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In order to extend the theory of optimal domains for continuous operators on a Banach
function space X(μ) over a finite measure μ, we consider operators T satisfying other type
of inequalities than the one given by the continuity which occur in several well-known
factorization theorems (for instance, Pisier Factorization Theorem through Lorentz spaces,
pth-power factorable operators . . . ). We prove that such a T factorizes through a space of
multiplication operators which can be understood in a certain sense as the optimal domain
for T . Our extended optimal domain technique does not need necessarily the equivalence
between μ and the measure defined by the operator T and, by using δ-rings, μ is allowed
to be infinite. Classical and new examples and applications of our results are also given,
including some new results on the Hardy operator and a factorization theorem through
Hilbert spaces.

1. Introduction

Let (Ω,Σ) be a measurable space, X(μ) a Banach function space related to a positive measure μ on Σ and T : X(μ) → E
a linear operator with values in a Banach space E . Supposing that T satisfies a certain property, natural questions arise: Can
T be extended to a larger domain in a way that the extension (still with values in E) preserves the same property? And, for
a positive answer, which is the largest domain in this sense?

These questions have been solved for the continuity of T in the case when μ is finite and satisfies a compatibility
property with T and X(μ) is order continuous and contains the simple functions. Namely, in this case, we can consider the
vector measure mT :Σ → E defined by T as mT (A) = T (χA) and then the space L1(mT ) of integrable functions with respect
to mT is the largest within all the order continuous Banach function spaces related to μ to which T can be extended as
a continuous operator still with values in E , see [4, Corollary 3.3]. Note that the continuity property of T , i.e. there exists
K > 0 such that ‖T ( f )‖E � K‖ f ‖X(μ) for all f ∈ X(μ), can be rewritten as∥∥T ( f ϕ)

∥∥
E � K‖ f ‖X(μ)‖ϕ‖L∞(μ) (1)

for all f ∈ X(μ) and ϕ simple function. Then, L1(mT ) is the largest domain for T satisfying the inequality (1).
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In this paper we consider weaker conditions on X(μ) (e.g. it does not need to be order continuous or contain the simple
functions and μ does not need to be finite) and study the questions above when T is what we call Y (η)-extensible, i.e.
satisfies an inequality of the type∥∥T ( f ϕ)

∥∥
E � K‖ f ‖X(μ)‖ϕ‖Y (η) (2)

for all f ∈ X(μ) and ϕ simple function belonging to a Banach function space Y (η) related to another positive measure η
on Σ . Of course, this type of domination for T includes the continuity given by (1). Other relevant examples of this kind of
property are given by the Pisier’s factorization theorem through weighted Lorentz spaces [10,19], the L p-product extensible
operators [3] and the pth power factorable operators [18, §5], all of these are explained in Section 6.

Under minimal conditions on X(μ) and T which guarantee that mT is a vector measure defined on certain δ-ring (see
Section 3), we prove in Section 5 that the largest domain for T (within all the Banach function spaces related to some
measure for which every μ-null set is null) satisfying the inequality (2) can be represented as a subspace of L1(mT ) which
is given by a space of multiplication operators from Yb(η) to L1(mT ), where Yb(η) is the closure of the intersection of
the simple functions with Y (η). This subspace is studied in Section 4. Actually, from a technical point of view, what we
obtain is not a real optimal extension of T (this is only the case when mT and μ have the same null sets) but an optimal
factorization of T . This extra complication allows to consider special cases as the Pisier’s factorization theorem.

Therefore, the main contributions of the present paper are the following. The vector measure technique for determining
the optimal domain of an operator has been used recently in a lot of papers (see for instance [4,5,8,9,18]); these applications
usually consider the case of B.f.s. (with weak unit) defined over finite measure spaces. Also, the considered extension that is
considered is the one that preserves the continuity of the operator. In this paper we generalize this method in two different
directions.

(1) We analyze the optimal domain for operators defined on Banach function spaces over measure spaces defined on
δ-rings instead of σ -algebras. This allows us to consider also the cases of σ -finite measures and even non-σ -finite ones.
We illustrate by means of examples and applications how our extension is meaningful (Section 3).

(2) We find the optimal domain for an operator when a different property stronger than continuity is considered. We
show that dominations of operators given by norm inequalities involving norms of other spaces can also be extended to
a different domain preserving the same domination, and this extension is optimal. For doing this, we consider spaces of
multiplication operators (Sections 4–6).

All along in the paper, we will consider two examples to illustrate the results obtained. The first one is the Hardy
operator S : L1 ∩ L∞ → Λψ given by S( f )(x) = 1

x

∫ x
0 f (y)dy for all x > 0, where Λψ is a classical Lorentz space. We refer the

reader to [9] for information about this operator not explained here. The second one, related to the case μ non-σ -finite, is
a certain kind of kernel operator from �1(I) into �p(I) with I being a non-countable set.

2. Preliminaries

2.1. Banach function spaces

Let (Ω,Σ) be a fixed measurable space. For a measure μ :Σ → [0,∞], we denote by L0(μ) the space of all Σ-
measurable real valued functions on Ω , where functions which are equal μ-a.e. are identified. By a Banach function space
(briefly, B.f.s.) X(μ) we mean a Banach space contained in L0(μ) with norm ‖ · ‖X(μ) satisfying that if f ∈ X(μ) and
g ∈ L0(μ) with |g| � | f | μ-a.e. then g ∈ X(μ) and ‖g‖X(μ) � ‖ f ‖X(μ) . Note that X(μ) is a Banach lattice for the μ-a.e.
pointwise order, in which the convergence in norm of a sequence implies the convergence μ-a.e. for some subsequence.
A function g ∈ X(μ) is a weak unit if g > 0 μ-a.e. If X(μ) has a weak unit then X(μ) is saturated, i.e. there exists no A ∈ Σ

with μ(A) > 0 such that f χA = 0 μ-a.e. for all f ∈ X(μ), or equivalently, for every A ∈ Σ with μ(A) > 0 there exists
B ∈ Σ ∩ 2A with μ(B) > 0 such that χB ∈ X(μ). In the case when μ is σ -finite, X(μ) is saturated if and only if it has a
weak unit. A B.f.s. is order continuous if order bounded increasing sequences are convergent in norm. Denote by S(Σ) the
space of the simple functions, i.e. ϕ = ∑n

1 α jχA j with α j ∈ R and A j ∈ Σ . In the following result, parts (a) and (c) are known
for the case μ σ -finite (see [1, Theorems I.3.11 and I.3.13]). For a general μ, the arguments are a bit different, so we write
the proof for the aim of completeness.

Lemma 1. Let X(μ) be a non-trivial B.f.s. and Xb(μ) denote the closure of S(Σ) ∩ X(μ) in X(μ). The following claims hold:

(a) Xb(μ) is a non-trivial B.f.s.
(b) If X(μ) has a weak unit then Xb(μ) also has a weak unit.
(c) If X(μ) is order continuous then Xb(μ) = X(μ).

Proof. (a) Since X(μ) is a non-trivial B.f.s., there exists A ∈ Σ with μ(A) > 0 such that χA ∈ X(μ). So, Xb(μ) is non-trivial.
Obviously, Xb(μ) is a Banach space with norm ‖ · ‖X(μ) contained in L0(μ). To establish the lattice property, let us prove
first that Xb(μ) is the closure in the space X(μ) of the ideal { f ∈ X(μ) ∩ L∞(μ): χSupp( f ) ∈ X(μ)}. Since S(Σ) ∩ X(μ)



is contained in this ideal, we only have to see that given f ∈ X(μ) ∩ L∞(μ) with χSupp( f ) ∈ X(μ), there exists (ϕn) ⊂
S(Σ) ∩ X(μ) such that ϕn → f in X(μ). Take (ψn) ⊂ S(Σ) such that ψn → f in L∞(μ). Then

‖ f − ψnχSupp f ‖X(μ) � ‖ f − ψn‖∞‖χSupp f ‖X(μ) → 0

as n → ∞ and ψnχSupp f ∈ S(Σ) ∩ X(μ) as |ψn|χSupp f � ‖ψn‖∞χSupp f ∈ X(μ).
Let f ∈ Xb(μ) and g ∈ L0(μ) be such that |g| � | f | μ-a.e. In particular, f belongs to the B.f.s. X(μ) and so g ∈ X(μ)

and ‖g‖X(μ) � ‖ f ‖X(μ) . Take ( fn) ∈ S(Σ) ∩ X(μ) such that fn → f in X(μ) and consider the functions defined by gn(x) =
sgn(g(x)) · min{| fn(x)|, |g(x)|}. It follows that gn ∈ L∞(μ) ∩ X(μ) and gn → g in X(μ) (see the proof of [1, Theorem I.3.11]).
Moreover, χSupp gn ∈ X(μ), since Supp gn ⊂ Supp fn and χSupp fn ∈ X(μ) as fn ∈ S(Σ) ∩ X(μ). So, g ∈ Xb(μ).

(b) Only note that a B.f.s. X(μ) has a weak unit if and only if there exists a sequence (An) ⊂ Σ such that χAn ∈ X(μ)

and Ω = ⋃
n An .

(c) Suppose that X(μ) is order continuous. If 0 � f ∈ X(μ), taking (ϕn) ⊂ S(Σ) such that 0 � ϕn ↑ f pointwise, we have
that (ϕn) ⊂ X(μ) and ϕn → f in X(μ), that is, f ∈ Xb(μ). For a general f ∈ X(μ), considering the positive and negative
parts of f , we obtain that f ∈ Xb(μ). �

Given two set functions μ,λ :Σ → [0,∞], we will write λ 
 μ if λ(A) = 0 whenever A ∈ Σ with μ(A) = 0 (i.e. every
μ-null set is λ-null). If λ 
 μ and μ 
 λ we will say that μ and λ are equivalent (i.e. they have the same null sets).

Consider two measures μ,λ :Σ → [0,∞] such λ 
 μ. The map [i] : L0(μ) → L0(λ) which takes a μ-a.e. class in L0(μ)

represented by f into the λ-a.e. class represented by the same f , is a well-defined linear map. In order to simplify notation
[i]( f ) will be denoted again as f . Of course, in the case when λ and μ are equivalent we have that L0(μ) = L0(λ) and [i] is
the identity map. Note that if X(μ) and Y (λ) are B.f.s.’ such that [i] : X(μ) → Y (λ) is well defined then it is automatically
continuous, since it is a positive map between Banach lattices (see [14, p. 2]). Given h ∈ L0(λ), we can consider the linear
map Ph : L0(μ) → L0(λ) defined as Ph( f ) = f h (formally [i]( f ) · h). If X(μ) and Y (λ) are B.f.s.’ such that Ph : X(μ) → Y (λ)

is well defined then it is automatically continuous, since we can write Ph = Ph+ − Ph− , where h+ and h− are the positive
and negative parts of h respectively, and Ph+ , Ph− are continuous as they are positive operators between Banach lattices.
Denote by M(X(μ), Y (λ)) the space of all h ∈ L0(λ) such that Ph : X(μ) → Y (λ) is well defined, i.e.

M
(

X(μ), Y (λ)
) = {

h ∈ L0(λ): f h ∈ Y (λ) for all f ∈ X(μ)
}
,

which can be endowed with the natural seminorm

‖h‖M(X(μ),Y (λ)) = sup
f ∈B X(μ)

‖ f h‖Y (λ)

where B X(μ) is the open unit ball of X(μ) (i.e. the usual operator norm of Ph). It can be checked that this seminorm is a
norm if and only if X(μ) satisfies a variation of the saturation condition, namely, there exists no A ∈ Σ with λ(A) > 0 such
that f χA = 0 λ-a.e. for all f ∈ X(μ), or equivalently, for every A ∈ Σ with λ(A) > 0 there exists B ∈ Σ ∩ 2A with λ(B) > 0
such that χB ∈ X(μ). If X(μ) has a weak unit, this condition holds. Moreover, in this case, M(X(μ), Y (λ)) is complete and
so it is a B.f.s. This fact is proved in [15, Proposition 2] in the case when μ and λ are equivalent and σ -finite. For the
general case, the proof is similar.

2.2. Integration with respect to vector measures defined on a δ-ring

The classical theory of integration with respect to vector measures defined on a σ -algebra (see for instance [18, Chap-
ter 3]) was extended to the case of vector measures defined on a δ-ring by Lewis [13] and Masani and Niemi [16,17].

Let R be a δ-ring of subsets of Ω (i.e. a ring closed under countable intersections) and Rloc the σ -algebra of all subsets
A of Ω such that A ∩ B ∈ R for all B ∈ R. Note that if R is a σ -algebra then Rloc = R. Denote by S(R) the space of all

R-simple functions (i.e. simple functions supported in R).
Given a real measure λ : R → R, that is

∑
λ(An) converges to λ(

⋃
An) for every pairwise disjoint sequence (An) ⊂ R

with
⋃

An ∈ R, the variation of λ is the measure |λ| : Rloc → [0,∞] given by

|λ|(A) = sup
{∑∣∣λ(Ai)

∣∣: (Ai) finite disjoint sequence in R ∩ 2A
}
.

The space L1(λ) of integrable functions with respect to λ is defined as the space L1(|λ|) with the usual norm | f |λ = ∫
Ω

| f |d|λ|.
Note that S(R) is dense in L1(λ). The integral of an R-simple function ϕ = ∑n

i=1 aiχAi over A ∈ Rloc is defined in the
natural way by

∫
A ϕ dλ = ∑n

i=1 aiλ(Ai ∩ A). For f ∈ L1(λ) the integral over A ∈ Rloc is defined by
∫

A f dλ = lim
∫

A ϕn dλ,
where (ϕn) is a sequence in S(R) converging to f in L1(λ).

Let E be a real Banach space and m : R → E a vector measure, that is
∑

m(An) converges to m(
⋃

An) in E for every
pairwise disjoint sequence (An) ⊂ R with

⋃
An ∈ R. Denote by E∗ the topological dual of E and by B E∗ its open unit ball.

The semivariation of m is the set function ‖m‖ : Rloc → [0,∞] defined by

‖m‖(A) = sup
x∗∈B ∗

∣∣x∗m
∣∣(A),
E



where |x∗m| is the variation of the real measure x∗m : R → R given by the composition of m with x∗ . Note that ‖m‖ is
finite on R. A set A ∈ Rloc is m-null if ‖m‖(A) = 0, or equivalently, m(B) = 0 whenever B ∈ R ∩ 2A . A property holds m-
almost everywhere (briefly, m-a.e.) if it holds except on an m-null set. From [2, Theorem 3.2], there always exists a measure
λ : R → [0,∞] with the same null sets as m (i.e. ‖m‖ and |λ| are equivalent). An Rloc-measurable real function f is
integrable with respect to m if

(i) f ∈ L1(|x∗m|) for every x∗ ∈ E∗ , and
(ii) for each A ∈ Rloc there exists xA ∈ E such that

x∗(xA) =
∫
A

f dx∗m, for every x∗ ∈ E∗.

The vector xA is unique and will be written as
∫

A f dm. We denote by L1(m) the space of all integrable functions with
respect to m and by L1

w(m) the space of functions satisfying only condition (i). In both spaces, functions which are equal
m-a.e. are identified. Taking a measure λ equivalent to m, we have that L1(m) and L1

w(m) are B.f.s.’ related to (Ω, Rloc, |λ|)
with the norm

‖ f ‖m = sup
x∗∈B E∗

∫
Ω

| f |d
∣∣x∗m

∣∣, for all f ∈ L1
w(m).

Of course, L1(m) is a closed subspace of L1
w(m). In the case when E does not contain an isomorphic copy of c0, we have

that L1(m) = L1
w(m). Moreover, L1(m) is order continuous and contains S(R) as a dense set. Note that ‖ · ‖m is defined for

any Rloc-measurable function and has the Fatou property, that is, if 0 � f j ↑ f m-a.e. then ‖ f j‖m ↑ ‖ f ‖m . Actually, L1
w(m)

can be described as the space of all Rloc-measurable functions f with ‖ f ‖m < ∞. The norm of f ∈ L1(m) can also be
computed by means of the formula

‖ f ‖m = sup

{∥∥∥∥∫
Ω

f ϕ dm

∥∥∥∥
E

: ϕ ∈ S
(

Rloc) ∩ BL∞(λ)

}
. (3)

The integration operator Im : L1(m) → E defined by Im( f ) = ∫
Ω

f dm for all f ∈ L1(m), is a continuous linear operator. Given
f ∈ L1(m), the indefinite integral of f with respect to m is the vector measure m f : Rloc → E defined by

m f (A) =
∫
A

f dm, for all A ∈ Rloc.

Note that ‖g‖m f = ‖g f ‖m for every Rloc-measurable function g . Then, it follows that g ∈ L1
w(m f ) if and only if g f ∈ L1

w(m)

and g ∈ L1(m f ) if and only if g f ∈ L1(m). Moreover, ‖m f ‖(A) = ‖χA‖m f = ‖ f χA‖m for every A ∈ Rloc. For further issues
related to integration with respect to vector measures defined on a δ-ring see [7].

Let us end this section by showing two results which will be used in this paper.

Lemma 2. Let R and R̃ be two δ-rings of subsets of Ω such that R̃ ⊂ R ⊂ R̃loc = Rloc . If m : R → E is a vector measure and m̃
denotes the restriction of m to R̃, then the following assertions hold:

(a) For every Rloc-measurable function f we have that ‖ f ‖m̃ � ‖ f ‖m and so [i] : L1
w(m) → L1

w(m̃) is well defined.
(b) If m satisfies that

A ∈ R, e∗ ∈ E∗ and sup
B∈R̃∩2A

∣∣e∗m(B)
∣∣ = 0 ⇒ e∗m(A) = 0 (4)

then [i] : L1(m) → L1(m̃) is well defined and
∫
Ω

f dm̃ = ∫
Ω

f dm for every f ∈ L1(m).

Proof. (a) Note that for every e∗ ∈ E∗ and A ∈ R̃loc = Rloc we have that |e∗m̃|(A) � |e∗m|(A). So, for every Rloc-measurable
function f and e∗ ∈ E∗ , it follows that

∫
Ω

| f |d|e∗m̃| � ∫
Ω

| f |d|e∗m| and thus ‖ f ‖m̃ � ‖ f ‖m . In particular, ‖m̃‖(A) � ‖m‖(A)

for all A ∈ Rloc (take f = χA ). Then, ‖m̃‖ 
 ‖m‖ and [i] : L1
w(m) → L1

w(m̃) is well defined.
(b) Take A ∈ R. Since χA ∈ L1(m) ⊂ L1

w(m) and (a) holds, we have that χA ∈ L1
w(m̃) and so condition (i) of the definition

of integrable function with respect to m̃ holds for f = χA . Let us prove that (b) also holds. Let B ∈ R̃loc = Rloc and e∗ ∈ E∗ .
Since |e∗m̃|(A ∩ B) = sup{|e∗m̃|(H): H ∈ R̃ ∩ 2A∩B} < ∞, there exists an increasing sequence (Hn) of sets in R̃ ∩ 2A∩B

satisfying that |e∗m̃|(A ∩ B\ ∪ Hn) = 0. Condition (4) implies that |e∗m|(A ∩ B\ ∪ Hn) = 0. Thus, χHn ↑ χA∩B e∗m̃-a.e. and
e∗m-a.e., and so



∫
B

χA de∗m̃ = lim
n→∞

∫
χHn de∗m̃ = lim

n→∞ e∗m̃(Hn) = lim
n→∞ e∗m(Hn)

= lim
n→∞

∫
χHn de∗m =

∫
B

χA de∗m = e∗
(∫

B

χA dm

)
.

Hence, for every A ∈ R we have that χA ∈ L1(m̃) and
∫

B χA dm̃ = ∫
B χA dm for all B ∈ Rloc. Now, consider f ∈ L1(m) ⊂

L1
w(m). By (a), f ∈ L1

w(m̃). Taking a sequence (ϕn) of R-simple functions converging to f in L1(m), we have that
‖ f − ϕn‖m̃ � ‖ f − ϕn‖m → 0. Then, since ϕn ∈ L1(m̃) and L1(m̃) is a closed subspace of L1

w(m̃), we have that f ∈ L1(m̃).
Moreover, as the integration operator is continuous,∫

Ω

f dm̃ = lim
n

∫
Ω

ϕn dm̃ = lim
n

∫
Ω

ϕn dm =
∫
Ω

f dm. �

If the vector measure m considered in Lemma 2 satisfies certain σ -finiteness condition, the maps [i] given in (a) and (b)
are isometries.

Lemma 3. Let R and R̃ be two δ-rings of subsets of Ω such that R̃ ⊂ R ⊂ R̃loc and Ω = ⋃
n An with An ∈ R̃. If m : R → E is a vector

measure and m̃ denotes the restriction of m to R̃, then L1
w(m) = L1

w(m̃) with equal norms, L1(m) = L1(m̃) and
∫
Ω

f dm = ∫
Ω

f dm̃
for every f ∈ L1(m).

Proof. The containments R̃ ⊂ R ⊂ R̃loc imply that Rloc ⊂ R̃loc, see [16, Lemma A.3]. For every A ∈ R̃loc we have that
A = ⋃

n A ∩ An ∈ Rloc since A ∩ An ∈ R̃ ⊂ R. So, Rloc = R̃loc. Note that if A ∈ R̃ then R ∩ 2A = R̃ ∩ 2A . Indeed, if B ∈ R
with B ⊂ A then B = B ∩ A ∈ R̃. The converse containment is clear. Then, it follows that |x∗m|(A) = |x∗m̃|(A) for all A ∈ R̃.
Given A ∈ Rloc, since A = ⋃

n A ∩ An where A ∩ An ∈ R̃, noting that (An) can be taken to be pairwise disjoint, we have that∣∣x∗m
∣∣(A) =

∑∣∣x∗m
∣∣(A ∩ An) =

∑∣∣x∗m̃
∣∣(A ∩ An) = ∣∣x∗m̃

∣∣(A)

for all x∗ ∈ E∗ . Hence, ‖ f ‖m̃ = ‖ f ‖m for all Rloc-measurable function f and thus L1
w(m) = L1

w(m̃). Condition (4) in
Lemma 2(b) holds. Indeed, if A ∈ R, e∗ ∈ E∗ and sup{|e∗m(B)|: B ∈ R̃ ∩2A} = 0, it follows that e∗m(A) = ∑

e∗m(A ∩ An) = 0.
Then, L1(m) ⊂ L1(m̃) and

∫
Ω

f dm̃ = ∫
Ω

f dm. Moreover, L1(m̃) ⊂ L1(m) as S(R̃) ⊂ S(R) and ‖ · ‖m̃ = ‖ · ‖m . �
3. Optimal domain for order-w continuous operators

Fix (Ω,Σ) a measurable space. Let X(μ) be a B.f.s. and consider the δ-ring of subsets of Ω given by

ΣX(μ) = {
A ∈ Σ: χA ∈ X(μ)

}
,

which satisfies Σ ⊂ Σ loc
X(μ) . Throughout the paper we will assume Σ = Σ loc

X(μ) . This condition holds for instance if X(μ) has
a weak unit, which is equivalent to the existence of a sequence (An) ⊂ ΣX(μ) such that Ω = ⋃

n An .
Given a linear operator T : X(μ) → E with values in a Banach space E , we can consider the finitely additive set function

mT :ΣX(μ) → E given by mT (A) = T (χA). Let us require T to satisfy that there exists A ∈ ΣX(μ) such that T (χA) = 0 (in
particular μ(A) > 0), as in other case mT is null. Note that mT 
 μ, that is, ‖mT ‖ 
 μ or equivalently |λT | 
 μ for any
measure λT :ΣX(μ) → [0,∞] with the same null sets as mT . So, the map [i] : L0(μ) → L0(|λT |) is well defined.

We will say that T is order-w continuous if T fn → T f weakly in E whenever fn, f ∈ X(μ) with 0 � fn ↑ f μ-a.e. This
property holds for instance if X(μ) is order continuous and T is continuous. Note that if T is order-w continuous, then the
condition T (χA) = 0 for some A ∈ ΣX(μ) is equivalent to T being non-null.

If T is order-w continuous, all the conditions required in [8, Proposition 2.3] are satisfied, so mT is a vector measure and
for every f ∈ X(μ) we have that f ∈ L1(mT ) with

∫
Ω

f dmT = T f . Therefore, T factorizes as follows

X(μ)
T

[i]

E

L1(mT )

ImT

(5)

where ImT is the integration operator with respect to mT . As a consequence we have that every order-w continuous linear
operator T : X(μ) → E is continuous, since T = ImT ◦ [i] with [i] and ImT being continuous. Note that ImT : L1(mT ) → E is
order-w continuous, since L1(mT ) is order continuous and ImT is continuous. Also note that if A ∈ Σ with χA ∈ L1(mT ) and
e∗ ∈ E∗ satisfy that sup{|e∗ ImT (χB)|: B ∈ ΣX(μ) ∩ 2A} = 0, then e∗ ImT (χA) = 0. The following proposition shows that the
factorization (5) is optimal. This outcome is an extended version of the optimal domain result given in [4, Corollary 3.3].
See also [8, Corollary 2.6].



Proposition 4. Let T : X(μ) → E be a non-null order-w continuous linear operator. Suppose that Z(ζ ) is a B.f.s. such that ζ 
 μ and
T factorizes as

X(μ)
T

[i]

E

Z(ζ )

S
(6)

with S being an order-w continuous linear operator satisfying that, for A ∈ Σ with χA ∈ Z(ζ ) and e∗ ∈ E∗ ,

sup
B∈ΣX(μ)∩2A

∣∣e∗ S(χB)
∣∣ = 0 ⇒ e∗ S(χA) = 0. (7)

Then, [i] : Z(ζ ) → L1(mT ) is well defined and S( f ) = ImT ( f ) for all f ∈ Z(ζ ).

Proof. Consider the δ-ring ΣZ(ζ ) = {A ∈ Σ: χA ∈ Z(ζ )}. Note that Σ = Σ loc
Z(ζ ) . In other case, there exists A ∈ Σ loc

Z(ζ ) such

that A /∈ Σ = Σ loc
X(μ)

. Then, there exists B ∈ ΣX(μ) such that A ∩ B /∈ ΣX(μ) . Since χA∩B ∈ X(μ) (as χA∩B � χB ∈ X(μ)), it
follows that A ∩ B /∈ Σ . In other hand, B ∈ ΣZ(ζ ) (as ΣX(μ) ⊂ ΣZ(ζ )), so A ∩ B ∈ ΣZ(ζ ) and, in particular, A ∩ B ∈ Σ which is
a contradiction. Since S : Z(ζ ) → E is a non-null order-w continuous linear operator, it factorizes as (5), i.e.

Z(ζ )
S

[i]

E

L1(mS)

ImS

(8)

where mS :ΣZ(ζ ) → E is the vector measure given by mS (A) = S(χA) and ImS is the integration operator with respect
to mS . By (6) we have that mS (A) = S(χA) = T (χA) = mT (A) for all A ∈ ΣX(μ) , that is, mT is the restriction of mS to ΣX(μ) .
Condition (7) is just condition (4) in Lemma 2 for mS , then mT 
 mS , [i] : L1(mS) → L1(mT ) is well defined and ImS ( f ) =
ImT ( f ) for all f ∈ L1(mS ). So, by (8) we have that [i] : Z(ζ ) → L1(mT ) is well defined and S( f ) = ImT ( f ) for all f ∈ Z(ζ ). �

Note that in the case when X(μ) has a weak unit, or equivalently, Ω = ⋃
n An for some (An) ⊂ ΣX(μ) , condition (7) in

Proposition 4 always holds for every order-w continuous linear operator S satisfying (6).

Example 5. Denote by R
+ the interval [0,∞), by B the σ -algebra of all Borel subsets of R

+ and by λ the Lebesgue
measure on B. Consider the Hardy operator S defined on L1 ∩ L∞(λ) as S( f )(x) = 1

x

∫ x
0 f (y)dy. Note that L1 ∩ L∞(λ) is a

B.f.s. endowed with the usual norm ‖ f ‖L1∩L∞(λ) = max{‖ f ‖L1(λ),‖ f ‖L∞(λ)} and has a weak unit. Let ψ : R
+ → R

+ be an
increasing concave map with ψ(0) = 0, ψ(0+) = 0, ψ(∞) = ∞ and Λψ(λ) = { f ∈ L0(λ): ‖ f ‖Λψ(λ) = ∫ ∞

0 f ∗(s)dψ(s) < ∞}
the related Lorentz space ( f ∗ being the decreasing rearrangement of f ), which is an order continuous B.f.s. endowed with
the norm ‖ f ‖Λψ(λ) . For issues related to Lorentz spaces see for instance [11, §II.5]. Assume that θψ(t) = ∫ ∞

t
ψ ′(s)

s ds < ∞ for
all t > 0, where ψ ′ denotes the derivative of ψ . Then, it can be checked that S : L1 ∩ L∞(λ) → Λψ(λ) is well defined and
continuous with ‖S( f )‖Λψ(λ) � (ψ(a)+θψ(a))‖ f ‖L1∩L∞(λ) for any a > 0. Moreover, S is order-w continuous, since if 0 � fn ↑
f ∈ L1 ∩ L∞(λ) λ-a.e., we have that 0 � S( fn) ↑ S( f ) ∈ Λψ(λ) pointwise (by the monotone convergence theorem) and so
S( fn) → S( f ) in Λψ(λ) (by order continuity of the Lorentz space). Therefore, for the δ-ring BL1∩L∞(λ) = {A ∈ B: λ(A) < ∞},
we have that mS : BL1∩L∞(λ) → Λψ(λ), given by mS (A) = S(χA), is a vector measure with mS 
 λ and S optimally factorizes
as

L1 ∩ L∞(λ)
S

[i]

Λψ(λ)

L1(mS)

ImS

(9)

Note that in this case, [i] is actually the inclusion map i, since mS and λ are equivalent, and ImS is just S , in fact L1(mS ) =
{ f ∈ L0(λ): S(| f |) ∈ Λψ(λ)}, see [9, Proposition 3.4] and the previous comments. Moreover, if there exists C > 0 such that
ψ(t)

t � Cθψ(t) for all t > 0, from [9, Theorem 4.4], we can give a precise description of the optimal domain of S in the
sense of Proposition 4. Namely, L1(mS) = L1(θψ(t)dt), that is the space of integrable functions with respect to the Lebesgue
measure with density θψ . An example of function satisfying all the above conditions is ψ(t) = t1/p with 1 < p < ∞, for
which Λψ(λ) = L p,1(λ), see for instance [1, §4.4].



Example 6. Let I be a non-countable set and K : I × I → [0,∞) a non-null map such that β = (‖Ki‖∞)i∈I ∈ �p(I) (1 � p <

∞), where Ki : I → [0,∞) is defined as Ki( j) = K (i, j). Note that �p(I) is an order continuous saturated B.f.s. related to
(I,2I ,μ), where 2I is the σ -algebra of all parts on I and μ is the counting measure. Also note that (2I )�1(I) = {A ⊂ I:

A is finite} and (2I )loc
�1(I)

= 2I . Consider the map T :�1(I) → �p(I) defined as

T x =
(∑

j∈I

x j K (i, j)

)
i∈I

for every x = (x j) j∈I ∈ �1(I). Since(∑
i∈I

∣∣∣∣∑
j∈I

x j K (i, j)

∣∣∣∣p)1/p

�
(∑

i∈I

‖Ki‖p∞
(∑

j∈I

|x j|
)p)1/p

= ‖x‖�1(I)‖β‖�p(I),

the map T is a well-defined continuous linear operator. Then, since �1(I) is order continuous, T is order-w continuous.
Thus, mT : (2I )�1(I) → �p(I), given by mT (A) = T (χA), is a vector measure with mT 
 μ and T optimally factorizes as

�1(I)
T

[i]

�p(I)

L1(mT )

ImT

(10)

Since mT is positive (i.e. mT (A) � 0 for all A ∈ (2I )�1(I)), we have that ImT ( f ) � 0 for all 0 � f ∈ L1(mT ). Then, by using
formula (3), it follows that ‖ f ‖mT = ‖ImT (| f |)‖�p(I) for all f ∈ L1(mT ). Note that A ∈ 2I is mT -null if and only if K (i, j) = 0
for all (i, j) ∈ I × A. Hence, mT and μ are equivalent (and so [i] is an inclusion map) if and only if for every j ∈ I there
exists i ∈ I such that K (i, j) > 0. Since �p(I) does not contain any isomorphic copy of c0, we have that L1(mT ) = L1

w(mT ).
For every (2I -measurable) function f and e∗ ∈ �p′

(I) = �p(I)∗ (where 1
p + 1

p′ = 1), it is routine to prove that∫
Ω

| f |d
∣∣e∗mT

∣∣ = sup
B⊂I
finite

∑
j∈B

∣∣ f ( j)
〈
e∗, K j

〉∣∣
where K j = (K (i, j))i∈I ∈ �p(I) (as K j � β). Then,

L1(mT ) = {
f = (

f ( j)
)

j∈I ⊂ R:
(

f ( j)
〈
e∗, K j

〉)
j∈I ∈ �1(I) for all e∗ ∈ �p′

(I)
}

and for every f ∈ L1(mT ) we have that

‖ f ‖mT = sup
e∗∈B

�p′
(I)

∑
j∈I

∣∣ f ( j)
〈
e∗, K j

〉∣∣.
Moreover, if f ∈ L1(mT ), for each i ∈ I we have that ( f ( j)K (i, j)) j∈I ∈ �1(I) (take e∗

i = (δi,s)s∈I ∈ �p′
(I) with δi,s = 1 if s = i

and δi,s = 0 in other case). So, we can consider the element x f = (
∑

j∈I f ( j)K (i, j))i∈I ⊂ R. Since β ∈ �p(I), there exists a
countable set J ⊂ I such that K (i, j) = 0 for all (i, j) ∈ (I\ J ) × I . Set J = {in}n�1. Then, for each n there exists a countable
set Γn ⊂ I such that f ( j)K (in, j) = 0 for all j ∈ I\Γn . Consider Γ = ⋃

n�1 Γn = { jm}m�1 and the (2I )�1(I)-simple functions

ϕm = f χ{ j1,..., jm} . Since 0 � |ϕm| ↑ | f |χΓ ∈ L1(mT ), by the order continuity of L1(mT ), we have that ϕm → f χΓ in L1(mT )

and so ImT (ϕm) → ImT ( f χΓ ) in �p(I). Note that I\Γ ∩ Supp f is mT -null, as K (i, j) = 0 for all (i, j) ∈ I × (I\Γ ∩ Supp f ).
So, ImT ( f ) = ImT ( f χΓ ). Then,

ImT ( f )(i) = lim
m→∞ ImT (ϕm)(i) = lim

m→∞ T (ϕm)(i)

= lim
m→∞

∑
j∈I

ϕm( j)K (i, j) =
∑
j∈I

f ( j)χΓ ( j)K (i, j) = x f (i)

for all i ∈ I and thus x f = ImT ( f ) ∈ �p(I). Therefore, for every f ∈ L1(mT ) we have that ( f ( j)K (i, j)) j∈I ∈ �1(I) for all i ∈ I ,
(
∑

j∈I f ( j)K (i, j))i∈I ∈ �p(I) and ImT ( f ) = (
∑

j∈I f ( j)K (i, j))i∈I . Moreover,

‖ f ‖mT = ∥∥ImT

(| f |)∥∥
�p(I) =

(∑(∑∣∣ f ( j)
∣∣K (i, j)

)p)1/p

.

i∈I j∈I



Let us show a kernel satisfying all the above conditions. Take I = [0,∞) and φ ∈ �p(I) (e.g. φ(i) = 1
ir χN(i) with r > 1

p ). Then
K : I × I → [0,∞) defined by K (i, j) = φ(i)χ[0,i]( j), satisfies that β = (‖Ki‖∞)i∈I ∈ �p(I) (as β = |φ|). For this kernel, the
operator T :�1(I) → �p(I) is given by

T (x) =
(

φ(i)

(∑
j�i

x j

))
i∈I

for every x = (x j) j∈I ∈ �1(I). For this “version of Hardy operator”, the optimal factorization (10) holds.

4. Subspaces of L1(m) generated by generalized semivariations

Fix (Ω,Σ) a measurable space, E a Banach space and Y (η) a B.f.s. For a vector measure n : Σ → E with n 
 η, we
define the Y (η)-semivariation of n by

‖n‖Y (η) = sup

{∥∥∥∥∫
Ω

ϕ dn

∥∥∥∥
E

: ϕ ∈ S(Σ) ∩ BY (η)

}
.

This concept generalizes the total semivariation of n which is obtained as ‖n‖(Ω) = ‖n‖L∞(λ) for any λ equivalent to n,
see (3) for f = χΩ ∈ L1(n).

Let R be a δ-ring of subsets of Ω such that Rloc = Σ and m : R → E a vector measure with m 
 η. For every f ∈ L1(m),
the set function m f : Σ → E , given by m f (A) = ∫

Ω
f χA dm, is a vector measure with m f 
 η and

‖m f ‖Y (η) = sup

{∥∥∥∥∫
Ω

ϕ f dm

∥∥∥∥
E

: ϕ ∈ S(Σ) ∩ BY (η)

}
.

Let us consider the space

L1
Y (η)(m) = {

f ∈ L1(m): ‖m f ‖Y (η) < ∞}
equipped with the norm ‖ f ‖L1

Y (η)
(m) = max{‖ f ‖m,‖m f ‖Y (η)}. Of course, L1

Y (η)
(m) is a subspace of L1(m). The norm in L1(m)

and the Y (η)-semivariation are related as the following result shows.

Lemma 7. For every f ∈ L1(m) and ϕ ∈ S(Σ) ∩ Y (η) we have that

‖ f ϕ‖m � ‖ϕ‖Y (η)‖m f ‖Y (η).

Proof. For f ∈ L1(m) and ϕ ∈ S(Σ) ∩ Y (η) we have that f ϕ ∈ L1(m) and so, by (3),

‖ f ϕ‖m = sup

{∥∥∥∥∫
Ω

f ϕψ dm

∥∥∥∥
E

: ψ ∈ S(Σ) ∩ BL∞(λ)

}
,

where λ : R → [0,∞] is a measure equivalent to m. Note that for every ψ ∈ S(Σ) such that |ψ | � 1 λ-a.e., there exists
A ∈ Σ such that Ω\A is λ-null (and so m-null) and |ψϕ|χA � |ϕ| pointwise. Then,

∫
Ω

f ϕψ dm = ∫
Ω

f ϕψχA dm where
ϕψχA ∈ S(Σ) ∩ Y (η) and ‖ϕψχA‖Y (η) � ‖ϕ‖Y (η) . So, it follows that ‖ f ϕ‖m � ‖ϕ‖Y (η)‖m f ‖Y (η) . �
Proposition 8. The space L1

Y (η)
(m) is a B.f.s.

Proof. Let us see that L1
Y (η)(m) satisfies the Riesz–Fischer property an so we will have that L1

Y (η)(m) is a Banach space.

Let ( fn) ⊂ L1
Y (η)(m) be such that

∑‖ fn‖L1
Y (η)

(m) < ∞. Then,
∑‖ fn‖m < ∞ and since L1(m) is complete, we have that

f = ∑
fn ∈ L1(m) and∥∥∥∥∫
Ω

ϕ f dm

∥∥∥∥
E

�
∑∥∥∥∥∫

Ω

ϕ fn dm

∥∥∥∥
E

�
∑

‖m fn‖Y (η)

for all ϕ ∈ S(Σ) ∩ BY (η) . So, ‖m f ‖Y (η) �
∑‖m fn ‖Y (η) �

∑‖ fn‖L1
Y (η)

(m) < ∞ and thus f ∈ L1
Y (η)(m).

In other hand, if f is a measurable function such that | f | � |g| m-a.e. for some g ∈ L1
Y (η)(m), then f ∈ L1(m) and

‖ f ‖m � ‖g‖m . Moreover, for every ϕ ∈ S(Σ) ∩ BY (η) , using Lemma 7, it follows∥∥∥∥∫
Ω

ϕ f dm

∥∥∥∥
E

� ‖ϕ f ‖m � ‖ϕg‖m � ‖ϕ‖Y (η)‖mg‖Y (η) � ‖mg‖Y (η)

and so ‖m f ‖Y (η) � ‖mg‖Y (η) < ∞. Hence, f ∈ L1
Y (η)(m) and ‖ f ‖L1 (m) � ‖g‖L1 (m) . Therefore, L1

Y (η)(m) is a B.f.s. �

Y (η) Y (η)



The subspace of L1(m) generated by Y (η) = L∞(η) is L1(m) itself. Indeed, for each f ∈ L1(m), by (3) and since m 
 η,
we have that ‖m f ‖L∞(η) � ‖ f ‖m and by Lemma 7 with ϕ = χΩ , we have that ‖ f ‖m � ‖m f ‖L∞(η) . So, L1

L∞(η)(m) = L1(m)

with equal norms.

Remark 9. In the case when χΩ ∈ Y (η), by Lemma 7 we have that ‖ f ‖m � ‖χΩ‖Y (η)‖m f ‖Y (η) for every f ∈ L1(m). Then, it
follows that

‖m f ‖Y (η) � ‖ f ‖L1
Y (η)

(m) � max
{‖χΩ‖Y (η),1

}‖m f ‖Y (η)

for every f ∈ L1
Y (η)(m), that is, ‖m f ‖Y (η) is an equivalent norm to ‖ f ‖L1

Y (η)
(m) .

Recall that Yb(η) denotes the closure of S(Σ) ∩ Y (η) in Y (η), which is a B.f.s. by Lemma 1(a). Since m 
 η we
can consider the space M(Yb(η), L1(m)) endowed with the seminorm ‖ f ‖M(Yb(η),L1(m)) = sup{‖hf ‖m: h ∈ BYb(η)}. Note

that M(Yb(η), L1(m)) may be not a B.f.s. (see Section 2.1). The following result shows that the intersection of this space
with L1(m) with the natural norm (the maximum of the seminorm and the norm) coincides isometrically with our space
L1

Y (η)(m).

Proposition 10. The equality

L1
Y (η)(m) = L1(m) ∩ M

(
Yb(η), L1(m)

)
holds and ‖m f ‖Y (η) = ‖ f ‖M(Yb(η),L1(m)) for all f ∈ L1

Y (η)(m).

Proof. Let f ∈ L1
Y (η)(m). In particular f ∈ L1(m) and so, by Lemma 7, we have that ‖ f ϕ‖m � ‖ϕ‖Y (η)‖m f ‖Y (η) for every

ϕ ∈ S(Σ) ∩ Y (η). Given h ∈ Yb(η), we can take (ϕn) ⊂ S(Σ) ∩ Y (η) such that ϕn → h in Y (η) and η-a.e. pointwise (and so
m-a.e.). Since

‖ f ϕn − f ϕk‖m � ‖ϕn − ϕk‖Y (η)‖m f ‖Y (η) → 0

as n,k → ∞, there exists g ∈ L1(m) such that f ϕn → g in L1(m). Then, for some subsequence (ϕnk ) we have that f ϕnk → g
m-a.e. and so f h = g m-a.e. Thus, f h ∈ L1(m) and

‖ f h‖m = lim
n

‖ f ϕn‖m � ‖m f ‖Y (η) lim
n

‖ϕn‖Y (η) = ‖m f ‖Y (η)‖h‖Y (η).

Therefore, f ∈ M(Yb(η), L1(m)) and ‖ f ‖M(Yb(η),L1(m)) � ‖m f ‖Y (η) .

Conversely, let f ∈ L1(m) ∩ M(Yb(η), L1(m)). For every ϕ ∈ S(Σ) ∩ BY (η) we have that ‖ ∫
Ω

ϕ f dm‖E � ‖ϕ f ‖m �
‖ f ‖M(Yb(η),L1(m)) . Then, ‖m f ‖Y (η) � ‖ f ‖M(Yb(η),L1(m)) < ∞ and so f ∈ L1

Y (η)(m). �
In the case when χΩ ∈ Y (η), we have that M(Yb(η), L1(m)) ⊂ L1(m). Then, from Proposition 10 and Remark 9, it follows

that L1
Y (η)

(m) = M(Yb(η), L1(m)) isomorphically (isometrically if ‖χΩ‖Y (η) � 1).

Let us show some examples of subspaces of L1(m) generated by particular B.f.s.’ Y (η).

Example 11. Consider Y (η) = L p(η) with 1 � p < ∞. Since L p(η) is an order continuous B.f.s., from Proposition 10 and
Lemma 1(c), we have that L1

Lp(η)(m) = L1(m) ∩ M(L p(η), L1(m)) isometrically.

If η is finite (and so χΩ ∈ L p(η)), we have that L1
Lp(η)(m) = M(L p(η), L1(m)). Under certain requirements, this space

coincides isomorphically with the space L1
p′,η(m) ( 1

p + 1
p′ = 1) studied in [3], given by all functions f ∈ L1(m) such that the

so called p′-semivariation of m f with respect to η is finite, that is,

‖m f ‖p′,η = sup
π∈P(Ω)

sup
x∗∈B E∗

( ∑
A∈π

| ∫A f dx∗m|p′

η(A)p′−1

)1/p′

< ∞,

where P (Ω) is the set of the finite disjoint partitions π of Ω . Namely, if p > 1, R = Σ , m is equivalent to η and the
p′-semivariation of m with respect to η is finite, then L1

Lp(η)(m) = L1
p′,η(m) isomorphically, see [3, Theorem 3]. In particular,

the L p(η)-semivariation and the p′-semivariation of m are related as follows

‖m‖p′,η � ‖m‖L p(η) � 21/p max
{

1, η(Ω)1/p}‖m‖p′,η.

Example 12. Given 1 � p < ∞, we consider the p-power space of L1(m) defined by L p(m) = { f ∈ L0(|λ|): | f |p ∈ L1(m)},
where λ : R → [0,∞] is a measure with the same null sets as m. Following the same proof of [15, Proposition 1], we obtain



that L p(m) is a B.f.s. with the norm ‖ f ‖Lp(m) = ‖| f |p‖1/p
m (see also [14, §1.d]). Take η = |λ| and Y (η) = L p(m). Since L p(m)

is order continuous (as L1(m) is) then, from Proposition 10 and Lemma 1(c), we have that

L1
Lp(m)(m) = L1(m) ∩ M

(
Lp(m), L1(m)

)
with equal norms.

Suppose now that m is σ -finite, that is, Ω = (
⋃

An) ∪ N with An ∈ R and N m-null. From [7, Theorem 3.3], this is
equivalent to the fact that L1(m) has a weak unit (so L p(m) also does) and also to the fact that there exists λ :Σ → [0,∞)

with the same null sets as m. In this case and for p > 1, from [15, Theorem 5 and §1(2)], it follows that M(L p(m), L1(m)) =
[L1(m)]p′

isometrically, where 1/p + 1/p′ = 1 and [L1(m)] denotes the maximal normed extension of L1(m), that is the space{
g ∈ L0(λ): ‖g‖[L1(m)] = sup

{‖ f ‖m: f ∈ L1(m), 0 � f � |g|} < ∞}
which is a B.f.s. with norm ‖ · ‖[L1(m)] . Let us see that [L1(m)] = L1

w(m) isometrically. If g ∈ L1
w(m), for every f ∈ L1(m) such

that 0 � f � |g| we have that ‖ f ‖m � ‖g‖m . So, g ∈ [L1(m)] and ‖g‖[L1(m)] � ‖g‖m . Conversely, let g ∈ [L1(m)] and consider
(ϕn) ⊂ S(R) ⊂ L1(m) such that 0 � ϕn ↑ |g| (e.g. ϕn := ψnχ⋃n

1 A j
with (ψn) ⊂ S(Σ) such that 0 � ψn ↑ |g| and (An) given

by the σ -finiteness of m). Then, ‖g‖m = limn‖ϕn‖m � ‖g‖[L1(m)] and so g ∈ L1
w(m).

Therefore, L1
Lp(m)(m) = L1(m) ∩ L p′

w (m) isometrically whenever p > 1 and 1/p + 1/p′ = 1. For p = 1, since M(L1(m),

L1(m)) = L∞(λ) (see [15, Theorem 1]), we have that L1
L1(m)

(m) = L1(m) ∩ L∞(λ) isometrically.

The measure m is said to be strongly additive if m(An) → 0 whenever (An) is a disjoint sequence in R. For instance,
this is the case of the classical vector measures defined on a σ -algebra. From [7, Corollary 3.2(b)], m is strongly additive if

and only if χΩ ∈ L1(m) or equivalently χΩ ∈ L p(m). In this case, L1
Lp(m)

(m) = L p′
w (m) for 1 < p < ∞ and L1

L1(m)
(m) = L∞(λ)

isomorphically (isometrically if ‖m‖(Ω) � 1).
An important consequence of the fact [L1(m)] = L1

w(m) must be noted. Since [L1(m)] coincides with L1(m)′′ (i.e. the
Köthe bidual of L1(m)) as L1(m) is order continuous (see [15, §1]), then L1

w(m) = L1(m)′′ isometrically. This extends the
result in [5, Proposition 2.4] for classical vector measures defined on σ -algebras to the case of vector measures defined on
δ-rings which are σ -finite.

Example 13. Consider the vector measure mS : BL1∩L∞(λ) → Λψ(λ) given by the Hardy operator S as in Example 5. We can
take η = λ and Y (η) = Λφ(λ) for any function φ : R

+ → R
+ with the same properties as ψ . Then,

L1
Λφ(λ)(mS) = L1(mS) ∩ M

(
Λφ(λ), L1(mS)

)
.

Let us describe more precisely this space. For every f ∈ L0(λ) we define

ρ( f ) = sup
0<t<∞

sup
A∈B

λ(A)=t

1

φ(t)
‖ f χA‖mS .

Similarly to the proof of [15, Theorem 3(7)], it follows that

ρ( f ) = sup
h∈BΛφ(λ)

‖ f h‖mS .

So, noting that, since Λψ(λ) is order continuous and has the Fatou property then L1(mS) = L1
w(mS) (see [9, Proposi-

tion 3.4(e), (f)]), we have that

M
(
Λφ(λ), L1(mS)

) = {
f ∈ L0(λ): ρ( f ) < ∞}

. (11)

Suppose that there exists C > 0 such that ψ(t)
t � Cθψ(t) for all t > 0. In this case, L1(mS ) = L1(θψ(t)dt) and every

f ∈ L1(mS ) satisfies

∞∫
0

∣∣ f (t)
∣∣θψ(t)dt � ‖ f ‖mS � (1 + C)

∞∫
0

∣∣ f (t)
∣∣θψ(t)dt, (12)

see [9, §4]. Consider the Marcinkiewicz space

Mφ(λ) =
{

f ∈ L0(λ): ‖ f ‖Mφ(λ) = sup
0<t<∞

1

φ(t)

t∫
f ∗(s)ds < ∞

}
,

0



which is a B.f.s. with the norm ‖ f ‖Mφ(λ) (see [11, §II.5]). From [1, Proposition II.3.3(a)], for every f ∈ L0(λ) we have that

‖ f ‖Mφ(λ) = sup
0<t<∞

sup
A∈B

λ(A)=t

1

φ(t)

∫
A

∣∣ f (s)
∣∣ds. (13)

By using (11)–(13), it is direct to check that

M
(
Λφ(λ), L1(mS)

) = {
f ∈ L0(λ): f θψ ∈ Mφ(λ)

}
and ‖ f θψ‖Mφ(λ) � ρ( f ) � (1 + C)‖ f θψ‖Mφ(λ) for all f ∈ M(Λφ(λ), L1(mS )). Therefore,

L1
Λφ(λ)(mS) = {

f ∈ L0(λ): f θψ ∈ Mφ(λ) ∩ L1(λ)
}

and

‖ f θψ‖Mφ∩L1(λ) � ‖ f ‖L1
Λφ(λ)

(mS ) � (1 + C)‖ f θψ‖Mφ∩L1(λ)

for all f ∈ L1
Λφ(λ)(mS ).

Note that for a general Y (η), instead of Λφ(λ), we always have

L1
Y (η)(mS) = {

f ∈ L0(λ): S
(| f |), S

(| f h|) ∈ Λψ(λ) for all h ∈ Yb(η)
}
.

This follows from Proposition 10 and the description of L1(mS ) given in Example 5.

Example 14. Let I be a non-countable set and consider a map θ : I → (0,∞). The space defined as

�1
θ (I) = {

x = (x j) j∈I ⊂ R:
(
xiθ(i)

)
i∈I ∈ �1(I)

}
and endowed with the norm ‖x‖�1

θ (I) = ∑
i∈I |xiθ(i)|, is an order continuous B.f.s. related to (I,2I ,μ), with μ being the

counting measure on I .
Let K : I × I → [0,∞) be a kernel as in Example 6 and mT : R → �p(I) the vector measure generated by K , where

R = {A ⊂ I: A is finite }. Then,

L1
�1
θ (I)

(mT ) = L1(mT ) ∩ M
(
�1
θ (I), L1(mT )

)
.

From the description of L1(mT ) given in Example 6, it is routine to check that L1
�1
θ (I)

(mT ) can be described as the space of

functions f : I → R such that(
f ( j)

〈
e∗, K j

〉)
j∈I ∈ �1(I) and

(
f ( j)〈e∗, K j〉

θ( j)

)
j∈I

∈ �∞(I)

for every e∗ ∈ �p′
(I), and

‖ f ‖L1
�1
θ
(I)

(mT ) = max

{
sup

e∗∈B
�p′

(I)

∑
j∈I

∣∣ f ( j)
〈
e∗, K j

〉∣∣, sup
e∗∈B

�p′
(I)

sup
j∈I

∣∣∣∣ f ( j)〈e∗, K j〉
θ( j)

∣∣∣∣}.

If p = 1 a simpler description can be given. In this case, β = (‖Ki‖∞)i∈I ∈ �1(I) and so K j = (K (i, j))i∈I ∈ �1(I) (as K j � β).
Then, we can consider ψ = (‖K j‖�1(I)) j∈I . Let us require mT and μ to be equivalent, or equivalently, for every j ∈ I there
exists i ∈ I such that K (i, j) > 0. Thus, ψ : I → (0,∞). Note that if this condition fails on a set J ⊂ I , that is, K j = 0 for
all j ∈ J , then L1

�1
θ (I)

(mT ) does not change if we consider mT defined on I\ J . From the description above, it follows that

L1
�1
θ (I)

(mT ) = �1
ψ(I) ∩ �∞

ψ
θ

(I) isometrically. Note that for ψ : I → (0,∞), we denote

�∞
ψ (I) = {

x = (x j) j∈I ⊂ R:
(
xiψ(i)

)
i∈I ∈ �∞(I)

}
,

which endowed with the norm ‖x‖�∞
ψ (I) = supi∈I |xiψ(i)|, is a B.f.s. related to (I,2I ,μ).

5. Factorization of B.f.s.-extensible operators

Fix (Ω,Σ) a measurable space, X(μ) a B.f.s. satisfying that Σ loc
X(μ) = Σ and T : X(μ) → E a non-null order-w continuous

linear operator with values in a Banach space E . Then, we have that T factorizes as in (5).
Let Y (η) be a B.f.s. with mT 
 η. We will say that T is Y (η)-extensible if there exists a constant K > 0 such that∥∥T ( f ϕ)

∥∥ � K‖ f ‖X(μ)‖ϕ‖Y (η)
E



for all f ∈ X(μ) and ϕ ∈ S(Σ) ∩ Y (η). The Y (η)-extensibility is well defined since, if ϕ = ϕ̃ η-a.e. (and so mT -a.e.), there
exists A ∈ Σ such that Ω\A is mT -null and ϕχA = ϕ̃χA pointwise and so, noting that f ϕ ∈ X(μ), by (5) we have that

T ( f ϕ) =
∫
Ω

f ϕ dmT =
∫
Ω

f ϕχA dmT =
∫
Ω

f ϕ̃χA dmT =
∫
Ω

f ϕ̃ dmT = T ( f ϕ̃).

In this section we will see that if T is Y (η)-extensible, then it factorizes through the B.f.s. L1
Y (η)(mT ) via the maps [i]

and ImT , in a way that ImT on L1
Y (η)(mT ) preserves the Y (η)-extensibility, and the factorization is optimal.

Proposition 15. The following assertions are equivalent:

(a) T is Y (η)-extensible.
(b) [i] : X(μ) → L1

Y (η)(mT ) is well defined.

(c) P : X(μ) × Yb(η) → L1(mT ) given by P ( f ,h) = f h, is well defined.

Proof. Suppose (a) holds. If f ∈ X(μ), by (5) we have that f ∈ L1(mT ) and∥∥∥∥∫
Ω

f ϕ dmT

∥∥∥∥
E

= ∥∥T ( f ϕ)
∥∥

E � K‖ f ‖X(μ)‖ϕ‖Y (η) � K‖ f ‖X(μ)

for all ϕ ∈ S(Σ) ∩ BY (η) . Then, ‖(mT ) f ‖Y (η) � K‖ f ‖X(μ) < ∞ and so f ∈ L1
Y (η)(mT ). Therefore, (b) holds.

Note that since mT 
 μ and mT 
 η, the map P which takes a μ-a.e. class in L0(μ) represented by f and an η-a.e.
class in L0(η) represented by h into the mT -a.e. class represented by f h, is a well-defined bilinear map.

Suppose (b) holds. Then, given f ∈ X(μ) and h ∈ Yb(η), since f ∈ L1
Y (η)

(mT ) = L1(mT ) ∩ M(Yb(η), L1(mT )) (see Proposi-

tion 10), we have that f h ∈ L1(mT ). So, (c) holds.
Finally, suppose (c) holds. Then, P : X(μ) × Yb(η) → L1(mT ) is continuous, since every bilinear map B : E × F → G

between Banach lattices such that B(x, y) � B(x̃, ỹ) whenever x � x̃ � 0 and y � ỹ � 0, is automatically continuous. This
fact can be proved similarly to the case of positive maps between Banach lattices, see [14, p. 2]. So, there exists a constant
K > 0 such that ‖ f h‖mT � K‖ f ‖X(μ)‖h‖Y (η) for all f ∈ X(μ) and h ∈ Yb(η). Hence, by (5), we have that∥∥T ( f ϕ)

∥∥
E =

∥∥∥∥∫
Ω

f ϕ dmT

∥∥∥∥
E

� ‖ f ϕ‖mT � K‖ f ‖X(μ)‖ϕ‖Y (η)

for all f ∈ X(μ) and ϕ ∈ S(Σ) ∩ Y (η). That is, (a) holds. �
Of course, if T is Y (η)-extensible, by (5) and Proposition 15(b), it factorizes as

X(μ)
T

[i]

E

L1
Y (η)(mT )

ImT
(14)

Note that ImT : L1
Y (η)

(mT ) → E is order-w continuous and satisfies condition (7) of Proposition 4 (as ImT : L1(mT ) → E does),

mImT

 η (as mImT

(A) = ∫
Ω

χA dmT for all A ∈ ΣL1
Y (η)

(mT ) and mT 
 η) and

∥∥ImT ( f ϕ)
∥∥

E =
∥∥∥∥∫

Ω

f ϕ dmT

∥∥∥∥
E

� ‖ϕ‖Y (η)

∥∥(mT ) f
∥∥

Y (η)
� ‖ϕ‖Y (η)‖ f ‖L1

Y (η)
(mT )

for all f ∈ L1
Y (η)(mT ) and ϕ ∈ S(Σ) ∩ Y (η). That is, ImT : L1

Y (η)(mT ) → E is Y (η)-extensible. Moreover, the factorization (14)
is optimal in the sense of the following result.

Theorem 16. Suppose that T is Y (η)-extensible. If Z(ζ ) is a B.f.s. such that ζ 
 μ and T factorizes as

X(μ)
T

[i]

E

Z(ζ )

S
(15)



with S being order-w continuous, Y (η)-extensible and satisfying condition (7) of Proposition 4, then [i] : Z(ζ ) → L1
Y (η)(mT ) is well

defined and S( f ) = ImT ( f ) for all f ∈ Z(ζ ).

Proof. Let Z(ζ ) be a B.f.s. such that ζ 
 μ and T factorizes as in (15). From Proposition 4, [i] : Z(ζ ) → L1(mT ) is well
defined and S( f ) = ImT ( f ) for all f ∈ Z(ζ ). In particular, we have that mS 
 η as mS(A) = S(χA) = ImT (χA) = ∫

Ω
χA dmT

for all A ∈ ΣZ(ζ ) and mT 
 η. Since S is supposed to be Y (η)-extensible, then there exists K > 0 such that∥∥∥∥∫
Ω

f ϕ dmT

∥∥∥∥
E

= ∥∥S( f ϕ)
∥∥

E � K‖ f ‖Z(ζ )‖ϕ‖Y (η) � K‖ f ‖Z(ζ )

for all f ∈ Z(ζ ) and ϕ ∈ S(Σ) ∩ BY (η) . Hence, for every f ∈ Z(ζ ) it follows that ‖(mT ) f ‖Y (η) � K‖ f ‖Z(ζ ) < ∞ and so
f ∈ L1

Y (η)(mT ). �
Example 17. Let S : L1 ∩ L∞(λ) → Λψ(λ) be the Hardy operator given in Example 5. Consider the Lorentz space Λφ(λ) with
φ(t) = ∫ t

0 θψ(s)ds for all t > 0. Given f ∈ L1 ∩ L∞(λ) and ϕ ∈ S(B) ∩ Λφ(λ), we have that

∥∥S( f ϕ)
∥∥

Λψ(λ)
=

∞∫
0

(
S( f ϕ)

)∗
(s)ψ ′(s)ds �

∞∫
0

ψ ′(s)

s

s∫
0

f ∗(t)ϕ∗(t)dt ds

� ‖ f ‖L∞(λ)

∞∫
0

ϕ∗(t)
∞∫

t

ψ ′(s)

s
ds dt � ‖ f ‖L1∩L∞(λ)‖ϕ‖Λφ(λ),

where the first inequality follows from the definition of S and the properties of the decreasing rearrangement of func-
tions, see for instance [1, §II.1, 2]. This shows that S is Λφ(λ)-extensible. Therefore, S factorizes through L1

Λφ(λ)(mS ) (see

Example 13) as in (14) and the factorization is optimal in the sense of Theorem 16.

Example 18. Let T : �1(I) → �p(I) be the operator defined by the kernel K given in Example 6. Assume that for every j ∈ I
there exists i ∈ I such that K (i, j) > 0. Then, since β = (‖Ki‖∞)i∈I ∈ �p(I) and K j � β , we can consider ψ = (‖K j‖�p(I)) j∈I ⊂
(0,∞) and the space �1

ψ(I) (see Example 14). Given f ∈ �1(I) and ϕ ∈ S(2I ) ∩ �1
ψ(I), we have that

∥∥T ( f ϕ)
∥∥

�p(I) =
(∑

i∈I

∣∣∣∣∑
j∈I

f ( j)ϕ( j)K (i, j)

∣∣∣∣p)1/p

�
(∑

j∈I

∣∣ f ( j)
∣∣p′)1/p′(∑

i∈I

∑
j∈I

∣∣ϕ( j)
∣∣p

K (i, j)p
)1/p

� ‖ f ‖�1(I)

(∑
j∈I

∣∣ϕ( j)
∣∣p ∑

i∈I

K (i, j)p
)1/p

� ‖ f ‖�1(I)

(∑
j∈I

∣∣ϕ( j)
∣∣p‖K j‖p

�p(I)

)1/p

� ‖ f ‖�1(I)

∑
j∈I

∣∣ϕ( j)
∣∣‖K j‖�p(I) = ‖ f ‖�1(I)‖ϕ‖�1

ψ (I).

Hence, T is �1
ψ(I)-extensible and so factorizes through L1

�1
ψ (I)

(mT ) (see Example 14) as in (14) and the factorization is

optimal in the sense of Theorem 16. In the case p = 1, note that L1
�1
ψ (I)

(mT ) = �1
ψ(I) ∩ �∞(I).

Finally, we show a result which will be used in the following section.

Lemma 19. Suppose that T is Y (η)-extensible. Then, T is Z(ζ )-extensible for all B.f.s. Z(ζ ) such that η 
 ζ and [i] : Z(ζ ) → Y (η) is
well defined.

Proof. Let Z(ζ ) be a B.f.s. as above. By Proposition 15 and Proposition 10, we have that [i] : X(μ) → L1
Y (η)(mT ) = L1(mT ) ∩

M(Yb(η), L1(mT )). Since [i] : Z(ζ ) → Y (η) is well defined, [i] : Zb(ζ ) → Yb(η) is also well defined and so M(Yb(η), L1(mT )) ⊂
M(Zb(ζ ), L1(mT )). Then, [i] : X(μ) → L1

Y (η)(mT ) ⊂ L1
Z(ζ )(mT ) and thus T is Z(ζ )-extensible by Proposition 15. �

6. Special cases of B.f.s.-extensible operators

6.1. L p-product extensible operators

Let (Ω,Σ,μ) be a finite measure space, X(μ) a B.f.s. such that S(Σ) ⊂ X(μ) ⊂ L1(μ) (i.e. X(μ) is a B.f.s. in the sense
of Lindenstrauss and Tzafriri [14, Definition 1.b.17]) and T : X(μ) → E a non-null order-w continuous linear operator with



values in a Banach space E . Note that in this case χΩ ∈ X(μ) is a weak unit and so Σ loc
X(μ) = Σ . In fact, ΣX(μ) = Σ . Given

1 < p < ∞, the operator T is said to be L p-product extensible if there exists a constant K > 0 satisfying that

sup
{∥∥T ( f ϕ)

∥∥
E : ϕ ∈ S(Σ) ∩ BL p′

(μ)

}
� K‖ f ‖X(μ) (16)

for all f ∈ X(μ), where 1
p + 1

p′ = 1. This class of operators has been introduced in [3, Definition 8] as a tool for study-
ing unconditional convergence of series in Banach function spaces. It is clear that T is L p-product extensible if and only
if it is L p′

(μ)-extensible. Then, in this case, T can be optimally “extended” preserving the inequality (16) to the space
L1

Lp′
(μ)

(mT ) = L1
p,μ(mT ) (see Example 11) by ImT . So, [3, Theorem 6] can be obtained as a particular case of Proposition 15

and Theorem 16.

6.2. Pisier’s factorization theorem

Let (Ω,Σ,μ) be a σ -finite measure space, E a Banach space and T : Ls(μ) → E a non-null continuous linear operator,
where 1 < s < ∞. Note that T is order-w continuous (as Ls(μ) is order continuous), Ls(μ) has a weak unit (as μ is a σ -
finite measure) and ΣLs(μ) = {A ∈ Σ: μ(A) < ∞}. Then Σ loc

Ls(μ)
= Σ . For 1 � p < s, Pisier’s factorization theorem establishes

that T factorizes through a weighted Lorentz space L p,1(ωdμ) if and only if it satisfies a lower p-estimate, that is, if there
exists C > 0 such that(

n∑
i=1

∥∥T ( f i)
∥∥p

E

)1/p

� C

∥∥∥∥∥
n∑

i=1

| f i|
∥∥∥∥∥

Ls(μ)

(17)

for all disjoint f1, . . . , fn ∈ Ls(μ), see [19]. On other hand, from [10, Theorem 4.2], condition (17) is equivalent to the
existence of a probability measure λ on Σ and a constant K > 0 such that∥∥T ( f g)

∥∥
E � K‖ f ‖Ls(μ)‖g‖Lt,1(λ) (18)

for all f ∈ Ls(μ) and g a Σ-measurable function with |g| � 1 pointwise, where 1
t = 1

p − 1
s . Then, it follows that T satisfies

a lower p-estimate if and only if T is Lt,1(λ)-extensible. In this case, Theorem 16 provides the largest “extension” of T
preserving the inequality (18), namely, ImT : L1

Lt,1(λ)
(mT ) → E .

6.3. pth power factorable operators

Let (Ω,Σ) be a measurable space, X(μ) a B.f.s. with a weak unit (so, Σ loc
X(μ) = Σ ) and T : X(μ) → E a non-null order-w

continuous linear operator with values in a Banach space E . Note that mT is σ -finite, as X(μ) has a weak unit. Given
0 < r < ∞, consider the quasi-B.f.s. (B.f.s. if r � 1)

Xr(μ) = {
f ∈ L0(μ): | f |r ∈ X(μ)

}
,

equipped with the quasi-norm (norm if r � 1) ‖ f ‖Xr(μ) = ‖| f |r‖1/r
X(μ) . Let us see that the factorization of T through L p(mT )

is related with certain Xr(μ)-extensibility. Note that although throughout all this paper we have considered B.f.s.’ for the
aim of simplicity, actually the main arguments can be adapted for quasi-B.f.s.’.

Proposition 20. Assume that S(Σ) ∩ X(μ) is dense in X(μ) and let 1 < p < ∞. The following assertions are equivalent:

(a) [i] : X(μ) → L1(mT ) ∩ L p(mT ) is well defined.

(b) T is X
1

p−1 (μ)-extensible.

Moreover, if (a)–(b) hold, T factorizes as

X(μ)
T

[i]

E

L1(mT ) ∩ Lp(mT )
i L1

X
1

p−1 (μ)

(mT )

ImT (19)

Proof. Suppose (a) holds. Then, [i] : X(μ) → L1(mT ) ∩ L p
w(mT ) is also well defined. Since L1(mT ) ∩ L p

w(mT ) = L1
Lp′

(mT )
(mT )

for 1
p + 1

p′ = 1 (Example 12), by Proposition 15 we have that T is L p′
(mT )-extensible. Moreover, since [i] : X(μ) → L p(mT )

is well defined, [i] : X
p′
p (μ) → L p′

(mT ) is also well defined. Noting that p′ = 1 , (b) follows from Lemma 19.
p p−1



Conversely, suppose (b) holds. Noting that X
1

p−1

b (μ) = X
1

p−1 (μ) as S(Σ) ∩ X(μ) is dense in X(μ), we have that

[i] : X(μ) → L1

X
1

p−1 (μ)

(mT ) = L1(mT ) ∩ M
(

X
1

p−1 (μ), L1(mT )
)

is well defined. So, given f ∈ X(μ), we have that f ∈ L1(mT ) and

| f |p = | f | · | f |p−1 ∈ L1(mT )
(
i.e. f ∈ Lp(mT )

)
,

since | f | ∈ M(X
1

p−1 (μ), L1(mT )) and | f |p−1 ∈ X
1

p−1 (μ). Therefore, (a) holds.

Suppose (a)–(b) hold. Since [i] : X(μ) → L p(mT ) is well defined, it follows that [i] : X
1

p−1 (μ) → L p′
w (mT ) is so and then

M
(
Lp′

w (mT ), L1(mT )
) ⊂ M

(
X

1
p−1 (μ), L1(mT )

)
.

From [15, Theorem 5] and the comments in Example 12, it is deduced that L p(mT ) = M(L p′
w (mT ), L1(mT )). Hence, L1(mT ) ∩

L p(mT ) ⊂ L1

X
1

p−1 (μ)

(mT ) and thus T factorizes as above (see for instance [12, Theorem II.5.1]). �

Remark 21. The condition S(Σ) ∩ X(μ) dense in X(μ) in Proposition 20 is only needed for (b) implies (a). If (a)–(b) hold,

then T is L p′
w (mT )-extensible. The converse holds if S(Σ) ∩ L p′

w (mT ) is dense in L p′
w (mT ) (for instance, this is the case when

L1
w(mT ) = L1(mT )).

Under the more restrictive setting of μ finite and X(μ) order continuous such that S(Σ) ⊂ X(μ) ⊂ L1(μ), since X(μ) ⊂
X

1
p (μ) for 1 � p < ∞, it can be considered the property for T of being pth power factorable, i.e. T can be extended to

X
1
p (μ) by a continuous linear operator T p . In this case, T factorizes as

X(μ)
T

i

E

X
1
p (μ)

T p
(20)

This class of operators has been recently introduced and thoroughly studied in [18, §5]. Note that in this context, mT is
defined in the σ -algebra Σ and so L p(mT ) ⊂ L1(mT ). Then, from Proposition 20 and [18, Theorem 5.7], we have that T is

pth power factorable if and only if T is X
1

p−1 (μ)-extensible, provided mT and μ are equivalent. Finally, let us show (in the
last setting) an interesting consequence of Proposition 20 for p = 2.

Corollary 22. Suppose that E is a 2-concave Banach lattice and T is X(μ)-extensible with mT being equivalent to μ. Then, T factorizes
through L2(μ) as

X(μ)
T

Mg

E

L2(μ)

S

where Mg is a multiplication operator and S a continuous linear operator.

Proof. Since T is X(μ)-extensible, by Proposition 20, it factorizes as

X(μ)
T

i

E

L2(mT )

ImT

Noting that L2(mT ) is a B.f.s. over μ and 2-convex and ImT : L2(mT ) → E is 2-concave (by [14, Theorem 1.f.14] and since E
is 2-concave), from the Maurey–Rosenthal factorization theorem (see for instance [6, Corollary 5] or [18, Corollary 6.17]) we
have that ImT factorizes as



L2(mT )
ImT

Mg

E

L2(μ)

S

with Mg being a multiplication operator and S a continuous linear operator. The composition of the two diagrams above
gives the result. �
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