
A SOC DESIGN METHODOLOGY FOR LEON2 ON FPGA

E. Ostúa, J. Juan Chico, J. Viejo, M. J. Bellido, D. Guerrero, A. Millán & P. Ruiz-de-Clavijo

Instituto de Microelectrónica de Sevilla – Centro Nacional de Microelectrónica
Edificio CICA - Av. Reina Mercedes, s/n – 41012 Sevilla (España)

Tel.: +34 955056666 – Fax: +34 955056686 - http://www.imse.cnm.es

Departamento de Tecnología Electrónica – Universidad de Sevilla
E.T.S. Ingeniería Informática - Av. Reina Mercedes, s/n – 41012 Sevilla (España)

Tel.: +34 954556161 - Fax: +34 954552764 - http://www.dte.us.es

{ ostua ; jjchico ; julian ; bellido ; guerre; amillan ; paulino }@dte.us.es

1 ABSTRACT

SoC design methodologies show up as a natural and 
productive  method  to  implement  embedded  and/or 
ubiquitous  systems.  The  authors  explore  the 
possibilities  of  the  free  LEON2  processor  core, 
originally developed by the European Space Agency, 
and the Xilinx FPGA family to  develop a  complete 
SoC  design  methodology  for  both  hardware  and 
software. Advantages of the platform and productivity 
of the proposed methodology are highlighted through 
an  application  example,  showing  the  suitability  of 
LEON2 implemented on FPGA for professional-grade 
applications.

1. INTRODUCTION

The continuous development of the integrated circuit 
technology  is  leading  to  an  increasing  integration 
density besides an improvement of the operation speed 
of  electronic systems. In digital systems, it allows for 
huge performance improvements while the system size 
shrinks  more  and  more.  However,  design 
methodologies are also increasing in complexity, and 
new challenges  are  to  be  faced  by  designers.  Two 
fundamental  problems  appear:  on  one  hand,  the 
increment  in  speed  (switching  activity)  and  device 
density translates in greater  power consumption and 
power  and  thermal  density  that  may induce system 
failure  unless  effective  cooling  mechanisms  are 
included;  on  the  other  hand,  as  integration  density 
increases, the total number of devices included in the 
chip  increases  (up  to  several  million  devices  these 

days).  Then,  it  becomes  necessary  to  define  good 
design and verification methodologies in all the levels 
of  abstraction  in  order  to  handle  effectively  the 
complexity of the whole problem.

One  of  the  more  extended methodologies  in  this 
sense is the so-called System-on-Chip methodology or, 
more simply, SoC design. The basic idea under this 
methodology  is  to  use  the  current  integration 
possibilities  not  to  design  more  complex  specific 
systems,  like  Intel  or  AMD  processors,  but  to 
implement  whole  systems  made  out  of  several 
individual building blocks on a single chip. Figure 1 
illustrate the SoC idea.  This way,  systems currently 
implemented out of several chips on a PCB (Printed 
Circuit  Board) are being integrated in a  single chip 
while maintaining the overall structure of the system. 
This methodology provides many advantages without 
the  need to  completely re-define the  way electronic 
designers  work.  Among these advantages  are  power 
consumption  reduction,  increased  performance  and 
much more miniaturization, making the SoC design a 
strong  methodology  for  embedded  and  ubiquitous 
applications. 

Almost 100% of the SoC's are digital systems built 
around  a  microprocessor  that  acts  as  a  controlling 
unit.  The  selected  microprocessor  will  strongly 
determine the performance and overall characteristics 
of the system, and the cost of the SoC. It is important 
to note that most embedded applications do not require 
high  computation  capabilities,  but  usually  demand 
high  reliability  and  low  power  consumption. 



Additionally, if several thousands of million of units 
are to be produced, the cost becomes a major issue.

There  are  several  processor  cores  that  are 
commonly used in SoC applications, both commercial 
cores that requires the acquisition of a license of use, 
like ARM [FURB00], PowerPC [POWE04],  NIOS3 
[NIOS04], MicroBlaze [MICR05], and many others; 
and free or open cores that may be used without the 
need to acquire a licence, like LEON2 [GAIS04] and 
OpenRisc [LAMP01]. While privative processors are 
usually well tested and optimized, the openness of free 
cores  provides  valuable  advantages.  For  example, 
MicroBlaze from Xilinx  is  well  integrated with  the 
development platform from the same foundry, which 
leads to highly optimized designs at the cost of being 
bound to a particular technology and set of tools. On 
the other hand, LEON2 is a powerful processor that 
can  be  implemented  on  Xilinx  hardware  besides  a 
variety  of  other  FPGA hardware  and  any  standard 
ASIC process. Porting to a new technology is feasible 
an  depends  only  on  the  implementer.  A variety  of 
software development tools are available under both 
free and privative licenses.

This  paper  is  the  consequence  of  the  early 
developments of the author's research team in the SoC 

design  area.  At  this  time,  we  have  set  up  a  SoC 
development  methodology  based  on  the  above-
mentioned LEON2 processor  and  the  FPGA family 
from Xilinx,  which  is  already  being  applied  to  an 
industrial project. LEON2 has been chosen because it 
is  one  of  the  more  developed  free  processor  cores 
available and it may be implemented on a variety of 
hardware solutions like stated before. Besides, Xilinx 
FPGA's are chosen for its wide implantation both on 
the industry and in the academia.

A  LEON2  design  methodology  start  with  the 
processors  source  code  which  is  mostly  written  in 
VHDL core and is fully synthesizable. The following 
steps in the design process may follow a  variety of 
alternatives.  The main objective of  this  paper  is  to 
share  our  experience  setting  up  a  LEON2  based 
design  methodology,  where  processor  possibilities 
besides software and hardware design alternatives are 
explored in order to produce a full SoC. The task of 
porting  the  LEON2  interface  to  the  Virtex-II 
Evaluation Kit from Avnet, previously not supported 
by LEON2 is of an special interest.

The rest of the paper is organized as follows: in the 
next  section  we provide a  brief  introduction  to  the 
LEON2  processor.  Section  3  describes  the 

2

Figure 1: System-on-Chip concept



implemented  design  methodology  including  the 
software and hardware design process and application 
integration.  Section  4  describes  an  application 
example.  Finally,  some  conclusions  are  derived  in 
section 5.

2. LEON2 MICROPROCESSOR

LEON2  is  a  microprocessor  which  implements  a 
RISC  architecture  conforming  to  the  SPARC  v8 
definition [SPAR92]. It's a synthesizable core written 
in VHDL and can be implemented both on FPGAs and 
ASICs.  It's  distributed under the terms of the GNU 
LGPL license so it is an open hardware [SEAM02] 
and  it  is  specifically  designed  for  embedded 
applications.  It  was  originally  developed  by  the 
European  Space  Agency  and  nowadays  it  is 
maintained by Gaisler Research.

The  LEON2  32-bit  core  implements  the  full 
SPARC v8 standard, it uses big-endian byte ordering, 
has 32-bit internal registers, 72 different instructions 
in  3  different  instruction  formats  and  3  addressing 
modes  (immediate,  displacement  and  indexed).  It 
implements signed and unsigned multiply, divide and 
MAC operations and has a 5-stage instruction pipeline 
(Instruction  Fetch,  Decode,  Execute,  Memory  & 
Write).  It  also  implements  two  separate  instruction 

and  data  cache  interfaces,  Harvard  Architecture 
[HENN93].

The VHDL model is fully synthesizable with most 
of  the  commonly  synthesis  tools,  it  is  very 
configurable and it uses the AMBA-2.0 AHB/APB on-
chip buses [AMBA99], which makes it easy to extend 
its functionality. All these features makes LEON2 an 
ideal microprocessor for System-on-Chip applications.

A block  diagram of  LEON2  architecture  can  be 
seen in figure 2.  Many of those blocks are optional 
and  can  be  removed  from the  model  our  concrete 
application implements.

LEON2 implements the following features:

• 32 bits RISC microprocessor
• SPARC v8 compliant
• 5-stage instruction pipeline
• multiply/divide/mac operations on hardware
• separated instruction and data caches
• memory management unit, MMU
• memory interfaces for FLASH, SRAM, 

SDRAM & PROM
• on-chip RAM
• interrupt handler
• interface for a floating point unit, FPU
• debug support unit, DSU
• two 24-bit timers

3

Figure 2: LEON2 microprocessor architecture



• two serial port controllers, UART
• 16-bit I/O port mapped on memory
• watchdog & power-down
• Ethernet controller 10/100 MAC
• PCI interface
• co-processor interface

SPARC  v8  processor  defines  three  main  units, 
integer  unit,  floating-point  unit  and  a  custom  co-
processor,  each  one  with  its  own  32-bit  internal 
registers.  The  later  two  units  are  optional,  not 
mandatory for the processor to be SPARC complaint. 
LEON2 implements  the integer  unit  completely and 
the  interfaces  for  the  other  two  units  in  its  core. 
Gaisler  Research  also  has  a  commercial  high-
performance FPU for  LEON2 available  [CATO03], 
fully  IEEE-754  compliant  [STEV81].  LEON2  also 
can  provide  a  generic  interface  for  a  custom user-
defined co-processor which will work in parallel with 
the main processor in order to increase performance.

LEON2 uses the AMBA-2.0 AHB bus to connect 
the  main  processor  with  high-speed  controller  like 
cache and memory ones and other optional units like 
the onchip RAM or PCI or Ethernet interfaces. In the 
default configuration LEON2 is the only master of the 
bus.

Another AMBA-2.0 bus is used to access most on-
chip  peripherals,  the  APB  bus.  It's  optimized  for 
simple operation and low-power consumption and it's 
connected  to  the  AHB  (and  LEON2)  via  the 
AHB/APB Bridge, which is the master of that bus.

LEON2 external memory access is provided by a 
programmable  memory  controller  with  interfaces  to 
PROM,  SRAM  &  SDRAM  chips,  providing  also 
memory  mapped  I/O  operation.  The  controller  can 
decode a map of up to 2 Gbytes.

3. DESIGN METHODOLOGY

In order to implement a  System-on-Chip application 
based on the LEON2 synthesizable microprocessor on 
a  FPGA board we've defined a  design methodology 
with  a  dual  design  flow,  so  starting  with  the 
specifications of our applications we must consider a 
different  (but  closely related) flow for  the hardware 
design  and  for  the  software  design  of  the  SoC.  A 
representation of this methodology is shown in figure 
3.

The  design  flow  for  the  hardware  of  the  SoC 
application consist of the configuration of the LEON2 
model and all its modules, next there is the possibility 
of adding a  new hardware peripheral  to  any of the 
onchip  buses  (usually  to  the  APB)  or  as  a  co-
processor  (in  order  to  improve  the  overall 
performance), then arriving to the simulation step and 
finally  coming  to  the  synthesis  and  implementation 
process.

The  other  main  flow of  this  methodology is  the 
software  development  design  which  will  provide us 
with the software application which will  run on the 
hardware LEON2 model we obtained in the hardware 
flow.  This  is  a  typical  software  development  flow, 
with the special features of the LEON2 tools available 
for the SoC implementation.

Both design flows are closely related but  can be 
covered in parallel and with little or none dependences 
between them.  At the end we can get  the hardware 
model of the SoC and the software application and 
implement both on a real hardware target to get the 
SoC running and  do the  final  complete  verification 
and monitor checking.

3.1 Hardware Design Flow

The  design  flow  for  the  hardware  of  our  LEON2 
based SoC application includes the configuration and 
adaptation of the processor  model to our  needs and 
also  the  inclusion  of  any  additional  user-designed 
peripheral to the core for a particular application.

So,  the  first  step  in  the  design  process  is  to 
configure the LEON2 model with a  selection of the 
onchip peripherals it includes, according to our needs, 
and also  giving values  to  the  main parameters  that 
defines  the  behaviour  of  the  core.  This  can  be 
accomplished by using a graphical configuration tool 
provided with the LEON2 model. This tool works on 
both Windows (with CYGWIN) and Unix/Linux and 
it  is  build  upon  the  TCL/TK  software1,  providing 
some menus that allows the designer to configure how 
the different  units  of  LEON2 will  work and  which 
ones will be implemented in the final hardware.

Once the model is configured to fit the actual SoC 
requirements it  is possible to simulate the model by 
running  a  testbench  that  stimulates  the  main 
components of LEON2 in order to check if the results 
obtained are accurate for our application needs. This 
testbench is provided with the LEON2 VHDL model 

4



and it works with many major simulation tools, like 
Modelsim  from  Mentor1,  NCSIM  from  Cadence2, 
VSS from Synopsys3 or GHDL from GNU.

One of the most important  steps in the hardware 
design flow is to provide a way to add our own user-
designed  peripherals  to  the  actual  LEON2  core  in 
order to add a new specialized functionality. The most 
usual way to obtain this is to add the peripheral to the 
AMBA onchip buses LEON2 works with and do the 
adaptation on some of the controllers to get the new 
core  working  in  conjunction  with  the  rest  of  the 
microprocessor. In this work we've accomplished this 
goal  by  adding  a  new  peripheral  to  the  model 
attaching  it  to  the  APB  bus  just  as  most  of  the 
controllers  of  LEON2  are  connected  too.  This  is 
explained in detail on Section 4.

Next step on our design flow is to synthesize the 
SoC hardware model described in the previous steps. 
The synthesis tool will compile all the descriptions on 

the VHDL files and build a netlist of the target FPGA 
components  and  it's  interconnections.  LEON2  is 
designed with synthesis process in mind so most of the 
common synthesis  tools  can  be  used  to  accomplish 
this goal, like XST from Xilinx ISE software package 
[XISE04],  Synplify  from  Synplicity4,  Design 
Compiler from Synopsys or Leonardo from Mentor.

And finally we reach the implementation step where 
the proper FPGA tools run the processes of mapping 
and place & route to get a final bitstream file with the 
information  needed to  program the  FPGA with  the 
hardware  model  obtained  in  the  complete  flow.  To 
accomplish  this  goal  LEON2  includes  support  for 
several  FPGA  development  boards  on  market, 
providing configuration files and automated scripts to 
implement the model onto those boards.

LEON2 comes with several scripts and project files 
for common synthesis and implementation tools so the 
designer  can  use  them  to  work  with  the  complete 

5

Figure 3: SoC Design Methodology for LEON2 on FPGA



project described in VHDL files from the usual tool as 
with any other hardware project.

3.2 Software design flow

The SoC software design flow usually runs in parallel 
to  the  hardware  design  flow  and  there  are  close 
influences  between  them,  in  the  sense  that  the 
hardware that  is  going to run the software must  be 
well known by the designer.

The methodology for this design flow is based on 
the GNU toolchain, with the software development as 
the first  step,  next  comes the  compilation,  also  the 
debugging  and  finally  the  implementation  on  the 
hardware. Also there's a LEON2 simulator that can be 
used to accelerate the design flow and to check the 
software on a virtual system made by the simulator. 
On this chapter we're presenting not only the design 
flow for software applications but also all the tools the 
designer can choose to use in his/her work.

When trying to design a big application, with a lot 
of code, it's always a nice idea to use any of the visual 
development  tools  to  arrange some files  in projects 
and have one integrated tool so the designer doesn't 
have  to  explore  all  the  interrelations  between  the 
multiple low-level tools available. LEON2 developers 
have provided Eclipse1 with some facilities to be able 
to design software for this microprocessor, by adding 
a plug-in to the platform, so we can manage most of 
the project operations into the same environment.

There  are  two  different  C/C++  cross  compilers 
available for LEON2, both running on Windows and 
Unix/Linux and with GPL licenses, and with a similar 
functionality than the GCC toolchain. They are BCC 
and  RTEMS-CC,  both  integrated  into  Eclipse  as 
mentioned above.

BCC, which stands for Bare-C Cross Compiler, is 
a  C/C++  cross  compiler  for  the  LEON2 processor 
based  on  the  GNU  toolchain,  the  binutils  and  the 
standard Newlib library, with full math support  and 
simple I/O operations (non-files). It's a simple bare-c 
runtime system with support for interrupts and single-
threaded  applications.  If  also  allows  to  perform 
source-level symbolic debugging, both on the LEON2 
simulator and on real hardware, including the support 
for hardware multiplier/divider. It doesn't support the 
floating-point unit.

The  RTEMS  Cross  Compiler,  RTEMS-CC,  is 
mostly  like  BCC  but  it  introduces  in  the  final 

application the RTEMS kernel [RTEM03] where the 
designed  program  will  run.  It's  a  multi-task  kernel 
with real-time features and it also includes support for 
the floating-point unit in hardware.

There are also other kernels which can be the base 
for  the  software  application  being  developed.  So, 
furthermore the RTEMS kernel, we can also use eCos 
and Linux for our LEON2 SoC applications.  All of 
them are free software.

eCos stands for embedded Configurable operating 
system and  it's  a  kernel  for  embedded applications 
with real-time features [MASS02], ported to a lot of 
different  microprocessor  architectures.  It's  highly 
configurable  and  it  comes  with  support  for  the 
LEON2 hardware implemented floating-point unit and 
also the Ethernet interface.

Linux  is  supported  in  LEON2  by  a  particular 
release of the SnapGear Embedded Linux distribution, 
and it can be run two different kernels, standard Linux 
2.6 for cores with memory management unit (MMU) 
implemented  in  hardware,  and  also  ucLinux  2.0 
[MCCU03],  a  modified  version  for  embedded 
processors without  the MMU. It  includes also some 
usual  libraries  and  other  tools  to  build  embedded 
systems with Linux. It has support for the hardware 
multiplier/divider and also the hardware floating point 
unit.

Debugging the application is one important step in 
the software development flow, to validate the results 
obtained  with  the  program  in  the  SoC.  Gaisler 
Research  also  includes  a  GDB-like  debugger,  also 
from  the  GNU  toolchain,  ported  to  LEON2  and 
available for  both compilers  BCC and RTEMS-CC 
and it can be ran both on real hardware and also on 
the LEON2 simulator.

Gaisler  Research has  released TSIM,  a  complete 
LEON2 instruction-level simulator. TSIM can run in 
standalone  mode  or  connected  through  a  network 
socket  to  the  GDB  debugger,  acting  like  a  remote 
target using a common debugging protocol, so it can 
be  used  with  another  interfaces,  like  the  graphical 
debugging  tool  DDD.  TSIM  is  a  commercial 
application  but  it's  also  available  as  an  evaluation 
version for non-commercial uses.

3.3 SoC Implementation on Hardware

Once  completed  the  two  main  goals,  both  the 
hardware flow and the software flow, we've obtained a 

6



hardware model of the LEON2 
core, with some personalization 
for  our  needs,  and  also  the 
software that the microprocessor 
will  run.  To  complete  the 
proposed methodology we have 
to  implement  the  SoC  on  the 
target hardware and also run the 
software on the SoC and check 
the results.

In this work we established a 
procedure to implement the SoC 
on  a  FPGA  evaluation  board 
from  Avnet  which  provides  a 
Xilinx  Virtex-II  1000  FPGA 
with a million equivalent gates. 

At  the  end  of  the  hardware 
design  flow  we  obtained  a 
bitstream  with  the  information 
to  program  the  FPGA  device 
with the LEON2 microprocessor 
core. We have to download it to 
the  FPGA using  the  Xilinx  iMPACT  programming 
tool through a JTAG cable and in a few seconds the 
SoC core will be implemented on the hardware.

To download the software to get it running on the 
LEON2 we need to use a tool from Gaisler Research 
which allows to communicate with the processor for a 
non-intrusive  monitoring  and  debugging,  providing 
full access to internal registers, memories and all the 
main  peripherals.  This  tool,  the  LEON2  monitor, 
named GRMON,  has  a  commercial  license  and  an 
evaluation  version  is  also  available  for  non-
commercial purposes.

As  a  final  step,  debugging of  the  complete  SoC 
application  is  possible  thanks  to  GRMON also,  so 
that  we can  integrate  it  with  GDB  and  perform a 
debug of the software running on the real hardware. 

In  order  to  use  the  LEON2 monitor  we have to 
include  the  debug  support  unit  (DSU)  in  the  SoC 
model.  This  unit  will  provide  a  link  for  the 
communication with GRMON, via a serial cable or a 
PCI interface. Also, there's  a  graphical interface for 
the  GRMON  tool  so  it  appears  integrated  in  the 
Eclipse toolkit, to have access to most of the relevant 
information in a simple view.

4. APPLICATION EXAMPLE

In this final chapter we put together all the steps in the 
proposed  methodology by  making  an  example  SoC 
application based on LEON2 and adding a new onchip 
peripheral  to  the  core,  connected to  the  AMBA-2.0 
APB  internal  bus.  The  SoC  runs  on  a  FPGA 
evaluation board from Avnet,  as shown in Figure 4, 
and  is  monitored  from  a  PC  via  a  serial-cable 
connection.

4.1 LEON2 Adaptation for the Evaluation Board

LEON2  comes  with  support  for  various  FPGA 
evaluation  and  development  boards  from  different 
manufacturers,  providing  several  configuration  files 
and  user-constraints  for  each  model  of  board  to 
automatize the synthesis and implementation steps as 
much  as  possible.  But  we  have  one  board  not 
supported by LEON2 so there's a first step which we 
had to complete prior to implementing the core for the 
board. 

The board used was a  “Virtex-II Evaluation Kit” 
from  Avnet,  with  a  Xilinx  Virtex-II  1000  FPGA 
integrated, and also a JTAG interface and serial port, 
several LEDs, buttons and switches, and with a clock 
generator of 40 Mhz. As this board doesn't have any 
RAM memory chips it was also needed to connect this 
one  to  a  “Communications  and  Memory  Module”, 

7

Figure 4: FPGA board with the sample SoC application



also from Avnet,  with different  banks of  SRAM (1 
MByte) and SDRAM (64 Mbytes) memory and some 
communications  modules  like  Ethernet,  USB  and 
Bluetooth ports.

First we need to choose the internal peripherals in 
LEON2 according to the peripherals on the board, so 
we can have a microprocessor model suited for that 
board.

It  was also necessary to change the behaviour of 
some of the components of LEON2, for  example in 
the  memory  controller,  because  the  signals  of  the 
different  memory banks  have some differences  with 
the LEON2 usual interface; so a wrapper for LEON2 
was created to change the external interface slightly to 
fit with the RAM banks on this specific board. The 
wrapper was designed in VHDL and integrated in the 
LEON2  hardware  design  flow  by  modifying  the 
scripts for automatic synthesis and implementation.

And finally we constructed a  user constraints  file 
(UCF)  for  that  combined board,  to  map the FPGA 
pads  (on  the  Virtex-II  Evaluation  Kit)  to  the 
corresponding  pins  of  the  different  peripherals  and 
memory banks (on any of the two boards).

4.2 Adding a New Peripheral to LEON2

A new peripheral was designed for LEON2 in order to 
test the accuracy of the proposed SoC methodology. 
This peripheral was connected to the AMBA-2.0 APB 
bus  as  a  slave,  like  most  of  the  LEON2  included 
peripherals, which provides a simple interface and is 
designed for low-power consumption.

The interface for  write and read operations for  a 
slave peripheral connected to the APB bus are shown 
in  figures  5  &  6.  Each  APB  peripheral  has  the 
following control signals, described in VHDL:

 -- APB slave inputs
PSEL:       Std_ULogic;                       -- slave select
PENABLE:    Std_ULogic;                         -- strobe
PADDR:      Std_Logic_Vector(PAMAX-1 downto 0);  
-- address bus
PWRITE:     Std_ULogic;                         -- write
PWDATA:     Std_Logic_Vector(PDMAX-1 downto 
0); -- write data bus
 -- APB slave outputs
PRDATA:     Std_Logic_Vector(PDMAX-1 downto 0);  
-- read data bus

The  peripheral  is  designed  completely  in  VHDL 
and is  a  controller  for  the  dual  7-segment  displays 
available on the board, for debugging purposes. The 
peripheral has two internal registers which are mapped 
on memory and the contents are shown in decimal on 
the two displays.

Following the proposed methodology, moreover the 
design of the APB slave peripheral it's also necessary 
to change some of the blocks in LEON2 to add the 
new core to the existing model to run all them together 
flawlessly.  So  in  order  to  get  a  new  APB  slave 
working in the LEON2 model these VHDL files need 
to be modified:

ambacomp.vhd, where there's a declaration of each 
component connected to the AMBA-2.0 AHB or APB 
buses. The new component have to be declared.

ambamst.vhd, which describes the behaviour of the 
APB master (the AHB(APB Bridge). We have to add a 
entry  to  select  the  new component  when necessary, 
mapping its accesses by allocating some space on the 
memory map.

mcore.vhd,  where  there's  an  instance  of  each 
peripheral  mapped  to  the  memory.  The  new 
component has to be instanced and all their interface 
signals connected to the rest of the logical blocks or 
external signals.

leon.xst, that's a script for the synthesis tools (XST 
from Xilinx in this case) to compile and implement all 
the necessary files automatically. A new entry has to 
be included to add the new APB core.

To test the peripheral a C application has also been 
developed  that  changes  the  values  shown  on  the 
displays  from  00  to  99,  working  like  a  decimal 
counter.

5. CONCLUSIONS

The  importance  of  SoC  design  for  embedded  and 
ubiquitous applications has been highlighted, besides 
the  versatility  and  robustness  of  free  cores  like 
LEON2 to establish a professional-level SoC design 
methodology.

A SoC design methodology for LEON2 on Xilinx 
FPGAs  has  been  developed  exploring  the  different 
software and hardware tools available. SoC hardware 

8



development using LEON2 is highly productive due 
to  the  large  number  of  pre-defined  and  highly 
configurable devices included with LEON2. The same 
applies to software, where a variety of platforms are 
available,  ranging  from compact  libraries  to  whole 
operating systems like Linux. As an example, a new 
home-made  device  has  been  added  to  the  basic 
LEON2  architecture  using  the  standard  APB 
expansion bus and a test software program has been 
written.  The  implementation  cycle,  including  APB 
interfacing logic, is done in a matter of hours showing 
the productivity of the platform.

Additional  infrastructure  has  been  added  to  the 
LEON2  standard  package  in  order  to  support  the 
specific  evaluation  board  used  in  the  experiments. 
This enhanced functionality will be contributed to the 
LEON2 project.

The good perspectives derived from this experience 
with LEON2 has motivated us to start  porting some 
industrial  SoC developments  in  which our  group is 
currently involved to the LEON2 platform, including 
software and hardware co-design.

6. REFERENCES

[AMBA99] “AMBA (tm) Specification, Rev. 2.0”, ARM 
Limited, 1999. http://www.arm.com/ 

[CATO03] Edvin Catovic: “GRFPU – High Performance IEEE 
754 Floating-Point Unit”, Gaisler Research, 2003.

[FURB00] Steve Furber: “ARM system-on-chip architecture, 
2nd edition”, Ed. Addison-Wesley 2000.

[GAIS04] Jiri Gaisler: “LEON2 Processor User's Manual”, 
Gaisler Research, 2004

[HENN93] John L. Hennessy, David A. Patterson: “Arquitectura 
de Computadores – Un enfoque Cuantitativo”, Ed. Mc-Graw-
Hill 1993.

[LAMP01] Damjan Lampret: “OpenRISC 1200 IP Core 
Specification”, 2001

[MASS02] Anthony Massa: “Embedded Software Development 
with eCos”, Ed. Prentice Hall, 2002.

[MCCU03] David McCullough: “Getting started with ucLinux”, 
Cyberguard Technical Bulletin #12, 2003.

[MICR05] “Microblaze Processor Reference Guide”, Xilinx Inc. 
2005,  http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf 

[NIOS04] “NIOS 3 CPU Data Sheet”, Altera Corp. 2004, 
http://www.altera.com/literature/ds/ds_nios_cpu.pdf  

[POWE04] “IBM PowerPC Quick Reference Guide”, IBM Corp. 
2004

[RTEM03] “Getting Started with RTEMS”, Online Applications 
Research Corp., 2003.

[SEAM02] Graham Seaman: “Free Hardware: Past, Present & 
Future”, Erste Oekonux Konferenz, 2002

[SPAR92] “The SPARC Architecture Manual, Version 8”, 
SPARC International Inc., 1992.

[STEV81] David Stevenson, et al: “A Proposed Standard for 
Binary Floating-Point Arithmetic, IEEE Computer Vol. 14, 1981.

[XISE04] “ISE 6.3i Release Notes and Installation Guide”, 
Xilinx Inc. 2004

9

Figure 6: Read operation on a APB slave peripheralFigure 5: Write operation on a APB slave peripheral


