeP systems with P-Lingua and
MeCoSim

Once a P system is specified in P-Lingua with
the syntax described above, and following the general
mechanisms of the language, the debugging process
can start. Through the parsing tools, this process
checks if the definition is correct, informing about
possible errors or warnings and finally generates the
initial representation of the system. This is done in
P-Lingua project with many for types of P systems,
but a new variant imposes certain restrictions, with
different ingredients, rule types, etc.

In the case of DeP systems, a significant change
was made in the core of P-Lingua fork within
MeCoSim. Before the existence of these systems, a
number of packages were available to deal with many
variants of SN P systems, all preserving certain cru-
cial features. However, the nature of DeP systems
involves a different approach where the control of the
sending of spikes is not on the source neurons but on
the target ones. Additionally, no rules in SN P sys-
tems can be translated into dendrite rules, and the

2050071-10

December 18, 2020 9:17 2050071

Dendrite P Systems Toolbox: Representation, Algorithms and Simulators

opposite also does not hold, as the reader can see in
Ref. 29. Consequently, a relevant decision was made:
building a whole separated structure for all the rep-
resentation and simulation of DeP systems, despite
the similarities that could be externally observed for
those familiar with SN P systems.

The previous facts led to the creation of new
software packages children of certain neuralLike

ones, as a superstructure for those subpackages now
devoted to deal with spiking and the newly created
dendrite. This applies to different packages devoted
to P system definition, rules representation and sim-
ulators.

Regarding the structure of dendrite rules, their
structure is far from traditional P system rules, both
in SN P and other types of cell-like or tissue-like
systems, because the left- and right-hand sides are
normally devoted to express the multisets in source
and target regions, with their consumed and pro-
duced objects (spikes in this case), respectively. How-
ever, in DeP systems those roles are inverted, lead-
ing to internal structures unable to inherit certain
general mechanisms representing those sides in P-
Lingua. Additionally, the fact that the right-hand
side of the rules in this case presents an ordered set
of multisets also differs from SN P systems, as it does
the presence of another ordered set for the regular
expressions for the corresponding respective source
neurons.

All in all, the necessary structures were created
to represent DeP systems in P-Lingua, and a new
simulator was also built to capture the semantic and
dynamic aspects of their representation. While inter-
nally this simulator differs significantly from oth-
ers in the platform, it still follows the same general
scheme:

(1) Initialization
(2) For each computation step, while there are appli-

cable rules:

(a) Selection of rules
(b) Execution of rules.

In this case, while the initialization and execution
stages do not present too many interesting aspects
to highlight, the selection phase differs significantly
from others, specially if compared with SN P sys-
tems. Thus, SN P system simulators in P-Lingua
share a common idea: from a given configuration, the
next computation step can select the rules present

inside each neuron based on the contents of such neu-
ron, and the different neurons can operate in parallel,
independently. All neurons can select rules based in
the same current configuration, each neuron selecting
at most one single rule for this step. Thus, sequential
simulators for such systems usually iterate over each
neuron in order to select the one to be applied in
this step, reserving the spikes to consume and pro-
duce but differing the actual application of the rules
to the execution stage.

However, in the case of DeP systems, the iteration
over each neuron independently cannot guarantee
the correct application of the semantic and dynamic
aspects of this model of computation. In contrast,
every neuron where certain rules are present must be
careful of other rules in different neurons but shar-
ing common source neurons sending spikes; this is
derived from the fact that if different neurons sharing
the same presynaptic neuron have applicable rules at
a given step, such neurons can have a potential con-
flict in the case that there are not enough spikes for
all of them, and some of such neurons (and their
corresponding rules to apply) must be selected non-
deterministically.

Thus, in the initialization of the system, the sim-
ulator for DeP systems includes the calculation of
the static dependencies of the neurons:

• potentialConflictingTargetNeurons: the set of
all the neurons sharing some source neurons con-
nected to them.
• potentialConflicts: a map storing, for each tar-

get neuron (neuron receiving an arc) with poten-
tial conflicts, the set of neurons that share some
source neurons with it.

Thus, in every step of the computation, for each
neuron over which we are iterating (let us say n1), the
selection phase takes into account different aspects:

• If n1 is not a potential conflicting neuron, then
the applicability of its rules can be independently
handled, so it will check the matching of the cor-
responding regular expressions and source spikes
availability, and one of the possible applicable rules
is selected to be applied in this step, pseudo-
randomly chosen, in order to simulate a nonde-
terministic choice.
• Otherwise, if n1 presents potential conflicts, then

the applicability of the rules in such neuron will

2050071-11

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

be evaluated along with all the neurons potentially
conflicting with it. Let us note the word “poten-
tially”, because before making any decision, the
general applicability conditions (source multisets
and regular expressions) will need to be checked.
For these neurons potentially in conflict (n1 and
the ones possibly in conflict with it), only one of
them will be nondeterministically chosen (let us
say n2), among those with applicable rules. A spe-
cific rule will be selected to be applied with such
target neuron n2. The spikes required by such rule
will be removed from a temporary configuration
of the system, in order to avoid the use of the
same source spikes by other rules. Additionally,
n2 will be blocked in this step, given that a rule
has already been selected for it. Then, if n2
= n1

(i.e. the neuron selected is not the one we were
iterating over), then it might be the case that a
rule could be still applicable. Then, the process
would continue (in an internal loop) with the tem-
porary configuration excluding the spikes reserved
by the previous rule and blocking the previously
selected neuron. If more neurons still were in con-
flict with n1, it could still lead to other neurons
getting selected, so this internal loop would con-
tinue until n1 was selected among the currently
conflicting neurons with applicable rules or no neu-
ron was selected, meaning that none of the conflict-
ing neurons would have applicable rules over the
temporary configuration. Then, the next iteration
of the external loop would visit the next neurons,
ignoring those selected and blocked for this step.

Resulting from this selection phase, a set of rules
will be selected. Then, the execution phase will apply
the actual change to the current configuration, pass-
ing from Ct to Ct+1, removing the objects consumed
in the right-hand side of the rule of each rule selected,
and adding the objects produced in the left-hand
side, in the target neuron, with the semantics speci-
fied in Sec. 2.

4.4. Experimentation

The elements described in the previous sections
have implied significant changes in P-Lingua fork of
MeCoSim project, and minor changes in MeCoSim
itself. In reward, all the general mechanisms of these
software packages are available for people interested

Fig. 1. The example in DeP systems seminal paper.

in DeP systems, along with the specific aspects high-
lighted in the previous section.

In order to check the correctness of the behavior
of the new tools developed, the seminal paper of DeP
systems29 was taken as a reference. In such work, the
authors explain in their Sec. 2.2 an example with its
structure and rules (as illustrated by Fig. 1), and
with the possible traces for all the possible compu-
tations of the system.

The translation of the design provided in the
paper to the corresponding specification in P-Lingua
code is the following:

@model <dendrite >

def main()
{
call dendrite_init_conf();
call dendrite_rules();
}
def dendrite_init_conf()
{
@mu = 1,2,3,4;
@ms(1) = a*4;
@ms(2) = a*2;
@marcs = (1,3);
@marcs += (2,3);
@marcs += (2,4);
@marcs += (3,4);
@min = 1;
@mout = 4;
}
def dendrite_rules()
{
("a{4}","a{2}") [a*2 <-- (a*2, a*2)]’3;
("a{4}","a{2}") [a <-- (a*2, a)]’3 ;
("a{2}","a") [a <-- (a*2, a)]’3 ;
("a","a") [a <-- (a, a)]’4;
("a{0}","a{2}") [a <-- (a*0, a)]’4;
}

Let us note that the last rule includes a regular
expression "a{0}" to represent the empty word. Sim-
ilarly, in order to capture the multiplicity of objects
sent from the first presynaptic neuron in such rule,
the term a*0 is the multiset where no objects a are
present.

2050071-12

December 18, 2020 9:17 2050071

Dendrite P Systems Toolbox: Representation, Algorithms and Simulators

In the given example, as described in the refer-
ence paper, different conflicts appear, both inside the
same neuron and with different neurons involved. For
each possible computation, the authors provide the
trace of such computation. In this case, starting with
the configuration C0 = (4, 2, 0, 0), according to the
paper, three computations are possible, succinctly
shown here:

• Case (1): C1 = (2, 0, 2, 0), C2 = (2, 0, 1, 1);
• Case (2a): C1 = (2, 1, 1, 0), C2 = (0, 0, 3, 0);
• Case (2b): C1 = (2, 1, 1, 0), C2 = (2, 0, 0, 1).

When checking a new simulator for a new model
of computation, it might be the case that some errors
can be found in the formal definition of the model,
in the manual traces for a given example or in the
simulation tools. Not surprisingly, in this case, one
error was found in the case (2a), after experiment-
ing intensively with the model in MeCoSim for the
example provided, as illustrated in Fig. 2.

In such figure, column multiplicity shows the
number of spikes present in the neuron labeled by
column Label, for each given Step. The absence of
information about a certain number of spikes in a
neuron at a given step implies that no spikes are
present at that moment in the given region. As it
can be observed in the trace, the last step is 3. How-
ever, all the possible computations listed above pre-
sented 2 steps only and then the system halted with
no rules being applicable after such two steps. On the
contrary, in the trace of the figure, corresponding to

Fig. 2. Snapshot of a useful trace in MeCoSim’s den-
drite simulator.

case (2a), it can be noted that 2 spikes (instead of 3)
are present in neuron 3, C2 = (0, 0, 2, 0). This implies
that some rule becomes applicable, finally leading to
a third step in the computation, and the final con-
figuration C3 = (0, 0, 1, 1).

In order to properly follow the computation trace,
the software provides a debug console to run the DeP
system step-by-step, showing information about the
rules applied in each computation step, along with
the corresponding configurations obtained.

CONFIGURATION: 0
NEURON ID: 1, Label: 1 Multiset: a*4

NEURON ID: 2, Label: 2 Multiset: a*2

NEURON ID: 3, Label: 3 Multiset: #

NEURON ID: 4, Label: 4 Multiset: #

STEP: 1

Rules selected for NEURON ID: 3, Label: 3

1 * #2 (a{4}, a{2})/ [a <-- (a*2,a)]’3

CONFIGURATION: 1

NEURON ID: 1, Label: 1 Multiset: a*2

NEURON ID: 2, Label: 2 Multiset: a

NEURON ID: 3, Label: 3 Multiset: a

NEURON ID: 4, Label: 4 Multiset: #

STEP: 2

Rules selected for NEURON ID: 3, Label: 3

1 * #3 (a{2}, a)/ [a <-- (a*2,a)]’3

CONFIGURATION: 2

NEURON ID: 1, Label: 1 Multiset: #

NEURON ID: 2, Label: 2 Multiset: #

NEURON ID: 3, Label: 3 Multiset: a*2

NEURON ID: 4, Label: 4 Multiset: #

STEP: 3

Rules selected for NEURON ID: 4, Label: 4

1 * #5 (a{0}, a{2})/ [a <-- (#,a)]’4

CONFIGURATION: 3

NEURON ID: 1, Label: 1 Multiset: #

NEURON ID: 2, Label: 2 Multiset: #

NEURON ID: 3, Label: 3 Multiset: a

NEURON ID: 4, Label: 4 Multiset: a

Halting configuration

2050071-13

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

In the humble opinion of the authors of this
paper, the error detected in the example of the sem-
inal work does not respond to an unfortunate event,
it is instead due to the normal impossibility for the
human beings to guarantee the absence of mistakes;
of course it may have occurred that no error was
present for this particular case, but such faults are
natural when new models are being created man-
ually. The point of bringing this case is no other
than justify the need of simulation tools to aid in
the debugging process, specially when dealing with
novel models where the number of aspects taken into
consideration are at least worth receiving some kind
of external help.

5. Conclusions

In this paper, we have presented a new simula-
tor of a new variant of membrane systems: DeP
systems. This framework evokes the information
transport and processing of dendrites in the brain.
In Ref. 29, this model was demonstrated to be a
Turing-complete model; that is, this type of mem-
brane systems is capable of solving all the problems
that can be solved by a Turing machine. In this
paper, we give an extended formalization of DeP sys-
tems (with respect to the seminal paper), as well as
a matrix-based representation of such systems. The
simulation algorithm is defined in such a way if the
system is nondeterministic; that is, if it has various
possible computational paths, so that each execu-
tion of the algorithm can lead to a different result.
The complication of the applicability of rules, to per-
form a computation step, is the fact that rules of
the same neuron are sequential, and that the infor-
mation of a neuron can travel to several neurons
while the number of spikes is sufficient. Because of
it, rules must be, in some sense, deactivated when a
conflicting rule is applied and not enough spikes are
present for both. This is reflected in the simulation
algorithm. The software has been validated with the
example shown in the seminal paper.29 It is worth
highlighting that the purpose of this example is to
test the reliability of the simulator developed, whose
aim was precisely that one: to provide a first set of
tools devoted to capture the syntax and semantics
of the newly created model of computation of DeP
systems. This simulator could be taken as a reference
in order for other high-performing tools to compare

again in terms of efficiency, while preserving the same
behavior in terms of results obtained for each given
DeP system.

This implementation opens various research lines.
On the one hand, it gives researchers the opportunity
to apply DeP systems in other fields, such as robotics
or fault diagnosis. The integration with MeCoSim
is crucial when dealing with large systems, since
experts from other fields can configure themselves
the scenario they want to test. On the other hand,
it gives a base framework to implement new vari-
ants of DeP systems, taking into account the nov-
elty of the model and the fact that a totally new
simulator has been implemented here. Therefore, it
will be easier to extend it for new variants of the
model. Apart from these research lines, a matrix-
representation and simulation of these extended sys-
tems would be very interesting, since there are sev-
eral software platforms that could improve the per-
formance of the computation time. In fact, GPUs
are good at accelerating the simulation of P systems
by means of massive parallelism. However, the more
complex selection phase makes this parallelization a
challenge.

Acknowledgments

This work was supported by the research project
TIN2017-89842-P (MABICAP), co-financed by Min-
isterio de Economı́a, Industria y Competitividad
(MINECO) of Spain, through the Agencia Estatal de
Investigación (AEI) and by Fondo Europeo de Desar-
rollo Regional (FEDER) of the European Union.

References

1. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and
H. Adeli, Deep convolutional neural network for the
automated detection and diagnosis of seizure using
EEG signals, Comput. Biol. Med. 100 (2018) 270–
278.

2. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan,
H. Adeli and D. P. Subha, Automated EEG-based
screening of depression using deep convolutional neu-
ral networks, Comput. Methods Programs Biomed.
161 (2018) 103–113.

3. M. Bernet and B. Yvert, An attention-based spiking
neural network for unsupervised spike-sorting, Int.
J. Neural Syst. 29(8) (2019) 1850059:1–1850059:19.

4. F. G. Cabarle, H. N. Adorna and M. A. Mart́ınez-del-
Amor, Simulating spiking neural P systems without
delays using GPUs, Int. J. Nat. Comput. 2(2) (2011)
19–31.

2050071-14

December 18, 2020 9:17 2050071

Dendrite P Systems Toolbox: Representation, Algorithms and Simulators

5. F. G. Cabarle, H. N. Adorna, M. A. Mart́ınez-
del-Amor and M. J. Pérez-Jiménez, Spiking neu-
ral P system simulations on a high performance
GPU platform, in 11th Int. Conf. Algorithms and
Architectures for Parallel Processing (Melbourne,
2011), Lecture Notes in Computer Science, Vol. 7017
(Springer, Berlin, Heidelberg, 2011), pp. 99–108.

6. F. G. C. Cabarle, H. N. Adorna, M. J. Pérez-Jiménez
and T. Song, Spiking neural P systems with struc-
tural plasticity, Neural Comput. Appl. 26(8) (2015)
1905–1917.

7. J. P. Carandang, J. M. B. Villaflores, F. G. C.
Cabarle, H. N. Adorna and M. A. Mart́ınez-del-
Amor, CuSNP: Spiking neural P systems simulators
in CUDA, Rom. J. Inf. Sci. Technol. 20(1) (2017)
57–70.

8. J. P. Carandang, F. G. C. Cabarle, H. N. Adorna,
N. H. S. Hernandez and M. A. Mart́ınez-del-Amor,
Handling non-determinism in spiking neural P sys-
tems: Algorithms and simulations, Fundam. Inform.
164(2–3) (2019) 139–155.

9. M. A. Colomer, A. Margalida and M. J. Pérez-
Jiménez, Population dynamics P system (PDP)
models: A standardized protocol for describing and
applying novel bio-inspired computing tools, PLoS
ONE 8(4) (2013) e60698.

10. P. Frisco, M. Gheorghe and M. J. Pérez-Jiménez
(eds.), Applications of Membrane Computing in Sys-
tems and Synthetic Biology (Springer, 2014).

11. F. Galán-Prado, A Morán, J. Font, M. Roca and J.
L. Roselló, Compact hardware synthesis of stochastic
spiking neural networks, Int. J. Neural Syst. 29(8)
(2019) 1950004:1–1950004:13.

12. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, M.
A. Mart́ınez-del-Amor, E. Orejuela-Pinedo and I.
Pérez-Hurtado, P-Lingua 2.0: A software framework
for cell-like P systems, Int. J. Comput. Commun.
Control 4(3) (2009) 234–243.

13. S. Ghosh-Dastidar and H. Adeli, Improved spiking
neural networks for EEG classification and epilepsy
and seizure detection, Integr. Comput.-Aided Eng.
14(3) (2007) 187–212.

14. S. Ghosh-Dastidar and H. Adeli, Spiking neural net-
works, Int. J. Neural Syst. 19(4) (2009) 295–308.

15. S. Ghosh-Dastidar and H. Adeli, A new supervised
learning algorithm for multiple spiking neural net-
works with application in epilepsy and seizure detec-
tions, Neural Netw. 22(10) (2009) 1419–1431.

16. R. Hu, Q. Huang, H. Wang, J. He and S. Chang,
Monitor-based spiking recurrent network for the rep-
resentation of complex dynamic patterns, Int. J.
Neural Syst. 29(8) (2019) 1950006:1–1950006:22.

17. M. Ionescu, G. Păun, M. J. Pérez-Jiménez and
T. Yokomori, Spiking neural dP systems, Fundam.
Inform. 111(4) (2011) 423–436.

18. M. Ionescu, G. Păun, M. J. Pérez-Jiménez and A.
Rodŕıguez-Patón, Spiking neural P systems with

several types of spikes, Int. J. Comput. Commun.
Control 6(4) (2011) 647–655.

19. M. Ionescu, G. Păun and T. Yokomori, Spiking neu-
ral P systems, Fundam. Inform. 71(2) (2006) 279–
308.

20. Z. B. Jimenez, F. G. C. Cabarle, R. T. A. de la
Cruz, K. C. Buño, H. N. Adorna, N. H. S. Hernandez
and X. Zeng, Matrix representation and simulation
algorithm of spiking neural P systems with struc-
tural plasticity, J. Membr. Comput. 1 (2019) 145–
160.

21. R. Llinás, C. Nicholson, J. A. Freeman and D. E.
Hillman, Dendritic spikes and their inhibition in alli-
gator Purkinje cells, Science 160(3832) (1968) 1132–
1135.

22. L. F. Maćıas-Ramos, I. Pérez-Hurtado, M. Garćıa-
Quismondo, L. Valencia-Cabrera, M. J. Pérez-
Jiménez and A. Riscos-Núñez, A P-Lingua based
simulator for spiking neural P systems, in 12th Int.
Conf. Membrane Computing (Fontainebleau, France,
2011), Lecture Notes in Computer Science, Vol. 7184
(Springer, Berlin, Heidelberg, 2012) 257–281.

23. C. Mart́ın-Vide, J. Pazos, G. Păun and A.
Rodŕıguez-Patón, A new class of symbolic abstract
neural nets: Tissue P systems. Lect. Notes Comput.
Sci. 2387 (2002) 290–299.

24. L. Pan, G. Păun, G. Zhang and F. Neri, Spiking
neural P systems with communication on request.
Int. J. Neural Syst. 27(8) (2017) 1750042.

25. L. Pan, G. Păun and M. J. Pérez-Jiménez, Spiking
neural P systems with neuron division and budding,
Sci. China Inf. Sci. 54(8) (2011) 1596–1607.

26. L. Pan, J. Wang and H. J. Hoogeboom, Spiking neu-
ral P systems with astrocytes, Neural Comput. 24(3)
(2012) 805–825.

27. G. Păun, Computing with membranes, J. Com-
put. Syst. Sci. 61(1) (2000) 108–143. Turku Center
for Computer Science-TUCS Report 208, November
1998.

28. G. Păun, G. Rozenberg and A. Salomaa (eds.), The
Oxford Handbook of Membrane Computing (Oxford
University Press, Oxford, 2010).

29. H. Peng, T. Bao, X. Luo, J. Wang, X. Song, A.
Riscos-Núñez and M. J. Pérez-Jiménez, Dendrite P
systems, Neural Netw. 127 (2020) 110–120.

30. H. Peng, Z. Lv, B. Li, X. Luo, J. Wang, X. Song, T.
Wang, M. J. Pérez-Jiménez and A. Riscos-Núñez,
Non-linear spiking neural P systems, Int. J. Neural
Syst. 30(10) (2020) 2050008.

31. H. Peng, J. Wang, M. J. Pérez-Jiménez, H. Wang, J.
Shao and T. Wang, Fuzzy reasoning spiking neural
P system for fault diagnosis, Inf. Sci. 235 (2013)
106–116.

32. H. Peng, J. Yang, J. Wang, T. Wang, Z. Sun, X.
Song, X. Luo and X. Huanga, Spiking neural P sys-
tems with multiple channels, Neural Netw. 95 (2017)
66–71.

2050071-15

December 18, 2020 9:17 2050071

D. Orellana-Mart́ın et al.

33. I. Pérez-Hurtado, Desarrollo y aplicaciones de un
entorno de programació n para Computació n Celu-
lar: P-Lingua, Ph.D. thesis, Universidad de Sevilla,
Seville (2010).

34. I. Pérez-Hurtado, L. Valencia-Cabrera, M. J. Pérez-
Jiménez, M. A. Colomer and A. Riscos-Núñez,
MeCoSim: A general purpose software tool for simu-
lating biological phenomena by means of P Systems,
in Proc. 2010 IEEE Fifth Int. Conf. Bio-inspired
Computing: Theories and Applications, Changsha,
China, 2010, pp. 637–643.

35. I. Pérez-Hurtado, M. A. Mart́ınez-del-Amor, G.
Zhang, F. Neri and M. J. Pérez-Jiménez, A mem-
brane parallel rapidly-exploring random tree algo-
rithm for robotic motion planning, Integr. Comput.-
Aided Eng. 27(2) (2020) 121–138.

36. H. Rong, T. Wu, L. Pan and G. Zhang, Spiking neu-
ral P systems: Theoretical results and applications,
in Enjoying Natural Computing, Essays Dedicated to
Mario de Jesús Pérez-Jiménez on the Occasion of
His 70th Birthday (Springer, 2018), pp. 256–268.

37. X. Song, J. Wang, H. Peng, G. Ning, Z. Sun, T.
Wang and F. Yang, Spiking neural P systems with
multiple channels and anti-spikes, Biosystems 169–
170 (2018) 13–19.

38. L. Valencia-Cabrera, M.Á. Mart́ınez-del-Amor and I.
Pérez-Hurtado, A simulation workflow for membrane
computing: From MeCoSim to PMCGPU through
P-Lingua, in Enjoying Natural Computing, Essays
Dedicated to Mario de Jesús Pérez-Jiménez on the
Occasion of His 70th Birthday (Springer, 2018),
pp. 237–255.

39. L. Valencia-Cabrera, An environment for virtual
experimentation with computational models based
on P systems, Ph.D. thesis, University of Seville
(2015).

40. L. Valencia-Cabrera, D. Orellana-Mart́ın, M.Á.
Mart́ınez-del-Amor, A. Riscos-Núñez and M. J.
Pérez-Jiménez, Reaching efficiency through collab-
oration in membrane systems: Dissolution, polar-
ization and cooperation, Theor. Comput. Sci. 701
(2017) 226–234.

41. L. Valencia-Cabrera, D. Orellana-Mart́ın, M. A.
Mart́ınez-del-Amor and M. J. Pérez-Jiménez, An
interactive timeline of simulators in membrane com-
puting, J. Membr. Comput. 1(3) (2019) 209–222.

42. T. Wang, X. Wei, J. Wang, T. Huang, H. Peng, X.
Song, L. Valencia-Cabrera and M. J. Pérez-Jiménez,
A weighted corrective fuzzy reasoning spiking neu-
ral P system for fault diagnosis in power systems
with variable topologies, Eng. Appl. Artif. Intell. 92
(2020) 103680.

43. T. Wu, Z. Zhang, G. Păun and L. Pan, Cell-like
spiking neural P systems, Theor. Comput. Sci. 623
(2016) 180–189.

44. T. Wu, F. D. Bilbie, A. Paun, L. Pan and F. Neri,
Simplified and yet Turing universal spiking neural
P systems with communication on request, Int. J.
Neural Syst. 28(8) (2018) 1850013:1–1850013:19.

45. W. Xuayuan et al., Multi-behaviors coordination
controller design with enzymatic numerical P sys-
tems for robots, Integr. Comput.-Aided Eng. (2020)
1–22.

46. G. Zhang, H. Rong, F. Neri and M. J. Pérez-Jiménez,
An optimization spiking neural P system for approxi-
mately solving combinatorial optimization problems,
Int. J. Neural Syst. 24(5) (2014) 1440006.

47. X. Zhang, G. Foderaro, C. Henriquez and S. Ferrari,
A scalable weight-free learning algorithm for regula-
tory control of cell activity in spiking neuronal net-
works, Int. J. Neural Syst. 28(2) (2018) 1750015:1–
1750015:20.

48. X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L.
Pan and M. J. Pérez-Jiménez, Matrix representa-
tion of spiking neural P systems, in 11th Int. Conf.
Membrane Computing (Jena, 2010), Lecture Notes
in Computer Science, Vol. 6501 (Springer, Berlin,
Heidelberg, 2011), pp. 377–392.

49. MeCoSim Website, http://www.p-lingua.org/
mecosim/.

50. P-Lingua Website, http://www.p-lingua.org/.
51. Regular expressions in Java language, https://docs.

oracle.com/javase/7/docs/api/java/util/regex/
Pattern.html.

2050071-16

	Introduction
	Dendrite P Systems
	Syntax
	Semantics

	Conceptual Simulation Algorithm
	Algorithm based on matrix representation
	Comparison with spiking neural P systems
	A parallel design

	Software Simulator
	Approach
	Framework
	Contributions
	Experimentation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

