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In this paper, we analyze a stochastic coronavirus (COVID-19) epidemic model which is perturbed by both 

white noise and telegraph noise incorporating general incidence rate. Firstly, we investigate the existence 

and uniqueness of a global positive solution. Then, we establish the stochastic threshold for the extinction 

and the persistence of the disease. The data from Indian states, are used to confirm the results established 

along this paper. 
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. Introduction 

Today, the world is facing the ongoing COVID-19 pandemic, 

aused by the SARS-CoV2 coronavirus. The novel coronavirus has 

een a serious threat to public health [4] . In late December 

019, the disease COVID-19 was first discovered in Wuhan (Hubei 

rovince) and caused the first pandemic of this century. The 

irus appears to be transferred mostly through narrow respira- 

ory droplets by coughing, sneezing, or peoples interaction in close 

roximity (usually less than one meter) with each other for a cer- 

ain time frame. However, it might be possible that other unob- 

erved environmental exposures may have facilitated the rate the 

isease spreads through human-to-human transmission. In [9] , it 

s reported that COVID-19 infected individuals generally develop 

ymptoms, including mild respiratory symptoms and fever, on an 

verage of 5–6 days after infection (mean 5–6 days, range 1–14 

ays). At the present, there is no effective treatment for COVID- 

9 in the world. Therefore the only way to stop the spread of 

his disease is to quarantine or isolate the initially infected pop- 

lation as showed by guide line of World Health Organization. By 

he end of June 2020, the COVID-19 virus has infected more than 

0,927,025 people and died at least 521,512 in all over the world 

23] . However, since the randomness of population mobility and 

ncertainty of control measures, methods of predicting COVID-19 
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nd then preventing and controlling the disease for public health 

epartments still remain unclear. 

Recently, the novel coronavirus COVID-19 has attracted much 

ttention from many researchers and various comprehensions have 

een made to deepen understanding and grasping the valuable in- 

erences through mathematical modeling [10–12] . Therefore, it is 

f great significance to establish and study the model of infectious 

iseases. Mathematical modelling is an important decision tool 

hat can be useful to analyze the spread and understand the level 

f manageability and the effect of prevention and control mecha- 

isms applied to the pandemic. A numerous number of models are 

eing used to project the current COVID-19 pandemic. Wang et al. 

13] developed an SEIR model to estimate the epidemic trends in 

uhan, assuming the prevention and control measures were either 

ufficient or insufficient to control the epidemic. Hellewell et al. 

14] developed a transmission model and found that highly ef- 

ective contact tracing and case isolation are enough to control a 

ew outbreak of COVID-19 within three months in most scenarios. 

n another recent work, Chakraborty and Ghosh [24] have consid- 

red a hybrid ARIMA-WBF model to forecast various COVID-19 af- 

ected countries throughout the globe. Several other models estab- 

ished a stochastic transition model to evaluate the transmission of 

OVID-19 and also emphasized the necessity of interventions such 

s social-distancing, isolation and quarantine [15,17] . 

https://doi.org/10.1016/j.chaos.2020.110361
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110361&domain=pdf
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19 where human populations are subdivided into five time-dependant 

c Hospitalized infected I ( t ) and Recovered or Removed R ( t ). They have 

a  person comes into contact with an exposed person. The model is a 

s elow: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1) 

w ruitment rate to the susceptible population; β stands for the disease 

t an would maintain proper precaution measure and ρ2 (0 < ρ2 < 1) 

r ution measure for disease transmission (i.e, use of face mask, social 

d es portion of susceptible individuals due to the contact of (1 − ρ2 ) E

p osed class going to the infected class and quarantine class, respectively. 

H oving to susceptible class and infected class, respectively. η and ν stand 

f osed class E; μ denotes the natural death rate and δ is the COVID-19 

i

ays has a disease-free equilibrium 

E

I re exists a unique endemic equilibrium E ∗ = (S ∗
d 
, E ∗

d 
, Q 

∗
d 
, I ∗

d 
, R ∗

d 
) , where 

(1 − ρ2 ) − μ(b 2 + α + ν + μ) 

 b 2 (c + μ) + (α + ν + μ)(b 1 + c + μ) } , 

Q
 

, 

 ν + μ) } 
+ μ + δ) 

, 

bout the stability of the equilibriums: 

) is locally asymptotically stable . 

ifurcation around its disease-free 

is locally asymptotically stable . 

2

 to the environmental noise, which made the parameters involved in 

t  as the surrounding environment fluctuation. See [1–3,5–7,16,25] and 

r Therefore, it is necessary to include random fluctuations in the process 

o -19 model adopting a generalized incidence function [21,22] as follows: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t − σ S(t ) f (E(t )) dB (t ) , 

] dt + σ S(t ) f (E(t )) dB (t ) 

(2) 

w nts the intensity of the white noise ˙ B (t) . The function f ( · ) is gener- 

a le function such that f (0) = 0 , f ′ (0) > 0 and the function x �→ 

f (x ) 
x is 

m for any x > 0). 

by telegraph noise which can causes the system to switch from one 

e n environmental regimes is often memoryless and the waiting time for 

t  the regime switching can be modelled by a continuous time Markov 
. Model and preliminaries 

.1. Ordinary differential equation model 

In [20] , Mandal et al. consider a mathematical model of COVID-

lasses, namely, Susceptible S ( t ), Exposed E ( t ), Quarantined Q ( t ), 

ssumed that the virus COVID-19 is spreading when a vulnerable

ystem of five first order ordinary differential equations shown as b
 

 

 

 

 

 

 

 

 

 

 

˙ S (t) = A − β(1 − ρ1 )(1 − ρ2 ) S(t ) E(t ) + b 1 Q(t) − μS(t) , 

˙ E (t) = β(1 − ρ1 )(1 − ρ2 ) S(t ) E(t ) − (b 2 + α + ν + μ) E(t) , 

˙ Q (t) = b 2 E(t) − (b 1 + c + μ) Q(t) , 

˙ I (t) = αE(t) + cQ(t) − (η + μ + δ) I(t) , 

˙ R (t) = ηI(t) + νE(t) − μR (t) , 

here all parameters are positive numbers. A is the constant rec

ransmission rate; ρ1 (0 < ρ1 < 1) is portion of susceptible hum

epresents portion of the exposed class would take proper preca

istancing and implementing hygiene). Therefore (1 − ρ1 ) S denot

ortion of exposed individuals; α and b 2 are the portions of the exp

owever, b 1 and c represent the portions of the quarantine class m

or the recovery rate of hospitalized infected population I and exp

nduced death rate. 

According to the theory in Mandal et al. [20] , the system (1) alw

 

0 = 

(
A 

μ
, 0 , 0 , 0 , 0 

)
. 

f the basic reproduction number R 0 = 

Aβ(1 − ρ1 )(1 − ρ2 ) 

μ(b 2 + α + ν + μ) 
> 1 , the

S ∗d = 

b 2 + α + ν + μ

β(1 − ρ1 )(1 − ρ2 ) 
, E ∗d = (b 1 + c + μ) 

Aβ(1 − ρ1 )

β(1 − ρ1 )(1 − ρ2 ) {
 

∗
d = b 2 

Aβ(1 − ρ1 )(1 − ρ2 ) − μ(b 2 + α + ν + μ) 

β(1 − ρ1 )(1 − ρ2 ) { b 2 (c + μ) + (α + ν + μ)(b 1 + c + μ) }
I ∗d = 

{ α(b 1 + c + μ) + b 2 c}{ Aβ(1 − ρ1 )(1 − ρ2 ) − μ(b 2 + α +
β(1 − ρ1 )(1 − ρ2 ) { b 2 (c + μ) + (α + ν + μ)(b 1 + c + μ) } (η

R 

∗
d = 

ηI ∗
d 

+ νE ∗
d 

μ
. 

Mandal et al. [20] established the following theoretical results a

(i ) If R 0 < 1 , then the disease-free equilibrium E 0 of system (1

(ii ) If R 0 = 1 , the system (1) passes through a transcritical b

equilibrium . 

(iii ) If R 0 > 1 , then the endemic equilibrium E ∗ of system (1) 

.2. Stochastic differential equation model 

In fact, the COVID-19 epidemic model is unavoidably subjected

he system often fluctuate randomly around some average values

eferences therein for epidemic models with environmental noise. 

f COVID-19 modelling. In this paper, we propose a stochastic COVID

 

 

 

 

 

 

 

 

 

 

 

dS(t) = [ A − β(1 − ρ1 )(1 − ρ2 ) S(t ) f (E(t )) + b 1 Q(t) − μS(t)] d

dE(t) = [ β(1 − ρ1 )(1 − ρ2 ) S(t ) f (E(t )) − (b 2 + α + ν + μ) E(t)

dQ(t) = [ b 2 E(t) − (b 1 + c + μ) Q(t )] dt , 

dI(t) = [ αE(t) + cQ(t) − (η + μ + δ) I(t )] dt , 

dR (t) = [ ηI(t) + νE(t) − μR (t )] dt , 

here B ( t ) is a real-valued Brownian motion and σ 2 > 0 represe

lly assumed to be a non-negative twice continuously differentiab

onotonically decreasing on [0, ∞ ) (this implies that f (x ) 
x < f ′ (0) 

Note that the COVID-19 epidemic models may be perturbed 

nvironmental regime to another [18] . Mostly the switching betwee

he next switching follows the exponential distribution [19] . Hence
2 
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c Then model (2) disturbed by white noise and telegraph noise develops 

t⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

 − μr(t) S(t)] dt − σr(t) S(t ) f (E(t )) dB (t ) 

 

+ νr(t) + μr(t) ) E(t)] dt + σr(t) S(t) f (E(t)) dB (t) 

(3) 

w ian motion B (.) and defined on the same complete probability space 

( ovian chain is defined by 

P

w  while 

γ

I his assumption assures that the Markov chain r ( t ) is irreducible, which 

i  , πN ) , which can be determined by solving the following equation 

π (4) 

s

∑

F n k ∈ S { ψ(k ) } and ψ̌ = max k ∈ S { ψ(k ) } . To begin the analysis of the model, 

w

R

ϒ

T  

Ǎ 

ˆ μ
f ′ (0) ≤ β(k )(1 − ρ1 (k ))(1 − ρ2 (k )) for any k ∈ S . 

 , we show the existence and uniqueness of a global positive solution to 

t  stochastic threshold for the extinction and the persistence in mean of 

t  to demonstrate our main theoretical results. 

3

tly need to consider whether the solution is global and positive. In this 

s system (3) . 

T )) ∈ 

˜ ϒ, there exists a unique solution (S(t) , E(t) , Q(t) , I(t) , R (t)) ∈ 

˜ ϒ of 

s y 1. 

P  Lipschitz continuous, so there is a unique local solution 

(  (S(0) , E(0) , Q(0) , I(0) , R (0)) ∈ 

˜ ϒ, where τ e is the explosion time 

[ et n 0 > 0 be sufficiently large for every component of ( S (0), E (0), Q (0), 

I
 

, define the stopping time 

τ  { S(t) , E(t) , Q(t) , I(t) , R (t) } � n 

} 

, 

w pty set). Clearly, τ n is increasing as n → ∞ . Set τ∞ 

= lim 

n →∞ 

τn ., which 

i at (S(t) , E(t) , Q(t) , I(t) , R (t)) ∈ R 

5 + a.s., for all t ≥ 0. If τ e < ∞ a.s., then 

t  } > ε. Hence there is an integer n 1 ≥ n 0 such that 

P

D t ∈ [0, τ n ), we have 

(

hain ( r ( t )) t ≥ 0 with values in a finite state space S = { 1 , 2 , . . . , N} . 
o 
 

 

 

 

 

 

 

 

 

 

 

dS(t) = [ A r(t) − βr(t) (1 − ρ1 r(t) )(1 − ρ2 r(t) ) S(t ) f (E(t )) + b 1 r(t) Q

dE(t) = [ βr(t) (1 − ρ1 r(t) )(1 − ρ2 r(t) ) S(t ) f (E(t )) − ( b 2 r(t) + αr(t)

dQ(t) = [ b 2 r(t) E(t) − ( b 1 r(t) + c r(t) + μr(t) ) Q(t)] dt 

dI(t) = [ αr(t) E(t) + c r(t) Q(t) − (ηr(t) + μr(t) + δr(t) ) I(t)] dt 

dR (t) = [ ηr(t) I(t) + νr(t) E(t) − μr(t) R (t )] dt , 

here Markov chain r (.) is F t -adapted but independent of Brown

	, F , {F t } t� 0 , P ) . The infinitesimal generator 
 = (γi j ) N×N of Mark

 (r(t + �) = j | r(t) = i ) = 

{
γi j � + o(�) , if i � = j, 

1 + γii � + o(�) , if i = j, 

here � > 0. Here γ ij ≥ 0 is the transition rate from i to j if i � = j

ii = −
∑ 

j � = i 
γi j . 

n this paper, we assume that γ ij > 0 for i, j = 1 , . . . , N with j � = i . T

mplies that it has a unique stationary distribution π = (π1 , π2 , . . .


 = 0 , 

ubject to 

N 
 

k =1 

πk = 1 , πk > 0 , for any k ∈ S . 

or convenience, we denote for any fixed vector { ψ(k ) } k ∈ S , ˆ ψ = mi

e define the subsets 

 

5 
+ = 

{
(x 1 , x 2 , x 3 , x 4 , x 5 ) ∈ R 

5 : x i > 0 , i = 1 , 2 , . . . , 5 

}
, 

˜ = 

{ 

(x 1 , x 2 , x 3 , x 4 , x 5 ) ∈ R 

5 
+ : 

ˆ A 

μ̌ + δ̌
� 

5 ∑ 

i =1 

x i � 

Ǎ 

ˆ μ

} 

. 

hroughout this paper, we carry out the case of small noises: σ (k )

The structure of the rest of the paper is as follows: In Section 3

he system (3) . In the Sections 4 and 5 , we study the existence of a

he disease. In last section, we present some numerical simulations

. Existence and uniqueness of a positive solution 

To study the dynamical behaviour of an epidemic model, we firs

ection, we will prove there is a unique global positive solution of 

heorem 3.1. For any given initial value (S(0) , E(0) , Q(0) , I(0) , R (0

ystem (3) on t ≥ 0 and the solution will remain in ˜ ϒ with probabilit

roof. Obviously, the coefficient of model (3) are locally

S(t) , E(t) , Q(t) , I(t) , R (t)) ∈ R 

5 + on [0, τ e ) for any initial value

27] . If τe = ∞ a.s., then this local solution is global. To this end, l

 (0), R (0)) lying within the interval [ 1 
n 0 

, n 0 ] . For each integer n ≥ n 0

n = inf 

{ 

t ∈ [0 , τe ) : min { S(t) , E(t) , Q(t) , I(t) , R (t) } � 

1 

n 

or max

here throughout this paper we set inf ∅ = ∞ ( ∅ denotes the em

mplies τ∞ 

< τ e a.s. If τ∞ 

= ∞ a.s., then τe = ∞ a.s. This means th

here is a pair of constant T > 0 and ε ∈ (0, 1) such that P { τ∞ 

� T

 { τn � T } > ε, ∀ n � n 1 . 

enote ˜ N (t) = S(t) + E(t) + Q(t) + I(t) + R (t) . For any n ≥ n 1 and 

μr(t) + δr(t) ) 
( ˆ A 

μ̌ + δ̌
− ˜ N (t) 

)
dt � [ A r(t) − (μr(t) + δr(t) ) ̃  N (t)] dt 

� d ̃  N (t) � [ A r(t) − μr(t) ̃
 N (t)] dt 

� μr(t) 

(
Ǎ 

ˆ μ
− ˜ N (t ) 

)
dt . 
3 
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I

a

T

a

S

N

V ) + (I − 1 − log I) + (R − 1 − log R ) . 

T

u

L lying the generalized Itô’s formula [27] to V yields 

d

w

L
 

(k ) Q − μ(k ) S 
)

 α(k ) + ν(k ) + μ(k )) E 
)

α(k ) E + c(k ) Q − (η(k ) + μ(k ) + δ(k )) I 
)

k ) 2 S 2 
(

f (E) 

E 

)
2 

+ b 1 (k ) + b 2 (k ) + α(k ) 

 ) Q + η(k ) I + 

1 

2 

σ 2 (k ) f 2 (E) + 

1 

2 

σ (k ) 2 S 2 
(

f (E) 

E 

)
2 

 ν̌ + č + η̌ + δ̌ + ( ̌b 2 + α̌ + ν̌ + č + η̌) 
Ǎ 

ˆ μ
+ 

(
σ̌

Ǎ 

ˆ μ
f ′ (0) 

)
2 := K, 

w tant which is independent of S, E, Q, I, R and k . The remaining part of 

t tes the proof. �

4

of diseases when their dynamics is under investigation. This section is 

d  out of the population. First, we need to define the following number 

R  

A

T 3) with any initial value (S(0) , E(0) , I(0) , Q(0) , R (0)) ∈ 

˜ ϒ. If the following 

c lation with probability one. That is to say 

t

t then follows that 

d 

(
Ǎ 
ˆ μ

− ˜ N (t) 
)

dt 
+ μr(t) 

(
Ǎ 

ˆ μ
− ˜ N (t) 

)
� 0 , 

nd 

d 

(
ˆ A 

μ̌+ ̌δ − ˜ N (t) 
)

dt 
+ (μr(t) + δr(t) ) 

( ˆ A 

μ̌ + δ̌
− ˜ N (t) 

)
� 0 . 

herefore 

Ǎ 

ˆ μ
− ˜ N (t) � 

(
Ǎ 

ˆ μ
− ˜ N (0) 

)
exp 

{ 

−
∫ t 

0 

μr(s ) ds 

} 

, 

nd 

ˆ A 

μ̌ + δ̌
− ˜ N (t) � 

( ˆ A 

μ̌ + δ̌
− ˜ N (0) 

)
exp 

{ 

−
∫ t 

0 

(μr(s ) + δr(s ) ) ds 

} 

. 

ince 
ˆ A 

μ̌ + δ̌
� 

˜ N (0) � 

Ǎ 

ˆ μ
, it follows that 

ˆ A 

μ̌ + δ̌
� 

˜ N (t) � 

Ǎ 

ˆ μ
, ∀ t ∈ [0 , τn ) . 

ow, define a C 2 -function V : ˜ ϒ → R + as follows 

 (S, E, Q, I, R ) = (S − 1 − log S) + (E − 1 − log E) + (Q − 1 − log Q

he non-negativity of this function can be obtained from 

 − 1 − log u � 0 for any u > 0 . 

et n ≥ n 1 and T > 0 be arbitrary. For any 0 ≤ t ≤ min { τ n , T }, app

V (S, E, Q, I, R ) = L V (S, E, Q, I, R ) d t + 

(
1 

S 
− 1 

E 

)
σr(t) S f (E) d B (t) , 

here L V : R 

5 + → R is defined by 

 V = 

(
1 − 1 

S 

)(
A (k ) − β(k )(1 − ρ1 (k ))(1 − ρ2 (k )) S(t) f (E) + b 1

+ 

(
1 − 1 

E 

)(
β(k )(1 − ρ1 (k ))(1 − ρ2 (k )) S(t) f (E) − ( b 2 (k ) +

+ 

(
1 − 1 

Q 

)(
b 2 (k ) E − (b 1 (k ) + c(k ) + μ(k )) Q 

)
+ 

(
1 − 1 

I 

)(
+ 

(
1 − 1 

R 

)(
η(k ) I + ν(k ) E − μ(k ) R 

)
+ 

1 

2 

σ 2 (k ) f 2 (E) + 

1 

2 

σ (

� A (k ) + b 1 (k ) Q + β(k )(1 − ρ1 (k ))(1 − ρ2 (k )) f (E) + 5 μ(k ) 

+ ν(k ) + c(k ) + η(k ) + δ(k ) + (b 2 (k ) + α(k ) + ν(k )) E + c(k

� Ǎ + 

b̌ 1 ̌A 

ˆ μ
+ β̌(1 − ˆ ρ1 )(1 − ˆ ρ2 ) 

Ǎ 

ˆ μ
f ′ (0) + 5 ̌μ + ̌b 1 + ̌b 2 + α̌ +

here the inequality f (E) 
E ≤ f ′ (0) is used and K is a positive cons

he proof is similar to [26] and hence is omitted here. This comple

. Extinction of the disease 

It is most crucial to deal with the conditions for the extinction 

evoted to establish sufficient conditions so that the COVID-19 goes

 

0 
s = 

∑ N 
k =1 πk β(k )(1 − ρ1 (k ))(1 − ρ2 (k )) Ǎ 

ˆ μ
f ′ (0) 

∑ N 
k =1 πk 

[ 
b 2 (k ) + α(k ) + ν(k ) + μ(k ) + 

1 
2 

(
σ (k ) Ǎ 

ˆ μ
f ′ (0) 

)
2 

] .
t this stage, we have the following theorem: 

heorem 4.1. Let ( S ( t ), E ( t ), I ( t ), Q ( t ), R ( t )) be the solution of system (

ondition R 

0 
s < 1 is satisfied, then the pandemic goes out of the popu

lim 

→∞ 

E(t) = lim 

t→∞ 

Q(t) = lim 

t→∞ 

I(t) = lim 

t→∞ 

R (t) = 0 a.s. 
4 
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P

d ) + μr(t) ) −
1 

2 

(
σr(t) S 

f (E) 

E 

)
2 
] 

dt + σr(t) S 
f (E) 

E 
dB (t) . 

M (k )(1 − ρ1 (k ))(1 − ρ2 (k )) x − (b 2 (k ) + α(k ) + ν(k ) + μ(k )) is increasing 

o f the solution and the fact that f ( E ) ≤ f ′ (0) E , we obtain 

d r(t) + μr(t) ) −
1 

2 

(
σr(t) 

Ǎ 

ˆ μ
f ′ (0) 

)
2 
] 

dt + σr(t) S 
f (E) 

E 
dB (t) 

(5) 

I d to 

 (6) 

I

l (7) 

T ing use of the large number theorem for local martingales, we get 

l

ˇ
 

ˆ 
f ′ (0) 

)
2 
] 
(R 

0 
s − 1) < 0 a.s., 

w

t
(8) 

O s P (�) = 1 . Hence, for any ω ∈ � and ε > 0, there exists a constant 

T

E

S r all ω ∈ �, t > T , 

d

T

l

f w of the arbitrariness of ε > 0, we get 

t

R

t

S  by using the same approach as above, we can conclude that 

t

T

R he extinction of the disease in system (3) could be ensured even if the 

c

5

ed in when the disease persists in host population. In this section we 

n e following result on the prevailing behaviour of the COVID-19 disease. 

T  I(0) , Q(0) , R (0)) ∈ 

˜ ϒ, the solution of (3) verifies 
roof. Applying the generalized Itô’s formula to log E , we have 

 log E = 

[ 
βr(t) (1 − ρ1 r(t) )(1 − ρ2 r(t) ) S 

f (E) 

E 
− ( b 2 r(t) + αr(t) + νr(t

oreover, for any k ∈ S , the function defined by x �→ − σ 2 (k ) 
2 x 2 + β

n [0 , β(k )(1 − ρ1 (k ))(1 − ρ2 (k )) /σ 2 (k )] . Using the boundedness o

 log E � 

[ 
βr(t) (1 − ρ1 r(t) )(1 − ρ2 r(t) ) 

Ǎ 

ˆ μ
f ′ (0) − ( b 2 r(t) + αr(t) + ν

:= R̄ 

∗
r(t) d t + σr(t) S 

f (E) 

E 
d B (t) . 

ntegrating (5) from 0 to t and then dividing by t on both sides lea

log E(t) − log E(0) 

t 
� 

1 

t 

∫ t 

0 

R̄ 

∗
r(s ) ds + 

1 

t 

∫ t 

0 

σr(t) S(s ) 
f (E(s )) 

E(s ) 
dB (s ) .

t follows from the ergodic property of r ( t ) that 

im sup 

t→∞ 

1 

t 

∫ t 

0 

R̄ 

∗
r(s ) ds = 

N ∑ 

k =1 

πk ̄R 

∗
k . 

aking the superior limit on the both sides of (6) and (7) and mak

im sup 

t→∞ 

log E(t) 

t 
� 

N ∑ 

k =1 

πk ̄R 

∗
k 

= 

N ∑ 

k =1 

πk 

[ 
b 2 (k ) + α(k ) + ν(k ) + μ(k ) + 

1 

2 

(
σr(t) 

A

μ

hich implies that 

lim 

→∞ 

E(t) = 0 a.s. 

n the other hand, let � = { ω ∈ 	 : lim 

t→∞ 

E(t) = 0 } , then (8) implie

 ( ω, ε) > 0 such that 

(ω, t) � ε, for all t > T . 

ubstituting this into the third equation of system (3) , we obtain fo

Q(ω, t) � [ ̌b 2 E − ( ̂ b 1 + 

ˆ c + ˆ μ) Q(ω, t)] dt 

� [ ̌b 2 ε − ( ̂ b 1 + 

ˆ c + ˆ μ) Q(ω, t )] dt , 

hus by the comparison theorem we get 

im sup 

t→∞ 

Q(ω, t) � 

b̌ 2 ε

ˆ b 1 + 

ˆ c + ˆ μ
a.s., 

or all ω ∈ �. Note that Q ( ω, t ) > 0 for all ω ∈ 	 and t > 0, in vie

lim 

→∞ 

Q(ω, t) = 0 , ω ∈ �. 

ecalling that P (�) = 1 , hence we obtain 

lim 

→∞ 

Q(ω, t) = 0 a.s. 

imilarly, when lim t→∞ 

E(t) = 0 a.s., and lim t→∞ 

Q(t) = 0 a.s., then

lim 

→∞ 

I(t) = 0 a.s. , and lim 

t→∞ 

R (t) = 0 a.s. 

his completes the proof. �

emark 1. Obviously, the quantity R 

0 
s is smaller than R 0 . Hence, t

ondition R 0 < 1 is not verified. 

. Persistence in mean of the disease 

To investigate epidemic dynamical system, we are also interest

eed to assume that the function 

f (·) 
· is C−Lipschitz and we have th

heorem 5.1. If R 

0 
s > 1 , then for any given initial value (S(0) , E(0) ,

lim inf 
t→∞ 

1 

t 

∫ t 

E(s ) ds ≥ M 1 

(
R 

0 
s − 1 

)
a.s., 
0 

5 



B. Boukanjime, T. Caraballo, M. El Fatini et al. Chaos, Solitons and Fractals 141 (2020) 110361 

f

P

d (9) 

w

F (10) 

U at 

F  

′ (0) 

)(
Ǎ 

ˆ μ
f ′ (0) − S 

f (E) 

E 

)

0) 

)(
Ǎ 

ˆ μ
f ′ (0) − S 

f (E) 

E 

)
. (11) 

F

d (
1 − ˆ ρ1 

)(
1 − ˆ ρ2 

) Ǎ 

ˆ μ
f ′ (0) E 

]
d t − σr S f (E) d B (t) . 

N e that u < v . The monotonocity and lipschitzianity assumptions of 

f o leads to f ′ (0) − f (E) 
E ≤ CE. Hence, 

S

C

d  2 

)
f ′ (0) 

)
E 

]
d t − σr S f (E) d B (t) , 

w

−
(
1 − ˆ ρ2 

)
f ′ (0) 

)
Ed t + σr S f (E) d B (t) 

]
. 

S ain 

d (12) 

w

m ˇ
(
1 − ˆ ρ1 

)(
1 − ˆ ρ2 

)
f ′ (0) 

)
, 

a

Λ ) d B (t) ] + σr S 
f (E) 

E 
dB (t) . 

T  ) = log E + ˜ ω (k ) and using (12) , we have 

d (13) 

S
 

with P (k ) = F 

(
Ǎ 
ˆ μ

f ′ (0) , k 
)
, there is a solution ˜ ω = ( ̃  ω (1) , . . . , ˜ ω (N) ) to 

t f R 

N . That is, 

F

lim inf 
t→∞ 

1 

t 

∫ t 

0 

Q(s ) ds ≥ M 2 

(
R 

0 
s − 1 

)
a.s., 

lim inf 
t→∞ 

1 

t 

∫ t 

0 

I(s ) ds ≥ M 3 

(
R 

0 
s − 1 

)
a.s., 

lim inf 
t→∞ 

1 

t 

∫ t 

0 

R (s ) ds ≥ M 4 

(
R 

0 
s − 1 

)
a.s., 

or some positive constants M i , i = 1 , . . . , 4 . 

roof. Applying the It’s formula on the function E �→ log E , we get 

 log E(t) = F 

(
S(t ) 

f (E(t )) 

E(t ) 
, r(t ) 

)
dt + σr S(t ) 

f (E(t )) 

E(t ) 
dB (t ) , 

here 

 ( X, r ) = βr ( 1 − ρ1 r ) ( 1 − ρ2 r ) X − ( b 2 r + αr + νr + μr ) − σ 2 
r 

2 

X 

2 . 

sing the fact that S ≤ Ǎ 
ˆ μ

and 

f (E) 
E ≤ f ′ (0) , one can easily show th

 

(
S 

f (E) 

E 
, r 

)
≥ F 

(
Ǎ 

ˆ μ
f ′ (0) , r 

)
−

(
βr ( 1 − ρ1 r ) ( 1 − ρ2 r ) −

σ 2 
r 

2 

Ǎ 

ˆ μ
f

≥ F 

(
Ǎ 

ˆ μ
f ′ (0) , r 

)
−

(
β̌
(
1 − ˆ ρ1 

)(
1 − ˆ ρ2 

)
− ˆ σ 2 

2 

Ǎ 

ˆ μ
f ′ (

rom the first equation of (3) , we can easily claim that 

S ≥
[

ˆ A − β̌
(
1 − ˆ ρ1 

)(
1 − ˆ ρ2 

)
S f (E) − μ̌S 

]
d t − σr S f (E) d B (t) 

≥
[

ˆ A ̂  μ

Ǎ f ′ (0) 

(
Ǎ 

ˆ μ
f ′ (0) − S 

f (E) 

E 

)
− μ̌S 

(
1 −

ˆ A ̂  μ

μ̌Ǎ f ′ (0) 

f (E) 

E 

)
− β̌

ow, let u and v in (0 , Ǎ / ̂  μ) . Without loss of generality, assum

 ( · )/ · implies that f (u ) /u − f (v ) / v ≤ C(v − u ) . Extending u to zer

 

(
1 − f (E) 

f ′ (0) E 

)
≤ C ̌A 

ˆ μ f ′ (0) 
E. 

onsequently, 

S ≥
[

ˆ A ̂  μ

Ǎ f ′ (0) 

(
Ǎ 

ˆ μ
f ′ (0) − S 

f (E) 

E 

)
− Ǎ 

ˆ μ

(
μ̌C 

f ′ (0) 
+ β̌

(
1 − ˆ ρ1 

)(
1 − ρ̂

hich leads to (
Ǎ 

ˆ μ
f ′ (0) − S 

f (E) 

E 

)
dt ≥ − Ǎ f ′ (0) 

ˆ A ̂  μ

[
d S + 

Ǎ 

ˆ μ

(
μ̌C 

f ′ (0) 
+ β̌

(
1 − ˆ ρ1 

)
ubstituting this inequality into (11) and making use of (9) , we obt

 log E ≥
[

F 

(
Ǎ 

ˆ μ
f ′ (0) , r 

)
− m 1 E 

]
dt + 

˜ Λ(t) , 

here 

 1 = 

f ′ (0) 

ˆ A 

(
Ǎ 

ˆ μ

)2 (
β̌
(
1 − ˆ ρ1 

)(
1 − ˆ ρ2 

)
− ˆ σ 2 

2 

Ǎ 

ˆ μ
f ′ (0) 

)(
μ̌C 

f ′ (0) 
+ β

nd 

˜ (t) = − Ǎ f ′ (0) 

ˆ A ̂  μ

(
β̌
(
1 − ˆ ρ1 

)(
1 − ˆ ρ2 

)
− ˆ σ 2 

2 

Ǎ 

ˆ μ
f ′ (0) 

)
[ d S + σr S f (E

hen, applying the generalized It ̄y’s formula on the function V (E, k

 V ≥
[ 

F 

(
Ǎ 

ˆ μ
f ′ (0) , k 

)
+ 

N ∑ 

k =1 

γkl ̃  ω (l) − m 1 E 

] 

d t + 

˜ Λ(t) . 

ince the generator 
 is irreducible, then for P 0 = ( P (1) , . . . , P (N) )

he system 
ω = −P 0 + 

∑ N 
k =1 πk P (k ) 1 , where 1 is the unit vector o

 

(
Ǎ 

ˆ μ
f ′ (0) , k 

)
+ 

N ∑ 

k =1 

γkl ̃  ω (l) = 

N ∑ 

k =1 

πk F 

(
Ǎ 

ˆ μ
f ′ (0) , k 

)
. 
6 
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S  from 0 to t and dividing by t , we obtain 

 ) . 

T ess of S implies that lim 

t→∞ 

1 
t 

∫ t 
0 

˜ Λ(s ) = 0 a.s. In addition, making use of 

t

∑ k ) 

 

(
Ǎ 

ˆ μ
f ′ (0) 

)2 
] (

R 

0 
s − 1 

)

l

l (14) 

F

T of Q and the inequality (14) , we get 

l

w asily claim that 

l

w his makes finish of the proof. �

6

ts regarding system (3) are illustrated numerically using real COVID-19 

d il Nadu states. These different parts differ from each other in terms of 

t ume that the Markov chain r t switchs among these states S = { 1 , 2 , 3 } 
w




a he general Holling type II incidence is considered in the infection force 

m ptions along this manuscript. The path of the Markov chain r t and the 

c ample, we let the state chain takes more time on the third environment 
ubstituting the above equality into the inequality (13) , integrating

V (t) − V (0) 

t 
≥

N ∑ 

k =1 

πk F 

(
Ǎ 

ˆ μ
f ′ (0) , k 

)
− m 1 

1 

t 

∫ t 

0 

E(s ) ds + 

1 

t 

∫ t 

0 

˜ Λ(s

he large number theorem for local martingales and the boundedn

lim 

→∞ 

V (t) −V (0) 
t ≤ 0 , and the fact that 

N 
 

k =1 

πk F 

(
Ǎ 

ˆ μ
f ′ (0) , k 

)
= 

N ∑ 

k =1 

πk 

[ 

b 2 (k ) + α(k ) + ν(k ) + μ(k ) + 

σ 2 (

2

� m 1 M 1 

(
R 

0 
s − 1 

)
eads to 

im inf 
t→∞ 

1 

t 

∫ t 

0 

E(s ) ds ≥ M 1 

(
R 

0 
s − 1 

)
a.s. 

rom the third equation of (3) , we can establish that 

1 

t 

∫ t 

0 

Q(s ) ds ≥ 1 

b̌ 1 + č + μ̌

(
ˆ b 2 
t 

∫ t 

0 

E(s ) ds − Q(t) − Q(0) 

t 

)
. 

aking the inferior limit and making use of both the boundedness 

im inf 
t→∞ 

1 

t 

∫ t 

0 

Q(s ) ds ≥ M 2 

(
R 

0 
s − 1 

)
a.s., 

here M 2 = ̂

 b 2 M 1 / 
(
b̌ 1 + ̌c + μ̌

)
. Following the same way, we can e

lim inf 
t→∞ 

1 

t 

∫ t 

0 

I(s ) ds ≥ M 3 

(
R 

0 
s − 1 

)
a.s., 

im inf 
t→∞ 

1 

t 

∫ t 

0 

R (s ) ds ≥ M 4 

(
R 

0 
s − 1 

)
a.s., 

here M 3 = 

(
ˆ αM 1 + ̂  c M 2 

)
/ 
(
η̌ + μ̌ + δ̌

)
and M 4 = 

(
ˆ νM 1 + ˆ ηM 3 

)
/ ̌μ. T

. Numerical simulations 

Based on the Milstein method of [8] , the main theoretical resul

ata from some Indian states. Namely, Maharashtra, Delhi and Tam

heir environmental conditions and rigimes. In this section, we ass

ith the generator 

= 

[ −9 4 5 

2 −5 3 

2 2 −4 

] 

, 

nd the corresponding stationary distribution π = 

(
14 

77 
, 

26 

77 
, 

37 

77 

)
. T

odelling. Namely, f (E) = 

E 

1 + 0 . 001 E 
satisfies the required assum

orresponding stationary distribution are plotted in Fig. 1 . In this ex
Fig. 1. The sample path of the Markov chain r t (a) and the corresponding stationary probability density function (b). 

7 
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Table 1 

Parameters values used in numerical simulations. 

Parameter Maharashtra Delhi Tamil Nadu 

μ 0.0058 0.0036 0.0071 

α 1/5.2 1/4 1/5.4 

δ 0.0685 0.0232 0.0122 

η 1/14 1/14 1/14 

ρ1 0.64 0.72 0.62 

ρ2 0.78 0.82 0.75 

b 1 0.07122 0.045185 0.062856 

b 2 1.11013 0.78529 0.157832 

ν 0.119732 0.14029 0.36186 

Fig. 2. Simulation results of the means (blue lines) and the associated standard deviations (grey area) over 5 × 10 3 samples of S ( t ), E ( t ), Q ( t ), I ( t ) and R ( t ) respectively for 

the system (3) . Red lines, green and black ones stand for deterministic paths of the ODE model (1) with only one rigime r(t) = 1 , r(t) = 2 and r(t) = 3 respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

t  assumed to be more likely than the first one to show the applicability 

o ter values chosen are given in Mandal et al. [20] and reported in the 

T

han on the first two ones. The second environment conditions are

f the analytical results established along this paper. The parame

able 1 . 
8 
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Fig. 3. The empirical means (blue lines) and the associated standard deviations (grey areas) based on 5 × 10 3 trajectories of S ( t ), E ( t ), Q ( t ), I ( t ) and R ( t ) solutions to system 

(3) . Red lines, green and black ones are the paths solution to the system (1) with one rigime r(t) = 1 , r(t) = 2 and r(t) = 3 respectively. All the trajectories stay away from 

the zero line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

o  

l

A

β

σ

T  

w

t

(  

m

t

1

t

c

A

β

σ

t  

a  

3  

t

t

s

b

(  

s

To demonstrate the effect of telegraph noise on the dynamics 

f COVID-19 disease, in addition to data of Table 1 , we set the fol-

owing settings: 

 (1) = 0 . 012 , A (2) = 0 . 0078 , A (3) = 0 . 015 , 

(1) = 3 . 5 , β(2) = 3 , β(3) = 2 . 5 , 

(1) = 0 . 25 , σ (2) = 0 . 19 , σ (3) = 0 . 23 . 

hen, by direct computation, we obtain R 

0 
s = 0 . 6303 < 1 . In other

ords, the conditions of the Theorem 4.1 hold and the Fig. 2 shows 

he empirical means and the standard deviations of the solution to 

3) in a 5 × 10 3 samples, as well as the trajectories of the deter-

inistic system (1) without switching for different values of the 

hree considered regimes. So the stochastic process (3) for COVID- 

9 disease switches over the states 1, 2 and 3 before going to ex- 

inction. 
9 
On the other hand, when the following parameter values are 

onsidered, 

 (1) = 0 . 048 , A (2) = 0 . 051 , A (3) = 0 . 042 , 

(1) = 3 . 4 , β(2) = 2 . 9 , β(3) = 2 . 5 , 

(1) = 0 . 6 , σ (2) = 0 . 55 , σ (3) = 0 . 3 , 

hen we get 
∑ N 

k =1 πk β(k )(1 − ρ1 (k ))(1 − ρ2 (k )) Ǎ 
ˆ μ

f ′ (0) = 8 . 5177

nd 

∑ N 
k =1 πk 

[ 
b 2 (k ) + α(k ) + ν(k ) + μ(k ) + 

1 
2 

(
σ (k ) Ǎ 

ˆ μ
f ′ (0) 

)
2 
] 

=
 . 2728 which gives that the stochastic threshold R 

0 
s = 2 . 6026 and

he condition of the Theorem 5.1 is fulfilled. The persistence of 

he disease is clarified in the Fig. 3 , where the average of the 

olution to (3) and the associated standard deviation are ploted 

esides the trajectories of the solution to the deterministic system 

1) . The processes ( S ( t ), E ( t ), I ( t ), Q ( t ), R ( t )) move up and down

tochastically in a neighborhood of the solutions to the model 
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1) corresponding to each state separately and with no random 

erturbation. 

. Conclusion 

This paper investigates a stochastic epidemic model describing 

OVID-19 dynamics affected by mixture of environmental pertur- 

ations modeled by white and telegraph noises. By means of Lya- 

unov approach, the existence and positivity of a global solution 

s well proved. In terms of a stochastic threshold R 

0 
s , the extinc- 

ion and the persistence in mean of the COVID-19 epidemic are in- 

estigated. Particularly, under small noises, the condition R 

0 
s < 1 is 

ufficient to reduce the daily number of confirmed infectives and 

ake the coronavirus disease 2019 extinct. Reciprocally, the per- 

istence of this novel epidemic is inevitable once R 

0 
s stays away 

rom unity. Based on the data from different states of India, we 

erformed numerical simulations in order to support and illustrate 

he main results of this paper. 

Although many important contributions are made in literature 

o draw the dynamical properties of the COVID-19, some of them 

till unidentified and much more effort s are recommended to make 

t more comprehensible and help humanity to overcome the cur- 

ent pandemic. As a further suggestion, other improvements such 

s time varying parameters can be considered to make the stud- 

ed COVID-19 model more realistic. A task which we leave for next 

orks. 
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