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Chapter 1

Introduction

The problem to which we devote this work is the creation of a natural language interface to
relational databases (NLIDB). This type of databases are still widely used in the industry.
But, in order to retrieve information from them, normally a specialist needs to formulate
the question in a dedicated query language, such as SQL. The information would be much
more accessible if we could retrieve it directly using ordinary language. What an NLIDB
system tries to do is, precisely, fill the gap and provide such linguistic interface.

The benefits of such a way of communication with information systems have attracted
many researchers in the past, making this one of the oldest natural language processing
(NLP) problems to be addressed. Despite the efforts spent trying to give a successful
solution, the problem remains open. In this project, we don’t intend to solve all the issues
associated with the development of this type of system. Instead, we will first focus on the
architectural aspects of it. Here, we aim at a general structure that may be flexible enough
to be adapted to different scenarios, where specific solutions can be incorporated when
needs be. We will also present a functional prototype that will serve as a tester for the
proposed architecture.

Attending to the structure of this project, in chapter 2 we will start with a historical
review of the different systems that have been developed in the past, in the around 50
years of history of this problem. This will serve the purpose of giving us perspective in
time and situate ourselves. Right after, we study the state of the art of this topic by making
a literature review of the latests studies.

After presenting the background of this problem, in chapter 3, we will make a survey
of the common approaches that have been taken to address this issue. But before going
into detail about the architectures the researchers have proposed, we will first look into
the different methodologies there exists for natural language processing in general. And
we will do so in abstract, attending to the philosophical roots of the techniques in use.
Only then we will present a classification of architectures in which the different proposals
can be grouped. In this same chapter, we will make a review of the multiple problems
these systems must solve in order to perform properly.

At this point, we will have a sufficient understanding of the designs that can be em-
ployed to solve this problem more or less successfully. It will be a good time to introduce,
in chapter 4, the theoretical principles that our prototype is based on, and how we pretend
to face the problems that we have presented before. This will in turn serve to introduce
the general structure of our proposal.

1



2 CHAPTER 1. INTRODUCTION

In chapter number 5, we get down to work and elaborate on the implementation of the
architecture proposed. To give an overall view of the system, first we present a picture of
the full pipeline were the user’s questions are processed. This general schema depicts the
different modules that make up this prototype, and how the data is transformed through-
out. Right after, we will go into the details of the different components. At one first
level, we will look at the three main functional groups. In a second level of detail, we
present the functional components dedicated to more specific tasks, that chained compose
the pipeline. In the development of this project, we have taken into account the need for
good project organization and ease of deployment. For this reason, we also present the
methodology and technologies used to achieve both.

We will gain more clarity about the functioning of the system when we put it to work
on some tasks and see how it behaves. In chapter 6, we present a set of use cases that
will serve this purpose. We will begin with a basic case, and use it to explain the whole
processing pipeline. After that, we will show more elaborate behaviour that becomes
apparent when more intricate input is fed into the prototype. We will first highlight lin-
guistic features of the system, that relate more to the linguistic components. Secondly, we
will look into more complex queries, that concern the whole system, but more the data
transformations that takes place in the back-end components.

The prototype is useful to show some virtues of our approach, by means of displaying
desirable behaviours. But it will be very valuable to go a step further and develop an
evaluation framework that gives this results a measurable aspect. It is in chapter 7 where
we expose our proposal for an evaluation framework for this type of system. During this
exposition, we will go thought the implementation of the evaluation framework. Then,
the experimental environment we have used to measure the system’s capabilities. And,
last, the results we have obtained.

We close up this work in chapter 8, summing up with some conclusions. There, we
will review the suitability of the approach proposed, the achievements and the aspects
that give room for improvement. These refinements will be of service to lead the way to
further development in the future.



Chapter 2

Background

2.1 Motivation

A natural language interface to relational databases (NLIDB) is a system that allows a user
to formulate questions in some natural language (eg English) about information contained
in a relational database management system (RDBMS) and receive the correct answer in
response.

The domain of information storage and retrieval has always been related with lan-
guage, in the sense that we understand the retrieval of information as an act of asking.
This metaphor has been always present in the language of specialists in information sys-
tems. Expressions like ‘query’, ‘ask the database’, ‘communicate with the database’ are
common place in this domain. In RDBMS systems, the metaphor sometimes becomes
more explicit in the design of query languages, such as SQL. The syntax of those lan-
guages mimic the structure of a natural language question. NLIDB systems try to make
the metaphor real, that is, to realise the dream of asking to information systems directly.

There exists many data storage technologies available. The relational model we are
talking about was proposed as early as 1970 by E.F. Codd, in his seminal work A Rela-
tional Model of Data for Large Shared Data Banks [13]. Many other systems have been
proposed since then but, even when it seems other models gain track, the relational model
remains very popular. It will be interesting to use a well defined model with commercial
acceptance as back-end for a NLIDB system.

This type of system could have an important impact in business, making business in-
formation available straight away, dropping the costs of information acquisition. Indeed,
a survey, quoted in [30], carried out in 1986 on the importance of natural language pro-
cessing systems, conducted on 33 members of the Large User Group professional society,
states that: “(1) NLIDBs are the most useful application for organizations among all NLP
systems, (2) The five most desirable capacities of NLIDBs are: efficiency, domain in-
dependence, pronoun handling, understanding of elliptical entries (i.e., implied words),
and processing of sentences with complex nouns, and (3) 50% of the best NLIDBs are
those that offer domain independence.” Today, these systems aren’t less desirable, but the
expectations about their performance have relaxed a lot.
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4 CHAPTER 2. BACKGROUND

2.2 Historical Review

2.2.1 Early Systems
The problem of providing a natural language interface to databases is an old one. The first
attempts date back to the late 1960s and early 1970s [14, 5, 7]. This problem has taken a
lot of attention from the scientific community, but still we can say that remains open.

The most salient system of the first period was LUNAR [38]. This was a system
designed to answer questions about the chemical composition of lunar rocks. The systems
of this period were designed for a particular database and not easily portable.

A second period that lasted until late 1970s saw the emergence of new techniques for
NLIDBs. During this time, several systems appeared that tried to improve the previous
techniques. RENDEZVOUS was one of the firsts to engage the users in dialogues to
fulfil their requests. We can say it was the first to use the interaction with the user, that
is dialogic features, in order to improve the results obtained. Another interesting system
of this time was LADDER [19]. It implemented semantic grammars, “a technique that
interleaves syntactic and semantic processing” [5]. It could produce impressive results,
but was not easily portable to other databases. Other systems of this period were PLANES
and PHILIQA1. We can say this second period was more focused on improving the
linguistic and conceptual analysis of queries, but failed at facing the problems related
with portability.

In the early eighties of the last century, the focus was shifted to portability issues. For
this, researchers started to abandon the semantic grammars, that were the hallmark of the
earlier period systems. TEAM [18] tried to ease the burden of configuration, that is, to
make this process accessible to database administrators [5]. ASK [34], in the other hand,
explored new territory in the improvement of the system by means of user interaction,
thus allowing the introduction of new terms and concepts while using it. It also extended
the area of application allowing it to connect to other information systems [5, 25]. JANUS
[31] had similar connectivity features, acting as an information hub that orchestrated het-
erogeneous systems in order to fulfil a request formulated in natural language [5, 25].

Other technologies for knowledge representation started to became apparent to ap-
proach this problem. These were the golden years of Prolog. CHAT-80 [36], that appeared
during this period, was programmed entirely in this programming language [5]. Natural
language queries were transformed into logical queries expressed as Prolog statements,
then they would be evaluated against the knowledge base of Prolog facts. Another system
using this method was MASQUE [6]. These type of systems established the technique
of using intermediate representations as a way to dissociate the linguistic expression of a
query and its semantic representation, in this case in the form of logical expressions.

By this time, NLIDBs had become a hot topic in the academia. This increasing interest
was also followed by companies trying to produce commercially viable products using
this technology. Some of these products, available at the time, were INTELLECT from
Trinzic, Parlance from BBN, LanguageAccess (IBM’s take in this endeavour), also Q&A
from Symantec, Natural Language from Natural Language Inc., Loqui from BIM, English
Wizard from Linguistic Technology Corp., among others [5].

Despite the numerous attempts to produce systems of this kind that were commercially
viable, and the expectations of rapid adoption, after some time the topic started to be
relegated to the academic sphere. Companies diverted their attention and efforts to other
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Year Name Domain Language Back-end Technical ap-
proach

1973 LUNAR Moon rocks English DB-specific grammar

1974 RENDEZVOUS Airport flights English DB-specific
grammar, dia-
logue

1978 LADDER
US-Navy
ships

English SQL grammar

1980 CHAT-80 General English Prolog
grammar,
intermediate
representation

1983 TEAM General English
Simple Object
Database Access

semantic
grammar,
intermediate
representation

1983 ASK General English heterogeneous
intermediate
representation

1989 JANUS General English heterogeneous
intermediate
representation

Table 2.1: Overview of early NLIDB systems.

products and the database technologies followed a separate path.
This rapid rise of expectations followed by a time of disillusionment is a typical exam-

ple of what the advisory company Gartner calls a technology hype cycle [16] (see figure
2.1). Broadly speaking, they differentiate five stages in the development of a technology.
First comes the Innovation Trigger, where a potential technology breakthrough appears.
Right after, it follows the Peak of Inflated Expectations, where “early publicity produces
a number of success stories — often accompanied by scores of failures”. This is the time
were companies take action and try to deliver the technology, expecting wide acceptance.
Then comes the Trough of Disillusionment where “interest wanes as experiments and im-
plementations fail to deliver. Producers of the technology shake out or fail”. Following
this rise and fall, it continues with the Slope of Enlightenment where the real benefits of
the technology and how it can be integrated are better understood. Finally, it reaches the
Plateau of Productivity where the viability is neatly defined and where “broad market
applicability and relevance are clearly paying off”.

In the early 1990s, the topic knew a decrease of interest in the scientific community,
which translated into fewer papers published [5]. But it was never fully abandoned. The
research followed, divided in different lines of work. Some of those research areas were
the adoption of general natural language processing techniques, transforming these sys-
tems into reasoning agents or exploring the use of multimodal interfaces.
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Figure 2.1: Technology Hype Cycle [16].

2.2.2 Mid-term
In the period between late 1990s and the end of 2000s, research on NLIDB systems went
through, from a dark period, we can say, until a new resurgence, thanks to the parallel
development of new technologies, that opened new lines of research in this topic. The
most disruptive technology in this regard was the whole range of statistical modelling and
processing, that became popular in this period.

Some developments tried to explore new ways of representing queries as innovative
intermediate language representations. One of those is the Conceptual Query Language
[26]. The authors of this approach, restrict the types of linguistic expressions the user
can produce and the system would accept in the so-called Controlled Natural Language
(CNL). This study explores the subset of human language that is easily assimilated to log-
ical representations. From this intermediate representation the system extracts those that
are meaningful to the database schema. The technique used to map CNL expressions to
database queries are information extraction approaches. The CNL codification of queries
also allows the system to make the database queries explainable to some extent.

New information representation technologies were in use at the time, and some sys-
tems try to take advantage of them. This is the case of NaLIX (Natural Language Inter-
face for an XML Database), developed in 2006 by the University of Michigan, which is
aimed at retrieving data represented in XML format [25]. It produces XQuery expres-
sions, which is a standard query language for XML documents. We can consider this as
a syntax based system. Its architecture contains three modules: a parse tree generator, a
parse tree validator and a XQuery translation module.

Along these lines, in 2004, the University of Washington developed PRECISE. This
development also explores the range of natural language that can be easily transformed
into database queries. Here, “the target database is in the form of a relational database
using SQL as the query language. It introduces the idea of semantically tractable sen-
tences which are sentences that can be translated to a unique semantic interpretation by
analysing some lexicons and semantic constraints” [25]. The system excels in processing
the semantically tractable sentences it studies, but it doesn’t perform so well with other
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types of queries, and particularly struggles with nested structures.
In terms of the study of the similarities between general question answering systems

and NLIDB we can cite [33]. The authors consider the QA problem as a superset of the
NLIDB problem, that is, as its open domain version. Hence, their approach is inclined to
employ the same techniques used in the former in order to answer database queries. In
particular, in their prototype “the analysis of the input questions is performed by matching
the syntactic parse of the question to a set of fixed templates. This approach is similar to
that of much work in QA” [33].

In the line of using statistical methods, we can also mention [10]. In this work, the
author divides the system architecture in subsystem that extracts information about the
database, and uses that information as a knowledge base. Another component extracts
patterns from a corpus of queries in the form of graphs. This last operation is done using
statistical pattern extraction. These two sources of knowledge are then merged by another
component to generate the final database query.

Another system produced during this period was WASP. Developed by a team at the
University of Texas, it focuses in the wider problem of producing a universal representa-
tion of sentences as a formal, symbolic representation of its meaning. It uses Prolog as
means of expressing its queries. This system learns how to translate sentences from the
natural language into this formal query language. For this task, it uses statistical machine
translation techniques [25]. Thanks to this, it can be adapted to different domains, assum-
ing the corresponding dataset is provided. Similar to other systems based on statistical
methods, the corpus they use need to destroy the information in the database structure
first and can’t take advantage of it.

2.3 State of the Art
A literature review of the current developments shows that there exists still an important
interest in this area of research. We can broadly classify the recent surveys in two dis-
tinct blocks apart from the advances on the pre-existing techniques. In a first block we
group the different techniques developed with the help of advances in the field of machine
learning. These studies provide with new techniques to substitute existing components in
earlier architectures or inspire new combinations to improve the existing ones. Second,
we can talk about a second group of systems that are more focused on the pragmatics
of querying an information system. In this list we find new ways of interaction with the
systems, new modalities of communication, and also new ways to facilitate the customiza-
tion. The improvements on classic approaches have focussed mainly on finding new ways
of representing the knowledge as intermediate languages.

Looking at the commercial aspect of this technology, it appears these systems have
fallen somewhat into disuse. The primary type of product that companies tried to com-
mercialize was monolithic systems that, when attached to an existing database or data
warehouse, would present users with a linguistic interface. This type of product is clearly
in decay. The list of discontinued products bears witness to this fact. LanguageAccess,
developed by IBM, English Query from Microsoft and DataTalk, commercialized by Nat-
ural Language Inc., among others, all have been discontinued [28].

But, far from being abandoned, this technology now lives within other lines of prod-
ucts, mixed with other linguistic interfaces to information systems, and, many times, goes
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Figure 2.2: Categorization of recent NLIDB systems and the used NLP technologies [2].

unnoticed in commercial applications. This is the case of Google’s search engine, which
includes some question answering capabilities, or Siri from Amazon, and some others [2].

The tendency seems to be moving from the monolithic database interface and combine
this technique with others to improve the results, in particular in analytics and business
intelligence. Several companies have developed products in this line, and they have re-
ceived important financial support [11]. This speaks to the fact that there is still hope
to achieve quality products using this technology. Apart from the companies mentioned
before, [11] mentions several others. In this list we can include Thoughtspot1, founded
in 2012, Arimo’s Narratives 2 (2012), Power BI3 (2015) by Microsoft or Wolfram Alpha4

(2009).

To give a general picture of the current NLIDBs, in figure 2.2 the reader can see a table
with a summary of recent systems and the use of Natural Language Processing techniques
they employ [2]. The techniques mentioned here, will come across when we talk about
the prototype architecture later in this document. Also, the major classification used in
this table, will be better understood throughout the exposition of types of architectures in
section 3.2.

1https://www.thoughtspot.com/
2https://arimo.com/products/narratives/
3https://powerbi.microsoft.com/en-us/
4https://www.wolframalpha.com/

https://www.thoughtspot.com/
https://arimo.com/products/narratives/
https://powerbi.microsoft.com/en-us/
https://www.wolframalpha.com/
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2.3.1 Machine Learning Techniques
One of the most relevant factors in the latest studies is the emergence of techniques based
on machine learning. In more recent times, it is particularly relevant the advances in
neural networks, and the whole topic of Deep Learning.

The optimism (or hype perhaps) about the capacities of Deep Learning techniques
in order to model language queries has led to the development of deep learning-based
end-to-end systems. These systems “revisit the problem of NLIDBs and recast it as a
sequence translation problem” [9]. That is, they try to understand the NLIDB problem
as a translation problem, from natural language queries (NLQ) to SQL or other query
language.

This kind of systems are faced with a whole new set of problems. In terms of data,
“the limiting factor for such systems is the need for a large set of NLQ to SQL pairs for
each schema, and consequently some work focuses on the challenge of synthesizing and
collecting NLQ-SQL pairs” [8] in order to train them. So far, the most advanced systems
of this kind are limited to single-table schemas, due to the difficulty in modelling table
relationships. This line of work in NLIDB systems is beyond the scope of this study, for
this reason we are not going into detail about the different approaches. But it is interesting
to note the three main problems end-to-end systems are facing [21]:

• Domain portability: NLQ-SQL training sets are based on a particular database
schema. This makes it very difficult to adapt one model to a new system. Normally
the training set has to be generated per schema and this tends to be impossible in
practice.

• Explainability: it is interesting for a NLIDB to be able to interact with the user in or-
der to clarify the question or to explain the results given. This requires interpreting
some system’s intermediate representation. In deep-learning models, intermediate
representations are often unexplainable.

• Sources of information: taking into account more sources of information means
higher dimensions of input in the dataset. This multiplies the first problem.

There are many ways in which ML techniques can be introduced in a NLIDB system
architecture trying to improve the performance of its components. Rethinking the repre-
sentation of queries can enable the use of statistical methods to map to other structures
that can, in turn, produce a final database query. In this line, [17] uses tree-like structures
for every query. These trees then define a space of features on which the ML techniques
can operate upon. In particular, “a machine learning algorithm is proposed that takes
pairs of trees as training input and derives the unknown final SQL query by matching
propositional and relational substructures”.

ML components need to compile big datasets in order to train their models. At the
same time, they need new ways of benchmarking and comparing different approaches.
This new class of problems, opens up new fields of study. One of the attempts to face this
new problem is [9]. In this paper, the authors build a new dataset based on Stack Exchange
Data Explorer website for other ML-based system to train from. They also propose the
construction of a neural network-based system. In their approach they understand the
NLIDB problem as a sequence translation problem.
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These systems can take advantage of several data sources (database schema, natural
language question corpus, database query corpus). There were other resources already
available that were perhaps underutilized. One of such sources is database logs. For in-
stance, in [21], the author uses database logs as “a representative sample of the distribution
of queries”. Because the experience shows that the NLQs used fall into a limited number
of groups, these templates can be weighted by popularity using logs. The approach to
answer a query can now be finding the appropriate template to it. Another interesting
characteristic of this approach is the merger of the machine learning teaching machinery
in the system’s flow.

The authors in [8] also use these logs to extract relevant patterns that can help the
performance of NLIDBs. They distinguish two domains were logs can help in “bridging
the semantic gap”: keyword mapping and join path inference. Keyword mapping refers
to the mapping of linguistic entities with database elements (relations, attributes, values).
This task is challenging mainly due to the ambiguity of natural language. The second
problem consist of inferring the relations between tables. This is necessary in order to
connect two database elements that aren’t in the same table but are related through some
join path. This problem is difficult because the database structure is normally unknown to
the users of the system and it must be inferred. To show the performance improvements
that NLIDBs can achieve by extracting SQL query log information, they have developed
TEMPLAR. In this prototype they use information extraction techniques on the men-
tioned logs to improve keyword mapping.

2.3.2 Customization, Interactivity and Multimodality

One of the pragmatic problems of this type of system is the cost of configuration for
adaptation to new domains. An interesting study in this line is [28]. In this paper we find
the history of NLIDBs under the light of this problem. The authors make an exhaustive
study of previous systems in terms of customization and evaluation. In order to com-
pare with other system’s ability to adapt to new domains, they have developed their own
NLIDB with an innovative customization mechanism. This system is based in what they
call a Semantic Information Dictionary, that contains all the information that the system
then uses to produce the response. The customization process can thus focus on a single
element in the architecture.

With the development of the AskMe system [23], the proponents confront this prob-
lem directly. Their system “focuses on lowering the costs of technology adoption, porta-
bility and users’ learning costs” by means of “creating a fully auto-reconfigurable or
‘generic interactive’” system. The architecture they propose, that could cope with this
level of adaptation, is the “dynamic generation of the lexer, syntactic and semantic parsers”.

The study of the use of the system by the users can also provide useful information
for improving its performance. Looking at the context of the queries the users enter, [3]
can distinguish three different domains of interaction. The authors then are capable of
distinguish, in user input, what they call Linear Disjoint interactions, which are the most
tractable type of sentence, in order to produce a correct database query response.

The most relevant innovation in recent years in terms of interactivity with information
systems, has been the invention of the Internet. In terms of NLIDB interaction modes,
this must have been an element to consider. And, precisely, there are architectures that
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try to integrate natural language interfaces with web interfaces. This is the case of [4]. As
the authors note, web interfaces are a good media to present questioning forms and show
table-like query results. The architecture is a template-based processing pipeline. But, the
front-end has been substituted by a web page.

Also, focused on interactivity we can mention NaLIR [22]. It is an evolution of
NaLIX, explained before in section 2.2.2. Instead of producing XQuery queries from
natural language, this new version generates SQL queries. In this system, the authors
provide an interactive environment where, with “a carefully limited interaction with the
user”, they are able answer complex user questions. At the same time, the system can
provide a more interactive experience. The modelling of the queries (a tree structure)
allows it to explain the results (or partial results) obtained during the dialogue. This is
an interesting feature both in terms of interactivity and for the sake of explainable artifi-
cial intelligence, a feature that is becoming more demanding as the use of AI technology
spreads and its impact in society widens.
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Chapter 3

Approaches to the Problem

3.1 Natural Language Processing Methodologies

The architecture of an NLIDB system can take different shapes depending, first, on the
Natural Language Processing approach the designer chooses. Also, depending on the
characteristics the system is expected to support, such as interactivity, portability, multi-
modality, etc, it will have other requirements. The NLP approach gives us a first broad
classification of NLIDB systems.

Depending on the semantics theory we consider in order to model natural language,
we will either have compositional semantics or distributional semantics. This distinction
is in the core of any approach to Natural Language Processing systems, NLIDBs included.
The first school lead us to a symbolic approach, whereas with the second we enter the ter-
ritory of empirical approaches. These two semantics theories do not necessarily exclude
each other. In practical terms we can consider them as complementary. Between the two,
there is room for multiple interesting combinations.

3.1.1 Symbolic Approach

From the Wikipedia entry for Principle of Compositionality we read: “the principle of
compositionality is the principle that the meaning of a complex expression is determined
by the meanings of its constituent expressions and the rules used to combine them” 1.
This precept points to certain recursive structure in the core of linguistic expressions that
determines its meaning. If we use symbols to represent the elements present in these
structures, we have the base for a symbolic approach to Natural Language Processing.

This theory of language can be expressed in a formalism. This is precisely what Noam
Chomsky did for language syntax in his seminal work Syntactic Structures [12] in 1957.
Here we find a formalism were, thanks to a set of symbols and generative rules, we can
determine whether a sentence is grammatically correct or not. This is what we know as
formal grammar.

We can follow the same approach in order to understand the meaning of a sentence, or
a query, for that matter. In an NLIDB system this means processing the natural language
query (NLQ) using some rule system that can extract information from its structure. We

1https://en.wikipedia.org/wiki/Principle of compositionality
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can use grammars to analyse a sentence and, from the Part of Speech (PoS) of its compo-
nents, find a dependency grammar tree. Once we have extracted this information, we can
try to produce a query in a formal language like SQL. Query languages are actually de-
fined by formal grammars. This approach is attractive because, if we are able to translate
the NLQ into a formal structure, the task is reduced to assimilate it to the formal grammar
of the query language.

3.1.2 Empirical Approach

We have seen one perspective of language where we can understand it as a set of symbols
that can be combined in order to get bigger structures. In other words, we can assume
the functional character of language, that is, that the meaning of language expressions is
a function of the meaning of its components. Instead, we can take a different approach
based on pragmatic aspects.

“For a large class of cases of the employment of the word ‘meaning’ —though not
for all— this word can be explained in this way: the meaning of a word is its use in
the language” [37]. This is the way Wittgenstein proposed, in his Philosophical Investi-
gations, the idea that the meaning of the language components is determined by its use
in the overall linguistic domain. The philosopher proposed this idea as a reaction to his
previous views of language as representation, that is concealed in a formal and closed
system of meaning. In this new perspective, he sees language as another human activity
with practical aims. And its meaning can not be analysed autonomously, isolated from
the action that originated it.

In this view, we can not hope to find a perfect formalism that represents a language
in its entirety. At most, we can discover, in Wittgenstein words, family resemblances be-
tween linguistic expressions. If we take this idea further, in more empirical terms, what we
are looking after are patterns in language. Similarities in expressions give us similarities
in their meaning. This is the inspiration of a second approach to Natural Language Pro-
cessing, that employ a theory of meaning called distributional semantics. Such approach
is based on what has been known as the distributional hypothesis: “linguistic items with
similar distributions have similar meanings” 2.

This methodology is empirical in nature and implies a statistical orientation. The
empirical aspect is evidenced by the use of large samples of language expressions, or
corpora. These constitute the empirical world from which the statistical methods can be
applied upon. In this category we find the different techniques of Information Extraction
(IE) of statistical orientation, like named entity recognition, relationship extraction, ter-
minology extraction, etc. Between the various statistical techniques we can find n-gram
models, hidden Markov models and probabilistic context free grammars. Is beyond the
scope of this work consider the details of these techniques.

In this category, we also consider the connectionist approach, that other authors con-
sider separately. That is, the extraction of models based on neural networks. Even when
these methods differ greatly from the classical statistical apparatus, the objective is the
same. In both cases, we try to build a model based on previous experience, that we can
use to make predictions.

2https://en.wikipedia.org/wiki/Distributional semantics

https://en.wikipedia.org/wiki/Distributional_semantics
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3.1.3 Hybrid Approach

This third methodology combines the two previous trying to compensate the shortcomings
of one or the other.

The symbolic approach is well-defined and predictable, but tends to be fragile. The
complexity of human language, its inherent ambiguities and the numerous errors made,
even by proficient speakers, makes it impossible in practice to capture all the possible
productions in a set of rules. This is why, any group of rules that the designers can come
up with, will fall short at dealing with the complexity of language. Furthermore, anything
that is out of the scope of those rules is left behind. What is not handled by the symbolic
apparatus is beyond the domain of the system, and this situation is hardly recoverable.

In the other end of the spectrum we find the statistical approaches. Their action do-
main is, let’s say, continuous, with an associated distribution of probability, instead of
discrete, like in the previous case. These techniques are more robust, in the sense that
they can give a result (find a point in the continuum), even when is a bad one (low prob-
ability), for a wide range of situations (action domain). They depend totally on previous
experience (data), and we have to assume that the phenomena coverage is sufficient. This
is not easy in practice, so that data collection constitutes a problem on its own. The main
disadvantage is that they fall short at modelling the complexity inherent in linguistic com-
munication. Also, whatever they produce can not be mediated, that is, for example, we
can not operate with the intermediate representations that a neural network has produced.
Because of this, we can not adapt its behaviour but by adding more data. For the same
reason, we can not explain why it has produced this result and not the other.

Hybrid approaches try to produce systems that take advantage of the robustness of the
empirical approach, but with the flexibility of the symbolic approach. The exact way how
to do this is not clear. There are many architecture designs possible that can combine
these methods. If both of them live together in a single component, the designers must
decide which strategies to follow in order to give priorities. This normally requires the
development of heuristics.

3.2 Architectures

The literature is quite consistent in classifying NLIDB architectures [5, 25, 24, 27, 11, 2]
in four groups according to the techniques they employ. The actual names and content of
these groups change slightly depending on the author, for instance in [2], but in essence
they are quite similar. In the following lines, I am going to expose a classification follow-
ing the more traditional one proposed in [5], but keeping a look to the differences with
other proposals.

3.2.1 Keyword Pattern-Matching Systems

One approach to understand the meaning of an NLQ is try to extract keywords present
in it and match them with elements in a database. In this technique, first we perform a
keyword-spotting step, where the terms are looked up in a dictionary built beforehand.
This is why other authors define such systems as keyword-based systems, because “the
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core of these systems is the lookup step, where the systems try to match the given key-
words against an inverted index of the base and metadata” [2].

The set of keyword spotted is matched against a set of combination rules or patterns.
For example, imagine an SQL table of countries with their capitals, we can think of rules
of the form:

pattern: ... ‘capital’ ... <country>
SQL: SELECT capital FROM countries WHERE name=’<country>’

One of the most salient features of this architecture is its simplicity and, thereafter, its
computational performance. They are also quite flexible. One can adapt existing patterns
to new domains by changing the correspondences between keyword and database ele-
ments. But these systems have important limitations. They can not perform aggregation
queries, for example, where a more fine-grained analysis of the NLQ is needed. Also, “the
shallowness of the pattern-matching approach would often lead to bad failures” [5]. For
instance, when one of the keywords corresponds with a term with a completely different
meaning in another domain, the resulting query will be completely misguided.

In [2] the authors consider another category, that is an extension of this model. They
call them pattern-based systems. Which are those that “extend the keyword-based systems
with NLP technologies to handle more than keywords and also add natural language pat-
terns.” They also consider two types of patterns here: those that are domain-independent,
like words indicating aggregation (eg ‘by’), and domain-dependent ones, like concepts
(eg ‘good film’).

3.2.2 Syntax-Based Systems
This type of systems use grammars to analyse the user’s input. Here, “the user’s question
is parsed (i.e. analysed syntactically), and the resulting parse tree is directly mapped to
an expression in some database query language” [5]. Using the syntax tree extracted from
the input sentence, the system can map its elements to other elements in the database, like
tables or relations. Having access to this kind of information about the user utterance,
can also help in answer generation, making it easier to generate grammatically correct
sentences that match the questions made by users, eg in time, person etc.

For this method to be successful, tables of the database normally have to be properly
designed. It is difficult, sometimes impossible, to find general rules to map syntactic
structures to any database schema. The problem here is that, in a relational database, the
same content can be represented in many ways, all equivalent. It is therefore very difficult
to port this kind of system to new domains or database structures. For this reason, “syntax-
based NLIDBs usually interface to application-specific database systems, that provide
database query languages carefully designed to facilitate the mapping from the parse tree
to the database query.” [5]

This type of system is called parsing-based systems in the classification in [2].

3.2.3 Semantic Grammar Systems
This type of system is similar to the former in the sense that it also employs grammars to
analyse the questions. The difference is that it doesn’t focus on the syntactic structure of
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the phrase. In this case, it looks for semantic structures. Here, nodes have certain semantic
content instead of just syntactic. One of such structures can be, for example, a conceptual
map. Its leafs could be concepts reflecting objects in certain knowledge domain, and
their parents categories of them. If we express such tree-structure in the form of a set of
generation rules, then we have a semantic grammar.

Many times this technique is used to constrain the types of questions users can make.
Limiting the language domain of accepted input sentences, can ease the question process-
ing, and produce a sound answer. Another advantage is that grammar-based systems, as
the authors of [2] call them, can have partial representations of the question. Thus, the
system can give users natural language suggestions when they are typing their input.

Some authors consider this architecture difficult to port to other knowledge domains.
The structure represented in a semantic grammar is normally very specific. A concep-
tual map for certain knowledge domain, animals for example, has different structure and
different nodes that one made for a company organigram. This makes it very difficult to
reuse grammar rules from one domain to another. In this sense, they can be regarded as
less flexible than syntactic grammars.

3.2.4 Intermediate Representation Systems

Intermediate representation systems are those that use some meaning encoding extracted
from the question. This codification normally comes in the form of a logical formula or a
semantic tree structure. One of the main advantages of placing this intermediary language
between the natural language query and the database query, is that we can abstract from
the database structure. The intermediate representation constitute a coarse grained version
of the query, at the level of its semantics. Often, the elements of this codification are
concepts, or some high level representation of the world objects. This technique allows
to gain an abstraction level from plain natural language expressions.

This type of system usually defines a series of modules specialized in certain opera-
tions that work on different levels of representation. The concatenation of such modules
conforms a processing pipeline that produces the final answer. In figure 3.1 the reader
can find a typical pipeline architecture with its modules. This is a quite old design, the
literature shows schemas of this type before 1990. A more elaborate version of this archi-
tecture can be found in figure 3.2. This is an extended version showing the structure of an
intermediate representation system and the modules that could make it up.

The operation of extracting the intermediate representation that we have mentioned
before, only defines one of those modules. The semantic representation is independent
of the natural language as well as of the database structure. This independence allows
the system designer to connect with other modules that can help in understanding of the
NLQ. One possibility could be adding a reasoning module that checks the consistency of
the representation against some ontology.

The conceptual representation still cannot be used against any database in particular.
Another module is needed to make this conversion. This is the responsibility of the query
generator. This operation can be adapted to different database technologies thanks to the
independence of the intermediate language and a translation module. It is possible, for
example, to generate queries for a Prolog knowledge-base as well as SQL queries for rela-
tional databases. This is the design principle behind MASQUE [6], which communicates
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Figure 3.1: Typical pipeline architecture [14].

with a Prolog database, and MASQUE/SQL, that does the same for SQL queries. Both
systems share the same infrastructure.

Once we have a query in some query language such as SQL, we can actually ask the
database for the requested information. Finally, after querying the database, the system
can manipulate the results obtained and answer the user. This last operation is the re-
sponsibility of the response generator. In this module we can also take advantage of the
knowledge acquired in the analysis of the input. We can perhaps answer the users’ ques-
tions in a particular way depending on the way they have formulated them. For example,
we can make the phrase in the response to be linguistically consistent to the time, person,
etc., in the question. This can make the response more natural to understand. Another
possibility is, when the user is expecting a single item or a report, the system can adapt
the generation to the expectations.

This architecture can be regarded as a de-facto standard. The other architectures are
somehow integrated into this one. An intermediate language can be a syntax tree, like in
syntax-based systems or a parse tree, in grammar-based systems. Even keyword pattern-
matching systems can be interpreted as degenerated versions of this architecture. Some
authors, like in [2], don’t recognize this architecture as a type on its own, and rather
assume it as a common pattern. Instead, the authors in this paper focus on the most
salient methods employed inside the system.

3.2.5 Dialogue Systems

We have mentioned before that communicating with the user during the operation of
the NLIDB can help in clarifying the question and improving the answer. The systems
that can do this, incorporate architectural elements specific to dialogue systems. The
classifications we have taken into account, don’t consider this as a separate architecture.
Whether it be because the architectures shown before can be included inside this one, or
because dialogue systems follow their own structural principles, it is interesting, for what
is to come, to present at least this design.
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Figure 3.2: Architecture of an intermediate representation design [5].

The main difference with the other architectures we have seen so far is that the op-
eration of the different components is orchestrated by a central component called the
dialogue controller or dialogue manager. In the previous designs, the focus was on the
modules dedicated to the interpretation of the input. Instead, in this case they are subor-
dinated to the dialogue manager. In figure 3.3, the reader can find a schema of this type
of architecture.

The dialogue manager is a type of reasoning module. Its purpose is to understand
users’ intentions and try to respond to them. It uses the understanding and generation
modules as an interface with the user. These systems keep the state of discourse, that is, a
record of the information the user and system have generated. This is used as context in
order to improve the understanding and keep track of the state of the negotiation with the
user. The database-specific modules, there may be, are used to find facts about the world
and help to provide information to the user.

3.3 Challenges

There are several problems a NLIDB must face in order to perform properly, and they
appear at all the levels of user input processing. Even when we consider the problem in
its generality, the very formulation can bear witness to this difficulty. As is expressed in
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Figure 3.3: Possible architecture of a dialogue-oriented system [5].

[21]: “the goal for an NLIDB is to infer the user intent and this task is regarded by many
as an ‘AI complete problem’.”

In this section we are going to introduce a series of challenges that this kind of system
has been trying to solve since the early approaches. It will serve the purpose of building
a bridge between the theory and praxis of NLIDBs implementation. At the same time,
this will help us to define a set of particular objectives in the design. Several authors have
made a recapitulation of historical challenges these systems had to face [5, 25], that we
will follow in this exposition. In the next sections we present a list of the most relevant
problems to be solved.

3.3.1 Linguistic Issues

Extra-grammatical Utterances

The first and most common problem in interpreting user utterances are misspellings and
grammatical errors. Everyday use language contains plenty of these errors. Thus, a prac-
tical NLIDB cannot assume the sentences it will receive are free of typographic errors or
syntactically correct, or even meaningful.

This problem is aggravated when the input comes from a spoken channel, thanks to
the use of an Automated Speech Recognition system. The problems generated in the
translation of speech to text are passed downstream the pipeline. The text produced by
this type of system usually contains gibberish generated by noise in the audio. ASRs
don’t normally support separators, just alphabetic characters, which makes it difficult to
separate phrases. Assuming that an ASR will handle well-formed sentences, can have
fatal consequences for the overall performance of the system.
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Scoping

Consider the sentence “Find all the employees in the sales department over 30 years
of age”. It is immediately obvious to a person that “in the sales department” refers to
employees and “over 30 years of age” refers to “employees in the sales department”.
These two expressions are known as modifiers. The problem is that, syntactically, two
interpretations are possible:

Find all the [ [employees [in the sales department]] [over 30 years of age] ]

Find all the [employees [in the [sales department [over 30 years of age]]]]

Determining which interpretation should be taken is called the modifier attachment
problem. The resolution of this problem is not obvious to a machine. If the modifiers
can be identified as elements by a parser, for instance, they will simply be at the same
level, and two possible trees can be constructed based on them. In this situation there is
an ambiguity that needs to be resolved somehow.

One option here could be the use of some sort of type checking. We can say that it
doesn’t make sense that a sales department have age. Or, does it? A sales department can
be old. Even the type checking can be ambiguous. Another solution is the use of heuristics
like the “most right association principle”, that is, to prefer the rightmost argument of the
modifier.

A similar situation arises with the use of quantifiers. Words expressing logical quan-
tification like ‘all’, ‘some’ or ‘any’ also have a scope that is not always obvious. To make
it more explicit, when there are several operators in one phrase, this problem consists in
determining which one should be given a wider scope.

Consider the example sentence taken from [5]: ‘has every student taken some course?’.
Here, two interpretations are possible. In the first one, each student can take the course
they like. In the second, all students are supposed to take the same course.

As in the case of the modifier attachment problem, we can use some heuristics to solve
this issue. One common heuristic is to preserve the left-to-right association of quantifiers.
Or we can define an order of precedence between quantifiers, as it is done in the syntax
definition of a language in a logical calculus that does not depend on brackets.

Ambiguous Terms

There are some terms that are inherently ambiguous in natural languages. One of such
cases occurs in the use of conjunctions or disjunctions. This problem stems from the fact
that the use of the word ‘and’ can sometimes denote conjunction, sometimes disjunction.
Consider the phrase ‘find every employee in sales and business risk departments’. There
are two possible readings. But we understand that the ‘and’ means disjunction in this case,
and we want to know all the employees that work in sales department or in business risks
department. We humans disambiguate this sentence thanks to the common knowledge
that one person doesn’t normally belong to two departments. Distinguish these two cases
in a computer is problematic.

Another case of ambiguous terms are the so-called nominal compounds. Some com-
pound names in English are semantically ambiguous. For example, ‘city department’ can
both denote a department located in a city, or a department responsible for a city. As
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in the previous case, we can use implicit knowledge to disambiguate, choosing the most
common interpretation. However, implementing this in a computer again is challenging.

Anaphora

Anaphoric expressions are a well-known issue in Natural Language Processing systems.
Linguistic expressions like pronouns (eg ‘it’), possessive determiners (eg ‘their’) and
some noun phrases like ‘the owner’ or ‘these objects’ are all examples of anaphora. They
all implicitly denote some entity alluded previously in the discourse. They can be sub-
stituted by a fully expanded version of the sentence, where the referred entity is denoted
explicitly.

If a machine interprets this type of sentence literally, it will certainly produce wrong
results. For a machine to process a sentence like this, first it needs to detect the anaphoric
structures, then needs to substitute it for the referred entity and, finally, use the expanded
expression as normal input. There is a whole literature dedicated to this problem, with
different strategies to mitigate this problem.

Ellipsis

Common language includes, many times, incomplete expressions. The meaning of which
is derived from implicit knowledge about the context. Take the following two consecu-
tive questions: ‘how many goals were scored in the first half of the match?’, ‘and in the
second?’. The last sentence is an elliptic one. We implicitly complete the missing infor-
mation and understand a sentence like: ‘and [how many goals were scored] in the second
[half of the match]?’.

This type of substitution is a difficult task for a computer because it depends on con-
textual information that must be inferred. Many systems require the complete version of
a query every time it is requested by the user. Again, this it is a common NLP problem
and has its dedicated literature. We are not going to delve into the details of the possible
solutions.

3.3.2 Interactivity Issues
Inappropriate Medium

This first interactivity issue asks whether language is an appropriate medium to inter-
change information with a computer. This entails a general challenge against the ade-
quacy of language as a good communicator between people and computer systems. Some
authors argue that human language is too verbose, or too ambiguous to suit the needs of an
interface to information systems. Other types of interface, like graphical user interfaces,
for example, are perhaps more suitable to translate user intentions to the well-defined
form computers can deal with.

Multilingual

In order to widen the audience of an NLIDB system, it is interesting to produce interfaces
with multilingual capacities. Many times systems are designed to support just English



3.3. CHALLENGES 23

as input natural language. Opening to other languages can prove itself challenging. The
architecture must be such that the linguistic components can be translated into other lan-
guages. Otherwise, we would end up in a situation where one system has to be developed
for each language. And, if we are in the need of developing domain-dependent compo-
nents as well, the problem multiplies. It is thus interesting to study modular architectures
that are flexible enough to support different languages without much additional develop-
ment.

Empty Prompt Problem

The empty prompt problem [11], or sometimes called the “habitability problem”, refers
to the situation the user is confronted with when dealing with this type of system for the
first time. This is similar to the situation novice users find themselves when they use a
terminal prompt. Normally the system asks an open question like:

System: What can I do for you?

This leaves users with little knowledge of the capacities of the system or the types of
queries they can make.

Linguistic False Expectations

NLIDBs can suffer from false expectations in their linguistic capacities, which can hinder
user experience. The first phenomenon that can produce this situation is the uncertainty
in the linguistic coverage. This problem stems from the fact that the linguistic coverage of
any NLIDB system is limited. Users find it difficult to understand the types of sentences
the system can respond to [5].

Users tend to build mental models of what the system can understand or do, and abide
to it. This means these models are not changed so easily. For example, if the language
coverage is improved, this is likely to pass unnoticed. The user will assume the system
does the same as before until something indicates the contrary.

Another phenomenon in this line is that, when a NLIDB can’t answer certain question,
it is unclear from the user’s perspective whether this is because it doesn’t understand the
language or the underlying database doesn’t contain the information needed.

This problem leads to situations where users try to rephrase the sentence with syn-
onyms, hoping to find a term that is well understood. But the database perhaps can’t find
any information related to it because there isn’t any. Or, conversely, they can assume the
database doesn’t contain any information regarding some term, but the problem simply
is the term is not included in the lexicon. Again, this behaviour is translated into mental
models that have their own inertia.

Capability False Expectations

We have already introduced a case of false expectations in the capacities of the system
when we said that the database in the background can not have information at all about a
particular topic. This is sometimes masked by the limited linguistic coverage problem.

Another issue in this line is that, when the system is able to answer some questions,
can make some users assume it has reasoning abilities. Here we see mental models enter
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the scene. Many NLIDBs don’t include a reasoning module and are limited to the expres-
siveness of the back-end query language. Assuming intelligence normally leads to false
expectations, and this can be frustrating to the user.

Response Generation

The generation of a response with the required information poses a new set of challenges.
Assuming that the database query has been properly generated and the correct answer
obtained, the way it is expressed could render it useless from the user point of view.

One of such cases is when the results returned contain codified information. For
example, consider the user asks: ‘what employees are older than 50 years old’. The query
can produce a list of employee IDs. Even when correctly answered from the database
point of view, the user may well be expecting a list of names.

Empty results or erroneous queries should be reported in an appropriate form to iden-
tify the source of the problem. There are several causes that may produce an erroneous
response. Each case should be addressed differently. Also, the system may produce an
invalid query, but it may be partially recoverable. In this case, dialogue strategies could
help. The cause can lie in the linguistic coverage. In that case, if the system can detect
this situation, it should be addressed differently. The empty set can be a correct result,
and this should be prompted to the user.

Another situation arises when questions are interpreted literally, but the user has other
intention in mind. A typical example of this are questions with binary form, that inter-
preted literally require a yes/no answer. But the user can formulate this type of question
with the intention of receiving other information. For example, take the sentence: ‘Is there
a flight from Barcelona to Madrid tomorrow?’. The system may answer with a laconic
‘Yes’. It could also save the user the obvious next question: ‘Which ones?’.

3.3.3 Integration Issues
Portability

Following the re-usability principle, it is desirable for these systems to have some generic
functionality that can be adapted in different circumstances. For example, the back-end
database technology can change. We would like to be able to connect to different tech-
nologies such as SQL or SparkQL. This requires that the system incorporates translation
modules. Inside a information representation model, we want to connect to different im-
plementations. This is partly solvable through the use of query languages like SQL. But
in the SQL family we find a group of dialects. Not all the expressions are supported in
one dialogue or the other. These differences must be handled to make the system more
generic.

Also, we would like to use the system for different database schemas. First, this
may entail a change in the knowledge domain with a whole set of implications: in the
terms used in the language specific to this domain, in the semantics in respect to the
database elements. And second, even in the same knowledge domain, the same ontology
can be expressed in an infinite number of schemas, all functionally equivalent. The system
must provide with some configuration mechanism to adapt to the different database table
designs.
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We have mentioned before, when talking about the different architectures, the diffi-
culties that these systems confront when it comes to portability. In the early times of
NLIDB systems, these where tightly coupled with the underlying database technology
and structure. Some architectures we have mentioned before, make it very difficult to
port to different domains. We have seen some others, more modular in design, that are
more easily adaptable. The need for portability has strong implications on the architec-
tures that can be used.

Configuration

Adapting a system to a particular purpose is not a straight-forward step in NLIDB systems.
A database technology, like SQL for example, comes with a schema definition and query
language that can be used out-of-the-self. This allows users of this technology to build
any schema they want and adapt it to any purpose. This is possible thanks to the formal
nature of both the schema specification and query language. Whatever schema or query
that is well-formed is guaranteed to produce results.

The situation with NLP-based systems is different. They are dependent of natural
language, with all its ambiguities and inaccuracies. A previous step of configuration is
necessary in order to adapt a system of this type to a particular purpose. The language
needs to be channelled to that same purpose. If we assume that this step is unavoidable,
then we want to make it as easy as possible.

One of the challenges regarding the configuration of an NLIDB is that it involves dif-
ferent domains of expertise. It is needed to know the particular structure of the database,
which is normally in the field of the database manager. It is also needed to know the
expressions used to refer to the elements in the database schema. This knowledge is lin-
guistic in nature and requires different expertise. And, finally, an expert with the skills to
express all this knowledge in the individual NLIDB technology, is also needed.

3.3.4 Lessons Learned
After about half a century of attempts of building a functional NLIDB, we have acquired
quite some knowledge of what works and what doesn’t. It is a good moment to recollect
some of those findings before we present our proposal. I reproduce here a list proposed
in [2] with some tips for a good design.

1. Use distinct mechanisms for handling simple versus complex questions: The way
users formulate their questions depend on the complexity of the query. In particular,
users tend to use keyword-like questions for simple queries. On the contrary, for
more intricate queries, the questions tend to be more complex syntactically and
grammatically correct. It is a good idea to have separate methods for handling each
category.

2. The problem with subqueries: This is still a hairy topic, with difficult solution. The
most common method to handle this problem is using parse trees.

3. Optimize the number of user interactions: Because the intrinsic ambiguity of nat-
ural languages, it is unrealistic to expect to get the final answer in one shot. Even
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people aren’t able to do this. It is best to interact with the user in order to clarify
and resolve the ambiguities. In addition, the number of questions needed to reach
consensus should be kept to a minimum.

4. Use grammar for guidance: The benefits stemming from the use of grammars are
twofold. In the one hand, they contain useful information about the structure how
questions are formulated, and this can improve the understanding. In the other hand,
users get feedback about the questions that produce good results, and can adapt the
diction to these patterns.

5. Use a hybrid approach: Both traditional NLP techniques and Machine Learning-
based ones work best in combination. In particular, despite the promising results
obtained with Neural Networks applied to certain tasks, it is still impractical to base
the whole approach in this type of technologies. “Using a hybrid approach of tra-
ditional NLIs [Natural Language Interfaces] that are enhanced by neural machine
translation might be a good approach for the future. Traditional approaches would
guarantee better accuracy while neural machine translation approaches would in-
crease the robustness to language variability” [2].



Chapter 4

Prototype Design Principles

4.1 Linguistic Approach

The architecture design of this proposal is aimed at a hybrid approach. This means that
the architecture will allow the inclusion of modules based on both symbolic and statistical
approaches.

The backbone of the system will be implemented using a symbolic approach. We in-
tend that the processing pipeline be controlled and predictable. The spirit of this design
is the contrary to that of an end-to-end neural network-based system. This approach will
ensure accuracy for the most tractable cases. And will make the system deterministic,
at this level, allowing at the same time its evaluation. This architecture will leave room
for the inclusion of statistical techniques that can complement the functionality available,
increasing its robustness. But it is beyond the scope of this work to measure the improve-
ments that can be derived from the inclusion of such techniques.

The implementation will focus on delivering the necessary modules that conform to-
gether a functional NLIDB system. The implementation of the modules themselves will
also be symbolic in nature.

If we attend now at the way the language refers to the external elements, whether
they be database elements, or anything else in the outside world, we will be making
assumptions over our conception of semantics. In particular, at the way we understand
denotation. To make it explicit, we are going to assume an equivalence between reference
and meaning. That is, nominal expressions in language, or representational tokens, will
have a reference in the external world (the objects) in database elements. And this relation
between expression and object defines the meaning of the former. The intention is making
this relation explicit in the lexicon. For this, both components will be present in each
lexicon entry. In the one hand, the expressions used to refer to database elements, and, in
the other hand, some representation of the database element.

4.2 Proposed Architecture

This design will have a conversational spirit. We have exposed earlier the benefits that can
be extracted from the interaction with the user. It will be useful to make use of structures
and features of conversational systems. More than that, we can also use conversational
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concepts to express internal representations. In terms of implementation, the prototype
will be built on top a conversational system, although the focus will be on the NLIDB.

Some concepts related to the representations in a NLIDB system can be rephrased in
conversational terms. Take for instance the idea of an intermediate representation lan-
guage for a user query. We can now reconsider and reformulate it as a complex dialogue
act in which the user is trying to retrieve some information.

The concept of Dialogue Act can be defined in general terms as “an utterance, in the
context of a conversational dialogue, that serves a function in the dialogue”1. It is based
on the idea of speech acts introduced by Wittgenstein [37]. They are typically classified
in a taxonomy with the different functions they can perform in a dialogue. In our case,
we are interested in two particular types, ie information retrieval and inform statement.
These two acts contain respectively the pragmatic aspect of asking for some information
and, in response, informing about the results.

We are now in position to reformulate the problem of a Natural Language Interface to
Databases in conversational terms. An NLIDB system is thus an NLP system that takes
a complex dialogue act containing an information query (of type information retrieval),
and returns a dialogue act with the response (of type inform statement).

NLIDB

DAct
query

DAct
response

Figure 4.1: NLIDB dialogue act flowchart.

All along we have assumed that the pivotal point of the problem at hand is the con-
struction of a system capable of translating natural language queries to database queries,
and return the results. With the introduction of dialogue-specific concepts and infrastruc-
ture, we could well invert the terms and, instead, focus on the dialogue. If the subject
were the dialogue, the NLIDB problem would be subsidiary to dialogue management.
The functionality of interfacing with databases would be a component that provides with
dialogue acts that can in turn be used by the dialogue manager. Changing the perspective
this way, we find a useful component in dialogue systems, one that brings back informa-
tion contained in a database, that can improve the interaction with the user.

We will structure the prototype according to the first interpretation. But it is interesting
to note that, were the subject dialogue systems instead, the purpose and interpretation of
NLIDB components would change, but mostly not their implementation.

If we now look at the single process of question answering, that is, how questions are
processed, we will be attending to the architecture of the NLIDB part in the same vein as
we have exposed it previously. Actually, this proposal incorporates aspects of almost all
the architectures we explained in section 3.2.

If we look at the general structure, this proposal is an intermediate representation
model. The objective of the question processing will be producing a semantic represen-
tation of an information query. In this prototype, we propose a simple information query
representation, called semantic query (SemQuery). This is an approximation to a general
representation of all the information may be contained in an information query. Here we

1https://en.wikipedia.org/wiki/dialog act

https://en.wikipedia.org/wiki/dialog_act
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will consider two elements in our ontology: targets and conditions. Targets are the deno-
tations that have been identified in the natural language query. Conditions are the search
restrictions imposed over those objects.

The third type of architecture we explained before was semantic grammar systems.
This design also participates in our proposal to some extent. Based on the denotation
model, that defines our semantic objects, we will build a semantic grammar from which
the semantic query is constructed. The difference with the other semantic grammars is
that the objects here are at the same level. It is a plain ontology where we don’t consider
explicit relations. We rely on the database schema to resolve such relations.

At the semantic level, we employ a chunk grammar. It will provide a robust method to
handle simple queries. This type of grammar can be regarded as a pattern-matching sys-
tem, like the first type we have exposed in the previous chapter. This grammar also looks
for patterns, but it does so at the semantic level. The grounds of this type of grammar,
where we read a sentence one chunk at a time, can be tracked back to the ideas presented
in [1].

We could also consider a syntax-based grammar, like in the second architecture type.
This would serve to handle more complex queries. But this type of grammar are out of
the scope of this work. The interesting thing to consider is that other grammars could be
inserted into this architecture, without changing the overall design.

4.3 Tentative Solutions
The main objective of the solution proposed is to define an architecture where the different
problems that may appear when answering user queries, can be addressed incrementally
without having to change the main design. We have presented a plethora of such chal-
lenges in section 3.3. With this prototype, we don’t pretend to address all the issues at
once. Although it will be interesting to show how to address some of them. At the same
time, see in which places in the architecture are better handled.

Special mention deserves the problem of language as an inappropriate interface to
information systems. We consider that the quality of the NLP systems to date haven’t
performed sufficiently well for users to consider them as a real alternative. This is more
a problem of immaturity of the technology. It is perhaps too early to rule out this type of
interfaces as some critics do. In addition, this problem is tied to the problem of informa-
tion representation. A language interface only can access the information through some
representation, that can not be the ideal when referring to it using language. In any case,
we want to use existing technology, aiming at building useful systems. For this reason we
employ relational databases as the back-end technology for data storage.

In table 4.1 the reader can find a list of tentative solutions to the problems presented
in section 3.3. We try to localize the problem in one of the components in our architecture
and explain how could be addressed. Broadly speaking, the solutions proposed lie in the
following ideas. We want to confine the representation problems in the lexicon and, at
the same time, ease the configuration having to look into a single component. Also, we
would like to make use of the dialogue framework features to cope with another set of
problems. When it is useful to communicate with the user to disambiguate or clarify, and
to keep context and memory of what has been said. In general, the architecture should
allow the inclusion of more sophisticated components that can address specific problems.
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Problem Module Solution
L

in
gu

is
tic

Is
su

es

Extra-
grammatical
utterances

Spelling corrector,
Chunk grammar

Correct the spelling based on the lexicon; use
a chunk grammar to make the system resilient
to noise.

Scoping Dependency
grammar

Use grammar to find dependencies and apply
heuristics.

Conjunction /
disjunction

Error handling Ask the database and use heuristics to select
a meaningful query.

Nominal
compounds

Lexicon Fix the meaning in the lexicon.

Anaphora Grammar, Dialogue
history

Detect the anaphoric expressions and substi-
tute them using the dialogue history.

Ellipsis Dialogue manager,
Dialogue history

Detect missing information, try to fill it with
the dialogue history or ask the user.

In
te

ra
ct

iv
ity

Multilingual Lexicon Only the database lexicon should be trans-
lated.

Empty prompt Dialogue manager Answer questions regarding capabilities.

Linguistic false
expectations

Dialogue manager Relay on the interaction with the user to clar-
ify linguistic coverage.

Functional false
expectations

Dialogue manager Similar to the above, clarifying the knowl-
edge domain.

Response
generation

Multi-modality Use an appropriate medium to the type of an-
swer.

Codified
information

Lexicon Denote the name of the object in the lexicon
instead of the identifier.

Literal
interpretation

Grammar, Dialogue
manager

Detect binary questions, extend the response
to include more information.

In
te

gr
at

io
n Portability Skills Modular architecture with an NLIDB frame-

work plus per-database skills.

Configuration Lexicon, Grammar Focus customization on the lexicon and some
database-specific grammar rules.

Table 4.1: Summary of tentative solutions to NLIDB problems.
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Implementation

In the previous sections, we have introduced the ideas on which we are going to base
the development of our prototype. Here, we are going to delve into the implementation
details. In the following pages, we will present the different components, their function
and the technologies used to build them.

The specific use cases are described in the next chapter. And we will refer to those
examples at some points in this description. Yet it might be useful to the reader to get a
grasp of the processing pipeline first, taking a quick look to section 6.1.

5.1 General System Architecture

The system is divided in three major functional modules: the interpreter, which extracts
the meaning of the user question, the query generator, which translates this to the database
query language and retrieves the information, and the response generator, which produces
the final answer. Each of these subsystems is compound of other modules dedicated to
more specific tasks.

Overall, the system forms a processing pipeline, where the data is transformed step by
step as it passes through the chain of modules. In figure 5.1, the reader can find a schema
of this pipeline, with all the components involved. Also, the data processing is annotated
in the flow arrows, indicating the different transformations the data experiment along the
way.

The technologies employed for this prototype, in general terms, are Lekta [29] for
the linguistic part, Haskell for data processing, and SQL as database management sys-
tem. Other technologies and frameworks will be mentioned when they appear during this
description. Lekta technology provides an NLP pipeline, with its own programming lan-
guage to describe grammars and define rule-based systems. It also ships with a dialogue
framework called Fluency. Both form the dialogue framework we mentioned before, on
which we are going to construct our prototype.
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Tokeniser

Lexical Parser

Semantic Parser

Dialogue Manager

Server

Query Translator

Database Manager

Result Classifier

Answer GeneratorLexicon

Lexical
Rules

Semantic
Rules

Database

User Question

[Token]

[Chunk]

DAct{SemQuery}

JSON{SemQuery} SemQuery

SQL

[[SqlValue]]

DAct{Result}

Answer

Figure 5.1: Processing pipeline with all the components and data flow.
Note: The annotations in the arrows indicate the pseudo-types of the data after a process operation.
Square brackets denote lists, and curly brackets indicate the contents of another type.

5.2 Interpreter
The interpreter is responsible for processing the user’s natural language query and trans-
forming it into a dialogue act containing its semantic representation. Schematically:

Query → DAct{SemQuery}

5.2.1 Lexicon
The terms in the lexicon contain the vocabulary that defines the linguistic coverage of
the system. In the case of database-related terms, it also defines the mapping with the
database elements. We do this following the denotation model we have explained before.
Each lexical entry is defined by a type, and contains the linguistic tokens as well as the
contents for that particular type.
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Domain-independent Lexicon

The query lexicon is the generic vocabulary contained in the subdomain of language ded-
icated to information requests. It is domain independent, and can be reused across appli-
cations. This lexicon contains terms such as functions, comparison operators and logical
connectives. As any other lexicon, this component depends on the language.

The first type of term that we find here is the information function (lexDBFunction
type). This type of term express operations that can be applied over some piece of infor-
mation. These normally map directly to SQL functions. Following, the reader can find a
list of such functions with term samples:

Function SQL Lexicon

Counting COUNT ‘count all’, ‘total number of’, ‘how many’

Addition SUM ‘sum’, ‘compute the aggregate of’

Average AVG ‘average’, ‘find the arithmetic mean of’

Minimum MIN ‘minimum’, ‘the lowest’

Maximum MAX ‘maximum’, ‘the largest’

The second type of term we are going to consider are comparison operators (lexDBOperator
type). In this class we find terms used to specify comparison of elements. The implemen-
tation is similar to that of functions.

Operator SQL Lexicon

Equality = ‘equals’, ‘is equal to’

Inequality <> ‘doesn’t equal’, ‘is not the same as’

Strictly greater > ‘greater than’, ‘above’

Greater >= ‘greater than or equal to’, ‘at least larger than’

Strictly lower < ‘smaller than’, ‘below’

Lower <= ‘less than or equal to’, ‘at most below’

Domain-dependent Lexicon

There are three lexicographic types defined that can be used to define the correspondence
between natural language utterances and database elements. These are: topics, targets
and values. It might be clarifying to see how this correspondence is established in a real
case, having a look at section 6.1.

The first ones are topics, with type lexDBTopic. These are simply utterances that
refer to some topic or knowledge domain. They can be useful to define the current subject
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under discussion, in a multi-domain application, and can define the context. A topic can
refer to a specific database, thus can help steering database connections.

lexDBTopic A knowledge-domain or topic
("in the Euro cup 2016", lexDBTopic, ’Euro2016’)

Targets, with type lexDBTarget, define a correspondence between utterance chunks
and structural elements in the database. The structural part is defined as a string contain-
ing the path in the database schema. This format follows the SQL convention of designing
elements with a dot-separated list of structural levels. With this type, we can first refer to
a table, when the object is represented by the rows of that table in general, and they don’t
have a column with name (eg ‘substitution’). Or a column in a particular table, when
we refer to something more specific that has a dedicated column (eg ‘goal minute’). Or,
finally, a column without parent table, similar to the previous, but for objects that can be
in different tables or qualifies objects using a column (eg ‘half’, can be ‘first half goal’,
‘first half substitution’, etc).

lexDBTarget A mapping between an utterance chunk and a database element.

• Table: ("substitution", lexDBTarget, ’player_in_out’)

• Column in a table:
("goal minute", lexDBTarget, ’goal_details.goal_time’)

• Column without table: ("half", lexDBTarget, ’.play_half’)

The third lexicographic elements we can declare are Values, with type lexDBValue.
These also refer to a target but, in addition, they define a specific value for that target.
This type can express conditions. Or convey elements that, for implementation reasons,
are represented in the database as classifications by certain value. For example, we can
designate match victories in a table of matches, using a column to classify them by certain
value (eg ’V’). Note that this is an implementation decision; all ‘victories’ could be set
apart in a different table, and we could refer to this table instead. A third use arises when
we extend this idea to unique elements which are classified by a unique value. The value
is represented by a serialized SQL version of the value. For instance:

lexDBValue A database target with a defined value.
("victory", lexDBValue,
(lexDBTarget:’match_mast.results’, SQLValue:’\’WIN\’’))

5.2.2 Lexical Parser
Based on the lexicon we have defined, that specify meaningful chunks, we can now build
a grammar that elevates these chunks to a semantic level. In this type of grammar the
rules are pretty simple. Because we are considering utterance chunks that are more or
less meaningful by their own, these rules basically perform a mapping from lexicon to
semantics and pass through the information contained.

Semantics in this implementation is populated by a limited set of entities. The types
of such entities are the following:
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DBFunction A function on some piece of information. It contains the name of function
to perform. This is the semantic level of the utterances that express operations,
which we have explained in the lexicon.

DBOperator An operator between pieces of information. It contains the name of the
operator it refers to. This is the semantic content of lexical operators.

DBTarget Semantic representation of an element in a database, containing the path in
the database structure to that element.

DBValue The semantic content of a value in the database. It contains both a DBTarget
and a SQLValue. The second is a serialized representation of the value pointed by
the target.

DBCondition This is the semantic representation of a condition in the retrieval of some
information. It represents some restriction on the domain of objects to fetch, the
limiting criteria. That is, a generalization of what we understand as a condition
predicate in the where-clause of a database query. Conditions are compound by
three elements:

• A target as defined before. Denotes the subject of the condition.

• An operator as defined before. Expresses the type of comparison to be made.

• A value, in its SQL serialized version. Contains the value against the subject
is compared to.

As we mentioned before, the grammar rules defined here are straightforward. A typi-
cal rule of this kind looks like this:

(NLIDB_lex_DBFunction :
[ DBFunction -> lexDBFunction ]
{

ˆ.FunctionName <- #1;
}

)

This is Lekta syntax to express parsing rules. The expression between square brackets
is the production rule in a context-free grammar. The arrow differentiates the left-hand
side (LHS) of the rule and the right-hand side (RHS). Its elements are the types we have
defined before. In this particular case, DBFunction is the LHS of the production rule,
lexDBFunction is the RHS. Accordingly, this can be read as: every utterance chunk
that expresses an information function is an information function at the semantic level.
The one-to-one relationship between lexicon and semantics is characteristic of chunk se-
mantics, where its elements are meaningful by themselves.

The body of the rule, the part between curly brackets, establishes the operations that
define the contents of the LHS element. The caret expresses what is going to be taken up
in the creation of the new instance of the LHS type. In this particular case, we define the
name of the function by taking with us the classification that we had defined for operation
expressions. The reader can find a practical example of this in section 6.1.
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The majority of the rules in this grammar are the same, mutatis mutandis. But we can
also consider other surrounding words and expressions that give us higher certainty that
we are pointing to the right semantics. At the same time, we reduce parsing ambiguities
by increasing the token extension of the rule. These are preferred by the Lekta parser,
thanks to a built-in heuristic. This way, we claim for that semantic content a bigger part
of the sentence that otherwise another rule could take.

Let’s consider an example of utterance expressing a condition. There are some words
normally used to introduce such conditions (like ‘in’, ‘within’, ‘in the’). We can write a
rule that considers these words, and swipe them from further parsing at the same time.
If we find some of these words followed by a DBValue, we probably are looking at a
condition. The rule would look like this:

(NLIDB_lex_Prep_DBValue :
[ DBCondition ->

< lexPrepWithin | lexPrepIn > lexDetThe? lexDBValue ]
{

ˆ.DBTarget.TargetPath <- #3.lexDBTarget;
ˆ.DBOperator.OperatorName <- ’EQ’;
ˆ.SQLValue <- #3.SQLValue;

}
)

The lower-than and less-than symbols define a block of alternatives separated by the
vertical bar. Also, the question mark tags an element as optional. This is just syntax
sugar to compress several rules into one. We can read the head of the rule as follows:
the preposition ‘in’ or the preposition ‘within’, followed by (optionally) the determinant
‘the’, followed by the expression of a database value, is a semantic condition.

Let’s now look at the body of the rule. When we use a defined value in the database
as a condition, we implicitly say that the comparison to be made is the equality. Because
we are referring to that value and not other. That is the reason why we explicitly set this
condition.

The semantic elements constructed by this grammar are then promoted as parameters
for the next level grammar.

5.2.3 Semantic Parser

Once we have performed the first level of parsing, we have at our disposal a set of param-
eters of different types. We can now use them to extract the pragmatics contained in the
user question. That is, to find out the intention of the user as well as the contents of those
intentions, such as what type of information is he looking for, having which conditions,
etc.

For this reason, we employ a second level grammar that establishes the pragmatic ele-
ments contained in the question from the semantic elements of the query. The constituents
we are looking for, at the pragmatic level, are called dialogue acts (DAct) in dialogue sys-
tems [20]. We could employ a different nomenclature, but it is useful for our purpose to
reuse this one, specially considering that our infrastructure uses a dialogue framework.
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We will thus define a grammar that takes semantic elements and produces dialogue
acts. In the terminology of Fluency [29], this is called Pragmatic Mapper rules.

The first part of the user intention we are interested in is the purpose of querying in-
formation itself. This is perhaps too obvious in the case of monolithic NLIDB systems,
where the only type of questions that can be answered are natural language queries. But,
if we want to generalize the problem, and consider this functionality together with other
skills, we have to detect this first. In the taxonomy defined in Fluency, this type of dia-
logue act can be classified as a request to perform an action, which in turn is querying
information. We can codify it this way:

DAct:Request/Action/NLIDB Dialogue Act that indicates the action request of making
a natural language query.

There are some expressions that indicate we are before a factual question of this kind.
Expressions like ‘find’, ‘prepare a list of’ or ‘make a report with’. All prepare the inter-
locutor for an information request. At the same time, they provide hints on the expecta-
tions about the format of the final response: a single value, a list, a table, etc. We can
use these expressions to detect the intention of making a request of information retrieval,
therefore raising the corresponding DAct.

But the intention of querying some information must be followed by some content.
We define two types of contents that can be provided for the fulfilment of a query: targets
and conditions. In our taxonomy, they are actions performed by the user to inform of
something, and that something is the provision of a query parameter. These parameters
constitute the units in which an information query can be divided. The classification of
these dialogue acts is as follows:

DAct:Inform/Parameter-provide/target Dialogue Act containing the provision of a query
target.

DAct:Inform/Parameter-provide/condition Dialogue Act containing the provision of a
query condition.

These dialogue acts are constructed based on the parameters provided by the previous
grammar, but transformed into pragmatic elements, that is, dialogue acts. To accomplish
this, we use a second level grammar. The right-hand side of these rules are the semantic
components obtained in the previous parsing phase. That is, the self-meaningful chunks
we have extracted. The left-hand side of the rules are dialogue acts with its contents. The
general rule schema looks like this:

DAct1DAct2 . . .→ Chunk1Chunk2Chunk3 . . .

Grammars of this type are context-sensitive in Chomky’s classification. They are quite
complex to parse in general, but we are going to limit it to terminal symbols in the RHS
and non-terminal in the LHS. To resolve ambiguities, the following heuristic is employed:
prefer longer RHS conditions, then prefer the first defined. The implementation of this
parser is provided by the Fluency dialogue framework that ships with Lekta technology.

The most important parameter that a user can provide is what we call a target. We
don’t consider a query complete, unless at least one target is given. As we said before,
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targets denote elements in the outside world, elements of the database in our particular
case. At this point they are fully qualified. If functions are present, then they are saturated
(in Fregean terms), that is, they are applied to something. This means that, if the target
contains some functions, this will be included as part of it. For this reason, at these point
we find rules that transform semantic functions followed by semantic targets into a single
pragmatic target: DAct{f, x} → Chunk{f}Chunk{x}. A concrete example of such a
rule can be found in section 6.1.

The second components we consider as pragmatic parameters are conditions. These
restrict the search domain of objects. As in the case of targets, they must be saturated,
in the sense that, if there is a filter, the filter refers to something. This means that all the
fields in the filter must be filled. That is, they will always include a target, an operator
and value to compare with. The reader can refer to section 6.3 to see this type of rule in
action.

5.3 Database Query Generator

In general terms, this subsystem takes the semantic representation, transforms it into the
underlying relational database query language (SQL) and, after querying the database,
handles the resulting table back.

DAct{SemQuery} → [[SqlV alue]]

5.3.1 Back-end Communication Channel

Format

Lekta technology uses a callback mechanism to communicate with back-end systems.
This is a generic method that allows the programmer to plug in any technology he may
need. To do that, one must implement the appropriate plug-in. A default implementation
is provided for connecting with web services using GraphQL [15].

The communication between the Lekta application and the back-end system is me-
diated by a GraphQL schema that defines the nlidb operation. It receives, as input, a
representation of the semantic query generated previously. In turn, it responds with the
results of the database query. The operation is defined like this:

type Query {
nlidb(semQuery: SemQuery!): String!

}

Note that the database response is defined as a String. It is given as a serialised
version of the SQL table the DBMS generates in response. The only argument of this
operation is the semantic representation of the query, defined as a SemQuery type. It
is very similar to the output of the second level grammar. Indeed, the application takes
a previous step before sending the request. Before that, it has to be transformed into the
JSON format defined by the schema. Bellow, it follows the full definition of this type:
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"Semantic representation of an information query"
input SemQuery {

command: String!
targets: [Target!]!
conditions: [Condition!]!

}

input Target {
argument: String!
function: String

}

input Condition {
subject: String!
operator: String!
value: String!

}

This is a simplistic version of an information query. It is a first approach to a general
(we could say vast) problem. In this representation, we have, first, a required command
that defines the type of operation we want to perform. In this prototype we will limit our-
selves to information retrieval (no updates or others). Second, we have a list of Targets.
These are formed by a required argument and an optional function that is applied
over it. arguments are the paths to objects in the database schema. And, finally, we
have an optional list of conditions. We declare it as mandatory, but we can send an empty
list when necessary. Similar to what we have said with the definition of semantic types
before, we have in the Condition a subject, an operator and a value. Their
meaning is the same as what we exposed before, just in different format.

Server

The server itself is implemented in Haskell using Scotty1 for the web server and Mor-
pheus2 for the GraphQL infrastructure. What we have to implement is the corresponding
resolver for the nlidb operation. The function definition is the following:

resolveNlidb :: NlidbArgs -> IORes Text
resolveNlidb = resolver . nlidbBackend . semQuery

Interpreting the signature of the resolver, we discover how the GraphQL request is
processed. The resolver takes the arguments of the request and returns a string wrapped
in some monadic effects. The expanded version of the IORes monad is
(ExceptT String) IO. The type ExceptT String is a monad transformer that
adds exceptions of type String to another monad, IO in this case, the monad of in-
put / output effects. Now, reading backwards the body of the function, we first have
semQuery which just extracts the field with the same name from the arguments. This

1https://github.com/scotty-web/scotty
2https://morpheusgraphql.com/

https://github.com/scotty-web/scotty
https://morpheusgraphql.com/
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is passed onto our back-end function. And then we have resolver, which is a functor
that takes our back-end function and lifts it to the mentioned monad, adding the GraphQL
schema validation, the response generation and the rest of the GraphQL infrastructure as
transformation of the IO monad.

Therefore, all we have to do is to define the function that does our back-end stuff,
leaving the rest to the resolver function. Here is the definition of the nlidbBackend
function:

nlidbBackend :: SemQuery -> IO (Either String Text)
nlidbBackend semQuery’ = do

let sql’ = toSql semQuery’
sqlBackend sql’

This is the function that takes the semantic representation of the query, transforms
it into an actual SQL query, and evaluates it in the database. If everything went fine, it
returns the results produced, otherwise an error string. The important functions to look
into are toSql, that transforms the semantic query into SQL, and the sqlBackend,
that evaluates it.

5.3.2 Database Query Translator

This is the module responsible for translating the intermediate representation to an actual
database query. The complete syntax for a select statement can be quite intricate3. It
also has variants or dialects that differ from one back-end technology to another. For this
prototype we are considering standard SQL with a limited set of features.

The query translator is implemented as a Haskell class called ToSql. This class
represents all the types that can be converted to SQL. It defines a single method called
toSqlwhich translates certain type to its SQL representation. The definition of this class
and its most basic instance reads like this:

module Data.Conversion.ToSQL where

type SQL = Text

class ToSQL a where
toSql :: a -> SQL

instance ToSQL SQL where
toSql = id

The heaviest work in this module is done when transforming the semantic query, with
type SemQuery, to its SQL representation. This process is implemented instantiating
the class ToSQL for this particular type. The main body of such function looks like this:

3See, for instance, the MySQL select statement definition: https://dev.mysql.com/doc/refman/8.0/en/
select.html.

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
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instance ToSQL SemQuery where
toSql (SemQuery command targets conditions) =

command <> " " <> toSql targets
<> resolveRange targets conditions <> toSql conditions

This function constructs the final string containing the SQL query. The structure of
an SQL query becomes apparent in the body of this function. It is formed by a command
followed by some columns extracted from the targets. Then goes a from-clause that de-
fines the tables where the data is located, plus the join paths. And finally a where-clause
with a set of conditions that defines the rows to retrieve.

Some elements can be translated directly into parts of the SQL query. This is the case
of the field names that follow the statement operation. We implement this instantiating the
class ToSQL for the list of targets. Each target is compound of an optional function and an
argument. We have to take this information and transform it into its SQL representation
of the form FUNCTION(ARGUMENT) or just ARGUMENT. The implementation for the
Target type is the following:

instance ToSQL Target where
toSql Target

{ function = func
, argument = arg
}
= case func of

Just f -> f <> "(" <> column <> ")"
Nothing -> column

where
column = case columnOf . pathOf $ arg of

"" -> "*"
x -> x

Not all elements used in our intermediate language can be translated directly to SQL.
Because we are aiming at a more general semantic representation of information re-
quests, we can not map everything directly. One notable exception is the resolution of
the from-clause and the inference of joins. This is done in a dedicated function called
resolveRange. This function is responsible for finding the from-table as well as re-
solving joins for a particular table schema. In the following snippet of code, the reader
can find the Haskell definition of the types involved, as well as the declaration of the
functions involved in this task.

-- SQL path, ie ‘schema.table.column‘
type Schema = Text
type Table = Text
type Column = Text
type Path = (Schema, Table, Column)

type Relation = (Path, Path)
type RelationGraph = [Relation]
type RelationPath = [Relation]
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-- Resolves from-clause and joins, and translates them into SQL
resolveRange :: [Target] -> [Condition] -> SQL

-- Generates the SQL join expressions from a relation graph and
-- a list of tables
resolveJoins :: RelationGraph -> [Table] -> SQL

-- Resolves the relation, in a relations graph, between two
-- tables, if possible
findRelation :: RelationGraph -> Table -> Table

-> Maybe RelationPath

We assume that the schema defines primary keys and foreign keys for all relations.
When this is the case, we can query the database to find all the relations. In appendix A.2,
the reader can find a query to get all relations in a PostgreSQL database. The relations are
defined as a list of pairs of keys. These define a relation graph we can use to search for
paths. That is, find what tables are related to another through some combination of joins.

The implementation shipped in the prototype is rather naive. A better approach to
the inference of query join paths can be found in [8]. The important point to note here
is that another implementation with the same signature will work just fine. Thanks to
the definition of type functions in Haskell, and the modular architecture of the code, one
can just implement a new function with the same signature and the program flow won’t
change.

5.3.3 Database Communication Layer
The communication with the database management system (DBMS) is done using ODBC
(Open Database Connectivity)4. For its implementation, we use the Haskell database con-
nectivity framework (HDBC)5, which defines a common API for the connection between
relational databases and Haskell applications. For ODBC, we use HDBC-ODBC6, which
provides a database back-end driver for this connectivity protocol.

The system expects some drivers to be installed in the host system and some config-
uration for the connection to be successful. This project is thought primarily to be used
with MySQL/MariaDB and PostgreSQL databases. The host system must have drivers
for these two types of databases, plus a odbcinst.ini configuration file. In ?? the
reader can find an example of this configuration file.

ODBC uses connection strings to define a connection to a specific database. It contains
information such as the driver to use, the domain name and port where the database can
be accessed, the name of the schema, user and password, and perhaps other information.
This string is built automatically using the environment in a configuration cascade model.
First, the systems looks for environment variables, if they are not defined, it looks for
those variables in a .env file. Finally, if neither of those were found, it uses a hard-
coded default value. This makes it easy to switch between environments and have the

4https://en.wikipedia.org/wiki/Open Database Connectivity
5https://github.com/hdbc/hdbc
6https://github.com/hdbc/hdbc-odbc

https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://github.com/hdbc/hdbc
https://github.com/hdbc/hdbc-odbc
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connection automatically configured from the start. An example of a connection string
for a PostgreSQL database looks like this:

Driver=postgres;Server=127.0.0.1;Port=4000;UID=postgres;PWD=***;

The actual query is performed by a function called query. This function takes a SQL
query as a String and produces a table of SQL values with some side effects, ie has type
IO [[SqlValue]]. The full definition of this function is:

query :: String -> IO [[SqlValue]]
query sql = do

connStr <- getOdbcConnStr
conn <- connectODBC connStr
quickQuery conn sql []

5.4 Response Generator
This is the smallest subsystem of the pipeline. It receives as input the results table pro-
duced by the database and, ultimately, it will produce the answer that the user sees.

[[SqlV alue]]→ Answer

5.4.1 Response Classifier
The response generator works in the context of a dialogue manager (DM). Once the
database produces a result, it is returned to the DM. Then, the DM takes the results and
classifies them. Depending on the pattern of the table returned, the response will be of one
type or another. This is important to present the answer in an appropriate format. There
are four classes taken into account in this system:

db result value A single value. This is the typical response for factual questions, where
a single piece of information is expected.

db result table A table. Normally answered when some sort of list or report is expected.

db result empty An empty table. The query was successful, but it produced an empty
result. This usually means the conditions where too restrictive and no element
satisfied them.

db empty response No response. This is produced when the database returns an empty
result, whether it be caused by an incorrect database query or a technical error.

5.4.2 Answer Generator
Once classified, the database emits a dialogue act to inform the user. In particular, the type
of this DAct is Inform/Statement/<result_type>, where <result_type>
is one of the list above. The contents of this dialogue act will be a cleared up version
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of the data returned by the database. By cleaning up, we mean removing unnecessary
wrappers in this data.

The actual response generator is the component that takes this output dialogue act and
produces the answer. This separation of concerns gives us more flexibility to adequate
the format of the answer to the format of the data. That is, we gain multimodality. At the
same time, this DAct can live together with others generated by the dialogue manager,
other DActs that can produce other information interesting to the user.

The implementation in this prototype is more focused on the multimodal aspect, rather
than in producing linguistically correct answers. For this reason, for a single value, we
present the user with a neutral phrase preceding the answer, independent of the scalar
type of the piece of information, and of correlations with the question. Also, for the
two degenerated cases, db\_result\_empty and db\_empty\_response, we
produce a predefined message. An example of a single value answer could be:

User: Find the number of goals scored in the whole tournament.
System: The answer is: 108.

In the case of having to present a table, we prepare the data so it can be processed by
other interfaces. To accomplish this, the system takes advantage of the Output Context
Data (OCD) feature of Lekta [29]. This is an output communication channel devised to
plug the response to another system. What the system does is including the data, formatted
as widget JSON object, in the commands field of the OCD. This way, another system, a
mobile application for example, can process the data and generate the appropriate widget
in the screen.

User: List goal author and goal minute in the first match.
System: See the results on your screen.

{
"commands": [{

"type": "widget",
"subtype": "table",
"data": [

["89","Dimitri Payet"],
["57","Olivier Giroud"],
["65","Bogdan Stancu"]

]
}]

}

5.5 Project Organisation and Deployment
We have seen the definition of the different modules that are part of the system. But this
doesn’t reflect precisely the way the project code is organised. It does not describe the
deployment modules either. Therefore, it is necessary to describe the project from the
point of view of the technology consumers (developers), answering the question of what
they need to do to adapt the technology to their purposes. And, in the other hand, from
the point of view of the development operations engineer (DevOps), describing what is
needed to take the project into production.
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5.5.1 Skills

Domain-Independent Framework

Regarding code organisation, we want to group the domain-independent functionality
into a shared infrastructure. This defines a framework that will be shared between all
NLIDBs. In particular, it is implemented as set of skills. Skills are the Lekta-idiomatic
units of functionality in which projects are organised [29]. These units are independent
functional modules that mirror the multiple capacities of a competent speaker, in the sense
of the chomskyan notion of linguistic competence.

The common framework is thus composed of several skills that include the general
lexicon that refers to query functions, comparison operators, etc. That is, the domain-
independent linguistic capacities of the system. Ideally, these capacities would be multi-
lingual, with translations in many languages.

This framework also contains the domain-independent semantic rules that can be ap-
plied to any lexicon defined. This part of the system is already language independent.

Database-Specific Skill

What the technology consumer would need to implement is just a database-specific skill.
In that skill, mainly in the lexicon, the consumer would define the linguistic domain for
the database to use. At the same time, the correlations between language and database
elements are codified in the lexicon entries. With the use of the types defined in section
5.2.1, the programmer can define the database structure and how the information is stored
in it.

In addition, when necessary, the consumer can define an extra set of semantic rules.
The rule execution model allows the inclusion of further rules that can complement the
processing made by the common framework. Such rules can be useful when the semantic
chunks given by the framework must be treated in a particular way. This could be the
case of dates, numbers, etc., that the framework’s grammar already handles, and need to
be given a special treatment to match the database structure.

5.5.2 Micro-services

Containers

The project is prepared for deployment using a micro-services architecture. For this,
the different components are organized in containers using Docker7. A normal NLIDB
project will define three containers:

• Lekta web application: NLIDB framework plus the user-defined database skills.

• Back-end server: GraphQL server and database connectivity.

• Database: a container with the actual database, with its corresponding engine.

7https://www.docker.com/

https://www.docker.com/
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The Lekta application is compiled and deployed with a REST API wrapper. It is
configured, using environment variables, with the URL of the back-end server in order to
perform back-office operations. The API defines a simple interface to open new dialogues,
send user input, and receive the generated answer (see appendix A.4).

The back-end server is a self-contained system for the communication between se-
mantic queries and databases. It is responsible for providing the GraphQL server, the
database translator, and database connectivity layer. The input communication channel is
defined by the GraphQL schema, in the form of semantic queries. The database transla-
tion is intended to be independent of the language, the database structure and underlying
technology. It only handles semantic queries and returns database results.

The container with the server should be self-sufficient in terms of connectivity. Inside
it, incorporates the necessary plug-ins to connect to the different database technologies.
Using ODBC technology, it ships with plug-ins for connecting with MySQL and Post-
greSQL databases. Others may be added in the future. The Dockerfile for this image
constructs a system with all the necessary components to accomplish this (see appendix
A.1). Adding more capacities can be done in the same image definition.

The third container includes the database itself. Preparing a new database to work with
the other containers is quite easy. The system have been designed to ease this process. In
order to deploy a new database and use it, first the user writes a manifest file with some
basic information about the database, such as the technology in use, main table and so
on. Second, the database schema and initial contents go to a dedicated folder, that will be
loaded at runtime. Finally, the system needs to know about the database to use, for this
an .env file is written with the database name and other connectivity information. The
orchestration system will know what database to deploy and the back-end server which
database to connect and how. For more details about the configuration see the appendix
A.1.

Container Orchestration

All the containers can be deployed at once using a container orchestration system. In the
design of this system, the technology chosen to perform this task is docker-compose8.
With this system in place, all you need to do to run all the components is typing the
following command:

$ docker-compose up -d

But this technology not only makes it easier to manage multiple containers. Because
all the different components are containerized in their corresponding images, one can
reproduce them in as many containers as needed. This allows the deployment for high-
demand environments. Just taking a step further, with the automatization of scaling, the
system could be deployed globally across clusters of hosts.

The configuration is done with the docker-compose.yaml file. See appendix
A.1) for more details.

8https://docs.docker.com/compose/

https://docs.docker.com/compose/


Chapter 6

Use Cases

In this chapter we are going to try out our prototype using the experimental environment
explained in section 7.2, putting it to work in different running conditions. During the
process, we will get the opportunity to explain the inner functioning, how the system
reacts to user input and the processing that takes place until the final answer is generated.

For this exposition, we will make use of a tool present in the Lekta ecosystem called
synclekta [29]. This tool is a read-eval-print loop for dialogue systems, built specif-
ically for this technology. Several traces can be activated in order to understand what is
happening behind the scenes.

6.1 Basic Case: Full Pipeline
Let’s first see how the system responds to a simple user query. This will serve the purpose
of introducing the full pipeline, with all the processing steps in detail. We start with a user
request:

User: Find how many goals were scored during the Euro cup 2016

Input Query Interpretation

The first module that comes into action is the interpreter. This module makes use of
the Lekta NLP pipeline. This pipeline starts with the tokeniser. It works based on the
types defined plus the lexicon available. The complete lexicon is compiled from both the
framework and the database-specific terms defined by the user (see section 5.2.1). The
output trace looks like this:

UserProference:
Find how many goals were scored during the Euro cup 2016

Tokenizer:

* Term: [find] 0- 1 > Category: : lexVerb

* Term: [how many] 1- 2 > Category: : lexDBFunction

* Term: [goals] 2- 3 > Category: : lexDBTarget

* Term: [during the euro cup 2016]
5- 6 > Category: : lexDBTopic

47
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* Term: [were] 3- 4 <NonExistentTerm>

* Term: [scored] 4- 5 <NonExistentTerm>

This indicates that four lexical terms have been found in the lexicon. The first one,
‘find’, is a verb captured by the dialogue framework. The second, ‘how many’, comes
from the NLIDB framework and refers to an information function. The other two are
defined at the project level. ‘goals’ is a target in the database (a table) and ‘during the
euro cup 2016’ is a database topic. The rest is ignored.

It is interesting to note that this chunk-based lexicon will produce the similar results
for questions like ‘find how many goals’ (keyword-like question) or ‘find how many, er...,
you know, goals were scored’ (interrupted phrase), among others. One of the advantages
of this approach is its robustness to this kind of noise. We will go into detail about this
type of phenomena in the next section.

After the tokeniser, the parser enters the scene. It will work based on the rules defined
in the dialogue framework, as well as the NLIDB framework, and, finally, on project-level
rules, if any. For more details regarding the entities that will come into play in this phase,
the reader can review section 5.2.2. This is the output of the parser:

Parser:

* Vertice: [17] [0-1]
ProferenceChunk
|> TaskDialogueAct

|> ActionDomain
|> Verb

|> lexVerb (find)

* Vertice: [14] [1-2]
ProferenceChunk
|> Parameter

|> DBFunction
|> lexDBFunction (how many)

* Vertice: [16] [2-3]
ProferenceChunk
|> Parameter

|> DBTarget
|> lexDBTarget (goals)

Here we can see the parse-tree generated by the Lekta parser. At the top of the tree,
we find the chunks detected by the lexical chunk-grammar. This first round of parsing is
done by one of the simple lexical rules we have explained in section 5.2.2. At this point,
the parser has risen two Parameters for the semantic grammar based on these chunks,
apart from the verb captured by the dialogue framework.

The elevation of content for these types is carried out by the unifier. This implements
a unification algorithm that checks the appropriateness of content structure from the RHS
terms of the rules to the LHS ones. The result looks like this:

Unifier:

* Lkton: [CutPoints:[17] 0 - 1] ProferenceChunk
> ProferenceChunk:(TaskDialogueAct:(Action:{(ActionDomain:(
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ActionRoot :’find’,
ActionDomainName:’LOCATE’,
ActionTense :’present’,
ActionNegated :False))}))

* Lkton: [CutPoints:[14] 1 - 2] ProferenceChunk
> ProferenceChunk:(Parameter:(

ParameterCategory:’terminal’,
ParameterType :’DB_FUNCTION’,
ParameterValue :(DBFunction:(FunctionName:’COUNT’))))

* Lkton: [CutPoints:[16] 2 - 3] ProferenceChunk
> ProferenceChunk:(Parameter:(

ParameterCategory:’terminal’,
ParameterType :’DB_TARGET’,
ParameterValue :(DBTarget:(

TargetPath: goal_details.goal_id’))))

Here we can see the contents of the verb and the two parameters. These contents define
the semantics of the chunks detected. In the case of parameters, we have the parameter
type, and the data associated with it. For this input phrase, the contents are the function
name for the function parameter, and the path for the target parameter.

After this step, we have at our disposal three chunks containing the semantics of the
corresponding utterances. We have abandoned the lexical domain and can operate over
semantic elements alone. What we are looking for, now, are patters of these semantic
pieces. We have a verb in the domain of searching, an information function and a database
target. This is a pattern that indicates the intention of querying information. To detect this
pattern, in our semantic grammar, we have a rule that searches for this particular sequence
of chunks. We have called it PragmaticMapper_LocateFunctionTarget in the
NLIDB framework. We have explained these rules in more detail in section 5.2.3. The
semantic production rule says something like this in pseudo-code:

Chunk:Action/locate
Chunk:Parameter/DB-function
Chunk:Parameter/DB-target
->
DAct:Request/Action/NLIDB
DAct:Inform/Parameter-provide/target {

ˆ.Function = #2 // DB-function
ˆ.Argument = #3 // DB-target

}

From the three consecutive chunks we have mentioned before, we produce two di-
alogue acts. The first one is the intention of querying, which is expressed as an action
request for a natural language query. The second one is the query content, given as a
parameter to be used in the NLIDB skill. Here we construct a target, in the sense of a
Semantic Query target, not to be confused with what we call a target at the lexicon level
and the chunk level. This object is compound by a function and an argument, and their re-
spective contents come from the semantic level parameters (function name and argument



50 CHAPTER 6. USE CASES

path).

Query Translation

In the dialogue manager, the presence of the first dialogue act in the pipeline, activates
the skill in charge of managing queries, which we have called NLIDB. As a minimum
for asking the back-office, this skill requires that a semantic query target is set at least.
In other terms, it requires that, when we are looking for something, that something is
defined. When this happens, like it does in our case, it transforms the skill parameters
into a JSON object according to the format defined in the GraphQL schema (see section
5.3.1). Finally, the back-office function is called with the following payload:

{
"operationName": "nlidb",
"query": "query nlidb($semQuery: SemQuery!) { nlidb(semQuery

: $semQuery) }",
"variables": {

"semQuery": {
"command": "SELECT",
"targets": [{

"argument": "goal_details.goal_id",
"function": "COUNT"

}],
"conditions": []

}
}

}

This payload arrives to the back-office server, thanks to the intermediate operation of
the back-office plug-in, which performs the HTTP POST request to the server. Scotty, the
web server, processes the request and passes it onto Morpheus, the GraphQL infrastruc-
ture. This back-end first validates the format of the semQuery, which is correct, and
transforms the contents into the corresponding Haskell type SemQuery. Then it enters
the resolution method which, in turn, calls the toSql function over the semantic query.
For further reference about these components, please go to section 5.3.1.

The instanced method toSql of SemQuery Haskell type, first looks to transform
targets into selection columns. There is only one target to translate, with both function
and argument, which produces the following SQL code: COUNT(goal_id). Now it
is the turn of the resolveRange function, which only finds a table. Therefore, this is
translated into the from-statement FROM goal_details. These functions have been
described in section 5.3.2. There are no conditions, therefore the final query looks like
this:

SELECT COUNT(goal_id) FROM goal_details

The resolver handles this query to the database back-end (see section 5.3.3). Thanks
to the given configuration, the query function is able to produce an ODBC connection
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string adequate to this database. And now, it can use the HDBC function quickQuery
to pass the database our SQL code.

The database response, of type [[SqlValue]], is now serialized to conform to the
GraphQL operation response type. Thus, the resolution of the GraphQL operation has
been successful. The GraphQL framework can now handle the data to the web server,
which finally can return a 200 HTTP response with the results in the body:

{
"data": {

"nlidb": "[[108]]"
}

}

Response Generation

Now, we are back at the NLIDB skill in the Lekta application, and we have the answer
from the back-office server. It is the turn of the response generator (explained in more
detail in section 5.4). The first thing this module does with the data received, is parsing
the string and turning it into a Lekta JSON object. Immediately after, the results are
classified. After removing the table wrappers, we end up with a single result.

At this point, the system generates an output dialogue act of type
Inform/Statement/db_result_value, that indicates the intention of giving an
answer to the user, with certain format. At the same time, it associates with it the infor-
mation to be presented. That is, a JSON value with the results without wrappers.

Finally, we arrive at the generation phase in the Lekta pipeline. We have defined a
generation rule that is triggered when it encounters a dialogue act of the type mentioned
above. Because the result type is a single value, the system knows it can output it as the
main answer in the written (or spoken) channel. At last, filling in a template with the
serialized version of the value, the ultimate answer can be shown to the user:

System: The answer is: 108.

6.2 Linguistic Phenomena
Extra-grammatical Sentences

We have mentioned, while we explained the processing pipeline, that the system was
resilient to some types of noise. We can now see these phenomena in more detail. Let’s
consider a variant of the phrase we started with: ‘Find hw many gaols were scourd during
the Euro 2016’. Let’s check the tokeniser trace to see how it is processed.

Tokenizer:

* Term: [find] 0- 1 > Category: : lexVerb

* Term: [hw many] 1- 2 > Category: : lexDBFunction
-> : [how many] By Insertion/Pos:1/Symbol:[o]

* Term: [gaols] 2- 3 > Category: : lexDBTarget
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-> : [goals] By Reversal/Pos:1/Symbol:[a]

* Term: [the] 6- 7 > Category: : lexDetThe

* Term: [euro 2016] 7- 8 > Category: : lexDBTopic

* Term: [were] 3- 4 <NonExistentTerm>

* Term: [scourd] 4- 5 <NonExistentTerm>

* Term: [during] 5- 6 <NonExistentTerm>

Here we can see Lekta spell corrector in action. ‘hw many’ has been corrected to
‘how many’, and ‘gaols’ to ‘goals’. In the trace we also see the correcting operations
performed. These terms can be classified now as lexDBFunction and lexDBTarget
respectively. Therefore, these types are parsed resulting in the same tree as in the basic
case. The pipeline will look exactly the same as before, resulting in the correct answer
‘108’.

Activation by Parameters

Consider the query: ‘total goals’. This is the typical keyword-like question a user may
ask when he wants to formulate a simple query. And this is what the tokeniser generates:

Tokenizer:

* Term: [total] 0- 1 > Category: : lexDBFunction

* Term: [goals] 1- 2 > Category: : lexDBTarget

Again, we have two terms that are classified as an information function and a database
target. They will be parsed in a similar way to the basic case, but here we end up with a
simpler tree, with only two chunks as vertices. Surprisingly, we arrive to the same answer.

At first sight, there seems to be missing information. In the first place, there is no
information about the topic we are talking about. We are assuming the default theme,
and the database to query, is the one we have defined in the experimental environment.
But, in a multi-database environment, we could have found this topic previously in the
conversation, and use it as context.

We can also see here the chunk grammar in action. Because we have defined the
meaning of these two chunks, and the pattern they form is meaningful as well, we have
all we need to form a query. The rest of the information is superficial at this level. This
allows the formulation of keyword-like questions, as the one we are considering.

But still, we could activate the skill without information of the action to perform.
That is, we are missing words like ‘find’ or ‘tell me’, that indicate we are asking for
information. This is what the chunk with the locate action verb (lexVerb) did in the
basic case, what is usually called an (explicit) intent. But the pattern is enough for us to
know we are before a query, so we just need to implement this in a rule. Indeed, we use a
different rule to generate the DActs that activate the skill. This time the rule is like this in
pseudo-code:

Chunk:Parameter/DB-function
Chunk:Parameter/DB-target
->
DAct:Request/Action/NLIDB // activates the skill
DAct:Inform/Parameter-provide/target {
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ˆ.Function = #1 // DB-function
ˆ.Argument = #2 // DB-target

}

Sentence Noise

The chunk grammar is also useful to make the system resilient to noise. Check the parsing
tree of a sentence like: ‘how many... what do you call’em... venues there were in the
tournament’.

Parser:

* Vertice: [33] [0-1]
ProferenceChunk

|> Parameter
|> DBFunction

|> lexDBFunction (how many)

* Vertice: [35] [12-13]
ProferenceChunk

|> Parameter
|> DBTarget

|> lexDBTarget (venues)

* Vertice: [37] [13-14]
ProferenceChunk
|> Parameter

|> Number
|> lexNumberValue (there)

We have reduced the parse-tree to three vertices. Because a lot of the sentence is
meaningless to us, we can simply ignore it and get by with the chunks detected. What is
meaningful to our task is coded in the lexicon chunks, and nothing else.

We have ended up with the same pattern as the basic case, except for a third chunk.
The spell corrector has transformed this word to the number ‘three’ and classified it as a
number. We can recover from this mistake when we get to the second level of parsing.
Because, there is no pattern that will consider a number at that position, the function-
followed-by-target rule is activated. The rest of the pipeline is very similar to the basic
case. We finally arrive to the correct answer ‘10’.

NLIDB as a Skill

One of the advantages of having developed the NLIDB as a component inside a dia-
logue framework, is that it can live together with other functionality already present in the
framework. Consider this short dialogue:

User: Tell me how many countries participated in the Euro 2016 and, by the
way, what time is it?
System: The answer is: 24. It’s 12:49 PM.

The first part of user’s turn looks like one of the sentences we have analysed before.
But the second part does not. We actually don’t have any time information in the database.
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The dialogue framework is able to distinguish two different actions that are performed by
dedicated skills. The first one is processed by our NLIDB, the second one by a time-telling
skill present by default in the framework.

6.3 Complex Queries
Filters

Let’s now consider phrases that produce more complex queries and check how the system
can handle them. We can start with explicit filters that appear in sentences like ‘find the
total number of matches that ended in victory’. As usual, the pipeline starts with the
tokeniser. Let’s see what is new here:

* Term: [that] 4- 5 > Category: : lexDetThat

* Term: [in] 6- 7 > Category: : lexPrepIn

* Term: [victory] 7- 8 > Category: : lexDBValue

* Term: [ended] 5- 6 <NonExistentTerm>

And in the parser:

* Vertice: [23] [6-8]
ProferenceChunk
|> Parameter

|> DBCondition
|> lexPrepIn (in)
|> lexDBValue (victory)

The expression ‘in victory’ has been transformed into a database condition. We expect
expressions with the pattern ‘in ...’ to introduce a condition. If, what follows, is a value,
we can turn it into an equality condition. We can see this in the unifier:

* Lkton: [CutPoints:[23] 6 - 8] ProferenceChunk
> ProferenceChunk:(Parameter:(ParameterCategory:’terminal’,

ParameterType :’DB_CONDITION’,
ParameterValue :(

DBCondition:(SQLValue :’’WIN’’,
DBOperator:(OperatorName:’EQ’),
DBTarget :(TargetPath:’match_mast.results’)))))

This condition will be translated into an element in the conditions field for the
nlidb operation.

"conditions":[{
"subject":"match_mast.results",
"operator":"EQ",
"value":"’WIN’"

}]
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In the back-end, following the implementation of the toSql function, the operation
argument is translated into the final, and expected, query:

SELECT COUNT(*) FROM match_mast WHERE match_mast.results=’WIN’

Implicit Filters

A similar case to the previous arises with the use of database values alone, in expressions
that doesn’t indicate a condition. This happens in phrases like ‘count total victories’.
Here, the term ‘victory’ takes the form of a target. It is the thing that we want to count,
but there is no such element in the database. That is, there is no victories table,
for instance. Instead, the implementer have decided, for example, to add a classification
column called results, that contain a particular value for victories, ie ’WIN’, in the
match results table.

In such cases, at the semantic level, we look for a function followed by a database
value, and turn it into a target plus a condition. The rule that looks like this:

Chunk:Parameter/DB-function
Chunk:Parameter/DB-value
->
DAct:Request/Action/NLIDB
DAct:Inform/Parameter-provide/target {

ˆ.Function = #2 // DB-function
ˆ.Argument = #3.Target // DB-value target

}
DAct:Inform/Parameter-provide/target {

ˆ.Target = #3.Target // DB-value target
ˆ.Condition = ’EQ’
ˆ.Value = #3.Value // Db-value SQL value

}

From there, the pipeline will follow a path similar to the previous case. We end pro-
ducing a slightly different query, that gives the same answer:

SELECT COUNT(results) FROM match_mast
WHERE match_mast.results=’WIN’

Joins

Consider a request like ‘tell me the stadium of the final match’. The first part of the
pipeline will produce a similar analysis as a case with conditions. In particular, the parser
will find a target (‘stadium’) and a condition (‘of the final match’). The difference in this
case is that these two elements are located in different tables. We can make this explicit
seeing the resulting operation payload:

"targets": [{
"function": "",
"argument": "soccer_venue.venue_name"
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}],
"conditions": [{

"subject": "match_mast.play_stage",
"operator": "EQ",
"value": "’F’"

}]

So we have two elements in tables soccer_venue and match_mast respectively.
For what the Lekta application is concerned, this is a perfectly valid linguistic analysis of
the elements of the query. We don’t look for consistency, in terms of relatedness, of the
data at this level. This is passed on to the back-end server, which will try to pair the two
tables.

In the toSql function, everything works as usual until it arrives to the resolveJoins
method (see section 5.3.2). This function receives as second argument the list of tables
of targets and conditions, ie ["soccer_venue", "match_mast"]. The first ar-
gument is the relations graph. This graph is constructed querying the database for the
pairs foreign key-primary key. Those pairs constitute the edges of the graph. So we try
to find a relation between the two tables. This specific task is performed by the function
findRelation. Traversing the graph, it finds a direct relation between those two tables
in the pair ("match_mast.venue_id", "soccer_venue.venue_id").

The rest is constructing the SQL join expression for the from-clause. The query the
back-end sends to the database is the following:

SELECT venue_name FROM soccer_venue
JOIN match_mast ON match_mast.venue_id=soccer_venue.venue_id

WHERE match_mast.play_stage=’F’

This is the expected query we should generate. Finally, the answer can be returned to
the user:

System: The answer is: “Stade de France”.
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Evaluation

It is important to assess the quality of a system in order to, both, measure progress in
successive versions of the implementation and to compare the system against others of
similar characteristics. In the Natural Language Processing domain, this is a particularly
difficult task that, many times, involves subjective criteria. There is plenty of literature
about this topic, but we are not going to delve too deep into the problem of evaluation of
natural language processing systems.

In this prototype, we are going to focus on the ability to set milestones of functionality
that will allow us to ascertain progress. This same evaluation framework permits the
comparison with other systems (as is done in [2]). But this methodology will require the
development of new environments, that are not ready at the time of writing. Instead, we
are going to base our evaluation on the performance over a specific database setup. The
main performance indicator will be the system’s ability, or not, to answer user questions
correctly, giving the expected database results.

7.1 Evaluation Framework
Lekta technology provides a mechanism for evaluating dialogues called DialogueActivity
[29]. This is a dedicated information channel that developers can use to emit meaningful
information during the execution of the system. The technology defines functions that can
be used to emit a message, or tag, with coded information at certain point in the dialogue
flow.

Along the turns in a dialogue, for example, the processing of the user input can acti-
vate certain rule. We can then place a checkpoint in this rule to emit a DialogueActivity
message to indicate this activation. Or we can emit a message with the generation of
a dialogue act, with its particular taxonomy. With many of these checkpoints, we can
evaluate a functioning dialogue as a predictable list of messages of this kind. The same
user input phrases must always generate the same DialogueActivity stream of tags. Note
that this type of evaluation is only possible when the system infrastructure is based on a
symbolic approach. A system entirely based on statistical methods can not employ this
methodology because we can’t control the intermediate stages of the processing and take
representations.

In this implementation, the system produces DialogueActivity tags after calling the
back-office service, with the type of results obtained and its data. Doing this, we can
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evaluate the actual result the system produces in response to a user question against the
expected answer. The format of these tags is as follows:

|INFO_ITEM/NAME:db_result_value/TYPE:<result_type>/VALUE:<data>|

Where <result_type> classifies the type of answer as is done in 5.4. Whereas
<data> is the actual information returned by the database, but cleaned of unnecessary
wrappers.

In order to use the messages emitted through this channel, the Lekta ecosystem in-
cludes a dedicated tool called ktUnit. With this tool we can define dialogues, that will be
evaluated against the expected list of DialogueActivity tags. The configuration is done in
a file with a special format described in [29], which is passed as argument to this tool.
We can also classify the tests in three levels of granularity, so we can run them more se-
lectively. All the dialogues defined this way are automatically evaluated in batch and the
results shown in the screen.

In the listing in appendix A.3, the reader can find a complete file containing one of
these tests. The syntax used in this file differs slightly from the standard, thanks to the use
of preprocessor constants and macros. The format of such tests is always the same, this
way we can reduce the boilerplate needed for simple tests. The test itself looks like this:

&KTUNIT_TEST_SIMPLE
(

"|INFO_ITEM/NAME:db_result_value/TYPE:SINGLE_VALUE/VALUE:24|",
find the number of countries that participated
in the EURO cup 2016

)

In this test, for instance, we are entering the system the following phrase: ‘find the
number of countries that participated in the EURO cup 2016’. After processing the query,
the system must produce an information item containing a single value with the value
‘24’, which is the correct answer to this question. We codify the expected answer as a
DialogueActivity tag with the format mentioned before. This tag is the first argument we
pass to the macro in the example above.

If we run this test using ktunit command, we would obtain the following results.
Note that the caret character means success. We also check the return state of the com-
mand, which give us the total of unsuccessful tests.

$ ktunit -SG DBEuro2016 -SU Query/Simple -SL ENGLISH/02 Test.ktu
$> ktunit Target SchemeGroup:DBEuro2016 - SchemeUnit:Query/

Simple SchemeLabel:ENGLISH/02
$> ˆ

$ echo $?
0

This tool works perfectly for testing dialogues, but it doesn’t integrate well in an
automated test-driven development setup. This is so because, if we place a test that we
know will fail, the final result of the whole test suite will result in a failure. We would
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like to mark those tests that do not pass yet as to-do tests. Doing so, the battery of tests
won’t fail because of know errors. With this method, we can use the tests as a harness for
regression errors, while we work on new functionality.

To accomplish the former, a test wrapper for ktUnit has been developed. Remember
that ktunit command returns the number of errors and that we can run tests selectively.
We can develop a function that will run an individual test, then evaluate it and generate
some output that can be interpreted by a test harness. The implementation of this function,
called ok_ktunit, can be found in the appendix A.3. The arguments of this function
are simply the classification levels of the test. A single test would now look like this:

ok_ktunit DBEuro2016 Query/Simple ENGLISH/01

The test output format of choice is TAP [32]. This is a technology agnostic testing
format, that just requires that the system can produce output in the specified format. It is
a widely used standard, for which many tools are available.

We can now run the whole set of tests using a bash script. The reader can find an
example of such file in appendix A.3. This script in turn can be handled by a TAP harness
such as prove. This is a standard tool that ships in all mainstream Linux distributions.
The output of the execution of the harness would look something like this:

$ prove Skills/DBEuro2016/Tests/test.sh
Skills/DBEuro2016/Tests/test.sh .. 1/65
...
Skills/DBEuro2016/Tests/test.sh .. 64/65
Skills/DBEuro2016/Tests/test.sh .. ok
All tests successful.
Files=1, Tests=65, 14 wallclock secs ( 0.07 usr 0.00 sys +

7.97 cusr 4.31 csys = 12.35 CPU)
Result: PASS

7.2 Experimental Setup

For the evaluation of this project we have chosen a sample database created by the staff
of an online web technologies academy called w3resource1. The database of choice is a
soccer database containing statistics about the Euro 2016 cup tournament [35]. The reader
can find the full schema in the appendix A.1.

The rationale behind this decision is, first, to use a rather realistic case or, said the other
way around, not to use a database specifically designed to be used with a natural language
interface. This is interesting because we want to test the flexibility of the methodology to
adapt to new environments. We are interested in a database designed for any purpose, and
try to adapt the system to it.

This database in particular poses some challenges to build a natural language interface
using our model. For instance, there are entities which have different column names

1https://www.w3resource.com/

https://www.w3resource.com/
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in different tables. This creates an ambiguity, making it difficult to point to them in a
denotational model as the one we propose.

There isn’t a perfect matching between world objects and database representation. For
example, it uses classification columns, which is a common implementation technique.
This makes it difficult to translate the relation between the object and the classification.
In the other hand, some features of this database ease the process of building an NLI, like
being normalized and defining the primary and foreign keys.

The second reason for this choice is that this course contains an incremental set of
natural language questions that the students are meant to translate into database queries.
We can take advantage of this program and use it for an incremental implementation of
the system. We can transform the natural language queries and the answers into a test
suite for setting a test-driven development environment. This is what we have done for a
selection of queries with their answers, using the methodology explained in the previous
section.

In this setup, the SQL student is the NLIDB system, rather than an IT student at some
university. The set of problems the teachers have proposed as exercises, constitute our
TAP harness. We can now start implementing functionality and mark to-do tests as done
when the system is able to answer a question.

7.3 Results
The tests in this course are divided in three groups: simple queries, join queries, sub-
queries. Let’s see the performance of the prototype in this setup, after evaluating it with
the framework explained before.

The prototype proposed, using a chunk-based grammar, and about 150 lexicon entries,
is capable of answering several questions. This is a summary of the results:

• Simple queries:

– Can answer the majority of simple questions.

– Can do so even in noisy conditions, like with typographic errors and gram-
matically incorrect questions.

– It handles conditions that hasn’t got a complicated structure.

– Can use some concepts, when they can be expressed in the lexicon.

• Queries with joins:

– It can perform joins with simple join paths.

– The exercises in this category mix joins with subqueries and thus depend on
the performance over them. It is difficult to measure this feature alone with
this setup.

• Subqueries:

– This type of grammar is not well suited to handle subqueries.

– Some subqueries can be avoided with the use of concepts.



Chapter 8

Conclusions and future work

The architecture chosen in the design has proven to be adequate to implement an NLIDB
system. The main advantage of this design is its modularity. With the definition of in-
terfaces between the different functional modules, we ensure their interoperability while
being flexible in terms of implementation. Doing this, we are also following the design
principle of Separation of Concerns. In addition, we are using the technologies that are
more suited to the problem at hand. We use Lekta for language processing tasks, and a
functional language, Haskell in this case, when we are dealing with data transformation
alone.

Respecting the interfaces, this design admits several insertion points that allow the
substitution of modules or implementations without changing the overall operation of the
system. In the Lekta application, rule-based development permits the addition of new
rules without changing the existing ones and without redefining the program flow. In
the back-end, function signatures define a functional interface that, when implementa-
tions abide to it, the processing flow is preserved. For this, Haskell’s clarity and purely-
functional design is of great help. Also, GraphQL guarantees the interoperability with
any web-based back-end that implements the schema we have fixed.

A chunk-based grammar, like the one we have defined, has shown to be appropriate
to cope with, at least, a subset of the language used in querying information. While the
linguistic coverage it can deal with is limited, it is a resilient strategy to handle simple
queries, that tend to be keyword-like sentences. Sometimes with grammatical errors or
other extra-grammatical utterances.

The automated evaluation system has proven to be a vital tool in the development of
the NLIDB and can be so, by extension, to any NLP program. The development of NLP
applications is bound to produce regression errors. Due to the interconnectedness of lan-
guage, a change that affects a linguistic element will often produce undesired effects that
break other functionality. Having a testing harness in place, with well-defined objectives,
or expected behaviour, the development of features is much more reliable. This same sys-
tem can be useful to define some performance checkpoints that can be used to measure the
quality of the system. Or set milestones that indicate progress, as we have done with our
testing environment. At the same time, if a proper comparison methodology is defined,
this system can automate the comparison with systems of the same category.

Project organization is another interesting design feature to highlight here. The devel-
opment of the database-specific code has been confined to the development of a user-level
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skill with only lexicon. This poses an interesting step towards easing the portability and
configuration of this type of systems. Code organization in a domain-independent frame-
work and database-specific skills has been one of the elements that have facilitated this
level of customization. At a pragmatic level, the micro-services structure, and the con-
tainerization of services using Docker, makes this a system easy to deploy and capable to
scale to the level necessary to serve in high-demand environments.

Regarding the improvements, at the level of components, this type of system can take
advantage of, we can mention here the most important or immediate. First, regarding the
understanding phase of the pipeline, a more powerful grammar would be necessary to
analyse more complex queries, with more intricate syntax, that express more detailed re-
quests. It would implement a dependency grammar that looks into the syntactic structures
people use when requesting information. This requires research on the linguistic side as
well as proper implementation. This kind of grammar can be plugged in the system to
inject dialogue acts to the dialogue manager, so it can live together with the chunk gram-
mar. In order for the two to collaborate, the dialogue manager would have to implement
some orchestration mechanism with some heuristics.

In the back-end service, some obvious improvements we can account for would be
a better join path resolution and proper error handling. The join path algorithm can be
more sophisticated and take into account other sources of information in order to resolve
successfully. It could, for instance, implement type checking in order to solve some am-
biguities. The database provides useful information when an error is produced. Database
systems normally make a good diagnosis of the problems they encounter and return them
properly classified. If we can take advantage of this information, some errors can be
recovered, or the service can send them back for further analysis or to improve the com-
munication with the user. When it comes to the generation module, we can think of better
classifications in order to present the results in the proper format. If a better grammar is
in place, we can also think of making the answer more natural, by preserving correspon-
dence in time, person, etc.

Another important point of improvement is the dialogue manager. Taking into account
that we have built our system using a dialogue framework, we could use its features more
cleverly. This type of system can help a lot in the communication with the user, in order
to clarify the questions. We have mentioned before the errors generated by the database,
but any type of error, inconsistency or information gap is an opportunity to ask the user
for clarification. Also, using the dialogue framework we can assist the user to understand
what capacities the system has, both linguistic and functional. Finally, at the linguistic
level, it can be useful in order to resolve anaphoric expressions and ellipsis, using the
dialogue history.

Perhaps even more interesting, regarding the dialogic features of this architecture,
is exploring the possibility of focussing on the dialogue system, making the NLIDB its
subordinate. This opens an interesting area of research, where we can invert the terms
and, instead of thinking of one-shot questions with answers, like in an NLIDB system,
we can think how to use this type of system to access different sources of information
and improve the dialogue system. Having this data access capacities would be a very
interesting feature in a dialogue manager.

If we consider the problem at hand with a wider perspective, what we should ques-
tion ourselves first is the appropriateness of the denotational model for semantics. That
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is, the model that have been used to implement the types and lexicon. Definitely, the
model should be expanded to cover more cases. But, more generally, this schema works
properly for nominal expressions, but it falls quite short when it comes to make relations
explicit. With the development of more complex grammars, we can relay on them to
model relations in language and keep denotational semantics for nouns. Or we can think
of more elaborate world models. The denotation itself could be improved to point to enti-
ties referred using other representations. That is, we could point to entities implemented
in other technologies, like SPARQL, XPath or many others.

Regarding the underlying database systems, we can question the suitability of the
relational model in order to represent certain information. This schema has its own ex-
pressive limitations. If we try to take the relations or functions in a RDBMS as relations
or functions of objects in the world, and translate them literally, we will only come close
to express many states of affairs. What is appropriate in terms of storage, may not be
good to convey the language that expresses it. We should keep this in mind when adapt-
ing a linguistic interface to a database. Specially when we are dealing with real-world
databases, where we can not control the design of the schema. This circumstance is made
clear by the fact that any property can be implemented in a database in infinite ways, all
functionally equivalent.

At any rate, we should study other approaches to semantics, test their performance,
and try combinations of them. For instance, it would be interesting to mix this approach
with statistical techniques, such as named entity recognition or n-grams. That is to say,
combine symbolic approaches to semantics with models closer to meaning-as-use. It
would be beneficial to expand the scope of the problem and open the research to combi-
nations of symbolic and empirical approaches.

The other model we should question is the semantic query. The focus of this prototype
was more on the architecture, and thus this model has limitations in order to express com-
plex questions. These shortcomings should be addressed. This model could be expanded
by redefining the GraphQL schema, to make it more expressive. But, going further, we
should aim for a more general information retrieval model, compare the different ap-
proaches and study the problem in its generality. We should try to answer the question:
what is the semantic content of the act of querying? What could a model that contain all
the elements present when we ask for information, and that preserves its structure.
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Appendix A

A.1 Containers

Container Orchestration
Environment variables

LEKTA_PORT: Port of the Lekta application REST API.

BO_PORT: Port of the back-office server.

DB: The name of the database. This defines both the database to deploy and the
database the back-end server will use by default.

DB_TYPE: The database technology. This defines what Docker image should be
deployed. It also tells the back-end server how to handle the database connection.

DB_PORT: Database connection port.

DB_USER: Database connection user name.

DB_PASS: Database connection user password.

Docker-compose Definition

1 version: "3"
2 services:
3 api:
4 build:
5 context: ./
6 dockerfile: ./docker/api/Dockerfile
7 ports:
8 - ${API_PORT:-3000}:3000
9 networks:

10 - net
11

12 db:
13 image: ${DB_TYPE}:latest
14 ports:
15 - ${DB_PORT:-4000}:${DB_INNER_PORT}
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16 environment:
17 - MYSQL_ROOT_PASSWORD=${DB_PASS:-1234}
18 - POSTGRES_PASSWORD=${DB_PASS:-1234}
19 volumes:
20 - ./docker/db/${DB}/initdb:/docker-entrypoint-initdb.d
21 networks:
22 - net
23

24 networks:
25 net:

Listing A.1: docker-compose.yaml

Back-end Server Container
Back-end Server Dockerfile

1 FROM ubuntu:19.04
2

3 RUN apt-get update && apt-get install --assume-yes wget unixodbc
-dev odbc-postgresql

4 RUN cd /tmp && \
5 wget https://dev.mysql.com/get/Downloads/Connector-ODBC/8.0/

mysql-connector-odbc-8.0.16-linux-ubuntu19.04-x86-64bit.
tar.gz && \

6 tar -xzf mysql-connector-odbc-8.0.16-linux-ubuntu19.04-x86
-64bit.tar.gz && \

7 cp mysql-connector-odbc-8.0.16-linux-ubuntu19.04-x86-64bit/
lib/* /usr/lib/x86_64-linux-gnu/odbc/ && \

8 rm -rf /tmp/*
9

10 COPY docker/api/odbcinst.ini /etc/odbcinst.ini
11

12 COPY app/ /opt/app/app/
13 COPY .stack-work/install/x86_64-linux-tinfo6/lts-13.28/8.6.5/bin

/nlidb-bo-exe /opt/app/server
14 COPY .env /opt/app/.env
15 WORKDIR /opt/app
16

17 ENTRYPOINT ["/opt/app/server"]

Listing A.2: Dockerfile

Back-end server ODBC configuration

1 [postgres]
2 Description=PostgreSQL ODBC driver (Unicode version)
3 Driver=psqlodbcw.so
4 Setup=libodbcpsqlS.so
5 Debug=0
6 CommLog=1
7 UsageCount=1
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8

9 [mysql]
10 Description=MySQL ODBC driver (Unicode version)
11 Driver=libmyodbc8w.so
12 Setup=libmyodbc8S.so
13 Debug=0
14 CommLog=1
15 UsageCount=1
16

17 [mariadb]
18 Description=MySQL ODBC driver (Unicode version)
19 Driver=libmyodbc8w.so
20 Setup=libmyodbc8S.so
21 Debug=0
22 CommLog=1
23 UsageCount=1

Listing A.3: odbcinst.ini

Database Container
Folder organisation

1 <database_name>/
2 |- Readme.md
3 |- db.env
4 \- initdb/
5 |- 00-schema.sql
6 \- 01-data.sql.gz

Configuration

Example of a db.env file for a MariaDB database.

1 DB_TYPE=mariadb
2 DB_NAME=main_schema
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A.2 Database

Relations Script
Query to find the relationships in a PostgreSQL database.

1 -- Generate a list of pairs foreign key - primary key.
2 -- Adapted from: <https://dataedo.com/kb/query/postgresql/list-

of-foreign-keys-with-columns>.
3

4 select distinct
5 kcu.table_schema || ’.’ || kcu.table_name || ’.’ || kcu.

column_name as fk,
6 rel_kcu.table_schema || ’.’ || rel_kcu.table_name || ’.’ ||

rel_kcu.column_name as pk
7 from information_schema.table_constraints tco
8 join information_schema.key_column_usage kcu
9 on tco.constraint_schema = kcu.constraint_schema
10 and tco.constraint_name = kcu.constraint_name
11 join information_schema.referential_constraints rco
12 on tco.constraint_schema = rco.constraint_schema
13 and tco.constraint_name = rco.constraint_name
14 join information_schema.key_column_usage rel_kcu
15 on rco.unique_constraint_schema = rel_kcu.constraint_schema
16 and rco.unique_constraint_name = rel_kcu.constraint_name
17 and kcu.ordinal_position = rel_kcu.ordinal_position
18 where tco.constraint_type = ’FOREIGN KEY’;

Listing A.4: relationships.sql

Experimental Database Schema
See figure A.1.
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A.3 Evaluation

ktUnit file

1 #Define SCHEME_GROUP "DBEuro2016"
2 #Define SCHEME_UNIT "Query/Simple"
3

4 #Define INSTANCE_OPERATION "Fluency"
5 #Define INSTANCE_LANGUAGE "English"
6 #Define INSTANCE_INTERFACE "Written"
7

8 #Define SCHEME_LABEL "ENGLISH/02"
9 #Define TRACE_FILE "Tests/Traces/DBEuro2016-simple-en-02.trace"
10 #Define STATS_FILE "Tests/Statistics/DBEuro2016-simple-en-02.

stats"
11 &KTUNIT_TEST_SIMPLE
12 (
13 "|INFO_ITEM/NAME:db_result_value/TYPE:SINGLE_VALUE/VALUE

:24|",
14 find the number of countries that participated in the EURO

cup 2016
15 )

Listing A.5: test.ktu

ktUnit harness wrapper function

1 ok_ktunit() {
2 local description="$1 $2 $3"
3 local directive=""
4 if [ "$4" = "TODO" ]; then
5 directive=" # $4"
6 fi
7

8 if ktunit -SG "$1" -SU "$2" -SL "$3" "$build_path/Test.ktu"
> $stdout

9 then
10 echo "ok - $description$directive"
11 else
12 echo "not ok - $description$directive"
13 fi
14 }
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Test script

1 #!/usr/bin/env bash
2 source Tests/lib.sh # library with testing functions
3

4 echo "1..10"
5

6 require db Euro2016
7 require bo Euro2016
8

9 ok_or_bailout_compile DBEuro2016 #1
10

11 ok_ktunit DBEuro2016 Query/Simple ENGLISH/01
12 ok_ktunit DBEuro2016 Query/Simple ENGLISH/02
13 ok_ktunit DBEuro2016 Query/Simple ENGLISH/03 TODO
14 ok_ktunit DBEuro2016 Query/Simple ENGLISH/04 #5
15 ok_ktunit DBEuro2016 Query/Simple ENGLISH/05
16 ok_ktunit DBEuro2016 Query/Simple ENGLISH/06 TODO
17 ok_ktunit DBEuro2016 Query/Simple ENGLISH/07
18 ok_ktunit DBEuro2016 Query/Simple ENGLISH/08
19 ok_ktunit DBEuro2016 Query/Simple ENGLISH/09 #10

Listing A.6: test.sh
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A.4 Lekta Application REST API

Environment variables
API_KEY: Enabled X-Api-Key authentication

APP_SRC: Name of the dialogue source file (*.lkt)

APP_BIN: Name of the dialogue binary file (*.olk)

FLUENCY_VERSION: Fluency version in use

LEKTA_THREADS: Number of dialogue threads allowed by the license

RESOURCE_MANAGER_URL: URL of the back-end server

Open dialogue
Opens a new dialogue and expects its ID as response.

Request

1 POST /dialogues
2 Content-Type: application/json
3

4 {
5 "language": "English",
6 "interface": "Written",
7 "operation": "Fluency",
8 "context": "{\"valid\": \"json\"}"
9 }

Response

1 200 OK
2 Content-Type: application/json
3 Dialogue-Id: 1f48feac-ca39-4af7-8f1b-a4d02fa80530
4

5 {
6 "id": "1f48feac-ca39-4af7-8f1b-a4d02fa80530",
7 "answer": "Hi there! I’m Lekta.",
8 "closed": false,
9 "context": "{\"valid\": \"json\"}",

10 "language": "English",
11 "interface": "Written",
12 "operation": "Fluency"
13 }
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Close dialogue
Closes a dialogue by ID.

Request

1 DELETE /dialogues/:id

Response

1 204 No Content

Dialogue input
Sends user input to the dialogue given by ID.

Request

1 POST /dialogues/:id
2 Content-Type: application/json
3

4 {
5 "input": "Hi Lekta. How are you?",
6 "context": "{\"valid\": \"json\"}"
7 }

Response

1 200 OK
2 Content-Type: application/json
3

4 {
5 "answer": "I’m fine, thank you.",
6 "closed": false,
7 "context": "{\"valid\": \"json\"}",
8 "language": "English",
9 "interface": "Written",

10 "operation": "Fluency"
11 }
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