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ABSTRACT The sheer volume of movies generated these days requires an automated analytics for efficient
classification, query-based search, and extraction of desired information. These tasks can only be efficiently
performed by a machine learning based algorithm. We address the same issue in this paper by proposing a
deep learning based technique for predicting the relevant tags for a movie and segmenting the movie with
respect to the predicted tags. We construct a tag vocabulary and create the corresponding dataset in order to
train a deep learning model. Subsequently, we propose an efficient shot detection algorithm to find the key
frames in the movie. The extracted key frames are analyzed by the deep learning model to predict the top
three tags for each frame. The tags are then assigned weighted scores and are filtered to generate a compact
set of most relevant tags. This process also generates a corpus which is further used to segment a movie based
on a selected tag. We present a rigorous analysis of the segmentation quality with respect to the number of
tags selected for the segmentation. Our detailed experiments demonstrate that the proposed technique is not
only efficacious in predicting the most relevant tags for a movie, but also in segmenting the movie with

respect to the selected tags with a high accuracy.

INDEX TERMS Tags prediction, movie segmentation, deep learning, transfer learning.

I. INTRODUCTION

The huge amount of multimedia data generated these days
makes it an ordeal to envisage techniques which can auto-
matically check the contents of multimedia data to ascertain
their authenticity and classify them accordingly. Especially,
retrieval of required information from multimedia data and
assignment of appropriate tags largely depends on manual
processing. Hence, the quality of the assigned tags follows a
subjective criterion and varies from person to person. Our
preliminary experiments [1] in this regard demonstrate that
human-generated meta data can not suffice to give full
insight into the main contents of a movie and/or shows
inconsistency due to the lack of precision in human’s ability
of information recall. In addition, manually-generated
semantic tags are less

accurate and present irregularities. Our preliminary experi-
ments on this topic further reveal that this ostensibly trivial
task entails an intelligent analysis of a video to predict its
representative tags without human intervention. This auto-
matically extracted information has immense applications
in optimizing video search, automatically retrieving scenes
from videos based on user’s query, object detection and
localization, automatic text/subtitles generation for videos,
detecting specific events in videos, action recognition, behav-
ior recognition, recommendation systems, etc. Among these
applications, scene-driven retrieval is particularly important
in the sense that it not only helps in content-censorship
(e.g., automatically censoring the scenes containing nudity,
sex, violence, smoking, etc), but also in on-demand retrieval
of desired scenes from a given movie (e.g., making highlights
of a soccer match which contain all the goal events). At the
same time, scene-driven retrieval is equally important for
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video summarization, e.g., removing all boring or unwanted
scenes.

Segmenting a movie in the major constituent topics does
require a precise identification of these topics in the first
place. This information can then be used for on-demand scene
selection, content-censorship and other tasks. In this paper,
we address the problem of predicting key information from
a movie in the form of small number of tags which describe
the overall contents of the movie. For this purpose, we aim not
only to understand the semantic meaning of individual movie
frames, but also to predict a compact set of the movie’s repre-
sentative topics. The predicted information can be utilized in a
number of ways such as movies categorization, context-based
search, content-censorship (e.g., nudity, violence and sex in
kid movies). Apart from this, the predicted tags for a movie
can be further utilized to segment the movie according to the
user’s choice.

Applying the traditional approaches of object detection
on the individual movie frames will be inefficient as we
will end up with low-level information (e.g., the localization
of objects in the individual frames instead of the contex-
tual relationship among them). In addition, processing each
movie frame will also introduce computational inefficiency
and result in redundant information. This problem can only
be addressed by a machine learning algorithm which can be
trained to predict the high-level, representative features of
movie scenes. The tremendous advancements in the field of
machine learning have paved the way for finding patterns in
complex data with an accuracy which, in some cases, even
surpasses human’s pattern matching performance. The cheap
and scalable parallel processing technique utilizing Graphical
Processing Units (GPUs) have made possible to efficiently
apply machine learning techniques for image/video analyt-
ics [2]. That said, applying machine learning to learn the
traditional image features for our problem is not efficient
due to the well-known issues related to these features such
as requirement of mathematical modeling, limited general-
ization, scale- and rotation variance, inability to maintain
performance under different conditions, etc.

Instead of learning the hand-crafted image features, it is
more efficient to discover the underlying features in the
individual movie frames. Deep learning [3] can serve this
purpose, as it does not require a priori information of image
features. Instead, it learns the underlying patterns in complex
data during training. Apart from this, a deep learning model
trained on a large dataset can be retrained using transfer learn-
ing [4] for a different classification task with a much smaller
dataset and training time. Considering the promising features
of deep learning, we formulate the problem of movie tags
prediction as a deep learning based classification. For this
purpose, we first develop a tag vocabulary in which each tag
represents a class. We further develop a dataset corresponding
to each tag in the vocabulary. Subsequently, we transfer the
features of a pre-trained Convolution Neural Network (CNN),
Inception-V3 [5], for our training task by modifying and
re-training its final layer using transfer learning.We further

propose an efficient shot detection technique for determining
the key frames in a movie which are later used for analytics
by the deep learning model. The proposed shot detection
technique is able to detect the hard-cut, fade-in and fade-out
shot boundaries.

Once all the key frames in a movie are found, their CNN
features are computed and fed to the newly added final layer
of the trained model to get the corresponding predictions
for each frame. The predictions corresponding to each frame
are assigned certain scores and relative weights based on
the values of their prediction probabilities and predominance
in the movie. The tags having smaller relative weights are
dropped out to obtain a compact set of few prime tags which
best represents the overall contents of the movie. Discarding
the motion information by processing only the key frames
of a movie does not have a considerable impact on the pre-
diction accuracy, as the recent related work in this domain
reveals that motion features do not drastically impinge on this
task [6]-[8].

The key frame analytics by the deep learning model further
generates a corpus which is used to segment a movie with
respect to a selected tag. The corpus contains the details
of each shot’s boundary, its key frame, the predicted tags
for the key frame, and the spatio-temporal details of each
shot. We further analyze the segmentation performance with
respect to the number of predictions per key frame selected
for the segmentation. The results presented in the paper show
the tradeoff between the precision and recall of the segmen-
tation.

The conspicuous features of the work presented in this
paper can be summarized as follows.

o The proposed technique of movie tags prediction oper-
ates at a higher semantic level by seizing the overall
context in the extracted key frames of a movie. The con-
text denotes the semantic meaning of the inter-objects
relationship in a scene, for instance, violence, action,
romance, fight, etc.

o This work stands apart from the traditional event/scene
recognition approaches where each item is adherent to a
single event or scene.

o Our proposed technique is also in contrast with the
traditional object recognition techniques which targets
to localize and label every individual object in an image.
This will result in a highly redundant and inconsequen-
tial information for our task.

o This work does hold resemblance with genre classifi-
cation of movies. However, a movie typically has 2-3
genres which do not encompass the entire range of a
movie’s contents (e.g., nudity, sex, smoking, violence,
etc). In contrast, our carefully designed, flexible and
scalable tag vocabulary sufficiently covers the main
theme of a movie.

o Unlike the existing video segmentation techniques
which perform little to no semantic analysis and
mostly exploit the visual similarity of the shots
to merge them into non-overlapping scenes, we do



consider a shot’s semantics to label and categorize it
accordingly.

The rest of the paper is organized as follows. Section II
provides an overview in the domain of movies/videos tags
prediction and segmentation. Section III provides a brief
theoretical background of convolution neural networks and
transfer learning. Section IV describes our movie tags pre-
diction and segmentation algorithms in detail. In Section V,
we discuss the experimental setup and evaluation results of
movie tags prediction and segmentation. Section VI con-
cludes the paper.

Il. RELATED WORK

We believe that movie tags prediction and segmentation has
not been well-studied in the literature. The related work
in this domain is primarily targeted at video tagging on a
limited scale. Qi et al. [9] annotated certain concepts in
a video using multi-label classification and the inter-class
correlation. Another video labeling approach proposed by
Siersdorfer et al. [10] put to use the redundancy among
YouTube videos for finding associations among videos and
assigning tags to similar videos. The techniques proposed by
Shen et al. [11] and Liu et al. [12] made use of the data
captured by the smartphone sensors to generate video tags.
In Miranda-Steiner [13], the proposed technique identified
basic objects in the images and videos of a digital camera and
further exploited the geographical and date/time information
to predict the relevant tags.

Ulges et al. [14] first found the key frames from a video and
then predicted several visual features for each key frame. The
visual features were assigned scores which were later fused
to generate a final probability for a certain tag in the video.
The tagging performance in this approach largely depended
on the feature modalities and thus had limited accuracy.
Chen et al. [15] proposed a video tagging technique which
first found all the textual descriptions of a video from Internet
sources and a graph model was applied on the descriptions
to discover and score the key words serving as tags. This
technique was dependent on the human-generated textual
description. In a similar technique, Zhao et al. [16] first found
similar videos by local features. The tags from the similar
videos were analyzed to pick the most relevant tags for the
given video. It is palpable that this technique shared the same
limitations as in [15].

Some techniques proposed by Aradhye et al [17],
Toderici et al. [18] and Yang and Toderici, [19] did not solely
rely on the user-supplied tags, but also took into account the
audiovisual features to train classifiers based on the corre-
spondence between the contents and the user-annotated tags.
Nevertheless, the incorporation of inconsistent user-supplied
meta data introduced the aforementioned issues.

A large part of the relevant literature in this context relied
on the user-annotated meta data. A similar technique pro-
posed by Chu et al. [20] first searched for the images on Flickr
that has similar tags as those of the given video. A bipartite
graph was used to describe the relationship between the

key frames of the video and the tags associated with the
images. The technique proposed by Acharya [21] selected
one or more user-generated tags for a video which described
its category. A transcript of plurality of words was gener-
ated along with their respective ranks. Based on the rank-
ing of the plurality of words, one or more tags were gen-
erated. Chen et al. [22] proposed a web video topic detec-
tion technique. This technique utilized the video related tag
information to determine bursty tag groups based on their
co-occurrence and temporal trajectories. The near-duplicate
key frames predicted from the web videos were fused with
these tag groups. Subsequently, the fused groups were further
matched with the keywords obtained from the search engine
to find the topics.

Some techniques [23], [24] used the plot synopses and
summaries of movies to predict a set of tags or movie genres.
These techniques required plot synopses of movies which
are not always readily available with a movie. In addition,
the dataset was comprised of manually curated tags which
share the same aforementioned limitations.

Ullah et al. worked on video semantic segmentation for
pedestrian flow and crowd behavior. In [25], they identified
crowd behaviors from a video sequence using a method
based on thermal diffusion process and social force model.
In [26], they employed a recurrent conditional random field
using Gaussian kernel features to segment anomalous enti-
ties in pedestrian flows by detection and localization. In a
recent work [27], they proposed the hybrid social influence
model for pedestrian motion segmentation by using a particle
representation and modelling the influence of particles on
each other. However, these methods are domain-specific and
focused on segmentation inside the images of the frames.

Due to the recent breakthroughs and advancements in deep
learning, the research on semantic analysis of images and
videos has been diverted to use complex neural architec-
tures to learn hierarchical feature representations. The hot
research areas in this domain include converting visual data
to textual representation [28]-[31], answering questions from
videos [32], [33], and video classification [7], [34]-[36]. The
first two areas are different from tags prediction, as they
entail more sophisticated architectures such as recurrent neu-
ral network [28] in combination with Convolutional Neural
Network (CNN) to discover the spatio-temporal connection
between consecutive video frames. On the other hand, video
classification does hold resemblance with video tagging, but
it is mainly focused on predicting the major category a video
falls in, rather than predicting an extended set of classes
pertaining to a given video.

A number of video segmentation techniques have been
studied in the relevant literature. Majority of these techniques
use a common approach: finding the shot boundaries and
merging the shots into uncategorized segments (scenes) based
on their visual similarity. A shot is an elementary structural
segment that is defined as a sequence of images taken with-
out interruption by a single camera [37]. Rasheed and Shah
[38] clustered the shots based on their color similarity and



found the segment boundaries based on the shot lengths and
the motion contents. Some techniques [39]-[41] addressed
the video segmentation by constructing a shot similarity
graph using the color and motion information and subse-
quently segmenting the video by graph partitioning. Some
shot clustering techniques [42], [43] also used Markov chain
Monte Carlo technique for detecting segment boundaries,
albeit the segments were uncategorized. In another shot clus-
tering approach, Chasanis et al. [44] applied a sequence
alignment algorithm to detect the change in pattern of shot
labels to determine segment boundaries. In another technique,
Chasanis et al. [45] first found the local invariant descriptors
of the key frames of all the shots and grouped them into clus-
ters. Each cluster was treated as a visual word. The histograms
of visual words were smoothed using Gaussian kernels whose
local maxima represent the segment boundaries. In a differ-
ent approach, Hoai et al. [46] augmented video segmenta-
tion with action recognition. They first trained a recognition
model using multi-class SVM on a labeled dataset. The seg-
mentation and action recognition was done simultaneously
using dynamic programming. This was the first approach of
video segmentation with segment categorization, though in
the form of limited number of action recognition. However,
it did require the engineered image features for training the
action recognition model.

Some approaches combined audiovisual features for scene
segmentation. Sidiropoulos et al. [47] addressed this issue
with a semantic criterion by exploiting the audiovisual fea-
tures of the key frames to construct multiple Scene Transition
Graphs (STGs) [48]. A probabilistic merging process com-
bined the results of the STGs to detect segment boundaries.
In a similar approach, Bredin [49] extended this idea by
combining speaker diarization and speech recognition with
visual information. A drawback of these techniques is that
the STGs exploit low-level visual features and provide no
margin for augmenting heterogeneous feature sets. In addi-
tion, the heuristic settings of certain STG parameters are also
required.

In another technique, Baber et al. [50] used frame entropy
to find shot boundaries and determine the key frames of the
shots. Afterwards, the SURF features of the neighboring key
frames within a window were matched to determine the scene
boundary. In a later approach Baber e? al. [51] the histogram
of visual words for each shot were computed. The distance
between the visual word histograms was calculated to merge
the shots which are closer in space.

In a more recent approach, Yanai et al. [52] found the
relevant shots from web videos based on the given keywords.
This technique first searched for the relevant web videos
by matching their human-generated tags with the given key-
words. It then segmented the selected videos into shots and
ranked them according to the similarity of visual features. The
top-ranked shots represented the shots of interest.

A detailed literature review in this domain reveals that
video tagging and segmentation has not been studied in
combination. Whereas the existing techniques of video

tagging either depend on hand-crafted image features and
user-annotated meta data or do not provide an extended set
of the thematic points of a movie, the semantic criteria in
the video segmentation is largely ignored. The commonly
used approach of matching the low-level visual and/or audio
features of the successive shots (or their key frames) to
determine the segment boundaries is too trivial to understand
the semantic correlation among the shots. Additionally, seg-
menting and merging all the logical story units based on the
semantic understanding of individual shots can not be effi-
ciently done by low-level, engineered audiovisual features.
Hence, segmenting a video into constituent topics, which can
be later retrieved by a query, requires an intelligent semantic
analysis of each shot. This is only efficiently possible by a
deep learning based algorithm which does not require a priori
knowledge of the low-level features.

We addressed this issue in a threefold approach: (i) we
first proposed an efficient shot boundary detection algorithm
which finds the representative key frames of all the shots
in a movie, (ii) we trained a convolution neural network on
a tag vocabulary to predict the context of each key frame
and subsequently generating a compact set of the movie tags
without requiring a priori information of image features or
user-annotated meta data, and (iii) we offered an on-demand
segmentation of the movie based on its predicted set of the
tags. Using the semantic information provided by the movie
tags, we eliminate the need of matching the low-level audio-
video features of the successive shots for segmentation. Our
segmentation approach classifies a shot into a particular cate-
gory based on its contents. Hence all the relevant neighboring
shots can be efficiently merged into a particular category.
In this way, our movie segmentation approach is the first to
use the semantic criterion for segmentation.

Ill. CONVOLUTIONAL NEURAL NETWORK (CNN) &
TRANSFER LEARNING

Contrary to traditional neural networks, CNNs have much
higher number of hidden layers which are well-suited to
discover the intricate patterns in complex data without a
given mathematical model. Due to this appealing feature,
the last decade has witnessed a tremendous potential of CNN
for semantic analysis of images and videos. A CNN has
four types of layers: (i) convolution layer extracts features
from a given image using multiple filters, (ii) activation
layer restricts the output of the convolution layer in a spec-
ified range and introduces nonlinear mapping and general-
ization in the learning process, (iii) pooling layer reduces
the spatial size of the data which results in less number of
parameters and computations, and (iv) classification layer
outputs a probability distribution which contains the final
score of each class. A CNN architecture may range from
simple (having relatively smaller number of convolution,
activation and pooling layers) to complex (having hundreds
of layers). The deep architectures help CNN to discover pat-
terns/features in complex data without a given mathematical
model.



The deep architecture also offers a dedicated challenge of
training a CNN from scratch, as it requires enormous comput-
ing power, incredibly long training time, and a huge training
data. However, analogous to human learning, the knowledge
acquired by a CNN pertaining to a specific problem is trans-
ferable to another problem [53]. As we move from lower
level layers of CNN to higher level layers (in the direction
of classification layer), the specificity of features increases
until the final classification layer becomes entirely task spe-
cific. The image features extracted by the lower level CNN
layers can be utilized to re-train the model for an entirely
different task, eliminating the need of training the model from
scratch. In this connection, all the layers of a pre-trained CNN
model, except the final classification layer, can be used as
fixed feature extractor. The final layer can be modified and
re-trained for a new task, utilizing the knowledge obtained
from the previous training. This method is called transfer
learning which we use to re-train a CNN model, Inception-
V3, trained on a large dataset (ImageNet'). Although this
CNN model has been trained for a completely different task,
its features are effectively transferred to the task of movie tags
prediction.

IV. MOVIE TAGS PREDICTION AND SEGMENTATION

To the best of our knowledge, there is no public dataset of
movies containing labelled static scenes related to the training
classes of our tag vocabulary. Hence, we first develop a
tag vocabulary comprising of 50 movie tags. Subsequently,
we construct a dataset for each tag by collecting the relevant
features (movie frames describing the tag) from a number
of movies. Table 1 shows our tag vocabulary which has
700 images pertaining to each tag. It is worth mentioning that
some of the tags have overlapping features (e.g., violence,
car chase, action, sword fight, etc) which makes this training
problem tougher than the one in which classes share little to
no features. Our tag vocabulary is scalable and evolving as
we identify more relevant tags and collect the appropriate
dataset. In order to construct the training dataset, we first
formulate a criterion for finding the relevant training images
pertaining to each tag. These images are collected as static
frames from a number of movies. Table 1 also describes
our semantic criteria of data collection for each tag which
represents the required contents in an image describing a tag.
From Table 1, it is also evident that we adequately cover the
semantic contents pertaining to each tag by including its as
many variants as possible.

A. TRAINING

The process of feature prediction with the pre-trained deep
learning model and transfer learning with Softmax classi-
fication is depicted in Figure 1. We use Inception-V3 pre-
trained model to retrain it on our tag vocabulary using transfer
learning. After modifying the final classification layer of
Inception-V3 model for movie tags prediction, we use the rest

1 http://www.image-net.org/

of the layers as fixed feature extractor. A dropout layer [54]
is further added as a penultimate layer to randomly discard
the activations of 50% neurons during training to prevent
the inter-neuron dependencies and lack of generalization.
A smaller learning rate of 0.005 with larger sizes (500) of
training and validation batches are used to obtain more stable
results. The dataset is partitioned such that 80% images are
used for training, 10% for validation, and 10% for testing. For
each input, the output of the penultimate layer, after applying
dropout, is calculated as follows,

Yi =ReLULY  Wijxj + b;] ey
J

where W;; € R is the weight coefficient associated with
j™ and i"* neurons, and b; represents the bias for i/ neuron.
x; represents the j™ activation of the feature map from the
previous (convolutional) layer. Specifically, if this were the
first hidden layer, x; would be the j™ pixel of the input image.
The Rectified Linear Unit (ReLU) activation function is used
to restrain the output in a specific range. It is linear (iden-
tity) for all positive values, and zero for all negative values.
The main purpose of an activation function is to introduce
non-linearity and generalization in the training. Without an
activation function, the CNN will be limited in its capacity
to learn complex patterns and will behave akin to a linear
regression model. The reasons of selecting ReLU activation
function include its computational efficiency, smaller training
time, faster convergence, and sparse activation.

The output of the penultimate layer is converted into a
probability distribution. For this purpose, Softmax classifi-
cation [2] is used to calculate the tag probabilities by the
following rule,

— 2
o @

where p; is the probability of i”* tag in the tag vocabulary
of 50 tags. p; can be interpreted as the (normalized) prob-
ability assigned to the i’ tag. A cross-entropy error esti-
mate [2] E(p, g) is used to calculate the difference between
the predicted distribution p and the actual distribution g by
the following rule.

50

E(p,q) =— Y _ q(x)logp(x) 3)

The cross-entropy E(p, q) compares the model’s prediction
p(x) with the label which is the true probability distribution
q(x). The cross-entropy decreases as the prediction gets more
and more accurate.

The Softmax classifier aims to reduce the error estimate
between the predicted and the true distribution. We train
the model for 50,000 iterations (500 epochs). The descrip-
tion of the CNN training parameters is given in Table 2.
The smoothed graphs of the training/validation accuracy and
cross-entropy estimate are shown in Figure 2a and Figure 2b.
It is apparent that the training-validation gap in both cases is



TABLE 1.

Tags vocabulary and the semantic criteria used to collect data for each tag.

Tag Semantic Description

Abduction Scenes containing a forced escort

Action Intense scenes, fight, rapid motion

Adventure Scenes with exciting experiences, jungle, desert, etc.

Animal Many types (birds, reptiles, mammals, insects, etc)

Animation Scenes from cartoons, computer-designed movies

Beach/sea Scenes showing sea shores or only sea with or without ships, boats, etc.

Bomb explosion Scenes showing a bomb explosion and its destruction

Car chase Scenes containing car pursuits

Children Infants, kids

Climbing Hill climbing, climbing on stairs, climbing with rope

Club/bar Scenes showing a bar/club, people drinking in bar, people dancing in bar

College/university | Buildings of colleges/universities, libraries, students, academic activities, students in classes, etc.
Dance Scenes in which people appear to move their body rhythmically, different dance moves

Desert Movie scenes containing barren or sandy areas of landscape with little or no vegetation

Destruction Scenes containing demolition and annihilation caused by natural calamities or human-induced disasters
Drama Emotional or tragic scenes, people in dialogue

Drinking People drinking wine/beer in traditional glasses

Exercise Scenes showing physical exertion, practice, exercise, training

Family Images of a family with parents, children and other members

Food Images of a number of food types, edible items, people eating meals.

Forest Scenes showing a large tract of land covered with trees and underbrush; woodland

Glamor/fashion Scenes pertaining to modeling, fashion and demonstration of glamour, male/female fascinating poses
Heist Movie scenes showing a robbery or holdup

Hiking Scenes showing a walk or march through rural areas for pleasure, exercise, training or the like.
Horror Scenes containing frightfully shocking, terrifying, or revolting contents

Hospital Movie scenes showing hospital buildings, doctors, patients, wards, operation theaters, surgical proce-

dures

Lab experiment

Scenes showing scientific experiments in laboratories

Military Scenes showing people in military uniform and carrying weapons, artillery, tanks, army engaged in a
war

Monster Scenes showing grotesque and dreadful creatures having the forms of various animals in combination

Murder Scenes showing killing or slaughtering inhumanly or barbarously

Music Static frames of movies containing musical instruments, people singing on mic, concert

Nudity Scenes containing partial or full display of both male and female bodies or genitals

Police Movie scenes showing law-enforcement persons, police in action, police cars, police apprehending
criminals

Prison Images from the movies based on prison life showing prison buildings, cells, courtyards, inmates and
their interaction

Robot Images containing machines that resemble human and acting and responding in a mechanical, routine
manner

Romance Images of the intimate scenes from movies showing kissing or emotional attraction of a person towards

another person

Science fiction

Scenes showing imagined future scientific advancements, space travel, life on other planets, etc

Sex

Scenes containing explicit sexual acts

Smoking Images from the movie scenes showing people smoking or lighting cigarettes

Sports/athletics Images of various types of sports, e.g., soccer, cricket, baseball, hockey, volleyball, car race, etc

Super hero Images of heroic stock characters possessing supernatural or superhuman powers and dressed in a
special costume

Swimming Images of people swimming in a pond, river or sea

Sword fight Scenes showing a war or a dual fought with swords

Technology Scenes showing the use of advanced machinery, devices and electronic gadgets

Valleys/hills Scenes showing hills or mountains with low areas of land between them

Vehicle crash Images containing vehicles overturned or destroyed by an accident or head on collision

Violence Scenes showing people scuffled, people using physical force intended to hurt or damage, bloodshed,
gore contents

War Scenes showing the armed conflict on a large scale (mostly involving military)

Weapon Images of different devices used for attack or defense in combat, fighting, or war (e.g., gun, rifle, knife,
etc)

Wedding Scenes of wedding ceremonies with husband and wife wearing wedding dresses, wedding party,

wedding celebration
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Feature extraction with the deep learning model

FIGURE 1. Feature extraction with the Inception-V3 CNN model and the subsequent training process using Softmax classification. In each
training iteration, a training image is fed to the CNN model. The features extracted by the CNN layers are used for re-training the final
classification layer.

TABLE 2. Description of the parameters used to train the CNN model.

CNN Parameter Description
CNN Model Inception-V3, pre-trained on 1000 classes of ImageNet
No. of Layers 48

Convolution, AvgPool, MaxPool, Concat, Dropout,

Types of layers Fully Connected, Softmax
- Final classification layer modified and re-trained
Modifications - Addition of a dropout layer as a penultimate layer

- Discarding the output of 50% neurons during training

Input image size 299 x 299

Learning algorithm Softmax classification
Learning rate 0.005

Training & validation batch sizes | 500

Dataset partitioning
Activation function
Error estimate

No. of training iterations
No. of training epochs

80% training, 10% validation, 10% testing
Rectified Linear Units (ReLU)

Cross entropy

50,000

500

significantly reduced. It is also evident that the addition of
dropout layer and the right selection of training parameters
leads to a good generalization. The overall test accuracy of
the model is 85%.

B. TESTING
The trained model is tested on the static frames of different
movies for tags prediction. The overlapping among the tag

features further allows us to consider more than one predic-
tions in the probability distribution. While the tag having the
highest probability represents the most dominating content in
a movie frame, the other tags lower in the probability distri-
bution may also reveal important information. The results of
tags prediction for some movie frames are shown in Table 3.
The tags appear in the order of decreasing probability with
the first tag representing the highest probability. Although
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FIGURE 2. Smoothed curves of (a) training-validation classification accuracy, and
(b) training-validation classification error calculated by the cross-entropy function.

the other tags have smaller probabilities in the probability
distribution, yet they still reveal the relevant information
contained in the movie frames.

C. SHOT BOUNDARY DETECTION AND KEY

FRAMES EXTRACTION

For semantic analysis of a movie, it is inefficient to ana-
lyze all the frames in the movie. Instead, we first find the
representative frames of all the shots in the movie. We find
the shot boundaries and select the middle frame of each
shot as the key frame. In order to find the shot boundaries,

we compute the intersection of the HSV (Hue, Saturation,
Value) histograms of the successive frames. This gives us
a measure of similarity of the two discretized probability
distributions (HSV histograms) with possible value of the
intersection lying between 0 (no overlap) and 1 (identical
distributions). The advantage of using HSV color space is that
it is not only more robust to light variations, but is also better
with respect to human perception [55].

Our shot boundary detection algorithm can detect two
major types of shot boundaries: (i) hard-cut, which represents
an abrupt transition from one shot to another, and (ii) dissolve,



TABLE 3. Predicted tags for static movie frames in the order of
decreasing prediction probability.

Frames Tags

Military, action, weapon, war

Violence, destruction, bomb explosion, action,

vehicle crash

Sex, nudity, romance, Glamor/fashion

Hiking, adventure, forest, valleys/hills, climbing

Sci-fi, super hero, robot, action

Violence, sci-fi, action, horror

which is a gradual transition from one shot to another. We use
a sliding window, centered on the current frame, on the
similarity values of n frames. In order to determine hard-cut
and dissolve shot boundaries, we use two adaptive thresholds
which are based on the statistical properties of the sliding
window. The adaptive threshold performs better than a single
threshold which can not compensate for all the variations of
the shot.

We evaluate the degree of similarity S(i, i + 1) between
the current frame i and the next frame (i + 1) of the sliding
window for the hard-cut boundary by first computing the
intersection of the HSV based histograms for i and (i 4+ 1).
After it, the minimum m;, second minimum m,, and mean
w of the similarity values within the window are calculated.
A hard-cut is detected between frames i and (i + 1) if the
following three conditions are satisfied,

S, i+1)=m (4a)
S, i+ 1) <amp (4b)
n > am (40)

where o € (1, 2). If the above conditions are not satisfied,
we check for the dissolve boundary by the following rule,

SG i+ <pu—(u—o0)o
=n(l — o)+ 02 (5)

where o is the standard deviation of the similarity values

within the window. It is worth mentioning that in compar-
ison with the sliding window used to evaluate the hard-cut
boundary, a window that remains fixed on the left side but
grows on the right side by one frame after each evaluation,
performs better for detecting a dissolve boundary. The algo-
rithm of shot boundary and key frame detection is depicted in
Algorithm 1.

Algorithm 1 Shot Boundaries and Key Frames Detection
1: Get frame_rate and frame_count
2: Set window_size = frame_rate, o« = 1.10
3: for (i = 1 to frame_count) do
4 Convert frames i and i — 1 to HSV channel
5 Compute HSV histograms /1 and hy
6:  Calculate hist[i] = intersect (hy, ho)
7
8
9

: end for
: Pad (window_size)/2 null values in window] ]
: for (all values in hist[ ]) do
10:  Center window| ] on hist| ]
11:  mid = window[ceil(window_size/2) — 1]
12 window[ | = SORT(window|[ ], ASCEND’)
13: my = window[0], my = window][1]
14: = mean(window| |), o0 = STD(window][ 1)
15:  if mid = my and mid < amy and u > am; then

16: shot_type = ‘hard-cut’

17 elseif mid < (1 — o) + o2 then
18: shot_type = ‘dissolve’

19:  else

20: shot_type = ‘none’

21:  end if

22:  Get the shot boundaries and key frame
23:  Move the window to the next element in Aist[ ]
24: end for

D. TAGS PREDICTION

After finding a shot boundary and picking a key frame from
the shot, we check if the key frame contains reasonable
amount of information. For this purpose, we convert the key
frame to luminance/chrominance color space and calculate
the entropy of each channel by the following rule [56],

H(x) ==Y p(x)log, pxi) (6)

where p(x;) is the probability of a pixel x; to have a cer-
tain value. Only those key frames are selected for semantic
analysis whose cumulative entropy is greater than a certain
threshold (H > 0.20).

After finding the key frames of a movie, we feed each
key frame to the trained model to obtain top 3 predictions.
Subsequently, we determine the weight W; of each tag by the
following rule,

n;
W= > Py (7



where W; denotes the weight of i’ tag, n; is the number of
occurrences of i tag, N is the total number of predicted tags,
and P;; is the probability of j* occurrence of i" tag.

The tag weights are further normalized in the range [0, 1] to
calculate the relative strength R; of each tag by the following
rule,

_ Wi — Wiin
Winax — Win
where W, and W,,;, represent the maximum and minimum
tags strengths in the set of all the predicted tags. The tags
having relative strengths less than a certain threshold are

dropped to get a fewer key tags which best describe the movie.
Figure 3 depicts the overall approach.

R; (8)

E. MOVIE SEGMENTATION
The shot boundary detection and analytics phase produces
a corpus which contains the following information: (i) key
frame of a shot, (i) start and end frame of a shot, and (iii) top
three predicted tags for each shot or its representative key
frame. This information is used to merge the related shots
based on a user-selected tag from the set of the predicted tags,
as shown in Table 4. We select the extended trailers and long
clips of several movies and first predict the set of key tags
for each video. Using the movie analytics corpus generated
during the process of tags prediction, we can segment a
movie with respect to a selected tag based on top 1, top 2 or
top 3 predictions for each key frame. We can also segment
a movie based on more than one tags simultaneously (e.g.,
sex + nudity 4 romance, action + technology + sports, etc).

For example, Table 4 shows the analytic results of a movie
whose set of tags are + = {music, glamour/fashion, technol-
ogy, family, college/university, club/bar, dance}. After getting
the tag set, we can segment the movie with respect to any tag.
For example, if we segment the movie for finding only the
scenes of music, the segmentation algorithm will first find
all the shots related to music in the shot description table
(Table 4). A shot is described by its boundaries, i.e., start and
end frame. After finding all the shots corresponding to the
tag of music, the shots are merged into a separate movie file
which represents the segmentation of the movie with respect
to the tag of music.

The accuracy of the extracted segment corresponding to
a user-selected tag does depend on the number of top pre-
dictions (1, 2 or 3) selected to merge the related shots into
a segment. For example, the tag of music can be the top 1,
top 2 or top 3 prediction for a shot. If we select only the top
1 prediction for the segmentation of music tag, we will select
only those shots in which the music tag is top 1 prediction
(relatively smaller segment with higher precision). On the
other hand, if we select top 3 predictions for the segmentation
of music tag, we will select all those shots in which music is
top 1, top 2 or top 3 prediction (relatively larger segment with
smaller precision).

We find Fl1-score to be a better measure of the segmen-
tation performance, since there is a relationship between the

TABLE 5. Experimental setup.

Hardware/Software Specifications
Microprocessor Intel Xeon(R) E5430, 2.66GHz x 8

Random Access Memory 8GB
Graphical Processing Unit ~ GeForce GTX 1050 Ti, 768 cores, 4GB
GDDRS5
Tensorflow 1.2
Ubuntu 16.04 (64-bit)
Python 3.0, OpenCV 3.0

Deep Learning Framework
Operating System
Programming languages

TABLE 6. Evaluation results of the shot boundary detection algorithm for
various movie trailers of varying lengths.

Trailer Precision Recall F1-score
Grace unplugged (2013) 0.99 1.00 0.99
Frozen (2015) 0.97 1.00 0.99
Her (2013) 0.98 1.00 0.98
Inner workings (2016) 0.97 1.00 0.98
The silent child (2017) 1.00 1.00 1.00
Curfew (2012) 0.94 1.00 0.97
Dunkirk (2017) 0.94 1.00 0.97
God of love (2010) 1.00 1.00 1.00
Stutterer (2015) 1.00 1.00 1.00
The escape (2016) 0.97 1.00 0.98
Mean 0.98 1.00 0.99

number of top predictions selected for the segmentation and
the segmentation precision-recall. While the precision for
small number of top predictions is higher with relatively
lower recall, the opposite is true for higher number of top
predictions selected for the segmentation. The results of this
analysis are presented in Section V.

V. EXPERIMENTAL SETUP AND RESULTS

Table 5 summarizes our experimental setup. We first find the
shot boundaries and determine the key frame of each shot by
the algorithm described in Algorithm 1. Figure 4a shows the
detection of hard-cut shot boundaries which are represented
by ‘x’marks. These marks show the points where the condi-
tions specified in equation 4 are satisfied. On the other hand,
Figure 4b shows the detection of dissolve shot boundaries
according to the conditions specified in Equation 5.

We first find the shot boundaries by watching all the movie
trailers and noting down the start and end time of a shot.
Using this information as a ground truth, we compare the shot
boundaries with those determined by our shot detection algo-
rithm. Table 6 shows the evaluation results of both hard-cut
and dissolve shot boundary detection algorithm for various
movie trailers of varying lengths. The size n of the window
on the similarity values is taken as equal to the movie’s
frame rate (e.g., n = 24 for a movie having a frame rate
of 24). It is evident that our shot boundary detection algorithm
has impressive F1-score for both hard-cut and dissolve shot
boundaries.

The average processing time for the whole algorithm,
as shown in Figure 3, slightly varies with movie type. For
the movies having more dynamic contents and consequently
more number of key frames (e.g., action movies), the overall
processing time is slightly higher. We evaluate the average
time for the whole processing pipeline (including key frame
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FIGURE 3. Overall technique of movie tags prediction. The fixed layers of the CNN extract features from a key
frame and the final layer produces a probability distribution for all the tags. Top 3 tags for each key frame are

selected for the refinement phase.

TABLE 4. The corpus generated by the tags prediction algorithm. For each key frame, top 3 tags are selected from the probability distribution.

Key frame | Timestamp | Shot Start Frame

Shot End Frame | Top 3 Predictions

853 0:0:36 832

Exercise
874 Drama
Glamour/Fashion

896 0:0:38 875

Glamour/Fashion
957 Drama
Exercise

971 0:0:41 958

Drama
984 Romance
Technology

1000 0:0:42 985

Drama
1016 Wedding
Glamour/Fashion

extraction, running inference on the key frames, and tags
prediction) for 10 different movies. Using the experimental
setup described in Table 5, the average processing time for a
720p resolution movie is 89 frames per second.

Since we do not have a ground truth for evaluating the per-
formance of our tags prediction algorithm, we adopt a subjec-
tive criterion. Our subjective evaluation comprises 3 different
experiments each performed on 10 different volunteers. For
these experiments, we select a number of movie trailers of
diverse categories. Not only a movie trailer best represents
the whole movie, but it is also helpful to complete the exper-
iments in reasonable time.

In the first experiment, the participants watched 50 movie
trailers. At the end of each movie trailer, the set of its pre-
dicted tags were revealed to the audience and they were
asked to judge its relevancy, accuracy and completeness by
assigning it a score between 0 to 10 (0 being the worst and
10 being the best). A Mean Opinion Score (MOS) from
the participants’ feedback was calculated which is found to
be 84.70%.

The second experiment was performed with different
sets of participants and 50 different movie trailers. This
experiment included asking the participants to rate the pre-
dicted tags after watching each movie trailer based on their

relevancy as well as their relative strengths. This information
was presented to them in the form of a visual chart as shown
in Figure 5a. The MOS for this experiment was 79.20%.
Figure 5b shows the predicted tags for the full length movie.
It is evident that in both the cases, the sets of the predicted
tags are similar with different relative strengths as there is a
lot more information in the full length counterpart.

In the third experiment, performed with a different audi-
ence, the participants were handed over the whole tag vocab-
ulary and were asked to watch a different set of 50 movie
trailers. After watching each movie trailer, they were asked
to point out appropriate tags for the movie trailer from the
tag vocabulary. This experiment enabled us to calculate Mean
Average Precision (MAP) P, Mean Average Recall (MAR) R,
and F1-score by the following formulas,

P i fj LUy (9a)
 (MNY? S S (i, )+ fli )
)
R= —— e 9b
(MN? Z; tp(i )+ fui, J) o0

P xR
P+R

F1 ="72( ) 9¢)
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FIGURE 4. Detection of (a) hard-cut shot boundaries, and (b) dissolve
shot boundaries. In (a), the hard-cut boundaries are represented by x’
where the conditions specified in equation 4 are satisfied. In (b) the
rectangle represents the dissolve shot boundary detected by the
threshold in equation 5.

where 1,(i, ), fp(i, j) and f,(i, j) represent the number of true
positive, false positive and false negative, respectively, for
the i movie trailer and j* participant. Whereas, M and N
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represent the number of movie trailers and the number of
participants, respectively. The MAP and MAR of this exper-
iment were 76.50% and 74.55%, respectively, which gives a
F1-score of 0.7551.

It is pertinent to mention that the manual annotation used
for training does have the aforementioned limitations. It is
because the background, experience, maturity, age, and qual-
ification of the annotators can not be determined by random
collection of data to construct a training dataset. However,
in our case, the experiments have been designed in such a
way that they not only involve the participants with known
background, but also cover a wide variety of the movies
to ensure the completeness of the experiments. In addition,
as opposed to the traditional methods, our training does not
rely on the manual annotation. It is only used for the evalu-
ation. Hence, our subjective evaluation using three different
types of experiments suffices to ascertain the efficacy of the
proposed algorithm.

The evaluation of our movie segmentation technique with
respect to three selected tags predicted by our algorithm is
shown in Table 7. As discussed in Section IV-E, we can use
n = 1,2,...,m predictions per key frame for movie seg-
mentation with respect to a selected tag, where m represents
the total number of tags in the vocabulary. Since we pick
only 3 topmost tags in the probability distribution of each
prediction, the maximum value of m is 3. Hence, we can
segment a movie with respect to 1, 2 or 3 topmost tags for
each key frame.

In order to evaluate the efficacy of our segmentation
approach, we first find the segmentation ground truth for a
number of movie trailers with respect to top 3 tags. For this
purpose, we carefully watch the movie trailer and find the
shot boundaries (start and end frame) for each tag. We then
compare the ground truth with the individual shots for each
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FIGURE 5. Predicted tags of (a) a movie trailer, and (b) its full length movie. The relative weight of each tag is represented by the

length of its bar.



TABLE 7. Evaluation of the movie segmentation technique with respect to the predicted tags. The results show a decrease precision and increasing recall

by selecting top 1, 2 and 3 predicted tags for segmentation. The F1-score, however, increases.

Top 1 Top 2 Top 3

Movie trailer | Main tag(s) Segmentation tags P R F1 P R F1 P R F1
Fast and Car chase 095 1 075 | 0.84 | 0.84 | 0.88 | 0.84 | 0.75 | 1.00 | 0.86
Furious Action Vehicle crash 0.87 | 075 | 0.81 | 0.77 | 0.88 | 0.82 | 0.70 | 0.98 | 0.82
(2017) Bomb explosion 1.00 [ 0.62 | 0.77 | 0.86 | 0.70 | 0.77 | 0.81 | 0.81 | 0.81
Guardians of Monsters/Zombies 096 | 058 | 0.72 | 0.92 | 0.75 | 0.83 | 0.87 | 0.91 | 0.89
the Galaxy Science Fiction | Animal 097 | 050 | 0.66 | 0.89 | 0.55 | 0.68 | 0.89 | 0.57 | 0.69
(2017) Animation 099 [ 077 | 0.87 | 0.86 | 0.90 | 0.88 | 0.80 | 0.97 | 0.88
Wonder Sword ﬁght 0.80 | 0.90 | 0.85 | 0.80 | 0.99 | 0.88 | 0.80 | 1.00 | 0.89
Woman (2017) Adventure Destruction 0.89 | 050 | 0.64 | 0.78 | 0.68 | 0.73 | 0.70 | 0.79 | 0.74
Adventure 091 [ 069 [ 0.78 | 0.81 | 0.87 | 0.84 | 0.76 | 0.96 | 0.85
Kill Command Technology 094 | 0.86 | 0.90 | 0.88 | 0.94 | 091 | 0.87 | 1.00 | 0.93
(2016) Technology Science Fiction 0.76 | 0.64 | 0.69 | 0.72 | 0.75 | 0.73 | 0.66 | 0.85 | 0.74
Military 1.00 | 0.60 | 0.75 | 0.96 | 0.80 | 0.87 | 0.90 | 0.90 | 0.90
Get on Up . Dance+Music 092 | 0.84 | 0.88 | 090 | 093 | 091 | 0.90 | 0.95 | 0.92
(2014) Music Clgb/Bar 098 1 086 [ 092 | 098 | 0.92 [ 095 | 0.95 | 1.00 | 0.97
Drinking+Food 0.70 | 0.60 | 0.65 | 0.58 | 0.82 | 0.68 | 0.55 | 0.90 | 0.68
Chroniques Sex,Nudity,Romance | 0.98 | 0.84 | 0.90 | 0.97 | 095 | 0.96 | 0.96 | 0.98 | 0.97
Sexuelles Sex, Nudity Family 0.82 | 0.60 | 0.69 | 0.80 | 091 | 0.85 | 0.76 | 1.00 | 0.86
D’une (2012) Drinking 093 1070 | 0.80 | 0.83 | 0.91 | 0.87 | 0.81 | 1.00 | 0.90
Golden Shoes . Spgrts/Athletics 1.00 | 094 | 097 | 1.00 | 0.96 | 0.98 | 0.96 | 1.00 | 0.98
(2015) Sports/Athletics | Children 1.00 | 0.70 | 0.82 | 095 | 0.85 | 0.90 | 0.90 | 0.96 | 0.93
Family 1.00 [ 070 | 0.82 [ 0.75 | 0.82 | 0.78 [ 0.70 | 1.00 | 0.82
Hecksaw B Military 1.00 | 0.70 | 0.82 | 0.98 | 0.90 | 0.94 | 0.97 | 1.00 | 0.98
Ridge (2016) War/Military War 1.00 | 0.50 | 0.67 | 1.00 | 0.72 | 0.84 | 0.97 | 1.00 | 0.98
Weapon 1.00 | 0.50 | 0.67 | 0.80 | 0.60 | 0.69 | 0.69 | 1.00 | 0.82
The Void Horror . 1.00 | 0.85 | 092 | 095 | 0.90 | 0.92 | 0.90 | 0.98 | 0.94
(2016) Horror Monsters/Zombles 095 | 0.80 | 0.87 | 0.90 | 0.88 | 0.89 | 0.85 | 0.99 | 0.91
Violence 1.00 | 0.70 | 0.82 | 0.98 | 0.90 | 0.94 | 0.97 | 1.00 | 0.98
Avengers: Super hero 096 | 0.82 | 0.88 | 0.92 | 0.90 | 091 | 0.90 | 0.96 | 0.93
Infinity War Super Hero Action 090 | 0.78 | 0.84 | 0.88 | 0.86 | 0.87 | 0.86 | 0.92 | 0.89
(2018) Science fiction 1.00 | 0.75 | 0.86 | 0.90 | 0.85 | 0.87 | 0.82 | 0.98 | 0.89
Mean 094 | 0.71 | 0.80 | 0.87 | 0.84 | 0.85 | 0.83 | 0.95 | 0.88

tag found by our segmentation technique. For each movie
trailer, we compare the segmentation results with the ground
truth for top 1, top 2 and top 3 predictions per key frame for
each predicted tag.

Our evaluation shows an interesting relationship between
the number of predictions per key frame used for segmenta-
tion and the precision-recall. Table 7 shows that as the number
of predictions per key frame used for segmentation increases,
the precision declines while recall increases. Nevertheless,
this variation does not keep the F1-score same, as the change
in recall is more abrupt than that in precision. Hence, the
F1-scores for top 1, top 2 and top 3 predictions per key frame
are 0.80, 0.85 and 0.88 respectively. While top 3 predictions
per key frame give the highest F1-score, the trade-off between
precision and recall further allows the user to segment a
movie either with a higher precision (lower recall) or higher
recall (lower precision) by selecting just one or higher number
of predictions per key frame.

To the best of our knowledge, the relevant literature demon-
strates no combined approach of movie tags prediction and
the subsequent segmentation which can be used to compare
the efficacy of our proposed technique. However, our detailed
experiments suffice to demonstrate the performance of our
proposed techniques.

VI. CONCLUSION
In this paper, we have proposed a movie tags prediction
algorithm using deep learning. The predicted tags can be
further used for segmenting a movie at the viewer’s choice.
Exploiting the powerful features of deep neural networks,
we retrained a deep learning model (Inception-V3) using
transfer learning to predict a class of a given movie frame
from a carefully designed tag vocabulary. Subsequently,
we proposed an efficient key frame detection algorithm which
finds the representative frames of all the shots in a movie.
Using the probability distribution of the prediction vectors
generated by the final layer of the trained model for each
key frame, we further proposed an algorithm which assigns
weights to the predicted tags and finally produces a compact
set of key tags which best describes the movie. The set of
predicted tags can be further used to segment a movie using
a corpus generated during the tags prediction algorithm.
Unlike the simple and limited approaches of movie tags
prediction and segmentation studied separately or in com-
bination in the literature, our proposed framework neither
requires a priori knowledge of the tag features, nor is depen-
dent on the user-annotated meta data which are major limita-
tions of the techniques proposed in this context. In addition,
our movie tags prediction and segmentation techniques are



based on semantic analysis of the movie contents as opposed
to the naive tagging and scene segmentation techniques stud-
ied in the literature.

We are also extending our tag vocabulary by identifying
more classes and collecting the appropriate data. In future,
we aim to extend our algorithm for audiovisual features.
We believe that incorporation of audio features will further
improve the performance of tags prediction for some classes
(e.g., comedy, tragedy, etc) which are difficult to accurately
predict using only visual features. In addition, we also aim to
incorporate motion information in the prediction models by
using recurrent neural networks which can better capture the
dynamics of a scene by using a memory-based system.
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