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ABSTRACT

In this work we propose a mechanism to optimize the capacity of the main corridor within
a railway network with a radial-backbone or X-tree structure. The radial-backbone (or X-
tree) structure is composed of two types of lines: the primary lines that travel exclusively
on the common backbone (main corridor) and radial lines which, starting from the
common backbone, branch out to individual locations. We define possible line
configurations as binary strings and propose operators on them for their analysis, yielding
an effective algorithm for generating an optimal design and train frequencies. We test our
algorithm on real data for the high speed line Madrid-Seville. A frequency plan consistent
with the optimal capacity is then proposed in order to eliminate the number of transfers
between lines as well as to minimize the network fleet size, determining the minimum
number of vehicles needed to serve all travel demand at maximum occupancy.



1. INTRODUCTION

Railway capacity refers to the allocation of resources (tracks and vehicles) to achieve a
certain quality of service, defining a tradeoff between operators and passengers service
level. The set of actions that enable increasing the capacity of railway infrastructures can
be classified into two main groups: actions on the infrastructure, which belong to the
context of long-term measures and usually require large initial investments, and actions on
the operations, which are economically cheaper and applied in the short and medium term
horizon. In the latter group, there exist simple strategies to increase the railway lines
capacity, such as speed homogenization, traffic management, selection of stops (Lee, 2012,
Freyss et al. 2013), acceleration strategies (Canca et al., 2014), and the use of alternative
routes. None of these requires financial investments as large as splitting existing tracks.

The radial-backbone (or X-tree) topology is one of the most widely used network schemes
in conventional railways and tramways in urban transportation networks (Laporte et al.,
1994). On a radial-backbone platform, vehicles belonging to two types of lines can travel:
those that travel exclusively on the main corridor (primary or backbone lines) and those
that, starting from the common backbone, branch out to individual locations (radial lines).
The proliferation of the radial lines without adequate planning can inefficiently saturate the
capacity of the railway infrastructure.

In practical terms, the main lines canalize main services that are complemented by shuttle
services provided by the radial lines (Musso & Vuchic, 1988). Thus, the stations located in
the central segment of the corridor can be served by radial and backbone lines, while the
stations in the branches can only be served by the radial lines. Based on this hierarchical
structure, we propose a general mechanism to optimize the capacity of the backbone
corridor within an X-tree structure by determining the line design and optimal frequencies
in order to serve the whole demand while eliminating transfers between lines.

The transport capacity of a rail corridor is a complex, loosely defined concept having
multiple meanings. In fact, the International Union of Railways (UIC, 2004) states that the
railway capacity is not a concept that can be clearly determined, but that depends on the
way in which the railway infrastructure is used. Nevertheless, based on the proposal of
Krueger (1999), the railway capacity can be defined as a measure of the ability to move a
certain traffic volume along a line over a period of time, with a given set of resources, and
a specific service plan. The objective sought when quantifying the capacity of a railway
corridor is to achieve an optimal use of the involved resources, scheduling train services
according the available capacity.

The capacity of a railway line depends primarily on its physical characteristics (number of
railways, number of stations, the existence of auxiliary lines and sidings (Kendra et al.,
2012; Harrod, 2009), and on the signaling systems (Goverde et al., 2013). See Dicembre &
Ricci (2011) for a study on the correlation between capacity, block sections length, types
of services and timetables for high density lines. Other important factors are
composition, the different running speeds, and the priorities for certain services on the
infrastructure use. Abril et al. (2008) mention the existence of four types of railway
capacity:



a. Theoretical capacity: Maximum number of trains that could be used by a railway
line in ideal conditions during a given time period.

b.Practical capacity: Traffic flow that can be offered under normal operating
conditions, driving on the railway line with an acceptable level of reliability. This
typically corresponds to between 60% and 75% of the theoretical capacity since it
depends on the priorities established among different kinds of trains, and on the
traffic clustering.

c. Used capacity: Effective traffic flow that is canalized through the line (usually less
than the one established by the practical capacity).

d. Available Capacity: Difference between the practical and the used capacity. It
quantifies additional traffic flow that could be introduced in a line.

The different types of capacity measures are illustrated in Figure 1.
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Fig. 1 — Types of capacity measures (Krueger, 1999)

The factors that determine the capacity of a railway line can be grouped into those
derivative of existing infrastructure, those attributable to traffic and those conditioned by
the operation of the line. There exist various types of approaches that have led to methods
for evaluating the capacity of a railway line. Among the most important techniques are
analytical methods, simulation methods and optimization methods.

a. Analytical methods: These are usually based on obtaining the theoretical capacity of a
line by assuming that its train departures follow a certain probability distribution.
Subsequently, the practical capacity is estimated by including regularity margins or by
applying the correction percentages imposed by the different types of concurrent services.
This general scheme is followed by Petersen & Taylor (1982), Martland (1982), Kraft
(1988), Chen & Harker (1990), and Burdett & Kozan (2006). Recently Malavasia et al.
(2014) analyzed and compared three synthetic methods for the evaluation of capacity of
railway nodes. In general, analytical methods are useful for the calculation of railway
capacity at a planning level, as well as for the identification of bottlenecks in the
infrastructure. However, different methods may provide very different results when
studying the same line since they are very sensitive to the parameters used and, in
particular, to the variations in the composition of trains.



The International Union of Railways published a generic method for calculating the
capacity of a railway line (UIC, 1983; UIC, 1996), which is based on the determination of
the capacity of the line sections and on the identification of bottlenecks. It considers the
order of trains and slack times in order to achieve a certain quality of service. This
traditional analytical method yields the theoretical capacity for a reference period of T
minutes, starting from the time of the average interval of minimum sequence s between
consecutive trains, the safety time b needed to avoid incidents, and the overtime protection
or separation of trains E. From this expression, the practical capacity is calculated by
multiplying the result by a factor typically in the range of 0.6 to 0.75:

c—_ " (1)

s+b+E

Another analytical method for calculating the railway capacity is the one proposed by the
American Association of Railways (AAR, 2007), which includes a correction factor that
depends on the operating conditions. Let a be a constant that takes the value 2 for single
line segments, T be the period of analysis in minutes, and let f be a correction factor which
takes the value of 0.9 on railway lines with automatic blocking and 0.8 under other
operating conditions, and Mb be the maximum net module that represents the sum of the
times without train stops at a certain section, plus the time required to perform the in and
out operations at the stations:

_a-T-f

Mb

Unlike the previous method, the analysis period T is not fixed, but also includes the
possibility of studying systems of single or double line by varying the parameter a, and
incorporates a correction factor f to take into account the type of locking mechanism of the
line. In the denominator, My, can be interpreted as a parameter equivalent to the
denominator s+ b + E in Equation (1).
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b. Optimization methods: These are based on the design of saturated schedules and use
mathematical programming models that achieve a high degree of saturation and
simultaneously ensure certain level of quality of service (Canca et al., 2014). Different
techniques have been used for this purpose: branch-and-bound (Szpigel, 1972; Jovanovic
& Harker, 1991), heuristic algorithms (Cai & Goh, 1994; Carey & Lockwood, 1995), tabu
search (Higgins et al., 1996), Lagragian relaxation (Caprara et al., 2000), and linear
programming (Mussone & Wolfter Calvo, 2013). The optimization method recommended
by the International Union of Railways (UIC, 2004) is based on the idea of saturated
schedules. Starting from a panel of existing schedules, they propose to compress them up
to the maximum, forcing trains to be as close as possible in time. Among the constraints to
be considered during this process are the prohibition of travel times modifications and
overtakings, and the possibility of forced stops due to the crossings. After completing the
process of compacting schedules, the time horizon that remains available enables to
quantify the additional services that could be scheduled.

c¢. Simulation methods: These methods attempt to replicate the actual operation of trains
within a line or a railway network. They are generally used in combination with the
optimization methods in order to check whether the scheduled services resulting from an
optimization exercise will involve operational difficulties in practice. In addition to works
in the academic field about simulation models using railway capacity, such as those of
Welch & Gussow (1986), Jovanovic & Harker (1991) and Kaas (1991), several



commercial software applications used as tools in the railway sector (MultiRail,
OpenTrack, SIMONE, CAPRES, DEMIURGE, Recife, MOM, etc.) have been developed.
These tools enable operation simulations and the generation of schedules in order to
optimize the use of the capacity by means of the parameters relating to railway
infrastructure.

As noted above, the infrastructure’s topology is a determining factor for the calculation of
the railway network capacity. Garcia-Alvarez (2011) identifies several topological designs
that are usually used in railway networks, and highlights the radial-backbone topology (or
X-tree) as one of the most widely used schemes for conventional railway network design
(e.g., AVE networks South-Central and the recent connection of High Speed Railway
Barcelona-Paris) and for tram networks in urban transportation (e.g., the metro of Porto or
the metro of San Francisco). Figure 2 depicts the high-speed rail network in Spain (in
bold) with a clearly defined radial-backbone pattern. Figure 3 shows the Metro map of San
Francisco, which also follows a radial-backbone pattern.

Fig. 2 — High-speed rail network in Spain
Source: http://www.adifaltavelocidad.es
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Fig. 3 — Metro map of San Francisco
Source: http://www.sfmta.com
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On a platform corresponding to the main corridor, vehicles belonging to two types of lines
may drive: those that run exclusively on the main corridor (backbone lines) and those that,
starting from the common backbone, branch out to individual locations (radial lines). Then,
the major congestion problems will occur in sections of the main corridor. The increment
of radial services (or lines) sharing sections of the main corridor without an adequate
planning process can clog the capacity of the rail infrastructure.

This work focuses on railway networks with a radial-backbone topology where the main
sections can have variable levels of use. We develop an analytical method that, applied to a
railway corridor, determines the scheduling of vehicles required to serve 100% of the
travel demand between the stations of the network, using the minimum number of vehicles
at full capacity. The resulting line set and frequencies can be viewed as the implementation
of the concept of practical capacity for a given origin-destination (OD) demand.
Additionally, it takes into account the operator’s point of view since the number of
kilometers of the fleet is minimized, and the users’ point of view, since it eliminates the
need for transfers in order to reach destinations.

The remainder of this work is organized as follows. In Section 2, we illustrate the problem
using some examples. In Section 3, we propose a formulation associated to the analytical
model, which enables us to develop an algorithm for the resolution of this problem. This
algorithm is presented in Section 4. We present the results of a computational experiment
for the case of the Madrid-Seville high speed railway in Section 5. Finally, Section 6
presents the conclusions of this work.

2. PROBLEM DESCRIPTION AND ILLUSTRATION

Consider, as illustrated in Figure 4, a railway corridor where trains drive from left to right,
with the possibility of stopping at stations 1 to 4, and whose sections lengths are 1, 2 and 2



km respectively.

Fig. 4 — Example of a four-stations corridor
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In addition, let g= 50 be an OD matrix between the four nodes of the

corridor in the left to right direction. The existing travel demand will influence the
passenger load on each of the corridor segments. The resulting number of demanded trips
on each backbone section is depicted in Figure 5.
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Fig. 5 — Origin-destination demand along the corridor

The accumulation of this demand segment by segment determines the fleet needed to meet
the travel demand (see Figure 6).
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Fig. 6 — Cumulative origin-destination demand for each segment of the corridor

Suppose that all trains have the same capacity (10 passengers) and a simple composition.
In option 1 (Figure 7), the theoretically served demand is 100%, the fleet size in number of
trains required is 29. Regarding the occupation of the vehicle, the horizontal load factor
HLF is 73.31 % (ratio between numerator (140 +290 +260) and the denominator (290-3)).

The vertical load factor VLF is 100%, corresponding to the section of higher occupancy
(ratio 290/290). The load factor LF is HLF-VLF =0.7331(Canca et al., 2014). Finally, the
percentage of users who do not require transfers is 100%.



140 290 260

29 trains

Fig. 7 — Option 1: 29 long-distance trains

In option 2 (Figure 8), the theoretically served demand is also 100%, the fleet size rises to
69 train units, the occupancy of the fleet reaches its peak of 100% (LF = 1). However, the
percentage of users who do not require transfers decreases to 35.14%. In this case, 43.24%
of the users ((40 +120) / 370) require one transfer, and 21.62% (80/370) require two
transfers to reach their destination.
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Fig. 8 — Option 2: 69 (14+29+26) short-distance trains
In option 3 (Figure 9) the theoretically served demand is again 100%, the fleet is 29 trains

units, and the occupancy of the fleet rises to 100% (LF = 1). The percentage of users who
do not require transfers is 100%.
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Fig. 9 — Option 3: 14 long-distance trains, 12 medium-distance
trains and three short-distance trains

The aim of this work is to develop a general methodology that will lead to intermediate
solutions such as the one represented in option 3, which serves 100% of the travel demand
and requires the minimum possible number of vehicles, used at full capacity and
minimizing the need of transferring.



3. FORMULATION ASSOCIATED TO THE ANALYTICAL MODEL
Let Az{l = (%, Xpree e X, )% €101, Vi DX, 22} be the set of transit lines

i=1
configurations that can be set along a linear corridor connecting n stations. The component
x of the chain | =(x,X,,...,x, )takes the value 1 if the transit line is scheduled to stop at

the station i, and 0, otherwise.

We introduce two operators on each binary string in order to identify the first and last
station of its associated transit line:

F|l]=x,: wherex, is the first non-zero component of the string / = (x,,x,,...,x, ) ;
FlF] i w mehnnmae $oslim Lot n_ s moeiim s st b d s ptwd e Fro ol e o .
.L/l-n‘J —.J\f Wll‘:lc.)\f I3 LLIC LS LIV I=L010) L'L'-'IJJ.]JL”JCJJI. Ul LG Sl 15 I — \l‘f . 12, N l”} .

Besides, we define a sum operation on the binary strings:

Definition 1
Let I, =(X,%,,....,%,) and I, =(¥;,¥,,..., y,, ) be two binary strings. We define the sum as
follows:

_ i =F[l,]= L[]
l,®l,=(z,2,...,2,), where z = max X,y ;i {iZF[h]:'—['z]'
X+Yi; otherwise

Definition 2
Let I, € A and |, € A, we say that both strings are summable if |, @1, e A.

Examples:

1)1, =(1110) and I, =(0,0,11) are summable. In fact, |, ®1, = (L111).

2)1, =(1,1,0,0) and 1, =(0,0,1,1) are summable because I, ®1, = (L111). Note that the
resulting line generates a segment with no passenger traveling between the second
and 3rd stations.

3) I, =(10,0,1) and I, =(0,11,0) are summable:1, ®1, = (L111). The resulting line may
lead to capacity problems, since it already had passengers before introducing the
new stop.

41, =(1,0,01) and I, =(11,0,0) are summable:l, ®1, =(1,1,01). As in the previous
case, the resulting line may also lead to capacity problems.

5)1, =(10,01) and 1, =(0,0L1) are summable:l, ®1, =(1,0,1). Again, the resulting
line may generate capacity problems.

6) 1, =(111,0) and I, =(0,11,1) are not summable, since |, ®1, =(1,221) ¢ A .

Proposition 1 (commutative property)
Letl,,l,eA.Ifl,@l,eA, then | &I, =I,®DI,.

Proposition 2 (associative property)
Let I, 1,,I;eA.

If I,@1, e Aandl, @1, € A simultaneously occur, then(l, @1,) @1, =1, & (I, ®1,).



Definition 3
Let | =(x1,x2,...,xn)eA be a simple binary string of length n. Its capacity vector is

defined as a binary string of length n-1,c(l) = (cl,cz,...,cn_l), whose components are build
as follows:

__Ju ifFmIsi<n
"10: otherwise.

Examples:

1)1, =(1110) and I, =(0,0,11) are summable: |, ®1, = (1111).

Note that, applying the previous definition, we obtain c(l,) =(110), c(l,) =(0,0,1)
and c(l, @1,) = (LLl). Algebraically, the following holds: c(l, @©1,) =c(l,)+c(,) .

2)1, =(1,1,0,0) and I, =(0,0,11) are summable: |, ®1, = (1111).
The corresponding capacity vectors are c(l,)=(10,0), c(,)=(0,01) and
c(l, ®1,) = (111). Now, previous property is not satisfied: c(l, ®1,) = c(l,) +c(,).

3)l,=(1001) and 1,=(0110) are summable:l, ®l, =(1111). Note that
c(l,) =([111), c(l,)=(010) and c(l, ®l,)=(111). In this case the inequality
holds: c(l, ®1,) = c(l,) +c(l,).

4)1,=(10,01) and 1, =(110,0) are summable:l, ®I, =(110,1). For this instance,
c(l,) =[111), c(,)=(10,0) and c(, ®I,)=(LL1). Again equality is not hold:
c(l, ®1,) % c(l,) +c(,).

5)1, =(1,0,01) and 1,=(0011) are summable:l, ®I, =(1,011). Applying the
definition of capacity vector, we deduce c(,)=(211), c(,)=(0,01) and
c(l,®1,)=@11). In this case, the inequality also  remains:
c(l, ®1,) = c(l,)+¢(,).

6)l, =(1,110) and I, =(0111) are not summable since |, ®I, =(1221). In this
case, c(l,) = (110), c(,)=(011) and c(l, ®l,)=(L11). Finally, the following
holds: c(l, ®1,) = c(l,) + ().

Definition 4
The binary strings |, e A and |, € A are efficiently summable in capacity if |, @1, e A

and c(l, ®1,) =c(l,)+c(,) .

Proposition 3
Let I, € A and |, € A be two binary strings. If F[l,]=L[l,]Jor F[l,]=L[l,], then the two

strings are summable (i.e., |, @1, € A), and the resulting sum is efficient in capacity (i.e.,
C(Il D Iz) = C(Il) +C(Iz) )-

Definition 5
We say that the binary string | € A is elementary if the following holds: L[I1]- F[I]=1.



4. ALGORITHM FOR GENERATING THE OPTIMAL SCHEDULING

The following algorithm generates a scheduling of railway lines that serves the users’
travel demand optimally (i.e., without requiring passengers to transfer). The fleet size is
minimized and its capacity is used in an efficient manner, i.e., trains drive with as many
passengers as possible.

ALGORITHM

1. Input “number of stations in the corridor:” n
Input “trains capacity:” C
Input “OD demand matrix:” g = (g;)

2. Generate “feasible set of binary strings:” A

3. “Cumulative segments demand:”

For k=1ton-1
Set g, =0;
Fori=1ton-1

For j=i+1ton

Ifi<k<j then g, =g, +0;;

Endfor;

Endfor;
Endfor;

4. “Calculating the number of trains traversing each segment:”
Fork=1ton-1

Ok |
L ==
‘ ( C 1
Endfor;
5. “Generation of elementary binary strings:”
Set T =0;
For k=1ton-1
Repeat | L, | times
T=TU{(X %,....X,)} where X =X, =1and x; =0 for j=Kk,k+1;
Endfor;
6. “Generation of non-elementary binary strings:”
Set T, =T, T, =T,
While | T, |> 0 do
LetueT,;
Repeat for each ve T, (v#u)
If udve Aand c(u®v)=c(u)+c(v) then
T,=T,-{} T,=T,-{uv} T, =T, vudv};
Set T, =T, —{u};
Endwhile;
7. Output “The recommended trains scheduling is:” T .

During the execution of step 2 the corresponding binary strings 2" —n—1 are produced.



Running Step 3, where demand segment by segment is accumulated, has a cubic-order
computational cost. The number of elementary binary strings (Step 4) is upper bounded by
2"—-n-1, or more precisely, by S=n-max(g,)/C. The last step has a quadratic

complexity with respect to the parameter S.

5. COMPUTATIONAL EXPERIENCE

The algorithm presented in Section 4 was used to calculate the train scheduling needed to
meet travel demand on the Madrid-Seville high speed line. The daily travel demand on this
line is presented in Table 1 and the train was assumed to be AVE Series 103 (Siemens,
2006) with a capacity of 404 passengers.

TOTAL DIARY Stations
PASSENGERS
SEVILLA
MADRID-PUERTA | CIUDAD REAL | PUERTO- SANTA
DE ATOCHA CENTRAL LLANO CORDOBA | JUSTA
MADRID-PUERTA DE
ATOCHA 0 1377 479 185 3270
2 | Shmar 1377 0 216 185 185
§ PUERTOLLANO 479 216 0 185 185
CORDOBA 185 185 185 0 1291
SEVILLA SANTA JUSTA 3270 185 185 1291 0

Table 1 — Daily travel demand on the corridor AVE
Madrid-Seville (data provided by RENFE, 2009)

The algorithm calculated that 11 trains would need to operate over the entire corridor
(stopping at all stations), one additional train would be needed on the Madrid-Ciudad Real
Puertollano segment, and two additional trains on the segments Madrid-Ciudad Real and
Cérdoba-Sevilla (Figure 10).

In Figure 10 we show that, with the solution of the algorithm, the fleet size is maintained,
but the average occupancy improvement is 10%. In fact, the occupancy of the trains is
improved on every segment except one on which it remains the same. Moreover, the total
number of kilometers is reduced and the operational daily cost decreases by 8.5%.
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Fig. 10— Scheduling (route and number of trains) of the corridor
Madrid (Puerta Atocha) to Seville (Santa Justa)

6. CONCLUSIONS

This paper presents a method for scheduling railway service on networks with a radial-
backbone topology. The method calculates the structure of service (number of trains
between stations) needed to meet the required travel demand. The aim was to achieve the
maximum occupancy of trains, while eliminating the number of transfers and minimizing
the total fleet size in both the main and the radial lines. The proposed algorithm uses a
binary string representation of the main corridor and is based on an efficient summation
operation over the strings. The algorithm guarantees that the total number of units, in the
worst case, corresponds to the fleet necessary to meet the demand of the most loaded
segment. However, compared with the strategy of using trains on the entire network, the
solution of the proposed algorithm presents some advantages from the operator’s and the
passengers’ points of view. Passengers benefit from the elimination of the transfers needed
to reach their destination. The operator derives a benefit from the improved train
occupancy, the reduced fleet size and the lower number of kilometers traveled by the fleet,
which is reduced even in cases with the same fleet size. Therefore, operating costs such as
fleet acquisition, maintenance and fuel consumption are reduced. This also yields a
reduction of energy consumption, which is a byproduct of this research.
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