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ABSTRACT The stability and function of eukaryotic genomes is closely linked
to histones and to chromatin structure. The state of the chromatin not only
affects the probability of DNA to undergo damage but also DNA repair. DNA
damage can result in genetic alterations and subsequent development of can-
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cer and other genetic diseases. Here, we identified two mutations in con-
served residues of histone H3 and histone H4 (H3E73Q and H4E53A) that in-

crease recombinogenic DNA damage. Our results suggest that the accumula-
tion of DNA damage in these histone mutants is largely independent on tran-
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scription and might arise as a consequence of problems occurring during DNA
replication. This study uncovers the relevance of H3E73 and H4E53 residues in

the protection of genome integrity.

INTRODUCTION

Genetic instability is prevented through multiple processes
to avoid cell death and tumorigenesis. Mechanisms ensur-
ing replication fidelity as well as DNA damage checkpoints
and repair pathways have evolved as a way to preserve
genome integrity [1]. Accumulated evidence supports that
most genetic instability sources arise from unrepaired DNA
damage, such as double strand breaks (DSBs), or failures
during DNA replication that can also ultimately lead to
breaks. In this context, transcription is an important cause
of replication stress, by directly or indirectly triggering
transcription-replication conflicts [2].

The complex DNA organization into chromatin via
packaging with histone and non-histone proteins influ-
ences all of these processes occurring at the DNA [3].
Chromatin structure exerts a major spatiotemporal control
of DNA replication, repair and transcription processes thus
affecting both the generation of endogenous damage as
well as its efficient repair. Hence, whereas different chro-
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Abbreviations:

AID — Activation-Induced Cytidine
Deaminase,

DSB — double-strand break,

HU - hydroxyurea,

MMS — methyl methane-sulfonate,
UV —ultra violet.

matin states can favor or impede DNA damage occurrence
by enhancing or diminishing the accessibility of genotoxic
agents, chromatin relaxation upon DNA damage promotes
access of the repair machinery to the DNA lesion [4].
Moreover, chromatin can play an active role in regulating
DNA repair, as first exemplified by the phosphorylation of
the serine 189 of mammalian H2AX histone variant (serine
129 phosphorylation of H2A in yeast, P-H2A), one of the
earliest signals of the DNA damage checkpoint that ex-
pands up to 2 Mb around DSBs initiating a cascade of re-
cruitment of repair factors [5]. Since this modification was
discovered, several other histone posttranslational modifi-
cations have been described to affect DNA damage repair,
including the methylation of lysine and arginine, phosphor-
ylation of serine and threonine and acetylation, ubiquityla-
tion or sumoylation of lysine [6].

To explore the possible role of histones H3 and H4 resi-
dues in the maintenance of genome integrity in a system-
atic manner, we took advantage of a hyper-recombination
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FIGURE 1: Histone H3E73Q and H4E53A mutants cause a hyper-recombination phenotype. (A) A scheme of the pLZGAID plasmid is shown.
Visual analysis of direct-repeat recombination frequencies after AID overexpression in WT and histone mutant strains from the collection [8]
transformed with pLZGAID. Similar dilutions of cultures grown in galactose media in 96-well-plates were plated in SC lacking leucine and
tryptophan to detect Leu+ colonies (Recombinants) and in SC lacking tryptophan to visualize the total cells (Totals) and incubated for 3 days.
Wild-type (H3WT), H3E73Q, (H3E73Q), H3R49A (H3R49A), H4 wild-type (HAWT), HAE53A (H4E53A) and HAG7A (HAG7A) strains are pointed
out. (B) A scheme of the L, L-/lacZ, and LYANS direct-repeat recombination system is shown. Analysis of median direct-repeat recombination
frequencies in random colonies from H3 wild-type (H3WT), H3E73Q (H3E73Q), H3R49A (H3R49A), H4 wild-type (HAWT), H4E53A (H4E53A)
and H4G7A (H4G7A) strains transformed with pRS316-L, pSCH204, and pRS316-LYANS respectively. (C) A scheme of the L-lacZ direct-repeat
recombination system is shown. Analysis of direct-repeat recombination frequencies in H3 wild-type (H3WT), H3E73Q (H3E73Q), H4 wild-
type (H4WT) and H4E53A (H4E53A) strains transformed with pSCH204 (n = 3). Means and SEM are plotted. *p < 0.05, **p < 0.01 (two-tailed

Student’s t-test).

screening performed in a library of non-essential histone
H3 and H4 mutants of Saccharomyces cerevisiae [7]. Here
we describe two mutations in histones H3 and H4 (H3E73Q
and H4E53A) that increase the levels of spontaneous re-
combinogenic DNA damage. Our results suggest that dam-
age accumulates as a consequence of problems during
DNA replication, supporting a role of these histone resi-
dues in the maintenance of genome integrity by ensuring
proper replication.

RESULTS

H3E73Q and H4E53A mutations increase the spontaneous
levels of direct-repeat recombination

To study the relevance of particular histone residues in
genetic stability we took advantage of a previously per-
formed screening that analyzed the recombination fre-
quency using a direct-repeat recombination system in a
collection of non-essential histone H3 and H4 mutants in
S. cerevisiae, in which one of the loci encoding for histone
H3 and H4 genes (hht1-hhfl) was deleted, and the other
one (hht2-hhf2) was replaced by a mutant copy [7]. This
library contains 423 alleles that included each of the H3
and H4 residues substituted by alanine, original alanines
substituted by serine as well as different substitutions of all
modifiable residues by amino acids mimicking modified
and unmodified states and sets of systematic deletions of
the histone N-terminal tails [8]. The screening was original-
ly performed to identify histone residues that protect cells
from accumulating DNA:RNA hybrids by selecting the mu-
tations that enhanced recombination between direct re-
peats after the overexpression of AID (Activation-Induced
Cytidine Deaminase) [7], which preferentially acts on the
single-stranded (ss)DNA displaced by DNA:RNA hybrids [9].
Thus, histone mutations were selected only if they in-
creased the appearance of recombinants after inducing
AID overexpression, as assayed with the pLZGAID plasmid
(Fig. 1A, [7]) that contains both the L-lacZ direct-repeat
recombination system, consisting of two truncated direct
repeats of the LEU2 gene with the bacterial lacZ gene
placed in-between [10], and the AID cDNA under the con-
trol of the GAL promoter [9]. In galactose media, recombi-
national repair of AlD-induced DNA breaks occurring be-
tween the repeats by Single-Strand Annealing (SSA) led to
deletion of the lacZ sequence and formation of a wild-type
LEU2 allele, detectable as Leu+ recombinant colonies (Fig.
1A).
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However, further experiments showed that some of
the mutations enhanced the appearance of recombinant
colonies not only after AID overexpression (galactose me-
dia) as the selection criteria (Fig. 1A), but also under condi-
tions in which AID was not overexpressed (glucose media).
These mutations were substitutions of the histone H3 glu-
tamate 73 to glutamine (H3E73Q) or arginine 49 to alanine
(H3R49A) and substitutions of the histone histone H4 glu-
tamate 53 to alanine (H4E53A) or glycine 7 to alanine
(HAG7A).

In a second phase of the screening, we studied the me-
dian frequency of recombination of random colonies from
independent transformants with the L, L-lacZ and LYANS
direct-repeat recombination plasmid systems, which differ
in the intervening sequence (30 bp, 3 Kb and 5.6 Kb long,
respectively) [10,11]. As shown in Fig. 1B, only H3E73Q and
H4E53A mutants led to a significant increase in the recom-
bination frequencies in all recombination systems and
therefore, we proceeded with these two candidates. The
increase was further confirmed with the L-lacZ system in
both mutants. As shown in Fig. 1C, H3E73Q and H4E53A
mutants led to a significant 8.9- and 63-fold increase in
recombination frequencies with respect to the isogenic H3
and H4 wild-type strains, respectively. Thus, H3E73Q and
H4E53A mutations increase the levels of direct-repeat re-
combination regardless of AID, suggesting higher levels of
spontaneous DNA breaks that are not associated with
DNA:RNA hybrids.

H3E73Q and H4E53A mutations increase spontaneous
recombinogenic DNA damage

To measure spontaneous DNA damage, we determined the
levels of Rad52-YFP foci, indicative of repair centers that
appear in the S and G2 phases of the cell cycle concurring
with the coordination between recombination and replica-
tion [12]. As shown in Fig. 2A, both H4E53A and H3E73Q
mutants significantly enhanced the number of cells with
Rad52-YFP foci (2.3- and 2.7-fold respectively) thus indicat-
ing that H3E73Q and H4E53A mutations induce re-
combinogenic damage. We also analyzed the levels of
P-H2A as a marker of DSBs [5] (Fig. 2B). As a control, we
also tested P-H2A in the parental wild-type strain (BY4741)
and after treatment with 0.05% methyl methane-sulfonate
(MMS) during 1.5 hours, which led to a 2-fold increase.
Whereas H3E73Q also led to a significant increase of P-H2A,
H4E53A showed no differences with the wild-type. Thus,
although both H3E73Q and H4E53A mutants accumulate
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FIGURE 2: Histone H3E73Q or H4E53A mutants increase DNA damage. (A) Analysis of the percentage of S/G2 cells containing Rad52-YFP
foci in H3 wild-type (H3WT), H3E73Q (H3E73Q), H4 wild-type (HAWT) and H4E53A (H4E53A) strains transformed with pWJ1344. A repre-
sentative image of a cell with a Rad52-YFP focus is shown (n = 3). (B) Accumulation and quantification of the immunofluorescence signal of P-
H2A in H3 wild-type (H3WT), H3E73Q (H3E73Q), H4 wild-type (H4AWT) and H4E53A (H4E53A) strains detected by fluorescence-based western
blot (n = 3). A representative fluorescence-based western blot and the BY4741 strain treated with 0.05% MMS for 1.5 hours as a control (n =
2) is shown. Actin is shown as the loading control. Means and SEM are plotted in all panels. *p < 0.05, ***p < 0.001 (two-tailed Student’s

t-test).

recombinogenic DNA damage, only H3E73Q led to a de-
tectable increase in phosphorylated H2A.

The hyper-recombination of H4E53A and H3E73Q mu-
tants does not depend on transcription

Given that transcription is a major source of spontaneous
DNA damage in the cell, we wondered whether the in-
crease of recombinogenic DNA damage observed in
H3E73Q and H4E53A mutants was associated with tran-
scription. We used three direct-repeat recombination sys-
tems based on the previously described L-lacZ system,
where the LEU2 promoter (LEU2p) was replaced by either
the GAL1 inducible promoter (GAL1p) or the cell cycle-
specific promoters (Fig. 3A) [13], HHF2p or CLB2p, which
specifically activate transcription at the S or G2 phases,
respectively [14, 15]. As shown in Fig. 3B and 3C, increased
levels of recombination were obtained in H3E73Q and
H4E53A mutants even when transcription was switched off
(GAL1p in glucose) indicating that transcription has no ma-
jor role in the hyper-recombination observed. H3E73Q
hyper-recombination was further enhanced when tran-
scription was switched on (galactose) (Fig. 3B), suggesting
that transcription might explain part of the hyper-
recombination phenotype of this mutant. Interestingly,
recombination was only enhanced by transcription in the
S phase, but not in the G2 phase (Fig. 3B), suggesting that
transcription-replication conflicts may contribute to the
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damage observed in this mutant. Instead, recombination
was not stimulated by transcription in the H4E53A mutant,
since the fold increase in recombination with respect to
the wild-type was similar in glucose and in galactose (Fig.
3C). Moreover, a significant difference in the levels of re-
combinants was observed between the wild-type and the
H4E53A mutant independent of the moment of the cell
cycle in which the recombination system was transcribed
(Fig. 3C) arguing against transcription as a source of DNA
damage in this mutant. Importantly, the fact that both
H3E73Q and H4E53A mutants led to increased levels of
recombination when transcription was switched off indi-
cates that the main source of recombinogenic DNA dam-
age in these mutants does not depend on transcription.

H3E73Q and H4E53A mutants increase DNA damage dur-
ing replication

Given that the S phase is when the DNA is most vulnerable
during the cell cycle, we next wondered if the hyper-
recombination phenotype observed could be a conse-
quence of DNA damage originated during DNA replication.
Thus, we analyzed by FACS the distribution of cells during
the cell cycle. We noticed that cells of both H3E73Q and
H4E54A mutants accumulate in the S/G2 phase, suggesting
DNA replication problems (Fig. 4A). We then decided to
study cell cycle progression after synchronization in G1
with a-factor. H4E53A cells presented a delay in cell cycle
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FIGURE 3: Hyper-recombination phenotype of H3E73Q and H4E53A mutants is not associated with defective transcription. (A) A scheme of
the direct-repeat recombination system with different promoters is shown. GALI promoter (GAL1p) is induced in 2% galactose (ON) and
repressed in 2% glucose (OFF). Transcription from CLB2 promoter (CLB2p) is restricted to G2 phase. Transcription from HHF2 promoter
(HHF2p) is restricted to S phase. (B) Analysis of direct-repeat recombination frequencies in H3 wild-type (H3WT) and H3E73Q (H3E73Q)
strains transformed with pARSLIacZGLB-in, pARSLIacZHLB-IN or pARSLIacZBLB plasmids with the direct-repeat recombination system under
GAL1, HHF2, CLB2 promoter respectively (n=3). (C) Analysis of direct-repeat recombination frequencies in H4 wild-type (H4WT) and H4E53A
(H4E53A) strains transformed with pARSLIacZGLB-in, pARSLIacZHLB-IN or pARSLIacZBLB plasmids with the direct-repeat recombination sys-
tem under GAL1, HHF2, CLB2 promoters, respectively (n=3). Means and SEM are plotted in (B) and (C). *p < 0.05, **p < 0.01, ***p < 0.001

(two-tailed Student’s t-test).

progression though the S phase clearly detectable between
60 and 100 minutes after G1 release (Fig. 4B). However,
H3E73Q mutants did not respond to a-factor and could not
be included in the analysis (Fig. 4B).

If H3E73Q and H4E54A mutations were affecting repli-
cation, we reasoned that challenging these mutants with
genotoxic agents that generate damage during the S/G2
phase would affect their growth. To test that idea, we ana-
lyzed growth in media containing either hydroxyurea (HU),
which depletes the dNTP pools, or MMS, a DNA alkylating
agent. In addition, we tested sensitivity to ultraviolet light
(UV), which causes DNA damage throughout the cell cycle.
In the single histone mutants, we did not detect large ef-
fects in cell viability with any of the treatments suggesting
that the amount of DNA damage generated was low and
efficiently counteracted by the repair systems (Fig. 4C).
Thus, given that the checkpoint machinery is required for
cell survival upon DNA damage, we decided to further chal-
lenge these histone mutants and study the genetic interac-
tion with mutations in the DNA damage checkpoint, a
strategy previously used to reveal the role of the check-
point in transcription-associated DNA damage [16]. For this,
we generated double mutants of H3E73Q and H4E54A with
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the rad24A checkpoint mutant and analyzed the growth
after HU, MMS or UV exposure. As shown in Fig. 4C,
rad24A impaired survival of H4E53A or H3E73Q to all the
genotoxic agent treatments. This argues that both H4E53A
and H3E73Q mutants accumulate lesions that require the
DNA damage checkpoint for survival under further stress.
Altogether, these results suggest that hyper-recombination
of H3E73Q and H4E53A mutants is the result of DNA dam-
age accumulation likely during replication.

DISCUSSION

In this study, we have identified and characterized two
mutations of histone H3 and H4 (H3E73Q and H4E53A) that
increase genome instability. H3E73Q and H4E53A residues
are conserved and located on the disk surface of the nu-
cleosome thus not interacting with DNA (Fig. 5). Both mu-
tations caused hyper-recombination (higher in H4E53A)
and increased spontaneous DNA damage. Although evi-
dence from our and other labs in the last two decades has
shown that transcription is a major cause of genome insta-
bility [17], we show that hyper-recombination is independ-
ent of in H3E73Q and H4E53A (Fig. 3). Both, H3E73Q and
H4E53A mutations increased the percentage of cells with
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FIGURE 4: Histone H3E73Q and H4E53A mutants increase replication stress. (A) Analysis and quantification of cell cycle phases in asynchro-
nous cultures of H3 wild-type (H3WT), H3E73Q (H3E73Q), H4 wild-type (H4WT) and H4E53A (H4E53A) strains by FACS (n=3). (B) Analysis of
cell cycle progression in H3 wild-type (H3WT), H3E73Q (H3E73Q), H4 wild-type (H4WT) and H4E53A (H4E53A) strains by FACS. (C) Sensitivity
to HU (150 mM), MMS (0.02%), UV (40 J/m2) of rad24A (R24), H3 wild-type (H3WTn), H3E73Q (H3E73Qn), H3E73Q rad24A (E73QR24), H4
wild-type (H4WTn), H4E53A (H4E53An) and H3E73Q rad24A (E53AR24) strains coming from a crossing H3E73Q and H4E53A with W303-1B
rad24A. Similar results were obtained with different spores from the same genetic cross. Means and SEM are plotted in (A). *p < 0.05. (two-

tailed Student’s t-test).

Rad52 foci, cells in the S/G2 phases, and sensitivity to gen-
otoxic agents when the DNA damage checkpoint was inac-
tivated by deleting RAD24. Altogether, the data suggests
that these two histone residues have a role in preventing
recombinogenic DNA damage during the S phase.
Interestingly, H3E73Q and H4E53A also conferred spe-
cific phenotypes. Thus, only H3E73Q, but not H4E53A led
to increased P-H2A levels, likely reflecting the accumula-
tion of spontaneous DSBs. There was not a hyper-
recombination phenotype in H3E73Q when the promoter
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was active in G2 but since a 2.5-fold recombination in-
crease was still observed when switching off transcription
(GALI1p in glucose), it seems that transcription is not the
major driver of DNA damage in neither of the mutants. The
fact that H3E73Q cells could not be synchronized with
a-factor might be due to loss of heterochromatin silencing
since the H3E73 residue lies in the LRS (Loss of rDNA Silenc-
ing) domain. This domain is necessary for sirtuins to
deacetylate heterochromatin keeping it silenced [18-20]
and when the HML and HMR heterochromatic regions are
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expressed, haploid yeasts are not able to respond to
a-factor [21]. Indeed, H3K73Q has been reported to affect
HMR and telomeric silencing [18]. However, this effect is
not complete and indeed, we were able to cross this mu-
tant to generate double mutants with rad24A (Fig. 4C).
Furthermore, it is also possible that this partial suppression
of silencing is involved in the hyper-recombination con-
ferred by H3E73Q since heterochromatin de-silencing can
alter replication timing, that has been previously associat-
ed with genome instability [22, 23]. Similarly, the increase
of DSBs (Fig. 2B), S/G2 cells containing Rad52 foci (Fig. 2A)
and cells in the S/G2 phase observed in H3E73Q mutant
(Fig. 4A) could also be due to the reported defective silenc-
ing of telomeric regions [18]. These observations will ex-
plain the DNA damage sensitivity observed when we delet-
ed RAD24 in H3E73Q mutant. However, provided the po-
tential pleotropic effect of histone modifications in silenc-
ing, gene expression and DNA transactions, further de-
tailed analysis would be necessary to define the specific
molecular mechanisms by which the H3E73Q mutation
compromises genome integrity.

By contrast, the H4E53A mutant responds to a-factor
and shows a delay in S phase progression (Fig. 4B), which
supports that DNA damage accumulates during replication.
H4E53A might be directly or indirectly affecting the replica-
tion process itself, in this case clearly in a transcription-
independent manner (Fig. 3C). Interestingly, the H4E53
residue has been reported to interact with Cacl, the larg-
est subunit of the Chromatin Assembly Factor 1 (CAF-1),
which, together with Asfl, promotes histone H3 and H4
deposition onto newly synthesized DNA during replication,
what is essential for proper S-phase progression [24, 25].
Thus, it is tempting to speculate that H4E53A might impair
the interaction with Cacl affecting S-phase progression
and leading to the observed DNA damage accumulation.
However, again further detailed analysis would be neces-
sary to define the specific molecular mechanisms by which
this mutation compromises genome integrity.

In summary, our study uncovered a key function of the
conserved H3E73 and H4ES53 histone residues in the
maintenance of genome integrity by preventing the for-
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FIGURE 5: Location of H3E73Q
and H4E53A mutations. 3D
view of the nucleosome crystal
structure of the yeast nucleo-
somes with H3E73 and H4E53
residues colored in red. The
images were obtained from
www.histonehits.org [18].

mation of recombinogenic DNA damage, adding new light
into our understanding of the role of histones in the mech-
anisms of genome integrity that would need to be explored
further.

MATERIALS AND METHODS

Yeast strains and media

BY4741, H3WT, HAWT, H3E73Q, H3R49A, H4E53A and H4G7A
yeast strains have been reported previously [7, 8]. H3E73Q
and H4E53A were crossed with W303-1B rad24A (WR24-6C)
[16] to obtain hhtl-hhfl::NatMX4 hht2-hhf2::[H3]-URA3
(H3WTn), hhtl-hhfl::NatMX4 hht2-hhf2::[H4]-URA3 (HAWTn),
TRP1 hht1-hhfl:natMX4 hht2-hhf2::[E73QJ-URA3 (H3E73Qn)
and hht1-hhfl:: natMX4 hht2-hhf2::[E53A]-URA3 (H4E53An),
rad24A::TRP1 hht1-hhf1:: natMX4 (R24), rad24A::TRP1 hht1-
hhfl::natMX4  hht2-hhf2::[E73QJ-URA3  (E73QR24) and
rad24A::TRP1 hhtl-hhfl:: natMX4 hht2-hhf2::[E53A]-URA3
(ES53AR24).

Media used in this study: YPAD (1% yeast extract, 2% bac-
to-peptone, 2% glucose, 20 mg/L adenine), SD (0.17% yeast
nitrogen base (YNB) without amino acids nor ammonium sul-
fate, 0.5% ammonium sulfate and supplemented with amino
acids. The absence of amino acid/s is specified when required),
SC (SD containing 2% glucose) and SPO (1% potassium acetate,
0.1% yeast extract, 0.005% glucose). Solid media were pre-
pared adding 2% agar before autoclaving.

Yeast strains were freshly defrosted from stocks and
grown at 30°C. All experiments were performed at 30°C.

Plasmids

All plasmids used in this study were previously reported.
pWJ1344 contains the Rad52::YFP construct [12]. pRS316-Lis a
centromeric plasmid containing a leu2A3’::leu2A5’ direct-
repeat construct [11]. pRS314L/acZ is a centromeric plasmid
containing the leu2A3’::leu2A5’ direct-repeat construct with
the lacZ gene in between the repeats [10]. pRS316-LYANS is a
centromeric plasmid containing the leu2A3’::leu2A5’ direct-
repeat construct with a fragment of the Ylp5 plasmid in be-
tween the repeats [11]. pLZGAID is a centromeric plasmid
containing containing the LlacZ construct and the AID under
the GAL1 promoter [7]. pARSLIacZGLB-IN, pARSLlacZHLB-IN
and pARSLIacZBLB-IN are centromeric plasmids containing the
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LlacZ construct transcribed from the GAL1, HHF2 and CLB2
promoters, respectively [13, 26].

Genetic analysis of recombination

For the recombination assays with the direct-repeat systems,
cells were grown on plates with SC lacking tryptophan for 3 to
4 days. Recombinants were selected on plates with SC medi-
um lacking leucine. In Fig. 1A, qualitative recombination fre-
quencies of different mutants from the collection of non-
essential histone H3 and H4 mutants were obtained. In Fig. 1B
recombination frequencies were the median value of a total of
at least eleven colonies coming from three independent trans-
formants. In Fig. 1C and 3, recombination frequencies were
obtained by fluctuation tests as the median value of six inde-
pendent colonies isolated from plates with SC medium. The
final frequency given for each strain and condition is the mean
and SEM deviation of three to four median values, as de-
scribed previously [27].

Analyses of Rad52-YFP foci

Rad52-YFP foci were counted in more than 200 S/G2 cells
transformed with pWJ1344. Cells were visualized in Leica DC
350F. The mean and SEM of three different experiments were
plotted.

Western blot analysis

10 mL of each strain culture at 0.7 (0.D. 600 nm) growing in SC
were recovered and kept on ice. The culture was centrifuged
and proteins were extracted from pellets by adding
200 pL of cold 10% TCA and 200 uL of glass beads by vortexing
7 times during 20 seconds each time at 4°C. Supernatant was
recovered and beads were washed twice with 200 uL of cold
10% TCA. Samples were centrifuged 10 minutes at 3000 rpm
and supernatants were discarded. The remaining pellet was
resuspended using 100 pL of loading Buffer (62.5 mM Tris-HCI
pH 6.8, 25% glycerol, 2% SDS, 0.01% water-dilluted Bromo-
phenol Blue, 5% B-mercaptoethanol), 50 uL of water and 50 pL
of 1M Tris (not-adjusted pH). Prior to gel loading samples
were boiled for 5 minutes and centrifuged 10 minutes at 3000
rpom at room temperature. Proteins were separated on BIO-
RAD mini-Protean TGX Gel and wet-transferred to PVDF mem-
branes (Immobilon-FL, Milipore). Antibody 8332 (Abcam, UK)
for B-actin was used at a 1:1000 and antibody 39271 (BIO-
MOL) for P-H2A was used at 1:2000 dilution, both in 1x TBS-
0,1%-Tween and incubated 1 hour with fluorescence second-
ary antibody IRDW 600CW or 800 CW for signal detection. The
actin signal is shown as a loading control and its levels were

used to normalize the amount of P-H2A for each transformant.

The mean and SEM of three different experiments were plot-
ted.

Cell cycle synchronization and flow cytometry
Cells were arrested in the G1 phase with 2.5 uM of a-factor
mating pheromone. Approximately 1 mL (107 cells) were col-
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