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L1-spaces of vector measures defined on δ-rings

By

Olvido Delgado

Abstract. Given a vector measure ν defined on a δ-ring with values in a Banach space, we
study the relation between the analytic properties of the measure ν and the lattice properties of the
space L1(ν) of real functions which are integrable with respect to ν.

Introduction. The classical theory of integration of scalar functions with respect to a
vector measure (defined on a σ -algebra) was created by Bartle, Dunford and Schwartz for
studying the vector extension of the Riesz representation theorem [1]. The corresponding
space of integrable functions has been thoroughly studied and is now well understood;
see [6], [7], [8], [11], [16], [17]. An application is the study of operators T between
function spaces through the vector measure ν(A) = T (χA) and its spaceL1(ν) of integrable
functions; see [1]. A crucial role in this study is played by the “good” properties of the
space L1(ν) namely, it is an order continuous Banach lattice with weak order unit.

There are, however, important operators which cannot be directly studied via this classical
integration procedure. This happens, for example, with the Hilbert transform on the real
line. In this case, the vector measure associated to the operator is defined only for Lebesgue
measurable sets of finite measure, which do not constitute a σ -algebra. Thus, we are
naturally lead to consider vector measures which are defined on structures weaker than
σ -algebras. The extension of the integration theory to vector measures defined on δ-rings
was done by Lewis [12] and Masani and Niemi [14], [15].

In this paper we consider a vector measure ν defined on a δ-ring R of sets of �, taking
values in a Banach space. We analyse the differences with vector measures defined on
σ -algebras; in particular, L1(ν) is an order continuous Banach lattice which may not have
a weak order unit if ν is only defined on a δ-ring. We study the effect on the space L1(ν)

of certain properties of ν: i.e., strong additivity and σ -finiteness. Namely, we show that
L1(ν) has a weak unit g if and only if ν is σ -finite (Theorem 3.3), and in this case L1(ν) is
order isometric to L1(νg), where νg is the vector measure defined on the σ -algebra of sets
locally in R by νg(A) = ∫

A

g dν (Theorem 3.5). In the case when ν is strongly additive,
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g = χ� is a weak unit of L1(ν), νg is an extension of ν and L1(ν) coincides with L1(νg)

(Corollary 3.2).

1. Preliminaries. Throughout this paper, R will be a δ-ring of subsets of a set �, that
is, a ring of sets closed under countable intersections. We denote by Rloc the σ -algebra
of subsets A of � such that A ∩ B ∈ R for every B ∈ R. The space of measurable real
functions on (�,Rloc) is denoted by M. The simple functions are related to Rloc and the
simple functions based on R will be called R-simple functions. The space of all R-simple
functions is denoted by S(R).

Let λ : R → R, be a countably additive measure, that is
∑
λ(An) converges to λ(∪An)

whenever (An) are pairwise disjoint sets in R such that ∪An ∈ R. The variation of λ is
the countably additive measure |λ| : Rloc → [0,∞] given by

|λ|(A) = sup
{∑

|λ(Ai)| : (Ai) finite disjoint sequence in R ∩ 2A
}

;

see [12, Section 2], [14, Definition 2.3 and Lemma 2.4]. A function f ∈ M is inte-
grable with respect to λ if |f |1,λ = ∫ |f |d|λ| < ∞. Identifying functions which are equal
|λ|-a.e., the space L1(λ) of integrable functions with respect to λ is a Banach space with

norm | · |1,λ, in which S(R) is dense [14, Triv. 2.15]. For ϕ =
n∑
i=1

aiχAi ∈ S(R),
∫
ϕ dλ :=

n∑
i=1

aiλ(Ai). For f ∈ L1(λ),
∫
f dλ := lim

∫
ϕn dλ ∈ R, where (ϕn) ⊂ S(R)

converges to f in L1(λ). If f ∈ L1(λ), the set function λf : Rloc → R defined by
λf (A) = ∫

A

f dλ = ∫
f χA dλ is a countably additive measure, with |λf |(A) = ∫

A

|f |d|λ|
for all A ∈ Rloc; see [14, pp. 212–228].

Let X be a real Banach space, with dual space X∗ and BX∗ be the unit ball of X∗.
Consider a vector measure ν : R → X, that is,

∑
ν(An) converges to ν(∪An) in X for

every sequence (An) of pairwise disjoint sets in R with ∪An ∈ R. The semivariation of ν
is the set function defined on Rloc by ‖ν‖(A) = sup{|x∗ν|(A) : x∗ ∈ BX∗}, where |x∗ν|
is the variation of the measure x∗ν : R → R. The semivariation of ν is finite on R and
satisfies

‖ν‖(A)
2

� sup{‖ν(B)‖ : B ∈ R ∩ 2A} � ‖ν‖(A), A ∈ Rloc;(1)

see [12, Section 2], [15, Lemma 3.4 and Corollary 3.5]. A set B ∈ Rloc is ν-null if
‖ν‖(B) = 0. A property holdsν-almost everywhere (ν-a.e.) if it holds except on a ν-null set.

LetE be a Banach lattice with norm ‖·‖ and order �. An ideal ofE is a closed subspace
F such that y ∈ F whenever y ∈ E with |y| � |x| for some x ∈ F . A weak unit of E
is an element 0 < e ∈ E with the property that inf{x, e} = 0 implies x = 0. A Banach
lattice is order continuous if order bounded increasing sequences are norm convergent.
A Banach function space with respect to a measure space (�,�, λ) is a Banach space E
of (equivalence classes of ) measurable functions which are integrable with respect to λ
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over sets of finite measure, contains all simple functions whose support has finite measure,
and satisfies f ∈ E with ‖f ‖ � ‖g‖ whenever |f | � |g| with g ∈ E. For issues related to
Banach lattices see [13].

2. Integration with respect to vector measures on δ-rings. We recall the integration
theory with respect to vector measures defined on δ-rings, due to Lewis [12] and Masani
and Niemi [14], [15]. Let ν : R → X be a vector measure. We denote by L1

w(ν) the space
of functions in M which are integrable with respect to x∗ν for all x∗ ∈ X∗. Functions
which are equal ν-a.e. are identified. The space L1

w(ν) is a Banach space, endowed with
the norm

‖f ‖ν = sup

{∫
|f |d |x∗ν| : x∗ ∈ BX∗

}
,

in which convergence in norm of a sequence implies ν-a.e. convergence of some subse-
quence, [15, Lemma 3.13]. The space L1

w(ν) is a Banach lattice for the ν-a.e. order and an
ideal of measurable functions, that is, if |f | � |g| ν-a.e. with f ∈ M and g ∈ L1

w(ν), then
f ∈ L1

w(ν). A function f ∈ L1
w(ν) is integrable with respect to ν if for each A ∈ Rloc

there is a vector denoted by
∫
A

f dν ∈ X, such that

x∗

∫
A

f dν


 =

∫
A

f dx∗ν for all x∗ ∈ X∗.

When A = �, we simply write
∫
f dν for

∫
�

f dν. We denote by L1(ν) the space of

integrable functions with respect to ν. If ϕ =
n∑
i=1

aiχAi ∈ S(R) then ϕ ∈ L1(ν)

with
∫
A

ϕ d ν =
n∑
i=1

aiν(Ai ∩ A), for A ∈ Rloc. Furthermore, S(R) is dense in L1(ν),

[12, Theorem 3.5]. If X does not contain a copy of c0, then L1
w(ν) = L1(ν),

[12, Theorem 5.1]. The integration operator f ∈ L1(ν) → ∫
f dν ∈ X is linear and

continuous with ‖ ∫
f dν‖ � ‖f ‖ν . Given f ∈ L1(ν), the set function

A ∈ Rloc → νf (A) =
∫
A

f dν ∈ X(2)

is a vector measure with semivariation ‖νf ‖(A) = ‖f χA‖ν ; see [12, Theorem 3.2],
[15, Theorem 4.4]. For f ∈ L1(ν), applying (1) to the vector measure νf we have

‖f ‖ν
2

� sup




∥∥∥∥∥∥
∫
A

f dν

∥∥∥∥∥∥ : A ∈ R

 � ‖f ‖ν,(3)
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which then gives an equivalent norm in L1(ν). The space L1(ν) is a Banach lattice for the
order structure of L1

w(ν). Moreover, it is an ideal within the measurable functions and also
in L1

w(ν); see [15, Theorem 4.10]. From the dominated convergence theorem proved by
Lewis in this setting, [12, Theorem 3.3], it follows that L1(ν) is order continuous.

Each vector measure ν defined on a σ -algebra satisfies χ� ∈ L1(ν) and so
‖ν‖(�) = ‖χ�‖ν < ∞, that is, ν is bounded by (1). This does not hold in general
for vector measures defined on δ-rings, as the following example shows.

E x a m p l e 2.1. Let R be the δ-ring of Borel subsets of R having finite Lebesgue
measure, which is denoted bym. Then, Rloc is the σ -algebra of all Borel subsets of R. For
1 �p < ∞, the vector measure ν : R → Lp(R) defined by ν(A) = χA is not bounded,
since ‖ν(A)‖p = m(A)1/p, for all A ∈ R. Moreover, ‖ϕ‖ν = ‖ϕ‖p for every ϕ ∈ S(R)
with S(R) dense in both L1(ν) and Lp(R). So, L1(ν) = Lp(R). The space Lp(R) does
not contain a copy of c0, and hence, L1

w(ν) = L1(ν).

Since the space L1(ν) of a vector measure ν defined on a δ-ring is an ideal of measurable
functions, the space of bounded measurable functions is included in L1(ν) if and only if
χ� ∈ L1(ν). This fails to hold if ν is not bounded, in which case (by (1)) χ� /∈ L1

w(ν).
A condition which guarantees the integrability with respect to ν of a bounded measur-
able function f is that its support satisfies χsupp(f ) ∈ L1(ν). In this case, ‖f ‖ν �
‖f ‖∞ · ‖ν‖(supp(f )).

Curbera showed that the class of order continuous Banach lattices having a weak
unit coincides with the class of spaces L1 for vector measures defined on σ -algebras,
[6, Theorem 8]. The space L1(ν) for a vector measure ν defined on a δ-ring, may not have
a weak unit; see Example 2.2. In this setting the above characterization still holds without a
weak unit, since Curbera proved the following: If E is an order continuous Banach lattice,
then there exists a vector measure ν defined on some δ-ring of sets such that E is order
isometric to L1(ν); [5, pp. 22–23].

E x a m p l e 2.2. Let 	 be an abstract set and R be the δ-ring of finite subsets of 	. Then
Rloc = 2	 . Given p ∈ [1,∞], set Xp = 
p(	) for p < ∞ and X∞ = c0(	). Consider
the vector measure ν : R → Xp defined by ν(A) = ∑

γ∈A
eγ , where eγ is the characteristic

function of the point γ ∈ 	. This vector measure was considered in [5, p. 23] for p = 1.
The only ν-null set is the empty set. Note that

∫
ϕ dν = ∑

ϕ(γ )eγ = ϕ for all ϕ ∈ S(R).
Each x∗ ∈ X∗

p is identified with some (xγ )γ∈	 ∈ 
q(	), where 1/p + 1/q = 1. So,
x∗ν(A) = ∑

γ∈A
xγ and |x∗ν|(A) = ∑

γ∈A
|xγ | for all A ∈ R. Suppose p < ∞. In this

case, Xp does not contain a copy of c0, so L1
w(ν) = L1(ν). Given ϕ ∈ S(R), for

each x∗ = (xγ )γ∈	 ∈ X∗
p we have

∫ |ϕ|d|x∗ν| = ∑ |ϕ(γ )||xγ | � ‖ϕ‖p‖x∗‖q and so

‖ϕ‖ν � ‖ϕ‖p. From (3), ‖ϕ‖p = ‖ϕ‖ν . Since S(R) is dense in Xp, we have L1(ν) =

p(	). Suppose p = ∞. Given f ∈ M, since each x∗ = (xγ )γ∈	 ∈ 
1(	)

has countable support, we have
∫ |f |d|x∗ν| = ∑ |f (γ )||xγ | � ‖f ‖∞‖x∗‖1. Then,

|f (γ )| = ∫ |f |d|eγ ν| � ‖f ‖ν � ‖f ‖∞ for all γ ∈ 	, and so ‖f ‖ν = ‖f ‖∞. Hence,
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L1
w(ν) = 
∞(	). Moreover, L1(ν) = c0(	), since S(R) is dense in c0(	). In particular,
L1(ν) is a proper closed subspace of L1

w(ν). For any p ∈ [1,∞], since each element
of Xp has countable support, L1(ν) has a weak unit if and only if 	 is countable.

In the following result we characterize integrability by extending to the setting of δ-rings
the definition of integrable function given in [1].

Proposition 2.3. A function f ∈ M belongs to L1(ν) if and only if there is a sequence
(ϕn) ⊂ S(R) such that

a) (ϕn) converges to f ν-a.e.
b) (

∫
A

ϕn dν) converges in norm of X for all set A ∈ Rloc.

P r o o f. Necessity is proved by taking a sequence in S(R) converging to f in the norm
of L1(ν) and ν-a.e. and using continuity of the integration operator.

Suppose (ϕn) ⊂ S(R) satisfying a) and b). It suffices to prove that (ϕn) is Cauchy in
L1(ν). For, in this case, ϕn → g inL1(ν) for some g ∈ L1(ν) and hence, some subsequence
of (ϕn) converges to g ν-a.e. Then a) implies f = g ∈ L1(ν).

For each n, consider the vector measure νn : Rloc → X defined by νn(A) = ∫
A

ϕn dν. Let

λn = |x∗
nνn|, for x∗

n ∈ BX∗ , be a Rybakov control measure for νn; see [9, Theorem IX.2.2].
The non-negative measure µ = ∑

n�1

λn
2n(λn(�)+1) satisfies lim

µ(A)→0
‖νn(A)‖ = 0, for

every n. This together with b), are the hypothesis of Vitali-Hahn-Saks’s theorem; see
[9, Corollary I.5.6]. So, the previous limit is uniform in n. Hence, given ε > 0 there is
δ > 0 such that, for all n� 1 and all A ∈ Rloc with µ(A) < δ, we have∥∥∥∥∥∥

∫
A

ϕn dν

∥∥∥∥∥∥ = ‖νn(A)‖ < ε.(4)

Set Bm = m∩
j=1

ϕ−1
j ({0}) and B = ∩

m�1
Bm. Since µ(Bm\B) → 0 asm → ∞, there ismδ

such that µ(Bmδ\B) < δ/2.
Since ν-null sets are µ-null, a) implies that ϕn → f µ-a.e. For the above δ > 0,

Egoroff’s Theorem ensures the existence of a set Zδ ∈ Rloc such that µ(Zδ) < δ/2 and
ϕn → f uniformly on Zcδ . Noting that ‖ν‖(Bcmδ ) < ∞ (as Bcmδ ∈ R), it is possible to
choose nε,δ such that

‖(ϕn − f )χZcδ
‖∞ � ε

2(1 + ‖ν‖(Bcmδ ))
, for all n� nε,δ.

So, for all D ∈ Rloc and all m, n� nε,δ it follows∥∥∥∥∥∥∥∥
∫

D∩Zcδ∩Bcmδ

(ϕn − ϕm) dν

∥∥∥∥∥∥∥∥ � ‖(ϕn − ϕm)χZcδ∩Bcmδ‖ν

� ‖(ϕn − ϕm)χZcδ
‖∞ · ‖ν‖(Bcmδ )� ε.
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Set Hδ = Zδ ∪ Bmδ . Since µ(Hδ\B) < δ and ϕnχB = 0, for all D ∈ Rloc and all n,
it follows from (4) that∥∥∥∥∥∥∥

∫
D∩Hδ

(ϕn − ϕm) dν

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∫

D∩(Hδ\B)
(ϕn − ϕm) dν

∥∥∥∥∥∥∥ � 2ε.

Hence, ‖ ∫
D

(ϕn − ϕm) dν‖ � 3ε, for all D ∈ Rloc and all m, n� nε,δ . From (3),

‖ϕn − ϕm‖ν � 6ε for all n,m� nε,δ . Thus f ∈ L1(ν). �

3. Analytic properties of ν and lattice properties of L1(ν). Let ν : R → X be a vector
measure on a δ-ring R. The vector measure ν is called strongly additive if ν(An) → 0
whenever (An) is a disjoint sequence in R. We say that ν is σ -finite if there exists a sequence
(An) ⊂ R and a ν-null set N ∈ Rloc such that � = (∪An) ∪ N . It is obvious that any
vector measure defined on a σ -algebra is strongly additive and σ -finite.

Strongly additive measures are σ -finite; see [4, Lemma 1.1]. The converse does not hold
as Example 2.1 shows.

A countably additive measure λ : R → [0,∞] is a control measure for ν if it satisfies:
1) lim

λ(A)→0
‖ν(A)‖ = 0, and 2) every ν-null set of Rloc is λ-null. The measure λ is a local

control measure for ν if 1) is replaced by 1’) for every B ∈ R, lim
λ(A)→0
A∈R∩2B

‖ν(A)‖ = 0.

Condition 1’) is just ν 	 λ on R in [14, Definition 2.36]. From [15, Proposition 3.6],
1’) is equivalent to ν(A) = 0 whenever A ∈ R with λ(A) = 0, and this happens (by (1)) if
and only if every λ-null set of Rloc is ν-null. Conditions 1) and 1’) coincide if ν is defined
on a σ -algebra. For the reason of introducing the concept of local control measure see
[14, pp. 231–232].

The next result exhibits conditions equivalent to the strong additivity of a vector measure
defined on a ring of sets, which is not assumed to be a δ-ring.

Theorem 3.1. Let X be a Banach space, R a ring of subsets of � and ν : R → X

a vector measure. The following are equivalent:

a) The measure ν is strongly additive.
b) There exists a σ -algebra � containing R and a vector measure ν̂ : � → X

such that ν̂(A) = ν(A) for all A ∈ R (i.e., ν̂ extends ν).
c) There exists a bounded control measure for ν.

If these conditions hold, then we can take |x∗
0ν| as a bounded control measure for a

certain x∗
0 ∈ BX∗ .

P r o o f. For the equivalence between a) and c), see [3, Theorem 2].
Condition a) is equivalent to the existence of a vector measure ν̃ : σ(R) → X which

extends ν, where σ(R) is the σ -ring generated by R; see [10, Theorem on Extension].
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In this case, by [4, Lemma 1.1], there exists (An) ⊂ R such that N = �\(∪An) is
a ν-null set, in the sense that ν(A) = 0 for all A ∈ R ∩ 2N . Consider the σ -algebra
� = {A∪B : A ∈ σ(R) and B ⊂ N}. Noting that ν̃(A) = 0 for all ν-null setsA ∈ σ(R),
it follows that ν̂ : � → X defined by ν̂(A∪B) = ν̃(A) is a vector measure which extends
ν. So a) and b) are equivalent.

Suppose a)-c) hold. Let |x∗
0 ν̂|, for x∗

0 ∈ BX∗ , be a Rybakov control measure for the vector
measure ν̂ given in b). Since |x∗

0ν| � |x∗
0 ν̂| with equality on R, then |x∗

0ν| is a bounded
control measure for ν. �

Applying Theorem 3.1 to the case of δ-rings we obtain the following result.

Corollary 3.2. Let X be a Banach space, R a δ-ring of sets of � and ν : R → X

a vector measure.

a) If ν is strongly additive, then L1(ν) coincides with L1(ν̂), where ν̂ : Rloc → X

is a vector measure which extends ν.
b) The vector measure ν is strongly additive if and only if χ� ∈ L1(ν).
c) If ν is strongly additive, then L1(ν) is an order continuous Banach function

space with respect to (�,Rloc, |x∗
0ν|), where |x∗

0ν| is a bounded control measure
for a certain x∗

0 ∈ BX∗ .

P r o o f. Suppose ν is strongly additive. In the proof of Theorem 3.1, since R is a
δ-ring, we have N ∈ Rloc, σ(R) ⊂ Rloc ⊂ � and ν̂ : Rloc → X is a vector measure
extending ν. Note that the ν-null and ν̂-null sets coincide. For all ϕ ∈ S(R), we have
‖ϕ‖ν = ‖ϕ‖ν̂ . Furthermore, S(R) is dense inL1(ν̂). This follows from the order continuity
of L1(ν̂) together with the fact that ν is σ -finite. Thus, L1(ν) coincides with L1(ν̂). Hence
a) holds.

Let us verify b). If ν is strongly additive, then a) implies χ� ∈ L1(ν̂) = L1(ν).
Conversely, if χ� ∈ L1(ν), by (2), the set function ν̂ : Rloc → X defined by ν̂(A) =∫
A

χ�dν is a vector measure which extends ν. Thus, from Theorem 3.1, it follows that ν is

strongly additive.
For c) just observe that, by Theorem 3.1, there exists such a control measure |x∗

0ν| which
is defined on Rloc, since it is the variation of x∗

0ν : R → R. �

Every strongly additive vector measure ν defined on a δ-ring is bounded, since if χ� is in
L1(ν), then ‖ν‖(�) = ‖χ�‖ν < ∞. For p = ∞, Example 2.2 exhibits a bounded measure
which is not strongly additive (since ‖ν(A)‖∞ = 1 for every non empty set A ∈ R).

The vector measure ν given in Example 2.2 (for any p ∈ [1,∞]) is σ -finite if and only
if 	 is countable, that is, if a weak unit exists for L1(ν). For p = ∞, ν is bounded. For
p < ∞ and 	 infinite, ν is not bounded. This shows that there is no relation between
boundedness and σ -finiteness.

The next result gives equivalent conditions to the σ -finiteness of ν. In this case, only the
existence of a local control measure for ν can be guaranteed.
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Theorem 3.3. LetX be a Banach space, R a δ-ring of sets of� and ν : R → X a vector
measure. The following are equivalent:

a) The measure ν is σ -finite.
b) The space L1(ν) has a weak unit.
c) There exists a bounded local control measure for ν.

P r o o f. If ν is σ -finite, then � = (∪An) ∪ N with An ∈ R and N a ν-null set in Rloc.
The series

∑
(2n(‖ν‖(An) + 1))−1χAn converges absolutely in L1(ν). Moreover, its sum

g is a weak unit in L1(ν), since χg−1({0}) = 0 in L1(ν). Hence b) holds.

Let g be a weak unit in L1(ν) and νg : Rloc → X the vector measure defined by
νg(A) = ∫

A

g dν; see (2). Let λ = |x∗
0νg| be a Rybakov control measure for νg , where

x∗
0 ∈ BX∗ . A set A ∈ Rloc is λ-null if and only if ‖gχA‖ν = ‖νg‖(A) = 0, that is,
gχA = 0 ν-a.e. or equivalently A is ν-null. Therefore, λ is a bounded local control
measure for ν. Thus b) implies c).

If c) holds for some bounded local control measure λ : R → [0,∞), then |λ|(�) =
sup
B∈R

|λ|(B) < ∞. Thus, there is (Bn) ⊂ R with |λ|(�\Bn) < 1/n and so� = (∪Bn)∪N
with N = �\(∪Bn) being λ-null, that is, ν-null. So a) holds. �

R e m a r k 3.4. In the proof of Theorem 3.3, |x∗
0ν| is also a local control measure for ν,

although in this case we cannot guarantee that it is bounded. In this case, the space L1(ν)

will be a Banach function space with respect to (�,Rloc, |x∗
0ν|) provided χA ∈ L1(ν)

whenever |x∗
0ν|(A) < ∞. This fact does not hold in general. For p = ∞ and 	 countable,

Example 2.2 exhibits a measure ν such that |x∗ν|(A) < ∞ for all x∗ ∈ X∗∞ and all
A ∈ Rloc, whereas χ	 /∈ L1(ν). For p > 1 and 	 uncountable (i.e., ν is non σ -finite), there
are no Rybakov local control measures for ν, since each element x∗ ∈ X∗

p has countable
support and so |x∗ν| has plenty of non-trivial null sets. However, for any 	 and p ∈ [1,∞],
counting measure λ : R → [0,∞] is a control measure such thatL1(ν) is a Banach function
space with respect to (	,Rloc, |λ|).

If ν is σ -finite (and so L1(ν) has a weak unit by Theorem 3.3), then L1(ν) is order
isometric to some Banach function space; see [13, Theorem 1.b.14]. Moreover, Theorem 8
of [6] ensures that L1(ν) is order isometric to L1(µ) for some vector measure µ defined on
a σ -algebra of sets. The following result gives a more concrete description of µ.

Theorem 3.5. Under the conditions of Theorem 3.3, if ν is σ -finite, then L1(ν) is order
isometric toL1(νg), where νg : Rloc → X is the vector measure defined by νg(A) = ∫

A

g dν

and g is a weak unit in L1(ν).

P r o o f. For ϕ ∈ S(Rloc) we have gϕ ∈ L1(ν) and
∫ |ϕ|d|x∗νg| = ∫

g|ϕ|d|x∗ν| for all
x∗ ∈ X∗, so ‖ϕ‖νg = ‖gϕ‖ν .

Let f ∈ L1(νg) and (ϕn) ⊂ S(Rloc) be such that ϕn → f in the norm of L1(νg) and
νg-a.e. Then (gϕn) is a Cauchy sequence in L1(ν) and so it converges in norm to some
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h ∈ L1(ν). By taking a subsequence (gϕnk ) that converges to h ν-a.e., equivalently νg-a.e.,
we see that gf = h ∈ L1(ν) and ‖gf ‖ν = ‖f ‖νg .

Let us show that if h ∈ L1(ν), then h/g ∈ L1(νg). Suppose h� 0 and let (ϕn) ⊂ S(Rloc)

satisfy 0 �ϕn ↑ h/g. Then gϕn ↑ h and, by order continuity, (gϕn) converges toh inL1(ν).
This implies that (ϕn) is Cauchy inL1(νg), so it converges in norm to f ∈ L1(νg) and there
is a subsequence (ϕnk ) which converges νg-a.e. to f . Thus f = h/g ∈ L1(νg). So, the
operator T : L1(νg) → L1(ν) given by T (f ) = gf is an order isometry. �

For a vector measure ν : R → X with no further properties, a result of Brooks and
Dinculeanu shows that ν has a local control measure λ : R → [0,∞], [4, Theorem 3.2].
By Theorem 3.3 if ν is not σ -finite, then λ must be unbounded. In this case, it is known
that the space L1(ν) can be represented as an unconditional direct sum of a family of
disjoint ideals, each one having a weak unit; see [13, Proposition 1.a.9]. According to
[6, Theorem 8], each ideal is then the L1-space of some vector measure. The next result
gives a concrete representation of such a decomposition.

Theorem 3.6. Let X be a Banach space, R a δ-ring and ν : R → X a vector measure.
The spaceL1(ν) can be decomposed into an unconditional direct sum of a family of spaces,
each of which is order isometric to some L1(µ), where µ is the vector measure ν restricted
to a σ -algebra of the kind A ∩ R for some fixed A ∈ R.

P r o o f. In the proof of [4, Theorem 3.1] it is shown that there exists a maximal family
{Aα : α ∈ �} of non ν-null sets in R withAα ∩Aβ ν-null for α �= β. Let να : Rα → X be
the restriction of ν to the σ -algebra Rα = Aα ∩ R = {B ∈ R : B ⊂ Aα} and λα = |x∗

ανα|
be a Rybakov control measure for να . If B ∈ R, it is proved that λα(B ∩ Aα) = 0
for all α ∈ � except in a countable set. Then a local control measure λ is defined by
λ(A) = ∑

α∈�
λα(A ∩ Aα), for A ∈ R.

Consider the bounded linear projections Pα : L1(ν) → L1(ν) given by Pα(f ) = f χAα .
Note that

(
Pα(L

1(ν))
)
α∈� are disjoint closed ideals of L1(ν). Let f ∈ L1(ν) and (ϕn) be

a sequence in S(R) converging to f in norm of L1(ν) and ν-a.e. For each n, let In ⊂ �

be a countable set with ϕnχAα = 0 ν-a.e. for all α �∈ In. Then f χAα = 0 ν-a.e. for all
α �∈ I , where I = ∪nIn is countable. Hence f = ∑

α∈I
f χAα ν-a.e. and the sum converges

unconditionally in L1(ν) by the order continuity of L1(ν). Thus f is uniquely represented
as an unconditional direct sum of elements of (Pα(L1(ν)))α∈�. Every space Pα(L1(ν)) is
order isometric to L1(να), via restriction to the set Aα . �

4. Examples. We end the paper by considering some relevant examples.

E x a m p l e 4.1. Let p ∈ [1,∞) and T : Lp(R) → Lp(R) be a linear isomorphism.
Let R be the δ-ring of all Borel subsets of R having finite Lebesgue measure, in which case
Rloc is the σ -algebra of all Borel subsets of R. The set function νT : R→Lp(R) defined by
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νT (A) = T (χA), is a σ -finite vector measure. Since T is an isomorphism, for all ϕ ∈ S(R)
we have

1

‖T −1‖‖ϕ‖p � ‖T (ϕ)‖p =
∥∥∥∥
∫
ϕ dνT

∥∥∥∥
p

� ‖T ‖‖ϕ‖p.(5)

Then (3) implies that ‖T −1‖−1‖ϕ‖p � ‖ϕ‖νT � 2‖T ‖‖ϕ‖p. In particular, the νT -null
sets coincide with the Lebesgue measure null sets. Hence, by the density of S(R) in both
L1(νT ) and Lp(R), it follows that L1(νT ) is order isomorphic to Lp(R). Moreover, from

(5) we have ‖T −1‖−1‖χA‖p � ‖νT (A)‖p for all A ∈ R. So, νT is not bounded and hence,
not strongly additive.

Some interesting examples of such operators T : Lp(R) → Lp(R) are:

(I) The multiplication operator by some function ϕ ∈ L∞(R) for which also
1/ϕ ∈ L∞(R).

(II) The dilation operator by some factor α > 0. That is, Tf (x) = f (αx) for x ∈ R. Of
course, other composition operators are also possible.

(III) A Fourier p-multiplier operator in Lp(R), corresponding to some (unique)
p-multiplier ψ ∈ L∞(R), so that T̂f = ψf̂ for f ∈ (L2 ∩ Lp)(R) is continuously
extendable to Lp(R), with ·̂ denoting the Fourier transform. In order to ensure that T is an
isomorphism we require that 0 /∈ σ(T ), the spectrum of T . This class includes all transla-
tion operators and other classical operators. For instance, ifψ = i · sgn (with sgn denoting
the signum function on R) and p > 1, then the corresponding Fourier p-multiplier operator
is the Hilbert transform. This operator is also familiar as the singular integral operator given
by the principal-value integral

T (f )(x) = 1

π

+∞∫
−∞

f (t)

x − t
dt, x ∈ R.

E x a m p l e 4.2. Let φ: [0,∞) → [0,∞) be a measurable function. Let R be the
δ-ring of all Borel subsets of [0,∞) having finite Lebesgue measure (denoted by m), and
V be the Volterra convolution operator

V(f )(x) =
x∫

0

φ(x − y)f (y) dy,

defined for all f ∈ M for which V(f )(x) exists for m-a.e. x ∈ [0,∞). Suppose φ is
integrable. Then

‖ν(A)‖∞ = sup
x�0

x∫
0

φ(x − y)χA(y) dy = sup
x�0

∫
(x−A)∩[0,x]

φ(s) ds → 0

as m(A) → 0, since m((x − A) ∩ [0, x])�m(A) for all x� 0. From this it follows that
ν : R → (L1 ∩ L∞)[0,∞), defined by ν(A) = V(χA) is a vector measure. Let X be
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a rearrangement invariant Banach function space on [0,∞). Since (L1 ∩ L∞)[0,∞) is
continuously embedded in X (see [2, Theorem II.6.6]), we have that ν : R → X is also a
vector measure. This measure is σ -finite.

The boundedness and the strong additivity of ν depend on X. Indeed, for
X = (L1 ∩ L∞)[0,∞), ν is not bounded since ‖ν(A)‖L1∩L∞ � ‖ν(A)‖L1 = ‖φ‖L1m(A)

for all A ∈ R. For X = L∞[0,∞), ν is bounded since ‖ν(A)‖L∞ � ‖φ‖L1 for all A ∈ R.
In both cases, ν is not strongly additive. The first case is clear. If X = L∞[0,∞), for all
n and for large enough a > 0 we have

‖ν(na, (n+ 1)a)‖L∞ �
(n+1)a∫
na

φ((n+ 1)a − y) dy =
a∫

0

φ(s) ds > 0.

For X = (L1 + L∞)[0,∞), we now show that ν is strongly additive. Since
‖ν(A)‖L1+L∞ � ‖ν(A)‖L∞ � ‖φ‖L1 for allA ∈ R, we see that ν has bounded range on R.
By (1), ‖χ[0,∞)‖ν = ‖ν‖([0,∞)) < ∞, and so χ[0,∞) ∈ L1

w(ν). Then, χ[0,∞) ∈ L1(ν)

if for each B ∈ Rloc (the Borel σ -algebra of [0,∞)), there exists hB ∈ X such that
x∗(hB) = ∫

B

χ[0,∞) dx
∗ν for all x∗ ∈ X∗. Since X is order continuous, X∗ coincides with

the associate space X′ = (L1 ∩ L∞)[0,∞); see [2, Corollary I.4.3 and Theorem II.6.4].

So, x∗ ∈ X∗ corresponds to a function g ∈ X′ and x∗(f ) =
∞∫
0
g(x)f (x) dx, for f ∈ X.

Given B ∈ Rloc, set hB = V(χB). Then hB is bounded by ‖φ‖L1 and so hB ∈ X. Then

x∗(hB) =
∞∫

0

g(x)

x∫
0

φ(x − y)χB(y) dy dx

= lim
n→∞

∞∫
0

g(x)

x∫
0

φ(x − y)χB∩[0,n](y) dy dx

= lim
n→∞

∫
χB∩[0,n] dx

∗ν =
∫
B

χ[0,∞) dx
∗ν.

Hence, χ[0,∞) ∈ L1(ν) and, by Theorem 3.1, ν is strongly additive.

A c k n o w l e d g e m e n t. This work is part of a Ph. D. Thesis that I am preparing at
the University of Sevilla under the supervision of Professor G. P. Curbera, whom I thank
for his guidance and support. I also thank the referee for his thorough reading of the paper
and for his comments and suggestions.
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