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Adaptive Delta Modulation in Networked

Controlled Systems with bounded disturbances

Fabio Ǵomez-Estern, Carlos Canudas-de-Wit, and Francisco R. Rubio

Abstract

This paper investigates the closed-loop properties of the differential coding scheme known as Delta

Modulation (∆-M ) when used in feedback loops within the context of linear systems controlled through

a communication network. We propose a new adaptive scheme with variable quantization step∆, by

defining an adaptation law exclusively in terms of information available at both the transmitter and

receiver. With this approach, global asymptotic stabilityof the networked control system is achieved

for a class of controllable (possible unstable) linear plants. Moreover, thanks to the globally defined

switching policy, this architecture enjoys a disturbance rejection property that allows the system to

recover from any finite–time unbounded disturbance or communication loss.

Index Terms

Differential Coding, Delta Modulation, stabilization of Networked Control Systems.

I. INTRODUCTION

DELTA Modulation (∆-M ) is a well-known differential coding technique used for reducing

the data rate required for voice communication, see [1]. Thestandard technique is based

on synchronizing a state predictor on emitter and receiver and just sending a one–bit error signal

corresponding to the innovation of the sampled data with respect to the predictor. The prediction

is then updated by adding a positive or negative quantity (determined by the bit that has been

transmitted) of absolute value∆, a known parameter shared between emitter and receiver. Hence,
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Fabio Gómez-Estern, Francisco R. Rubio are with the Department of Automatic Control and Systems Engineering at the

University of Sevilla, Spain. Email:fabio@esi.us.es, rubio@esi.us.es,

April 1, 2011 DRAFT



2

∆ can be regarded as the quantization step. This paper proposes anadaptiveextension a offixed-

gaindifferential coding scheme previously introduced by the same authors (see [2]) in the context

of linear systems interconnected through some transmission network.

The selection of∆ is a crucial issue on the quality of the decoded signals. It iswell known

in digital communications framework that large values of∆ will result in a high granular noise,

while too small values of∆ will result in slope–overload distortion. In closed-loop configurations,

as in the scenarios considered here, the choice of∆ is even more important because it may

cause instability. The closed–loop stability properties of Delta Modulation coding withfixed or

scheduledgains, has been studied in [2], [3], [4].

Delta modulation (∆-M ) algorithm can also be understood as the coarsest two-level(1-

bit) quantizer. Thus, this technique is a simple alternative to approaches concerning the use of

quantizers in the context of NCS, i.e. [5], [6], [7], [8], [9], [10], [11] among others.

For a Delta Modulation scheme with constant quantization step ∆ it was shown in [2] that

only a limited domain of attraction was obtained. In addition, the state was only guaranteed to

converge asymptotically to a finite ball, being its size related to the parameters of the open-loop

plant, and to the user-defined parameter∆.

By making∆ an adaptive quantity, more effective schemes of∆-modulation have been already

proposed in the communications community [1]. The idea is todesign an update law for∆,

defined exclusively in terms of the information available both at the receiver and transmitter,

aiming at improving the resolution of the differential coding by reducing the gain∆ for slowly

varying signals, while enlarging∆ in case of rapid change of the input, and hence allowing for

faster signal tracking and higher bandwidth of the transmitted signals. So far in the communi-

cations field, adaptation laws for∆ have been proposed under somewhat heuristic criteria, as

little information is supposed to be available on the dynamics of the signal source. However,

when dealing with feedback systems, the dynamical properties of the plant become very useful

in designing the adaptive law. This problem, to which this paper is devoted. is framed as shown

in Figure 1.

The main paper contribution is the introduction of an adaptation mechanism consisting of

varying the quantization interval∆ in terms of a minimal amount of information available

at the transmitter and the receiver. This type of adaptationlaw, although well known in the

communications field, is used and analyzed for the first time afeedback configuration shown
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Fig. 1. Block diagram of the problem set up studied in this paper.

in Figure 1. It is also shown that this adaptive coding structure, modified as proposed in [2],

is proven to yield closed-loop global asymptotic stabilityfor a class of open-loop unstable

linear systems. We provide also a comparison between our approach and existing ones, in order

highlight the main advantage: a disturbance recovery property that guarantees that if the system

state is driven temporarily away from the origin, due to someunattended unbounded finite–time

disturbance, or possibly loss of communication, the systemwill ultimately stabilize the estimation

error, and drive the state back to the origin. This is due to the globally definedswitching policy

(and not only in one time sense as happens in most of the referenced papers), and also allows

a free initialization of the encoder without any previous information of the state.

The results are presented in scalar form. The extensions to higher dimension are easy to

develop in the case of diagonalizable system matrices, and will be spared for the sake of space.

However, for non–diagonalizable systems, the analysis is involved, and the technical details have

been presented in [12] for thefixed Delta Modulation algorithm, while the adaptive version is

part of an ongoing research work.

II. A DAPTIVE ∆-M CODING SCHEME

The problem setup will be initially presented, and the fixed–step Delta Modulation networked

controller [2] will be briefly recalled for the sake of completeness. Then we propose a∆–

adaptation law resulting in a global asymptotic convergence of the state estimation error and

system states to zero. This is a significant achievement withrespect to the fixed-gain scheme

presented in [2].
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A. Assumptions

In the following, we will assume that the transmitted information is binaryδk ∈ {−1, 1},

that only sensor–to–controller transmission is allowed, that a 100% reliable noiseless channel

without transmission delays is used, and that the data is sent at a fixed rate (we select the

sampling frequency in order to transmit only oneδk at a time).

B. Problem Setup

Consider first the following one-dimensional discrete time-system, together with the control

law, and the fixed–step differential coding law:

Open-loop system, and encoder: Control law and decoder:

xk+1 = axk + buk (1)

x̂k+1 = [a− bK]x̂k +∆ · δk (2)

x̂0 = 0, δk
△
= sgn(xk − x̂k)

x̂k+1 = [a− bK]x̂k +∆ · δk (3)

uk = −Kx̂k (4)

x̂0 = 0

In that structure,x ∈ IR is the state of the plant, and a standard Delta Modulator is used to

encode it. This structure uses a prediction of the statex̂k generated by a model of theclosed–

loop dynamics (2) synchronized at both communication ends. Whena new sample of the state

xk arrives at the encoder, it is compared to the predictionx̂k, and its difference is coded on a

binary basis, i.e. the value of sgn(xk − x̂k) is coded and transmitted as a binary digit.

Stability of this system has been analyzed in [2]. Although it has interesting disturbance

rejection properties, the main limitation of this approachis the fact that stability is semiglobal,

in the sense that the quantization step must be chosen as a function of an upper bound of the

initial state. This is a quite frequent fact in the literature (see [7]), and has been tackled (in

that paper) by devising open–loop initialization mechanisms for estimating that bound. Another

issue (also shown in [2]) is that using fixed–step Delta Modulation, the state does not converge

strictly to zero, but to a finite ball around the origin, whoseradius is proportional to∆ (there

is chattering in steady state). As a consequence, when the gain ∆ is fixed, there is an inherent

trade–off between stability and precision. This motivatesour search for other coding strategies

with variant gains, as shown next.

April 1, 2011 DRAFT



5

C. Adaptation law design

Adaptive∆–modulation in Digital Communications aims at improving the resolution of the

differential coding scheme according to the size of the signals to be transmitted. In our case

this signal is the system state, hence a reasonable approachis to enlarge∆ for large values of

the estimated states, and decrease it for smaller values. Another requisite is the Equi–Memory

property described in [13], which suggests that the quantization step must be the same at the

transmitter and the receiver at any time. Hence, the adaptation law must be defined exclusively

in terms of the shared information, i.e. of{δ0, δ1, . . . , δk}. Another condition is to keep the

adaptation law as simple as possible, and also minimize its memory usage. With that aim we

will propose a very heuristic and simple approach, and will further provide a detailed analysis to

prove that it guarantees global asymptotic stability. In order to design an∆–adaptive mechanism

to achieve global asymptotic stability two opposite behaviors must be observed in the analysis

of [2]. For large values of the estimation errorx̃, there is probably slope overload, so∆k should

grow at a higher rate than the plant escape velocity. When the state is trapped into a domain of

attraction for the present∆k, the step size must decrease (for improving resolution)at a slower

rate than the state convergence in order to prevent it from getting too small relative to the state.

From this intuition, an adaptive scheme with minimal storage and computation requirements

is proposed as follows:

1) If δk = δk−1 then the state is assumed to be escaping, thus∆k must be increased.

2) If δk 6= δk−1 then the state is assumed to converge (oscillations close tozero) and∆k must

be decreased.

The following update law is proposed:

∆k+1 = φk+1∆k (5)

φk+1 =











λ+ if δk = δk−1

λ− if δk 6= δk−1

(6)

where0 < λ− < 1 is the exponential decay rate of∆k, andλ+ > 1 is the exponential growth rate.

The proposed algorithm is shown in Fig.2. This adaptation law can be seen as a generalization

of Jayant’s adaptation rule (1970) (see [1]).
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Fig. 2. Adaptive coding scheme. The figure shows the case of one–dimensional systems. The selection gain block toggles the

value ofφk according to Equation (6).

D. Error equations

The complete feedback system with the adaptive delta Delta Modulation coding scheme is then:

Open-loop system (7), and encoder (8)-(10):Decoder (11)-(13) and control law (14):

xk+1 = axk + buk (7)

x̂k+1 = [a− bK]x̂k +∆k · δk (8)

∆k+1 = φk+1∆k (9)

φk+1 =











λ+ if δk = δk−1

λ− if δk 6= δk−1

(10)

x̂0 = 0, ∆0 > 0 freely assigned

x̂k+1 = [a− bK]x̂k +∆k · δk (11)

∆k+1 = φk+1∆k (12)

φk+1 =











λ+ if δk = δk−1

λ− if δk 6= δk−1

(13)

uk = −Kx̂k (14)

x̂0 = 0, ∆0 > 0 same as encoder

With the above definitions, the closed–loop error dynamics become

x̃k+1 = ax̃k −∆k · δk

∆k+1 = φk+1∆k, ∆0 > 0 (15)

φk+1 = λ− +
1

2
(λ+ − λ−) |δk+1 + δk|

The causality of the system is guaranteed because the computation of x̃k+1 is only based oñxk

April 1, 2011 DRAFT
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and older values. The following Theorem states the stability of the closed–loop system.

E. Main result (stability analysis)

Theorem 1:The error trajectories̃xk of system (15), resulting from the adaptive∆-modulation

coding scheme (7)-(14), globally asymptotically convergeto zero ask → ∞ if there exist

parametersλ+ > 1, λ− ∈ (0, 1) satisfying the following inequalities:

λ+ > a (16)

λ− < (λ+)−
β
2 , (17)

where β(a, λ−, λ+)
△
= 1 + logρ

(

1 +
a (a− λ−) (ρ− 1)

(λ−)2

)

and ρ
△
=

λ+

a

Moreover,∆k and hencexk also converge to zero regardless the initial conditions(x0,∆0).

Proof: The claim will be proved in two steps. First, a new variable will be defined in order to

capture the ratio betweeñxk and∆k, namelyyk
△
= x̃k/∆k, and boundedness of that variable will

be proved. Secondly, it will be shown that∆k asymptotically converges to zero. Consequently,

the convergence of̃xk towards the origin is directly implied. Along the trajectories of (15), the

variableyk evolves along the dynamics

yk+1 =
1

φk

(ayk − sgn(yk)) . (18)

Fact 1. Trajectories ofyk cross the zero axis in finite time.

This means that starting from any initial condition,x̃0 and∆0, and thusy0, there must be a

future timek0 < ∞ such thatyk0−1 · yk0 < 0. This is easily shown by imagining a trajectory

with no zero crossings onyk (hence oñxk as∆k is always positive). Assuming initially positive

x̃, i.e. starting fromy0 > 0, we haveyk+1 = 1/λ+ (ayk − 1) and hence

yk+1 − yk =
1

λ+
(ayk − 1)− yk =

(

a

λ+
− 1

)

yk −
1

λ+
< −

1

λ+

for the given choice ofλ. Then, starting fromy0 > 0, we haveyk < y0 − k/λ+ and hence

there is some constantk0 ≤ y0λ
+ such thatyk0−1 > 0 andyk0 < 0. Due to the symmetry of the

system equations, a similar argument applies if the trajectory starts fromy0 < 0.
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Fact 2. Trajectories ofyk are bounded after finite time.

Immediately after a zero crossing of the system (assuming + to - without loss of generality),

yk0 is bounded as follows

yk0 =
1

λ+
(ayk0−1 − 1) > −

1

λ+
(19)

hence|yk0| <
1
λ+ , as yk0 < 0. Now if we search for bounds on subsequent samples we must

update the growth factor of∆ to λ− and computeyk0+1 = 1/λ− (ayk0 + 1), which is positive,

as from the bound0 > yk0 > −1/λ+ we have

yk0+1 >
1

λ−

(

−
a

λ+
+ 1

)

> 0.

Moreover,|yk0+1| < 1/λ−. These observations are summarized in Fig. 3, where the necessity of

two zero crossings after a set of positive values is illustrated, as well as the upper bounds inferred

by the switching dynamics. Now as the switching policy is second order, the analysis is concluded

by taking one further step. Using0 < yk0+1 < 1/λ−, we haveyk0+2 = 1/λ− (ayk0+1 − 1), and

hence

−
1

λ−
< yk0+2 <

1

λ−

(

a

λ−
− 1

)

,

As illustrated in Fig. 3 (left), two situations (a) and (b) are then identified,

(a) − 1
λ− < yk0+2 < 0. This situation (including the norm bound) is exactly the one found at

instantk0 + 1, then it has been already considered

(b) yk0+2 > 0. Then, we have two subsequent positive samples, i.e. the situation of yk0−1 is

recovered. In that case, the dynamic equation turns into (19) and along it the mapyk → yk+1

is contracting, hence the norm will decrease until a future sign change.

The previous analysis yields that after the first sign change, the stateyk remains bounded as

|yk| <
1

λ−

(

a

λ−
− 1

)

(20)

With the above facts, the proof of the proposition reduces toshow asymptotic convergence to

zero of∆k, and hence concluding convergence of the statex̃. With this objective we will use

the following definition,

Definition 2.1: Given a sequence of positive (negative) samples ofyk, the fly–time is the

number of sampling instants elapsed between the two zero–crossings that enclose the signal. For

its computation, the first and the last positive (negative) samples are considered.
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Fig. 3. Left: Behavior ofyk at zero crossings. Right: Definition of fly–time.

This magnitude is viewed in Fig. 3 (right). We will compute a non–conservative upper bound

on it. Indeed, consideringy0 as the first positive sample (i.e. resetting the time count),we have

along the dynamics (19),

yk = ρk
(

y0 −
1

a

(

ρk − 1

ρ− 1

))

(21)

then, the zero crossing occurs at the next sampling instant after the time the right hand side of

this equation vanishes. Therefore, the fly–timek∗ is bounded as

k∗ ≤ 1 + logρ(1 + y0a(ρ− 1)) ≤ 1 + logρ

(

1 +
a (a− λ−) (ρ− 1)

(λ−)2

)

= β(a, λ−, λ+)

for which we have used the finite–time bound onyk (and hencey0) computed in (20). On the

other hand, the duration of a full flying period equals the number of times the∆ factor is

increased as∆k+1 = λ+∆k, then the net value of∆ after the flying period, starting from∆0 is

∆k = (λ+)k∆0.

Hence a condition for asymptotic convergence of∆k to zero is that, on zero crossings, the net

decrease in∆ compensates the net amount increase over the flying period. This is guaranteed

by choosingλ− such that, (consideringk0 as the first negative sample, again as in Fig. 3)

∆k0+2 = (λ−)2∆k0 < (λ−)2(λ+)β∆0

where the power in(λ−)2 has been introduced using the fact that after a flying period,two

consecutive zero crossings must occur (see argument of Fact2). This gives a less restrictive

condition onλ−. Hence, the condition for a net reduction of∆ after a flying period is

∆k0+2 < ∆0 ⇐ (λ−)2(λ+)β < 1,
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or, equivalently,λ− < (λ+)−
β
2 which is the condition (17) stated at the Proposition. From the

net convergence of∆k to zero and the boundedness ofyk, we conclude thatlimk→∞ x̃k = 0.

This completes the proof.

In the related literature, some authors have dealt with noisy systems with limited data rates,

such as [11]. In that paper, variable length coding is used for stochastic stabilization in the mean

square sense. Our approach can also handle the presence of noise in the system dynamics if a

minor change in the switching policy is introduced.

Corollary 1: If system (1) is perturbed with a state noisewk such that|wk| < W , as in

xk+1 = axk + buk + wk

and the same coding-control strategy is applied, with the introduction of a lower bound on∆k,

i.e., substituting the∆-switching policy by

∆k+1 =











φk+1∆k if φk+1∆k ≥ ∆min

∆min otherwise
(22)

where∆min > W ; then, the error̃xk is ultimately bounded as

|x̃k| <
(

λ+
)k∗

∆0a(λ
−)−2

(

1 +
W

∆min

)

where

k∗ =
1

log ρ
log





λ+y0
1− W

∆k





Some details of the proof will be skipped for the sake of spaceand reported elsewhere. The

main argument stems from observing that the evolution ofyk is no longer (18), but

yk+1 =
1

φk

(

ayk − sgn(yk) +
wk

∆k

)

(23)

whose solution along a flying period starting aty0 (without sign change ofyk) becomes

yk =
(

a

λ+

)k

y0 +
1

λ+

(

k
∑

i=0

(

a

λ+

)i
)

vk−i

wherevk
△
= wk

∆k
−1. The zero crossings ofyk are still guaranteed thanks to the new lower bound

on ∆k and the flying period is limited byk∗.

Finally, an analysis similar to the noiseless case leads to the bound oñxk given in the corollary.

Moreover, the closed loop system with nonzero errorx̃k becomes a stable system with a bounded

input disturbance perturbation, hence giving a steady state error that is proportional toW .
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III. D ATA RATE LIMITS

Theorem 1 solves the stabilization problem in networked control systems using adaptive Delta

Modulation with no restriction on the data rates, apparently in contradiction with the theoretical

limits of [13]. In fact, conditions (16)-(17) establish implicitly a constraint between the required

data–rate for stabilization and the maximum open–loop eigenvalue of the system.

Actually both parameters are embedded in the constanta.

This value, proceeding from the sampling of a continuous system in the formẋ = λcontx +

Bcontucont, takes the forma = eλcontTs . In a one–bit per sample modulation scheme, which is

the case of Delta Modulation we havea = eλcont/R whereR is the data rate in b.p.s. Now, as an

upper bound ina will result in an upper bound in the ratioλcont/R, we will investigate what is

the maximum valueamax such that for alla < amax there exist valid choices of parametersλ+

andλ− fulfilling (16)-(17).

A detailed numerical analysis of that inequality yields that for a ≤ 1.2 there are values of

λ+ andλ− that solve the equation. Conversely, for values ofa ≥ 1.3226 no solution has been

found numerically. Moreover, as the right hand side of (17) decreases witha, there will be no

more solutions for greatera. An analytical result supporting these facts is presented next.

A. Conditions for solving the parameter tuning equation (17)

The following proposition states the limits of Theorem 1 in terms of the minimum data–

rate required for stabilizing a system given its continuous–time open–loop eigenvalues, using

Adaptive Delta Modulation. Moreover, as the tuning parametersλ− andλ+ must be obtained by

solving (numerically) the implicit equation (17), finite intervals are provided for scanning those

solutions.

Proposition 1: Consider (7) as a result of sampling a continuous–time system ẋ = λcontx +

Bcontucont, with sample timeTs = 1/R and Adaptive Delta Modulation one–bit state coding as

(14). Then, a sufficient (possibly conservative) conditionfor closed–loop stability with feedback

u = Kx̂ where x̂ is the output of the decoder isR > λcont/ log(1.3226) bits per second.

Moreover, a less conservative search for the tuning parametersλ+ andλ− satisfying (17) is to

be carried out numerically scanning the finite interval

λ− ∈ (0, 1)]×



λ+ ∈



a, a
1 +

√

1 + 4
a(a−1)

2







 (24)
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Proof: (Sufficient condition)We are concerned with the existence of solutions satisfying

inequality (17), i.e.λ− < (λ+)−
β
2 within the range of validity of the constants, i.e.[λ− ∈

(0, 1)]× [λ+ ∈ (a,∞)]. Using the propertyλ− = (λ+)

(

log λ−

log λ+

)

, we can rewrite (17) as

log λ−

log λ+
< −

1

2



1 +
log

(

1 + a(a−λ−)(ρ−1)
(λ−)2

)

log(ρ)



 .

Now a sufficient condition for its solution is obtained by taking limit1 asρ → 1+, which gives

log λ− < −
log a

2

(

1 +
a(a− λ−)

(λ−)2

)

, ⇔ (λ−)2 log λ− < −
log a

2

(

(λ−)2 + a2 − aλ−)
)

.

The left hand side of the last expression is minimized to -0.1839 atλ− = 0.6070. Substituting this

value in the right hand side, we have the inequality−0.183 < −(log a)/2 (a2 − 0.6070a+ 0.60702)

that is fulfilled by values ofa below 1.3226. This means that ifa is below that value, then we

can find tuning parametersλ− = 0.6070 andλ+ close enough toa (from the limit asρ → 1+)

such that (17) holds and the coding scheme can be implemented. Now from the relation between

the discrete and continuous–time formulation, the relation R > λcont/ log(1.3226) is implied.

(Parameter search interval)If the sufficient condition on the data rate (for which the parameter

tuning procedure is given above) is not satisfied, (17) mightbe solved numerically. To this end,

a finite interval for the tuning parameters will be obtained by analyzing necessary conditions for

(17), also rewritten as

log λ− < −
1

2

log λ+

log(ρ)

(

log(ρ) + log

(

1 +
a(a− λ−)(ρ− 1)

(λ−)2

))

,

for which, asλ+ > ρ, it is necessary that

log λ− < −
1

2

(

log(ρ) + log

(

1 +
a(a− λ−)(ρ− 1)

(λ−)2

))

, (25)

and the right hand side of this expression is upper bounded by

r.h.s. of (25)< −
1

2

(

log(ρ) + log

(

a(a− 1)(ρ− 1)

(λ−)2

))

= −
1

2
log

(

ρ

(

a(a− 1)(ρ− 1)

(λ−)2

))

.

Hence the necessary condition for the existence of solutions is

(λ−)2 <

(

ρ

(

a(a− 1)(ρ− 1)

(λ−)2

))−1

1Intuitively, the best choice forλ+ is to be close toa, as this would reduce the flying period and impose a less conservative

constraint onλ− for a net reduction of∆k.
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i.e. ρa(a− 1)(ρ− 1) < 1 and henceρ(ρ− 1) < 1/(a(a− 1)). Therefore, the valid choices ofρ

are such that
1−

√

1 + 4
a(a−1)

2
< ρ <

1 +
√

1 + 4
a(a−1)

2
.

But, asλ+ > a, the search interval becomes (24).

IV. RECOVERY AND PERSISTENCE ISSUES

In previous papers presented in this field, such as [14] and [7] an explicit bound on the initial

statex(t0) is required in order to initialize the encoder. The proposedbypass is to execute

an initial uncontrolledstage (with undesired transient effects) to estimate that bound (See [7],

Section III), but it is not stated how to switch back and forthbetween stages in case a disturbance

drives away the state (it is a known fact that the switching policy is crucial in stability analysis).

On the other hand, [15] proposes a zoom–out and then zoom–in mechanism (in that particular

ordering), and it deals only with continuous–time quantization (and hence unlimited data rate).

Our claim is that our algorithm does not distinguish betweendifferent stages, i.e. the mathemat-

ical definition is unique, and it does not require any bound onthe initial state. As a consequence,

the algorithm allows the state to escape momentarily at any time due to unattendedunbounded

finite–time disturbances, and after them it will recover stability.

It must be acknowledged, however, that a temporary loss of communication could have a

side effect: the equi-memory property may be lost, i.e.∆k may differ between receiver and

transmitter. In that case, a recovery procedure for synchronizing both ends is proposed as follows.

Consideringk∗ as the maximum flying period (see proof of 1), we propose the following re-

synchronization algorithm:

Initialization Sequence Coding operation

1) Ns = 0, x0 = 0,∆0 = ∆∗

2) Wait until δk 6= δk−1

3) Go to Coding operation

1) If δk=δk−1 setNs = Ns + 1; else setNs = 0

2) If Ns = k∗ + 1 go to Initialization Seq.

3) Apply (8)-(10) (enc.), or (11)-(13) and (14) (dec.)

Here,∆∗ > 0 is the freely–chosen (but shared) initial value of the quantization step. Thanks to

the global stability of the system with unconstrained encoder initialization, this algorithm at both

the emitter and receiver guarantees that, in the case of temporary loss of communication provokes

instability of the error dynamics (loss of synchronization, or equi–memory), both communication
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Fig. 4. System (7)-(14) has been simulated for the set of values a = 1.1, b = 1, K = 0.2, xk(0) = −0.5, x̂k(0) = 0, with

∆0 = 5, λ− = 0.4, λ+ = 1.21, according to conditions (16) and (17). The simulation compares the fixed-gain∆ coding scheme

(left figure) [2], with the proposed adaptive scheme (right figure). In the first case, the value of∆ is changed at pre-specified

time instants whereas the adaptive law for∆ allows for better granularity which is adapted as a functionof the closed–loop

error signal improving the system performance while enlarging the domain of attraction.

ends will reset their Delta Modulators and recover stability after a transient. The validity of this

procedure relies in the fact that, in normal operation, no more thank∗ consecutive samples with

the same value ofδk can occur. Step 3 in the initialization sequence is requiredbecause the

flying period is bounded only after the first zero crossing theerror signal.

V. SIMULATIONS

Simulations are illustrated in Fig. 4. The upper plots showxk, x̂ and rk. The lower figures

show the time evolution of∆k for both; fixed and adaptive cases. As expected, the adaptivelaw

performs over the fixe case as the tracking error decrease up to an arbitrarily small value dictate

by the minimum saturation for∆min = 0.05. Without this saturation,∆k would decrease to zero

indefinitely annulling the system capacity to recover from future perturbations.

VI. CONCLUSIONS

In this paper we have investigated the stability propertiesof the Delta-modulation coding rule,

when used as a transmission means in networked controlled linear systems. It was first shown

that the standard form of the∆-M algorithm can be modified, including information about the
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system and the controller. These results were extended to the case of adaptive∆k. An explicit

adaptation rule was proposed and the range of parameters were derived to ensure asymptotic

stability. These results displayed a limit on the maximum unstable eigenvalues of the system

that are compatible with the ones given in [13].
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