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Abstract This paper deals with the Transit Network Timetabling and Scheduling Problem 
(TNTSP) in a public transit line. The TNTSP aims at determining optimal timetables for 
each line in a transit network by establishing departure and arrival times of each vehicle at 
each station. We assume that customers know departure times of line runs offered by the 
system. However, each user, traveling after or before than their desired travel time, will give 
rise to an inconvenience cost, or a penalty cost if that user cannot be served according to 
the scheduled timetable. The provided formulation allocates each user to the best possible 
timetable considering capacity constraints. The problem is formulated using a p-median 
based approach and solved using a clustering technique. Computational results that show 
useful applications of this methodology are also included.

Keywords Timetabling · Vehicle scheduling · Schedule delay · Location-allocation

1 Introduction

The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determining 
optimal timetables for each line in a transit network by establishing departure and arrival 
times of each vehicle at each station. The TNTSP is based on the following general input: 
An infrastructure of a transport system described by a node set (network stations) and an 
edge set (tracks between adjacent stations), a trip demand matrix between pairs of nodes of
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the infrastructure, a set of transit lines with associated frequencies which have already been
determined in order to satisfy such trip demand and, finally, a vehicle fleet with specific
characteristics. The objective of the TNTSP consists of finding arrival and departure times
of each vehicle at each station such that the demand satisfaction, required fleet size and
vehicle capacities can be optimized/bounded.

The TNTSP integrates two stages of the global transit planning process, that is usually
divided in a sequence of five steps (Ceder and Wilson 1986): line planning, frequencies
setting, timetabling, vehicle scheduling and crew rostering. Even separately, solving any of
these problems implies a challenge in terms of computational complexity (Magnanti and
Wong 1984; Quak 2003); however, a considerable amount of work points out the integration
of several of these planning stages at the same time (Guihaire and Hao 2008), in order to
achieve interaction and feedback in the process as well as better quality results.

The TNTSP might be solved under different time contexts: for the strategic context (e.g.
promoting the extension of the network infrastructure by means of including new line seg-
ments between stations), in the tactical planning (where regular vehicle scheduling for a
given frequency—daily or weekly—is determined) and in real-time scenarios (where dis-
patchers must manage the traffic by making optimal decision about which vehicles to stop
and where, according to data about vehicle positions that are continuously subject to an
updating process).

Timetabling is the process of implementing the service frequency on each fixed route,
providing arrival/departure times at each station. Timetables can be periodic (e.g. Liebchen
et al. 2010) if they are repeated in time intervals. Although periodicity makes timetables
easy-to-remember, non-periodic timetables (e.g. de Palma and Lindsey 2001) can be im-
plemented to more adequately fit within the current time-dependent demand pattern. Two
different types of infrastructures can be analyzed to implement timetables: a single corridor
(see e.g. Brannlund et al. 1998; Caprara et al. 2002; Zhou and Zhong 2007) or an entire net-
work including transfers (see e.g. Caprara et al. 2006). In both scenarios, the main objectives
that are usually taken into consideration are addressed at maximizing the transfer synchro-
nization, in order to minimize waiting times at transfers (e.g. Guo and Wilson 2011) and
minimizing the schedule delay (Small 1982). The concept of schedule delay arises with the
fact that arriving early is likely to involve some wasted time while for most users, arriving
late has more severe repercussions. In this way, timetabling can be seen as a p-median prob-
lem (Hakimi 1964) where the objective is to minimize the time/distance between passenger
desired departure times and actual ones. Narrow headways lead users to arrive randomly to
stations giving rise to a waiting cost for the user. On the other hand, when headways are
wider, customers tend to strictly follow timetables, arriving only few minutes before the
departure time. This last situation does not provoke a waiting cost for the user but an incon-
venience cost to fit desired travel time to actual timetables (Grosfeld-Nir and Bookbinder
1995; Fosgerau 2009).

The vehicle scheduling problem consists of allocating a set of vehicles to a set of timeta-
bles, taking into consideration some practical requirements like depot/s location/s, vehicle
features (speed, size, maintenance costs, fuel costs) and other extensions. An optimal sched-
ule minimizes the fleet size as well as operational costs. Vehicle scheduling problems have
received considerable attention in the literature considering a single corridor (see e.g. Hig-
gins et al. 1996; Oliveira and Smith 2000; Zhou and Zhong 2005) and an entire network
(Cai and Goh 1994; Chew et al. 2001). A recent overview in vehicle scheduling problem
has been provided by Bunte and Kliewer (2009).

Dealing with the scheduling problem separately from the timetabling problem implies
that fleet size requirements cannot be bounded, only minimized. Moreover, if timetables are



too plentiful for a small fleet size, a feasible vehicle schedule could not even be guaranteed.
In this sense, little work has been developed searching for the integration of timetabling
and vehicle scheduling (Guihaire and Hao 2010). One of the first approaches that integrates
both timetabling and vehicle scheduling problem is the one provided by Chakroborty et al.
(2001), where periodic timetables are determined in order to minimize waiting times at
transfer stations as well as the required fleet size. Castelli et al. (2004) deal with non peri-
odic timetables assuming that routes, means of transport and quality of services are fixed
in advance. The operator’s main objective is to minimize their costs, while serving, at the
same time, as many customers as possible. The solution procedure schedules a single line at
a time, possibly re-optimizing or correcting the previous decisions at each step. Chang and
Chung (2005) consider a single, one-way track train timetabling problem for a rapid transit
system. Liu and Shen (2007) integrate timetabling and vehicle scheduling by using a bilevel
formulation, where the upper level is referred to the operators’ objectives while the lower
level reflects the user interests. Guihaire and Hao (2010) develop an integrated approach
without considering periodic timetables but they include evenness of the line headways
as one of the optimization criterium. Finally, Cadarso and Marín (2012) integrate railway
timetabling and scheduling updating the frequencies known from the railway line planning
problem. Frequencies for some arcs are maintained in a determined frequency window as
well as headways that are maintained for every train line in the network.

This paper deals with a customer-oriented timetabling-scheduling model applied to the
setting of a public transit corridor with two lines (one per each direction). A pre-set number
of line runs (vehicle expeditions along a line) will be located in each line along the time
horizon, under constraints determined by the fleet size and the maximum number of allowed
line runs. Additionally, we will assume non-periodic timetables that will be known by users
in advance. Therefore, timetables will be determined in order to optimally serve the existing
demand by considering that those individuals, traveling later than or ahead of their desired
travel time, will suffer a user’s inconvenience cost. Customers are supposed to suffer an
inconvenience cost, if their preferred pickup/delivery times vary from the actual ones, and a
penalty cost, if the requests are not served in a time window. In this sense, the user behavior,
explained by means of inconvenience costs, is motivated from the contexts of the vehicle
routing problem with time windows (Cordeau et al. 2007b) and transportation on demand
(Cordeau et al. 2007a), where disaggregated demand and the human factor acquire great
significance. To the best of our knowledge, inconvenience costs have not been considered in
the TNTSP literature. Additionally, since we are dealing with a public transportation where
users choose freely in which vehicle they want to board, the situation where users are freely
allocated to vehicles, ignoring capacity levels, will be studied.

The remainder of this article is structured as follows. Section 2 is devoted to describing
the context where the model is formulated. In Sect. 3 a variation of the p-median problem
is proposed to optimally locate a number of line runs ensuring vehicle schedules. In order
to decrease the size of the problem, a clustering algorithm is described in Sect. 4. Computa-
tional experiments are provided in Sect. 5 in order to show the usefulness and applicability
of this methodology. The extension of this methodology to transportation networks com-
posed of several transit lines is described in Sect. 6. Finally, conclusions and future lines of
research will be described in Sect. 7.



2 Problem description

2.1 Infrastructure

Let L be a transit corridor consisting of a node set S (stations) and an edge set E (tracks).
Let l ∈ L be the set of feasible lines in L. For the setting considered in this paper, L only
will contain two lines; that is, L = {1,2}, where l = 1 is a directed transit line running along
L and l = 2 is also running along L but in the opposite direction. We denote by 〈s, l〉 the
station in position s ∈ {1, . . . , |Sl |} belonging to the set of stations Sl ⊆ S of a given line
l ∈ L. Additionally, let El be the subset of E that contains all edges used by line l. Each
identical vehicle will operate along L during a time horizon that will be discretized into
a set of time slots t ∈ T = {1, . . . , |T |}. Each vehicle performs a number of line runs or
expeditions along a line. Line runs have to be located in time for each line. The total number
of line runs to locate in line l (ρl), the vehicle capacity (Q) and the fleet size κ will be
assumed to be input data of the problem.

2.2 Demand

Let I be the set of transportation requests formulated by customers of transit corridor L.
Each request i ∈ I involves the following information:

1. A pair of origin and destination stations, denoted by 〈si, li〉 and 〈s ′
i , li〉, respectively. Such

stations must be associated to a line li with edges e ∈ El that will be used as a path to
satisfy request i. With this, it can be defined a parameter mie equal to one if edge e ∈ Eli

is used when request i ∈ I is served or equal to zero otherwise.
2. A preferred departure time ti to locate a line run in station 〈1, li〉. Furthermore, ti ∈

[t−i , t+i ], which denotes the earliest and the latest times that are admissible for serving
request i.

3. A penalization cost ci that will be paid if the corresponding request is not served.
4. Trips along the transit line are direct and travel times are known in advance, so the

users’ inconvenience with respect to the arrival time can be obviated. Denoting by
Ti = {t−i , t−i + 1, . . . , t+i } the set of feasible time slots where a line run can be located
in order to serve request i, parameter ϕit will compute the relative cost of allocating
request i to the line run which departs from station 〈1, li〉 at time t ∈ Ti . The total incon-
venience cost of a transportation request is defined as ciϕit if i is allocated to a line run
in t , or ci if i is not allocated to any line run.

5. Following previous definitions, Ilt denotes the subset of requests that can be served lo-
cating a line run for line l in the time slot t , that is Ilt = {i ∈ I : t ∈ Ti ∧ li = l}.

2.3 Timetables and vehicle schedules

The concept of timetable must be formalized as follows. Given the set of line runs r ∈ Rl

defined in line l, with |Rl| = ρl , a timetable Θ along partition T is defined as the set of
arrival/departure times at each station for each line run: Θ = {(θ+

〈s,l〉r , θ
−
〈s,l〉r ), l ∈ L, 〈s, l〉 ∈

Sl, r ∈ Rl}.
Potentially, all timetables can be generated over the three defined sets. However, the

number of feasible timetables can be highly reduced by means of the following result:



Property 1 Assuming that:

1. stopping time at each station is known/prefixed:

θ−
〈s,l〉r − θ+

〈s,l〉r = λ〈s,l〉, l ∈ L, 〈s, l〉 ∈ Sl, r ∈ Rl

2. travel times between consecutive stations is known/prefixed:

θ+
〈s+1,l〉r − θ−

〈s,l〉r = μ〈s,l〉, l ∈ L, 〈s, l〉 ∈ Sl : s < |Sl |, r ∈ Rl

the following properties can be stated:

• a fixed travel time τl can be assumed in order to complete a line run:

θ+
〈|Sl |,l〉r − θ−

〈1,l〉r = τl, l ∈ L, r ∈ Rl

• timetables can be redefined as follows:

Θ ≡ x = {xlt , l ∈ L, t ∈ T }

where xlt ∈ {0,1} is equal to 1 if and only if a line run is allocated to line l at time slot t .

Note that the number of vehicles required to perform the timetable cannot be greater than
the fleet size, even when a vehicle can perform several line runs in the time period under
consideration. For this reason, we must characterize when a timetable can be performed by
the given fleet size.

Definition 1 A timetable x is a feasible κ-vehicle schedule if the number of vehicles re-
quired to perform x is less or equal than the fleet size κ , thus

0 ≤
t∑

t ′=1

x1t ′ −
t−τ2∑

t ′=1

x2t ′ ≤ κ t ∈ T (1)

0 ≤
t∑

t ′=1

x2t ′ −
t−τ1∑

t ′=1

x1t ′ ≤ κ t ∈ T . (2)

This definition ensures that between time slots t = 1 and t = τl no more than κ vehicles
leave the depot of any line. After t = τl , vehicles that arrive to the end of one line can be
used by the other, but at any moment the difference between those vehicles which have left
a depot and those which have arrived to such a depot cannot be negative nor greater than κ .
This will lead us to a characterization between an optimal timetable and an optimal vehicle
schedule.

Property 2 Assuming that before starting a line run, vehicles are always empty, they can
remain stopped as long as necessary without any additional cost. Therefore, an optimal
timetable x satisfying (1) and (2) is also an optimal vehicle schedule.



3 Formulation

3.1 The ρ-median problem

Two sets of binary variables are considered in the formulation:

xlt ∈ {0,1} equal to 1 when a vehicle starts a line run in line l at time t

yit ∈ {0,1} equal to 1 when request i is allocated to a vehicle which starts a line run at
time t .

The mathematical model that describes our problem is defined as follows:

z = min
∑

i∈I

[∑

t∈Ti

ciϕityit +
∑

t∈Ti

ci(1 − yit )

]
(3a)

s.t.:
∑

t∈T

xlt ≤ ρl l ∈ L (3b)

∑

t∈Ti

yit ≤ 1 i ∈ I (3c)

yit − xli t ≤ 0 i ∈ I, t ∈ Ti (3d)

0 ≤
t∑

t ′=1

x1t ′ −
t−τ2∑

t ′=1

x2t ′ ≤ κ t ∈ T (3e)

0 ≤
t∑

t ′=1

x2t ′ −
t−τ1∑

t ′=1

x1t ′ ≤ κ t ∈ T (3f)

∑

i∈Ilt

yitmie ≤ Qxlt l ∈ L, e ∈ El, t ∈ T (3g)

xlt ∈ {0,1} l ∈ L, t ∈ T (3h)

yit ∈ {0,1} i ∈ I, t ∈ Ti. (3i)

Objective function (3a) minimizes the total users’ inconvenience. For the sake of under-
standability, we present (3a) as defined in Sect. 2.2. Constraint (3b) ensures that no more
than ρl line runs are located in line l. Constraint (3c) guarantees that request i is not allo-
cated to more than one line run, avoiding negative terms in the second part of the objective
function. Constraint (3d) ensures that requests can only be allocated to time slots where a
line run has been located. Constraints (3e) and (3f) forces that no more than κ vehicles are
used in each line. Constraint (3g) guarantees that no more than Q requests use edge e of line
l in a line run located at time t .

The provided formulation exhibits significant similarities with the classic p-median prob-
lem (Hakimi 1964, 1965), where the total sum of weighted distances between a given set
of customers, and a set of locations for potential facilities is minimized. In our formulation,
facilities are line-runs, customers are travelers and distances are measured by scheduled de-
lays (we recall Sect. 1; Small 1982). In our model, a request i can be refused in exchange for
the penalty cost ci , and deviations from desired travel times are penalized by using the dis-
crete parameter ϕit . Additionally, constraints for controlling schedules and capacities have
been stated.



3.2 Public context for the ρ-median problem

Since the access to vehicles is performed inside stations, all the information regarding
timetables is available for passengers so they are free to choose between those line runs
that better fit into their own interests. This idea contrasts with other transport systems where
the operator is the unique decision maker who can choose which request should be served,
when and using which vehicle. In order to emphasize the importance of the passenger point-
of-view in the modelization, additional constraints can be added. First, we impose that a
passenger must be allocated to a line run if there is at least one line run located in Ti :

∑

t∈Ti

xli t ≤ ρli

∑

t∈Ti

yit i ∈ I. (3j)

Additionally, constraint (3k) ensures that each request is allocated to a line run if and
only if such line run is the one with lowest inconvenience cost in Ti :

∑

t ′∈Ti
ϕit ′>ϕit

yit ′ + xli t ≤ 1 i ∈ I, t ∈ Ti. (3k)

Constraint (3k) is adapted from Wagner and Falkson (1975) and belongs to the so called
closest assignment constraints. According to Espejo et al. (2012), this kind of constraints can
be modelled in many different ways, giving rise to better/worse linear programming relax-
ations. As shown in that paper, the constraint provided by Wagner and Falkson (1975) can
be strengthened by using the fixed numbers of facilities (line runs) to locate. Even with such
improvements, we must note that the inclusion of this constraint together with (3j) consid-
erably increases the computational complexity of the proposed model. In order to provide
good solutions within a reasonable time of computation, a request clustering algorithm is
introduced in the next section in order to reduce the number of variables and constraints of
the model.

4 Clustering algorithm

The number of requests |I | can be highly reduced considering subsets of requests Īlt ⊆ I

with a common preferred departure time for a line run, thus Īlt = {i ∈ I : li = l ∧ ti = t}. We
define a new set of clustered requests j ∈ J in such a way that each subset Īlt is identified
with a transportation request j weighted by a factor qj . In this way, we can solve the problem
by using the set j ∈ J instead of i ∈ I . Note that clustered requests can be built if |I | > |T |
or if ∃ l ∈ L, t ∈ T such that |Īlt | > 1. In order to define the clustering algorithm, we require
the following parameters:

• t̄j : preferred departure time for clustered request j in order to locate a line run in station
〈1, lj 〉

• c̄j : penalization cost that will be paid if the corresponding clustered request is not served
• m̄je: number of requests in I that are grouped in j and use edge e (m̄j = [m̄j1, m̄j2, . . . ,

m̄j |Elj
|])

• qmax : maximum weight for a clustered request, that is qj ≤ min{qmax,Q}.
Algorithm 1 describes how these parameters are constructed.



Algorithm 1: Clustering requests

input : Requests i ∈ I , clusters J := { }, parameters ci,mie and maximum weight
qmax for a clustered request

output: Clustered requests j ∈ J , and parameters t̄j , c̄j , m̄j

for each request i ∈ I do1

if � j ∈ J clustered request such that t̄j = ti and qj < qmax then2

Create the clustered request j = |J | + 1: [J, qj , c̄j , m̄j ] := [J ∪ {j},1, ci,mi];3

else4

Update [qj , c̄j , m̄j ] := [qj + 1, c̄j + ci, m̄j + mi]5

For each request, we have to check if there exists a clustered request such that t̄j = ti and
qj ≤ qmax . Since we can obviate searching along requests j ∈ J such that qj = qmax , in the
worst case we check as many requests as time slots in T . Thus, the complexity of Algorithm
1 is O(|I ||T |).

Next, in order to solve the ρ-median problem with clustered requests (c-ρ-median prob-
lem), we apply the following procedure:

Procedure 1 (c-ρ-median problem)

1. Solve (3a)–(3k) considering the set of clustered requests J instead of I . Let x ′ be the
timetable solution returned.

2. Solve (3a)–(3k) considering the set of requests I and fixing x variables as x := x ′ (thus,
only variables y and z have to be found). Let zUB be the best upper bound returned
and let y ′ be the request assignment. The solution given by the c-ρ-median problem is
{z = zUB, x = x ′, y = y ′}.

3. Let zLB be the best lower bound returned by the ρ-median problem. The gap induced by
the c-ρ-median problem can be obtained by means of

c-gap = 100(zUB − zLB)

zLB
.

Note that without considering capacity constraints, optimal solutions for the c-ρ-median
and ρ-median problems are equivalent. On the other hand, under capacity constraints clus-
ters cannot be split and only complete clusters can be allocated/rejected. Consequently, re-
quests within a cluster cannot be allocated to different line-runs with equal inconvenience
costs. Therefore, the solution provided by the c-ρ-median problem is an upper bound of the
ρ-median problem.

5 Computational experience

In order to show the applicability of the previous model and algorithm, a scenario com-
posed of one transit corridor with two lines (each one running on a different direction) along
eight stations has been considered. A random instance of |I | = 1000 requests has been
generated in the time interval with desired arrival times following a uniform probability
distribution. All requests have been assumed to have equal penalization costs ci and in-
convenience costs (ϕit ) defined in Ti = {max{0, ti − 4}, . . . ,max{0, ti − 1}, ti ,min{|T |, ti +



Fig. 1 Discrete inconvenience
costs under consideration

1}, . . . ,min{|T |, ti + 4}} that is, |Ti | � 9 options for each i ∈ I . The discretized inconve-
nience function (see Fig. 1) has been taken as follows:

ϕit = min

{
1,

(
max{0, ti − t}

max{1, ti − t−i }
)2

+
(

max{0, t − ti}
max{1, t+i − ti}

)2}
.

The time horizon has been split into 60 time slots (|T | = 60) of standardized length ‖t‖.
Distances (in time) between stations are considered equal to 4.5‖t‖ and a time for boarding
and alighting equal to 0.5‖t‖ will be required. Fleet sizes (κ) will be assumed equal to 2, 3
and 4. Line runs will vary in ρ=1, 2, 3, 4, 5, 6, 8, 10, 12, that would provide in a time interval
of 60‖t‖ an approximate frequency of 60, 30, 20, 15, 12, 10, 7.5 and 5 time (measured in
time units of length ‖t‖).

The computational experience also includes different scenarios depending on the capac-
ity requirements established. Scenario S1 assumes the version of the problem without capac-
ity constraints. In scenarios S2(Q),Q ∈ {40,45} constraint (3g) is activated for establishing
a version of selective capacity in the problem. In scenarios S3(Q),Q ∈ {40,45} constraints
(3j) and (3k) are activated for establishing the optimal timetable choices for single requests.
Finally, scenarios S3(qmax )

(Q) ,Q ∈ {40,45}, qmax ∈ {3,5} show that constraints (3j) and (3k)
are activated and requests have been clustered considering a maximum cluster size equal to
qmax .

All instances have been solved using ILOG CPLEX 12.2 on a personal computer with an
Intel(R) Core(TM)i7 CPU 3.4 GHz processor and 16 GB RAM. Default solver values were
used for all parameters.

Table 1 shows the comparative objective values obtained for different scenarios, vary-
ing the fleet size, line runs and vehicle capacities. For the sake of favoring the compari-
son of results arising from heterogeneous contexts, the initial objective value z has been
normalized and complemented by means of the function θ1 ≡ 100(1 − z/|I |). Moreover,
the percentage of covered requests with any level of satisfaction has been also included
by means of the function θ2 ≡ 100(1 − (

∑
i

∑
|Ti |)yit /|I |). Logically, the inconvenience

perception determines the level of satisfaction attained, holding in all scenarios θ2 ≥ θ1.
Additionally, the coverage level increases as long as Q, ρ or κ increase. However, θ1 and
θ2 cannot improve at a certain level without including more vehicles. Irregularities in ob-
jective values for scenarios S3(45) and S3(40) at κ = 4, ρ = 6,8,10,12 are due to the
fact that optimality is not reached before the time limit (3600 seconds) under considera-
tion.

Tables 2 and 3 show running times in seconds (sec) and gaps (gap, c-gap) obtained for
the different scenarios. We denote as gap, the relative gap computed with the best lower



Table 1 Demand coverage for the different scenarios

κ ρ S1 S2(45) S3(45) S2(40) S3(40)

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

2 1 18.27 29.2 16.26 22.4 9.97 15.4 15.7 21.8 6.6 13.1

2 2 35.97 55.5 31.72 42.6 25.87 35.3 30.39 40.8 23.26 31.1

2 3 49.13 73.2 44.71 58.2 34.35 49.1 42.81 55.4 28.03 40.9

2 4 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9

2 5 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9

2 6 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9

2 8 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9

2 10 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9

2 12 49.13 73.2 46.01 59.2 36.55 51 45.02 57.1 28.03 40.9

3 1 18.27 29.2 16.26 22.4 9.97 15.4 15.7 21.8 6.6 13.1

3 2 35.97 55.5 31.72 42.6 25.87 35.3 30.39 40.8 23.26 31.1

3 3 52.4 81 46.89 61.4 37.84 50.2 44.84 58 35.19 44.3

3 4 66.38 91.3 59.73 76.4 45.57 61 57.11 72.7 39.92 54.2

3 5 66.38 91.3 61.29 78.9 48.83 62.7 59.55 74.9 42.57 52.8

3 6 66.38 91.3 61.29 78.9 48.34 59.5 59.55 74.9 43.72 52.5

3 8 66.38 91.3 61.29 78.9 48.76 65.6 59.55 74.9 42.91 52.1

3 10 66.38 91.3 61.29 78.9 48.6 63.6 59.55 74.9 43.72 52.5

3 12 66.38 91.3 61.29 78.9 48.6 63.6 59.55 74.9 43.33 52.1

4 1 18.27 29.2 16.26 22.4 9.97 15.4 15.7 21.8 6.6 13.1

4 2 35.97 55.5 31.72 42.6 25.87 35.3 30.39 40.8 23.26 31.1

4 3 52.4 81 46.89 61.4 37.84 50.2 44.84 58 35.19 44.3

4 4 68.09 97.5 61.08 77.2 47.02 59.1 58.37 73 41.11 54

4 5 79.59 100 73.7 89.7 56.08 70.8 70.77 85.2 48.61 61.5

4 6 79.94 100 75.33 92.1 63.15 81.7 73.16 88.8 52.23 60.1

4 8 79.94 100 75.33 92.1 60.33 75.5 73.16 88.8 53.77 69.8

4 10 79.94 100 75.33 92.1 60.34 74.8 73.16 88.8 53.04 60.9

4 12 79.94 100 75.33 92.1 61.48 80.5 73.16 88.8 53.88 63.7

bound obtained by Cplex within a time limit of 3600 seconds and the best upper bound
obtained by Cplex within a time limit of 3600 seconds or 1200 seconds (indicated in the
table). Additionally, c-gap denotes the gap induced by the clustering algorithm as described
in Sect. 4 taking as reference the best upper bound provided by Cplex for S3(Q) within a
time limit of 3600 s.

Note first that we do not report running times or gaps for S1 since all instances were
solved to optimality in less than 0.2 seconds. Even S2(Q) can be solved for each in-
stance in a few seconds. We remark that theoretical scenarios S1 and S2 are interesting
for establishing a comparative analysis on values reached in the objective function. On
the other hand, scenario S3 is closer to the real operability although obtaining optimal
solutions for that context requires a considerable computational effort. In order to assess
the time consumed within the computation of optimal solutions for scenario S3, different
scenarios for maximum running times of 3600 seconds and 1200 seconds have been an-
alyzed. As mentioned in the introduction (third paragraph), the TNTSP might be called



Table 2 Running times and gaps obtained for the different scenarios and Q = 45

κ ρ time limit = 3600 s time limit = 1200 s

S2(45) S3(45) S3(45) S3(3)
(45)

S3(5)
(45)

sec gap sec gap sec gap sec c-gap sec c-gap

2 1 4 0 0 0 0 0 0 0 0 0

2 2 2.3 0 60.6 0 59.8 0 9.1 0 18.4 0

2 3 2 0 301.1 0 300.9 0 36.9 0 31.3 0

2 4 2.5 0 1946.6 0 1200 0 28 0 14.8 0

2 5 2.5 0 308.6 0 308 0 79.2 0 46 0

2 6 2.5 0 1329.3 0 1200 0 36.9 0 44.8 0

2 8 2.5 0 1088.9 0 1090 0 75.5 0 61.6 0

2 10 2.6 0 2656.8 0 1200 0.01 30.6 0 29.4 0

2 12 2.5 0 1307.2 0 1200 0 30.7 0 29.2 0

3 1 4 0 0 0 0 0 0 0 0 0

3 2 2 0 68.6 0 68.7 0 10.7 0 24.5 0

3 3 2.4 0 2141.1 0 1200 0 141.1 0 23.6 0

3 4 2.8 0 3600 1.73 1200 1.99 412.3 1.99 223.8 1.99

3 5 2.9 0 3600 1.52 1200 1.88 328.7 1.77 109.5 1.77

3 6 2.7 0 3600 1.92 1200 2.92 166.3 2.23 118.6 2.23

3 8 3.1 0 3600 1.42 1200 1.7 369.6 1.62 244 1.62

3 10 3 0 3600 1.05 1200 1.2 277.6 1.09 120.1 1.09

3 12 2.8 0 3600 1.88 1200 2.31 327.2 2.22 295.9 2.22

4 1 3.8 0 0 0 0 0 0 0 0 0

4 2 2 0 380.7 0 381 0 11.5 0 5 0

4 3 2.4 0 2527.5 0 1200 0.06 184.4 0 60.7 0

4 4 3.9 0 3600 0.63 1200 0.87 441.8 0.65 464.8 0.65

4 5 3.3 0 3600 2.72 1200 4.34 1200 4.08 1200 3.81

4 6 3.7 0 3600 2.61 1200 5.14 1200 3.9 1200 4.24

4 8 3.6 0 3600 3.15 1200 5.98 1200 3.89 1200 4.3

4 10 3.9 0 3600 3.2 1200 5.13 1200 3.9 427 3.98

4 12 3.8 0 3600 2.84 1200 5.56 1200 3.99 242.8 3.68

to solve decision problems in contexts characterized by strict limitations of time, going
from those where speed might not be important to those where a fast solution might be
required.

Under a time limit of 3600 seconds Cplex is able to solve to optimality all instances for
κ = 2 leaving small gaps for κ = {3,4}. Note that these gaps are due to the effect of capac-
ities and closest assignment. Decreasing the time limit to 1200 seconds the gaps increase
around a 2 %. Under a time limit of 1200 seconds, the resolution of S3(3)

(Q) reaches optimal-
ity in all instances for κ = 2 increasing slightly the gaps of S3(Q) after 3600 seconds for
κ = {3,4}. However, S3(3)

(Q) outperforms S3(Q) under a time limit of 1200 seconds in terms

of gap and running time. The same observation can be made for S3(5)

(Q) with lower running
times.



Table 3 Running times and gaps obtained for the different scenarios and Q = 40

κ ρ Time limit = 3600 s Time limit = 1200 s

S2(40) S3(40) S3(40) S3(3)
(40)

S3(5)
(40)

sec gap sec gap sec gap sec c-gap sec c-gap

2 1 3.3 0 0 0 0 0 0 0 0 0

2 2 2.3 0 62 0 61.9 0 14.7 0 5.6 0

2 3 2.5 0 206.4 0 206.4 0 34.8 0 20 0

2 4 3 0 1186.4 0 1190.6 0 85.5 0 41.3 0

2 5 2.9 0 561.1 0 560.5 0 119.5 0 31.8 0

2 6 2.7 0 190.6 0 190.6 0 71.8 0 37.9 0

2 8 2.9 0 846.3 0 846.8 0 102.4 0 16.7 0

2 10 3.7 0 248.4 0 247.9 0 91.8 0 39.3 0

2 12 3.6 0 2017.3 0 1200 0 92.2 0 39.5 0

3 1 3.1 0 0 0 0 0 0 0 0 0

3 2 2.3 0 61.3 0 61.7 0 15 0 5.9 0

3 3 2.7 0 967.8 0 967.9 0 72 0 30.8 0

3 4 3.6 0 3600 1.42 1200 1.72 443.9 1.57 91.2 1.57

3 5 5.4 0 3600 2.06 1200 3.3 316.5 2.33 118.9 2.33

3 6 4.5 0 3600 1.52 1200 2.1 210.8 1.8 213.5 1.8

3 8 4.9 0 3600 1.35 1200 1.86 1051.7 1.49 132.4 1.49

3 10 5.1 0 3600 1.56 1200 2.73 537.9 1.92 171.4 1.92

3 12 5 0 3600 1.43 1200 1.75 176.6 1.62 153.4 1.62

4 1 3.1 0 0 0 0 0 0 0 0 0

4 2 2.3 0 67.1 0 67 0 11 0 6 0

4 3 2.5 0 1239.4 0 1200 0 237.8 0 35.8 0

4 4 3 0 3581.9 0 1200 0.14 365.3 0 173.9 0

4 5 4.2 0 3600 3.1 1200 4.87 1200 4.55 198 4.55

4 6 5.7 0 3600 3.72 1200 5.8 1200 5.22 271.9 5.22

4 8 5.9 0 3600 3.5 1200 5.48 1200 5.11 659.1 5.4

4 10 6.5 0 3600 3.54 1200 5.53 1200 4.72 542.4 5.23

4 12 6.7 0 3600 3.42 1200 5.53 1200 4.72 1050.3 5.37

In conclusion, Tables 2 and 3 prove the usefulness of introducing the clustering algo-
rithm in scenario S3, because running times become considerably reduced in exchange for
a small increase of the gap and, sometimes, even improves the actual ones. This methodol-
ogy is of special interest for solving bigger size instances not considered in this paper. In
addition cluster sizes allow an adaptation of the procedure in accordance with the instance
size.

Summarizing, Table 4 provides the results obtained for Scenario 3. In this table, we in-
clude averages and maximum values of computational times (sec, sec∗), gaps (gap, gap∗)
and clustering gaps (c-gap, c-gap∗) computed for different values of κ and all values
of ρ.



Table 4 Summary of the results obtained for Scenario 3

κ Time limit = 3600 s Time limit = 1200 s Time limit = 1200 s

S3(45) S3(40) S3(45) S3(40) S3(3)
(45)

S3(3)
(40)

S3(5)
(45)

S3(5)
(40)

2 sec 999.9 590.94 728.74 500.52 sec 36.32 68.08 30.61 25.79

sec∗ 2656.8 2017.3 1200 1200 sec∗ 79.2 119.5 61.6 41.3

gap 0 0 0 0 c-gap 0 0 0 0

gap∗ 0 0 0.01 0 c-gap∗ 0 0 0 0

3 sec 2645.52 2514.34 940.97 914.4 sec 225.94 313.82 128.89 101.94

sec∗ 3600 3600 1200 1200 sec∗ 412.3 1051.7 295.9 213.5

gap 1.06 1.04 1.33 1.5 c-gap 1.21 1.19 1.21 1.19

gap∗ 1.92 2.06 2.92 3.3 c-gap∗ 2.23 2.33 2.23 2.33

4 sec 2723.13 2543.16 975.67 940.78 sec 737.52 734.9 533.37 326.38

sec∗ 3600 3600 1200 1200 sec∗ 1200 1200 1200 1050.3

gap 1.68 1.92 3.01 3.04 c-gap 2.27 2.7 2.3 2.86

gap∗ 3.2 3.72 5.98 5.8 c-gap∗ 4.08 5.22 4.3 5.4

Fig. 2 Inconvenience costs for a
transportation request i, going
from station 〈si , li 〉 towards
〈s′

i
, li 〉, that requires a transfer at

〈s′
i
, li 〉

6 Extension to transportation networks composed of several transit lines

Previous sections describe how to jointly plan timetables and vehicle schedules along a
single transit line for potential customers traveling between origin and destinations of such
a line. The extension of the scenario of a single transit line to the more general case where
multiple lines are considered in the network can be performed including two new kinds of
transportation requests coming from previous lines or going towards other lines.

• Case 1: Let i be a transportation request going from 〈si, li〉 towards 〈s ′
i , li〉. If we assume

that i requires to transfer to a second line at 〈s ′
i , li〉, then ti is the time slot that minimizes

the waiting time at 〈s ′
i , li〉. However, i cannot arrive to 〈s ′

i , li〉 later than the departure time
of the second vehicle. Thus, the inconvenience costs of this kind of request is maximum
after ti as depicted in Fig. 2.

• Case 2: Let i be a transportation request going from station 〈si, li〉 towards 〈s ′
i , li〉. If we

assume that i comes from a previous line and has transferred at 〈si, li〉, then ti is the time
slot that minimizes the waiting time at 〈si, li〉. However, a line run located earlier than ti
cannot serve request i. Thus, the inconvenience costs of this kind of request is maximum
before ti as depicted in Fig. 3.



Fig. 3 Inconvenience costs for a
transportation request i, going
from station 〈si , li 〉 towards
〈s′

i
, li 〉, requiring a transfer at

〈si , li 〉

According to the survey conducted by Stern (1996) on various transit agencies in the US,
it is infrequent that passengers use more than a single transfer during their origin-destination
trips on the regional transit network. In these circumstances, it is reasonable to classify
requests into two subsets: requests that use a single line to reach their destinations and
those that require to perform a single transfer in order to achieve the final destination. For
the first type, the symmetrical function shown in Fig. 1 can be applied to assess the user’s
inconvenience and, for the second type of request, the previous asymmetrical functions can
provide an extension to the scenario where the presence of transfers can be treated with the
methodology developed throughout the paper. Moreover, the penalization costs associated
to the non-served requests can be weighted according to the case where the affected user
belongs.

7 Conclusions

A new approach for jointly planning timetables and vehicle schedules along a single transit
line has been developed by emphasizing the point of view of potential customers. The setting
analyzed in this paper assumes a model of fully disaggregated demand for a scenario that in-
cludes capacity constraints and demand behavior according to different criteria. A p-median
based formulation has been proposed including specific constraints for the scheduling prob-
lem for a given fleet size of vehicles. In addition, demand behavior is associated with the
inclusion of closest assignment type constraints.

A clustering algorithm has been developed in order to provide an alternative method-
ology for solving instances of the problem when computational time must be limited. The
performed computational experience shows the difficulty of including closest assignment
constraints in a transportation problem and the advantages of deriving a clustering algorithm
that allows an appropriate preprocessing of the information.

The infrastructure analyzed in the paper consists of a single corridor. However, we have
developed some hints on how to extend our methodology to more general transportation
networks where multiple transit lines operate. In those contexts, transfers between lines
required by the passengers can modify the cost associated to the user’s inconvenience. The
optimization model is shown as a consistent approach, since its applicability remains despite
of the change of the network infrastructure.

Acknowledgements This work was partially supported by Ministerio de Ciencia e Innovación under grant
MTM2010-19576-C02-01, MTM2009-14243 and MTM2012-37048, by the Junta de Andalucía under grant
P09-TEP-5022 and FQM-5849 and by the FEDER funds of the European Union. We would like to thank
Gilbert Laporte for his helpful comments and guidelines.



Appendix: Notation

Data

L Transit corridor
S Node set (stations)
e ∈ E Edge set (tracks)
l ∈ L Set of feasible lines in L (L = {1,2})
l = 1 Directed transit line running along L

l = 2 Directed transit line running along L in the opposite direction of l = 1
Sl ⊆ S Set of stations for a given line l ∈ L
〈s, l〉 ∈ Sl Station in position s ∈ {1, . . . , |Sl |}
El ⊂ E Subset that contains all edges used by line l

t ∈ T Set of time slots (T = {1, . . . , |T |})
ρl Number of line runs to locate
Q Vehicle capacity
κ Fleet size
i ∈ I Set of transportation requests
li Line used by request i

〈si, li〉, 〈s ′
i , li〉 Origin and destination stations for request i

mie Parameter equal to one if edge e ∈ Eli is used when request i ∈ I is served or
equal to zero otherwise

ti Preferred departure time for request i to locate a line run in station 〈1, li〉
t−i , t+i Earliest and latest times that are admissible for serving request i

ci Penalization cost that will be paid if request i is not served
Ti ⊆ T Set of feasible time slots where a line run can be located in order to serve

request i (Ti = {t−i , t−i + 1, . . . , t+i })
ϕit Relative cost of allocating request i to the line run which departs from station

〈1, li〉 at time t ∈ Ti

Ilt ⊂ I Subset of requests that can be served locating a line run for line l in time
slot t

r ∈ Rl Set of line runs defined in line l (|Rl| = ρl)
Θ Timetable along partition T

θ+
〈s,l〉r , θ

−
〈s,l〉r Arrival/departure times at station 〈s, l〉 for line run r ∈ Rl in line l ∈ L

λ〈s,l〉 Stopping time required at station 〈s, l〉
μ〈s,l〉 Travel time between stations 〈s, l〉 and 〈s + 1, l〉
τl Fixed travel time required to complete a line run in line l

Decision variables

xlt ∈ {0,1} Binary variable equal to 1 if and only if a line run is allocated to line l at time
slot t

yit ∈ {0,1} Binary variable equal to 1 if and only if request i is allocated to a vehicle
which starts a line run at time t

Clustering algorithm data

Īlt ⊂ I Subset of requests with a common preferred departure time for locating a line
run in line l at the time slot t

j ∈ J Set of clustered requests
qj Weight of a clustered request
qmax Maximum weight for a clustered request



t̄j Preferred departure time for request i to locate a line run in station 〈1, li〉
c̄j Penalization cost that will be paid if the clustered request j is not served
m̄je Number of requests in I that are grouped in j and use edge e (m̄j =

[m̄j1, m̄j2, . . . , m̄j |Elj
|])
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