
A Benchmark for ASP Systems:
Resource Allocation in Business
Processes
Giray Havur
Cristina Cabanillas
Axel Polleres

Arbeitspapiere zum Tätigkeitsfeld
Informationsverarbeitung, Informationswirtschaft und Prozessmanagement
Working Papers on Information Systems, Information Business and Operations

Nr./No. 01/2019
ISSN: 2518-6809
URL: http://epub.wu.ac.at/view/p_series/S1/

Herausgeber / Editor:
Department für Informationsverarbeitung und Prozessmanagement
Wirtschaftsuniversität Wien · Welthandelsplatz 1 · 1020 Wien
Department of Information Systems and Operations · Vienna University of
Economics and Business · Welthandelsplatz 1 · 1020 Vienna

http://epub.wu.ac.at/view/p_series/S1/

1

A Benchmark for ASP Systems:
Resource Allocation in Business Processes∗

GIRAY HAVUR1,2, CRISTINA CABANILLAS1, AXEL POLLERES1

1Vienna University of Economics and Business, Vienna, Austria
2Siemens AG Österreich, Corporate Technology, Vienna, Austria

(e-mail: {name}.{surname}@wu.ac.at)

Abstract

The goal of this paper is to benchmark Answer Set Programming (ASP) systems to test their performance
when dealing with a complex optimization problem. In particular, the problem tackled is resource allocation
in the area of Business Process Management (BPM). Like many other scheduling problems, the allocation
of resources and starting times to business process activities is a challenging optimization problem for ASP
solvers. Our problem encoding is ASP Core-2 standard compliant and it is realized in a declarative and
compact fashion. We develop an instance generator that produces problem instances of different size and
hardness with respect to adjustable parameters. By using the baseline encoding and the instance generator,
we provide a comparison between the two award-winning ASP solvers CLASP and WASP and report the
grounding performance of GRINGO and I-DLV. The benchmark suggests that there is room for improvement
concerning both the grounders and the solvers. Fostered by the relevance of the problem addressed, of which
several variants have been described in different domains, we believe this is a solid application-oriented
benchmark for the ASP community.

KEYWORDS: answer set programming, benchmark, business process management, resource allocation

1 Introduction

Business process management (BPM) is a discipline in operations management that aims at
improving corporate performance by properly managing and optimizing a company’s business
processes. A business process is a collection of related events, activities and decisions that in-
volve a number of human and non-human resources and that collectively lead to an outcome that
is of value to an organization or its customers (Dumas et al., 2018). Resources, as an integral
part of business processes, have to be considered throughout all the stages of the BPM lifecycle,
which iterates from process discovery and modeling to process execution and monitoring target-
ing continuous process improvement. At run time, a process execution engine creates instances
of a business process and allocates specific resources to the tasks to be completed according to
pre-defined criteria. Such criteria are defined in the form of constraints that comprise the char-
acteristics as well as the number of resources needed for completing each process task. When
referred to human resources, the characteristics are usually reflected in organizational models that
contain all the relevant data about the resources, their roles, their skills and any other valuable

∗ This work has been funded by the Austrian Research Promotion Agency (FFG) under the project grant 845638
(SHAPE) and the Austrian Science Fund (FWF) under the project grant V 569-N31 (PRAIS).

2 Giray Havur, Cristina Cabanillas, Axel Polleres

information. The Role-Based Access Control (RBAC) model is very often used for assigning
resources to process tasks on the basis of the organizational roles they are associated with. As
a result, during process execution, at the due time for each task only the required number of
resources will be picked up from the set of candidates (i.e. suitable resources according to their
roles) and allocated to the task. Therefore, we can define resource allocation in business pro-
cesses as the assignment of resources and time intervals to the activities for the execution of a
process. The complexity of resource allocation arises from coordinating the dependencies across
a broad set of resources and process activities as well as from solving potential conflicts on the
use of certain resources (e.g. certain roles are required to execute certain activities, particular
resources cannot be used at the same time, or different resources have to be allocated to different
activities to avoid conflicts of interest, i.e. separation of duties) (Russell et al., 2005).

Process-oriented organizations are concerned with carrying out a proper resource allocation
as they aim to optimize one or more process performance measures, which include time, cost,
quality and flexibility (Dumas et al., 2018). Typically, among these objectives a subset of them is
selected and each objective in this subset is assigned a relative priority that defines the respective
optimization function. Such a problem is similar to a well-known scheduling problem called
the Multi-mode Resource-constrained Project Scheduling Problem (MRCPSP) (Sprecher et al.,
1994).

One way of addressing this problem is describing it in a knowledge representation formalism.
Answer Set Programming (ASP) appears as a good candidate for this purpose as it has been
used to solve various hard computational problems and proved to maintain a balance between
expressiveness, ease of use and computational effectiveness (Gebser et al., 2012). Moreover, any
possible trade-off related to an allocated resource (e.g. duration of an activity given a resource)
can be neatly represented using the defaults in the absence of complete information. As a matter
of fact, we have previously used ASP as a flexible tool to encode the resource allocation problem
and related complex constraints in prior research efforts (Havur et al., 2015, 2016), which allowes
us to identify the problem-in-hand as a challenging task for the ASP systems, and therefore in
this paper we describe this problem as a benchmark for the ASP systems.

Earlier ASP competitions have led to the development of two scheduling-related benchmark
entries. The first entry is called disjunctive scheduling (Denecker et al., 2009) and the problem
addressed has generalized precedence relations, uniform activity durations, an overall deadline to
be met with no resource aspect. The other entry is called incremental scheduling (Calimeri et al.,
2014) and addresses a problem with one renewable resource set, uniform activity durations and
deadlines imposed on activities. Unlike the problems involved in these two entries, the resource
allocation problem has different numbers of resource sets, resource- and resource-set-specific
time requirements, different resource demands per activity and a makespan1 optimization func-
tion. For such a type of problems, a benchmark to compare the performance of existing ASP
solvers and grounders is still missing. In the case of resource allocation in the area of BPM,
this is also due to the lack of available data describing a variety of scenarios in which resource
allocation is required.

In this paper, we narrow this gap by extending former contributions on ASP-based resource
allocation in business processes towards a common challenge benchmark for ASP solvers. In
particular, our contribution is three-fold:

1 The makespan is the distance in time that elapses from the start to the end of a process.

3

• We position the problem of resource allocation in the landscape of existing scheduling
problems by characterizing their activity and resource environments.

• Based on a declarative baseline encoding in ASP of the resource allocation problem with
RBAC constraints2 and a standardized encoding of problem instances, we develop an in-
stance generator that produces both process instances and organizational resource models
along with different parameters that can be used to adapt instance sizes. This sets up the
benchmark as it provides all the inputs that are needed to test the performance of any ASP
grounder/solver when dealing with the resource allocation problem in the BPM domain.

• Lastly, by using our benchmark we present a detailed evaluation comparing two of the best
performing ASP solvers (CLASP (Gebser et al., 2015) and WASP (Alviano et al., 2017)) and
grounders (GRINGO (Gebser et al., 2011) and I-DLV (Calimeri et al., 2017)).

Our benchmark implementation is configurable in the sense that any grounder/solver combi-
nations can be added in. The results of our benchmark evaluation demonstrate that real-world
instance sizes pose a considerable challenge on state-of-the-art ASP systems, which opens op-
portunities for further performance improvements in these systems.

The paper is structured as follows: Section 2 provides necessary background by formally defin-
ing the problem of resource allocation in business processes and positioning it within the spec-
trum of scheduling problems already targeted by ASP experts. Section 3 describes the problem
encoding in ASP and the problem instance generator. Section 4 presents the performance evalu-
ation of different ASP systems using our problem encoding and the problem instances produced
by our generator. Section 5 reflects on the related work. Section 6 concludes the paper with the
gained insights and gives pointers for the future work.

2 Background

The resource allocation problem deals with the assignment of resources and time intervals to
the execution of activities, where the number of activities as well as the number of resources
are assumed to be finite (Lombardi and Milano, 2012). The complexity of resource allocation
in BPM arises from coordinating the explicit and implicit dependencies across a broad set of
resources and activities of processes as well as from solving potential conflicts on the use of
certain resources while minimizing the makespan (Havur et al., 2016). Before introducing our
ASP encoding and benchmark setting, in this section we describe the elements involved in this
problem and position the problem with respect to other (scheduling) problems.

2.1 Business Processes

A business process is a finite set of activities whose executions are partially ordered. The ex-
ecution of each activity in the process generally requires one or more (human or non-human)
resources and produces some output that is of benefit for a customer, such as a service or a
document (Burattin, 2015). Process models are defined to represent the different aspects of a
business process, especially the functional (process activities) and the behavioral (control flow
or execution order) perspectives. For instance, Figure 1 depicts the model of a process for pub-
lishing a book from the point of view of a publishing house, represented using Business Process

2 To keep the encoding compact, in this paper we allocate only human resources but in prior research we developed a
generalized ASP encoding covering different resource types (cf. Havur et al. (2016)).

4 Giray Havur, Cristina Cabanillas, Axel Polleres
Book publishing process

Proofread
manuscript

Changes
required?

Revise text

Revise visual

Send press
release

Manuscript
revised

More changes
required?

Receive
manuscript

N
o

NoYe
s

Ye
s

Fig. 1: BPMN model of the book publishing process

Model and Notation (BPMN) (OMG, 2011). In this process, when the publishing entity receives
a new textbook manuscript from an author, it must be proofread. If changes are required, the
modifications suggested must be applied on text and figures, which can be done in parallel. This
review-and-improvement procedure is repeated until there are no more changes to apply, and the
improved manuscript is then sent back to the author for double-checking. Although BPMN is
the de-facto standard process modeling notation due to its understandability and ease of use, in
this work we rely on time Petri nets (Popova-Zeugmann, 2013) satisfying the workflow proper-
ties (van der Aalst, 1996) for process modeling because of their well-defined semantics and their
analysis capabilities. Nonetheless, note that many process modeling notations, including BPMN,
can be automatically mapped to Petri nets (e.g. by implementing the transformations defined by,
e.g. Lohmann et al. (2009)). A Petri net is a directed graph with two kinds of nodes, interpreted
as places and transitions, such that no arc connects two nodes of the same kind. The places of the
Petri net might contain tokens, whose distribution might change over time, giving rise to the net
behavior.

Definition 1 (Petri net)
A Petri net is a 5-tuple PN = (P,T,F,M0,ν), where:

� P = {p1, p2, ..., pn} is the set of places, represented graphically as circles,
� T = {t1, t2, ..., tn} is the set of transitions, represented graphically as rectangles,
� F ⊆ (P×T)

⋃
(T ×P) is the set of arcs (flow relations), represented as arrows and describing

a bipartite graph,
� M0 is the initial marking, where a marking (or state) M = {µ(p1),µ(p2), ...,µ(p|P|)}, µ :

P→ Z≥0, represents the distribution of tokens over the set of places. When it assigns a non-
negative integer k to place p, we say that p is marked with k tokens. Pictorially, we place k
black dots (tokens) in place p; and

� ν : F → Z+ is the arc weight mapping indicating cardinality constraints on the movement of
tokens throughout the net.

The input places and the output places of each transition t ∈ T are •t = {p∈ P | (p, t)∈ F} and
t• = {p ∈ P | (t, p) ∈ F}, respectively. Similarly, the input transitions and the output transitions
of each place p ∈ P are •p = {t ∈ T | (t, p) ∈ F} and p• = {t ∈ T | (p, t) ∈ F}, respectively. The
initial marking of the Petri net M0, which represents the initial distribution of tokens over the
places, can change into successor markings. These changes are described as firing rules. Such
rules introduce a dynamic aspect to the Petri net by allowing the firings to modify the state of the
Petri net. The minimum number of necessary tokens on the places for enabling a transition t is
defined by ν(p, t). A transition t is enabled when there are at least as many tokens as ν(p, t) in
each input place p ∈ •t. An enabled transition can therefore fire. The number of tokens which are
added to each output place after firing of t is defined as ν(t, p). The firing of a transition changes

5

[1,∞] [4,∞]

[10,∞]

[5,∞]

tRT
(Revise Text)

tRV
(Revise Visual)

[1,∞]

pstart pendtSPR
(Send Press

Release)

tPM
(Proofread
Manuscript)

tRM
(Receive

Manuscript)

ti

Fig. 2: Petri net model of the book publishing process

the current marking by subtracting ν(t, p) amount of tokens from each input place p ∈ •t and
adding ν(p, t) amount of tokens to each output place p ∈ t•, and hence, it moves the net from
a marking Mk−1 to a new marking Mk denoted as Mk−1

tk−→Mk. A firing sequence of transitions
σ = t1, t2, ..., tn changes the state of the Petri net at each firing: M0

t1−→M1
t2−→ ...

tn−→Mn. A marking
Mk is reachable if there is a sequence σ such that M0

σ−→Mk (i.e. from the initial marking to Mk).
Petri nets are classified according to several criteria, including cardinality and behavioral con-

straints. The Petri nets that represent the business processes addressed in this work have the
following properties:

� They constitute a so-called workflow net (van der Aalst, 1996), which means that they contain
a starting place ps such that •ps = /0 and an ending place pe such that p•e = /0; and they are
connected, i.e. every node in the Petri net is on the path from ps to pe.

� They are 1-safe, which means that each place contains at most one token at any state (i.e. for
any place p ∈ P, 0≤ µ(p)≤ 1).

� They are free-choice, which implies that the choice between multiple transitions can never be
influenced by the rest of the net (i.e. for any two different places {pi, p j} ⊆ P, (p•i ∩p•j) = /0
or p•i = p•j),

� Their transitions are labelled with a minimum and a maximum waiting time in order to be
able to represent the temporal aspects related to activities needed for resource allocation, i.e.
Time Petri nets (TPN) (Popova-Zeugmann, 2013).

Definition 2 (Time Petri net)
A time Petri net is a 6-tuple T PN = (P,T,F,M0,ν ,∆), where:

� P,T,F,M0,ν constitute a Petri net, and
� ∆ : T→Z≥0×(Z≥0∪{∞}) is the interval function of the T PN, where ∆(t)= [δmin(t),δmax(t)].

δmin(t) and δmax(t) are the minimum and maximum waiting time to fire t in a use-case specific
time unit (TU) (e.g. in minutes, hours or days).

In time Petri nets, process activities correspond to timed transitions. The periods that timed
transitions (we will call them activity transitions) are enabled (i.e. waiting times) represent ac-
tivity durations and transition firings indicate activity completions. If the maximum waiting time
of t is ∞, it means that the firing of t is not enforced to occur at any time.

Figure 2 illustrates the time Petri net representation of the book publishing process described
above, extended to reflect the minimum duration estimations of the process activities (i.e. δmin(t)).

6 Giray Havur, Cristina Cabanillas, Axel Polleres

The activity transitions are graphically represented by empty squares along with their minimum
and maximum waiting times on top. On the contrary, the immediate transitions are shown as filled
squares and they fire immediately (i.e. their earliest firing time and latest possible firing time are
both equal to 0). These are used for representing concurrent activities in process executions (e.g.
ti in Figure 2).

Four types of ordering relations can be identified between transitions of a Petri net. Specifi-
cally, given two transitions tx, ty ∈ T of a Petri net, then:

� tx directly precedes ty, denoted as tx→ ty, if the net contains a path with exactly two arcs (i.e.
(tx, pi)∪(pi, ty)⊆F) leading from tx to ty (e.g. tPM and ti in Figure 2). This precedence relation
is reduced to cover activity transitions in the direct activity precedence relation, denoted as
tx

a−→ ty, such that t0→ t1→···→ tn where only t0 and tn are activity transitions (e.g. tPM
a−→ tRT

and tPM
a−→ tRV in Figure 2).

� tx precedes ty, denoted as tx⇒ ty, if the net contains a path with at least two arcs leading from
tx to ty (e.g. tRM and tSPR in Figure 2).

� tx is in conflict with ty, denoted as tx#ty, if the net contains two paths leading to tx and ty,
respectively, which start at the same place and immediately diverge (e.g. tSPR and ti in Fig-
ure 2).

� tx can be executed parallelly with ty, denoted as tx||ty, if tx and ty are neither in preceding nor
in excluding relation (e.g. tRT and tRV in Figure 3).

The conflicting transitions are necessary to describe a choice (or decision) point in process
executions. For example, in Figure 2 it is not known before running the process if the manuscript
will be ready to be sent for the press release or it will require (other) revision rounds. However,
this kind of uncertainty that causally divides the search space prevents us from allocating re-
sources and starting times to activities in a global time-optimal way. In order to avoid this, we
first obtain an instance of the unfolding (i.e. a partial run of the net) of the process which contains
no conflicts by making assumptions on these choices ahead of time, as explained next.

Unfolding (Bonet et al., 2008) is a method used for developing processes with no conflicts. It
generates possible firing sequences of the given Petri net PN = (P,T,F,M0,ν) while it maintains
the partial order of transitions based on the precedence relation induced by the net. It produces
a pair β = (ON,ϕ), where ON = (PB,TE ,F ′) is an occurrence net, which is a Petri net without
conflicts and cycles, and ϕ : PB∪TE → P∪T is a homomorphism from ON to PN.

Definition 3 (Occurrence net)
An Occurrence net ON = (PB,TE ,F ′) is a net where PB is the set of conditions (cf. places), TE is
the set of events (cf. transitions) and F ′ are the arcs between PB and TE defined as follows:

� ∀b ∈ PB, |•b| ≤ 1 and N is acyclic,
� ∀e ∈ •PB, the set b ∈ •TE is finite, and
� 6 ∃e ∈ TE ,e#e (i.e. there is no event in self-conflict).

The process of unfolding breaks all reachable places in conflict by making independent copies
of such places. For this reason, ON may contain multiple copies of the nodes in the original net.
In most cases, β is infinite and cannot be built, therefore it requires a cut-off event to halt. We
refer the reader to (Bonet et al., 2008) for further details. In order to rematch the conditions and
events back to places and transitions, we introduce the concept of branching net (Couvreur et al.,
2013).

Definition 4 (Branching net)

7

pstart pendtRM
(Receive

Manuscript)

tRT
(Revise Text)

[1,∞]

tRV
(Revise Visual)

tPM
(Proofread
Manuscript)

tPM2
(Proofread

Manuscript 2)

tSPR
(Send Press

Release)

[4,∞]

[10,∞]

[5,∞]

[4,∞] [1,∞]

ti

Fig. 3: Unfolded process to publish a book with the assumption that the loop is taken once

A branching net of a Petri net system PN = (P,T,F,M0,ν) is a labeled occurrence net ONλ =

(PB,TE ,F ′,λ) where the labeling function λ satisfies the following properties:
� λ (PB)⊆ P and λ (TE)⊆ T ,
� ∀p ∈ P, ∃b ∈ PB, λ (p) = b (i.e. λ is a surjection),
� |{b ∈ PB : µ0(λ (b)) = 1,λ (b) = p}|= 1,
� ∀e1,e2 ∈ TE , if •e1 =

•e2 and λ (e1) = λ (e2), then e1 = e2.

After obtaining a branching net ONλ from a given net, we lastly introduce assumption set to
decompose ONλ and thus generate the conflict-free instance of the net PN. An assumption set is
described as A ⊆ 2(T×Z≥0), which constraints the cardinality of events in the selected subnet that
starts from bs ∈ PB, λ (bs) = ps and ends at be ∈ PB, λ (be) = pe, that is, ON′

λ
= (P′B,T

′
E ,F

′′,λ)

satisfies (1) ∀(ti,ni) ∈A :

|T ′Eti
|= ni where T ′Eti

=
⋃

e∈T ′E ,λ (e)=ti

e (1)

Moreover, in order to preserve the time intervals in the selected subnet for the duplicated
transitions, we use the λ function where any e ∈ T ′E , the minimum and the maximum waiting
times are ∆(t) = [δmin(t),δmax(t)] where λ (e) = t. For example, we generate the Petri net in
Figure 3 from the branching net of the time Petri net in Figure 2 using the assumption set A =

{(tRT ,1)} that leads to the selection of the subnet where there is only one revise text activity.

2.2 The RBAC Model

Different types of organizational structures give rise to different organizational models (Horling
and Lesser, 2004). In most cases, the employees of the organization (i.e. its human resources)
play one or more organizational roles according to their skills and characteristics. One of the most
widely known models for capturing organizational structures based on roles is the Role-Based
Access Control (RBAC) model (Colantonio et al., 2009).

Definition 5 (RBAC Model)
An RBAC Model is a 6-tuple O = (A,R,L,SAL,SRL,SLL), where:

� A is the set of activities that corresponds to the activity transitions in a T PN =(P,T,F,ν ,M0,∆),
hence A⊆ T ,

� R is the set of resources,
� L is the set of roles,

8 Giray Havur, Cristina Cabanillas, Axel Polleres

Table 1: RBAC model of the publishing entity
activity-to-role resource-to-role role-to-role

Receive Manuscript Publisher Amy Publisher Publisher Copy Editor
Proofread Manuscript Copy Editor Glen Copy Editor

Revise Text Copy Editor Drew Copy Editor
Revise Visual Graphic Artist Oliver Graphic Artist

Send Press Release Administrative Assistant Evan Administrative Assistant

� SAL ⊆ 2(A×L) is the set of activity-to-role assignment tuples specifying which activity can
be executed by the resources associated with which role(s) (commonly known as resource
assignment in BPM),

� SRL ⊆ 2(R×L) is the set of resource-to-role assignment tuples identifying the roles of a re-
source,

� SLL ⊆ 2(L×L) is the set of role-to-role assignment tuples that creates a hierarchical (sub-role)
structure. The symbol � indicates the ordering operator. If l1 � l2, then l1 is referred to as
the senior of l2. Conversely, l2 is the junior of l1.

Let us assume that the book publishing process (cf. Figure 1 and Figure 2) is executed within an
organization composed of five resources R = {Amy,Glen,Drew,Oliver,Evan} that are assigned
to four distinct roles L = {Publisher, Copy Editor,Graphic Artist,Administrative Assistant}.
Table 1 shows a possible RBAC model of such a publishing entity. For instance, within the
activity-to-role relation, the first entry means that the activity Receive Manuscript can be exe-
cuted by the members of the role Publisher; within the resource-to-role relation, the first entry
means that the resource Amy has the role Publisher; and within the role-to-role relation, the first
entry means that the resources with the role Publisher can execute the same activities as the
resources with the role Copy Editor (specifically, Publisher � Copy Editor).

After we describe who can execute which activity in a RBAC model, now we can define which
activity requires how many resources to be performed.

Definition 6 (Activity Resource Demand Set)
The activity resource demand set NAR ⊆ 2(A×Z≥0) represents the number of resources activity a
demands to be executed.

Like the minimum and maximum duration of activities, the activity resource demand values
are also estimated by process managers. In our running scenario, all activities demand only one
resource except Revise Text which demands two resources.

2.3 Temporal Knowledge

In a real world scenario, the minimum and maximum duration of activities as well as the tentative
deadlines for the completion of the process instances (i.e. each process execution) are estimated
by the process managers. The process instances are usually managed with BPM Systems (BPMS)
that provide functionality for defining and customizing process models, and for administrating
and monitoring their executions. The execution data is stored in process execution (or event)
logs or audit trails. The log entries comprise information about the events occurred during pro-
cess execution, including resource-related properties (who executed each activity3) and temporal

3 Within an organizational context, the resources that appear in the log are among those available according to the
organizational model of the functional unit (e.g. an RBAC model).

9

Table 2: Example event log excerpt of the process in Figure 2 and the RBAC model in Table 1.

event id trace id event type activity resource time stamp

e56 7 start Receive Manuscript Amy 2018-11-11T08:25:36
e57 6 start Proofread Manuscript Glen 2018-11-11T09:15:14
e58 7 end Receive Manuscript Amy 2018-11-11T09:21:44
e59 7 start Proofread Manuscript Drew 2018-11-11T09:35:51
e60 6 end Proofread Manuscript Glen 2018-11-11T10:26:14
e61 7 end Proofread Manuscript Drew 2018-11-11T12:45:10
e56 7 start Receive Manuscript Amy 2018-11-11T08:25:36

information (when each activity was executed). All the events related to a process instance con-
stitute a trace.

Definition 7 (Event Log)
A Event Log is a 6-tuple L = (E,ε,α,ρ,τ,T), where:

� E = {e1,e2, ...,en} is the set of events,
� ε : E→{start,complete} assigns the event type to events,
� ρ : E→ R assigns the resources to events,
� α : E→ A assigns the activities to events,
� τ : E→ Z≥0 assigns a timestamp to events,
� T = {σ1,σ2, ...,σn} is the set of traces where σi ∈ E∗ is a trace such that each event appears

only once and time is non-decreasing, i.e. 1 ≤ j < k ≤ |σ | : σ(j) 6= σ(k) and τ(σ(j)) ≤
τ(σ(k)).

Table 2 shows an excerpt of an example event log. This retrospective data is crucial for the
automated systems that support resource allocation. From such data together with organiza-
tional data (i.e. the RBAC model), using so-called process mining techniques we can identify
the resource-activity and the role-activity relations necessary for resource allocation (Schönig
et al., 2016). In addition, the resource-activity and role-activity durations can be estimated.

Definition 8 (Resource-Activity Duration Function)
the resource-activity duration function ψr,a : (L ×R×A)→ Z≥0 estimates the time it takes to
execute an activity a by a resource r from the traces T in an event log L

ψr,a =
∑σi∈T ∑(e j ,ek)∈ϒσi

τ(ek)− τ(e j)

∑σi∈T ∑(e j ,ek)∈ϒσi
1

where (2)

ϒσi =
⋃

e j∈σi,ek∈σi

{
(e j,ek) for ρ(e j) = ρ(ek) = r, α(e j) = α(ek) = a, ε(e j) = start, ε(ek) = end
/0 otherwise.

In short, ψr,a calculates the mean resource-activity duration. For instance, assuming that the
event log L in Table 2 contains traces T of the execution of the process in Figure 2 exe-
cuted in an organization with the RBAC model depicted in Table 1, ψr,a(L ,Glen,Proo f read
Manuscript) is computed as 1(hour) from the time difference between the start event e57 and
the end event e60.

Definition 9 (Role-Activity Duration Function)
The role-activity duration function ψl,a : (L ×O×L×A)→ Z≥0 estimates the time it takes to a
role l to execute an activity a from an event log L and an RBAC model O.

10 Giray Havur, Cristina Cabanillas, Axel Polleres

Table 3: Temporal knowledge
resource-activity duration role-activity duration

(Amy, Receive Manuscript) 1 (Publisher, Receive Manuscript) 1
(Drew, Proofread Manuscript) 3 (Copy Editor, Proofread Manuscript) 2
(Glen, Proofread Manuscript) 1 (Copy Editor, Revise Text) 6

(Glen, Revise Text) 6 (Graphic Artist, Revise Visual) 4
(Amy, Revise Text) 4 (Administrative Asst., Send Press Rel.) 3

ψl,a is again of the form defined in (2), where in this case

ϒσi =
⋃

e j∈σi,ek∈σi


(e j,ek) for ρ(e j) = ρ(ek) = r, α(e j) = α(ek) = a, (r, l)⊆ SRL, (a, l)⊆ SAL,

ε(e j) = start, ε(ek) = end.
/0 otherwise.

(3)

In short, ψl,a calculates the mean role-activity duration. For instance, assuming that the event
log L in Table 2 contains traces of the execution of the process in Figure 2 executed in an organi-
zation with the RBAC model depicted in Table 1, ψl,a(T ,Copy Editor,Proo f read Manuscript)
is computed as 2(hours) from the events e57, e59, e60 and e61.

Table 3 shows possible temporal knowledge associated with our running example.

2.4 The Resource Allocation Problem in BPM

Resource allocation in BPM can be defined as follows. Let us consider a conflict-free (i.e. pre-
viously unfolded, if necessary) time Petri net T PN = (P,T,F,M0,ν ,∆) whose activities are in
strict partial order, which means that the precedence relation between activities are irreflexive,
transitive and asymmetrical. Each activity requires a number of (human) resources to be per-
formed. The resources allowed to execute an activity are selected on the basis of the roles they
are assigned in an organizational model (activity-to-role relation in the RBAC model) and hence,
roles L are used to refer to resources in a process in a general way. For each role, per-period
availability is constant and described in SRL∪SLL.

Each activity a can have a different duration within a range. ∆(a) = [δmin(a),δmax(a)] specifies
the minimum and maximum duration of an activity as estimated by the process manager. δmin(a)
is regarded as the default duration of a. Further temporal knowledge is extracted from an event
log L , namely role-activity duration ψ(l,a) and resource-activity duration ψ(r,a). The priority
order of activity duration values is, assuming “>” is the overwrites relation, ψ(r,a) > ψ(l,a) >

δmin(a). Given a T PN, an event log L , an RBAC model O and an upper bound on the process
makespan u, all derived resource-activity durations are represented by the function δ(r,a) : (R×
A)→ Z≥0, where A⊆ T and δ(r,a) ≤ δmax(a).

For the formal representation of the resource allocation problem in BPM, we define a binary
variable for each combination of a resource r ∈ R, an activity a ∈ T , and a starting time s ∈ [0,u]:

oras =

{
1, if the resource r is allocated to the activity a and a started at time s,

0, otherwise.
(4)

Note that if oras = 1, the completion of an activity a occurs at time s+ δ(r,a). The objective
function and the constraints of the model are as follows. For every ri,r j ∈R, am,an ∈A, so,sp ∈U ,
U = {0,1, ...,u}, the objective is to minimize max(C), where

C =
⋃

oriamso · (so +δ(ri,am)) (5)

11

so that:

∑oriamso = nam (am,nam) ∈ NAR (6)

oriamso·or jamsp = 0 so 6= sp (7)

oriamso·(so +δ(ri,am))≤ or jansp ·(sp) am→ an (8)

oriamso·oriansp = 0 am||an, [so,so +δ(ri,am)]∩ [sp,sp +δ(ri,an)] 6= /0 (9)

Since the set of activities that are not followed by another activity are the last activities to be
executed, the objective function (5) minimizes the completion time of the activity that has the
greatest value. Constraint (6) indicates that an activity must be allocated as many resources as
the activity demand function indicates (i.e. cardinality constraint). (7) ensures that no activity
has more than one start time. (8) secures that no activity is started until all its predecessors are
completed. Finally, (9) enforces that no resource is allocated to any parallel pair of activities that
have overlapping execution periods.

A feasible allocation is a set of quadruples I ⊆ 2(R×A×U×U) such that (r,a,sa,ca) ∈ I satisfies
the constraints (6-9) where each activity a ∈ A is assigned a resource r ∈ R, a start time sa ∈U
and a completion time ca = sa +δ(r,a).

Our benchmark problem has similar characteristics to the Multi-mode Resource-constrained
Project Scheduling Problem (MRCPSP) (Sprecher et al., 1994). Both problems have multiple
sets of renewable resources4, different resource demands per activity, precedence constraints of
activities defined by a directed acyclic graph, and an objective function to optimize the makespan.
The main difference between the two methods is that our problem has a more general temporal
setting involving activity durations defined by defaults which can be overwritten by more specific
resource-activity durations (in contrast to MRCPSP’s static modes); and (ii) our problem has a
simpler resource setting as we do not consider the nonrenewable resources5.

As for complexity, our problem is a generalization of job shop scheduling (JSP) problem which
is known to be NP-Complete (Garey et al., 1976) for its variants with two or more machines and
with makespan optimization. Trivially, this variant can be solved as a resource allocation problem
where the input Petri net has as many parallel branches as the number of jobs in the JSP problem,
the ordered tasks of each job map to activities in direct precedence relation with each other in
separate branches, machines map to roles with only one resource, and the machine duration per
task is represented as role-activity duration. Consequently, the computational complexity of the
decision variant of our problem (i.e., is there a feasible allocation at makespan k) is NP-Complete
and the optimization variant of our problem (i.e., is there an optimal allocation at minimized
makespan kmin) is NP-Hard. In this paper we provide an encoding of resource scheduling in
ASP with weak constraints (and without disjunction), which captures the class of FPNP, that
typically is used for computing optimal solutions of such NP-complete problems with a given
bound k (Buccafurri et al., 1997). Therefore, our resource allocation problem seems to be an
ideal candidate for benchmarking ASP systems supporting weak constraints.

4 Renewable resources are available with a constant amount in each time period.
5 The availability of the nonrenewable resources is limited for the whole time horizon of the project.

12 Giray Havur, Cristina Cabanillas, Axel Polleres

3 Resource Allocation in Business Processes with ASP

For benchmarking the ASP systems, we have encoded the problem of resource allocation in
business processes as an ASP program and we have developed a problem instance generator.
Before describing how we have done that in Sections 3.2 and 3.3, respectively, in Section 3.1 we
introduce fundamental concepts in ASP.

3.1 Fundamentals of Answer Set Programming (ASP)

ASP (Brewka et al., 2011) is a declarative (logic-programming-style) paradigm for solving com-
binatorial search problems. An ASP program Π is a finite set of rules of the form

a0:-a1, . . . ,am,not am+1, . . . ,not an. (10)

where n≥m≥0 and each ai is a function-free first-order atom; if n=m= 0 we call r a fact. “not”
is called negation as failure. Different from the classical negation (i.e., ¬a), not a is derived from
failure to derive a. Sets of rules are evaluated in ASP under the so-called stable-model semantics,
which allows several models (so called answer sets). We again refer to (Brewka et al., 2011) and
references therein for details.

Whenever ai is a first-order predicate with variables within a rule of the form (10), this rule
is considered a shortcut for its “grounding” ground(r) (i.e. the set of its ground instantiations
obtained by replacing the variables with all possible constants occurring in Π). Likewise, we
denote by ground(Π) the set of rules obtained from grounding all rules in Π.

If a0 is empty in a rule r, we call r a constraint which rules out models satisfying its body
atoms. It is used to eliminate unwanted solution candidates. As a syntactic extension, ASP Core-2

standard (Calimeri et al., 2013) allows set-like choice expressions of the form x≤ {a1, . . . ,am} ≤
y:-am+1, . . . ,al , that is, if the body holds then to choose arbitrarily a subset of {a1, . . . ,am} of
size x to y to include in a model.

Optimization (i.e., minimization or maximization) statements indicate preferences between
possible answer sets:

:∼ a1, . . . ,am.[w, t1, . . . , tn]

where t1, . . . , tn are terms (e.g., atoms), and w is weight. The answer sets of a program Π plus
optimization statements are the answer sets of Π with least violation of these statements (i.e., the
sum of weights w over all occurrences of weighted atoms that are satisfied by a stable model)
called best models.

Another extension we use is the aggregates. Aggregates are arithmetic operations over a set
of elements and they occur in aggregate atoms in rule bodies that have the form #aggr{w1 :
a1, . . . ,wn : an} ≺ u, where wi is weight assigned to ai, the operation aggr ∈ {“count”,“sum”,
“min”,“max”}, the relation ≺∈ {“ < ”,“≤ ”,“ = ”,“ 6= ”,“ > ”,“ ≥ ”}, and u is a ground term.
For instance, #sum{w1 : a1, . . . ,wn : an} ≺ u is true if ∑

n
i=1 wi ≺ u, and f alse otherwise. #count

is basically #sum where all the weights set to one.
ASP systems typically first compute (a subset of) ground(Π), and then use a Davis-Putnam-

Logemann-Loveland- (DPLL)-like branch and bound algorithm to find answer sets for this ground
program. There are various grounders and solvers for ASP problem specifications (Gebser et al.,
2017b). We will use two state-of-the-art ASP grounders and solvers, GRINGO (Gebser et al.,
2011) and I-DLV (Calimeri et al., 2017), and CLASP (Gebser et al., 2015) and WASP (Alviano

13

1dPrec(T,T1) :- iPlace(P,T), oPlace(P1 ,T), iPlace(P1,T1), P!=P1 , T!=T1.

2naPrec(T,T1) :- dPrec(T,T1), not aTransition(T), not aTransition(T1).
3naPrec(T,T2) :- nadPrec(T,T1), nadPrec(T1,T2).

4adPrec(A,A1) :- dPrec(A,A1), aTransition(A), aTransition(A1).
5adPrec(A,A1) :- dPrec(A,T1), dPrec(T1,A1), aTransition(A), aTransition(A1), not

aTransition(T1).
6adPrec(A,A1) :- dPrec(A,T), naPrec(T,T1), dPrec(T1,A1), aTransition(A),

aTransition(A1).

7aPrec(A,A1) :- adPrec(A,A1).
8aPrec(A,A1) :- adPrec(A,A2), adPrec(A2,A1).

9aPar(A,A1) :- not aPrec(A,A1), aTransition(A), aTransition(A1).
10aPar(A,A1) :- aPar(A1,A).

Fig. 4: ASP encoding to preprocess the Petri net to obtain the preceding and parallel activities

et al., 2015) respectively, for testing them against our benchmark (cf. Section 4), as they have
among the most efficient implementations (Gebser et al., 2017b).

3.2 ASP Encoding

Our encoding is shown in Figures 4 and 5. The assumptions that we make about the structure
of a resource allocation problem are as follows: (i) There is no preemption (i.e. each activity,
once started, must be completed without interruptions); and (ii) the duration of the activities is
independent of the schedule, and it is known in advance. These assumptions are common in
related approaches (Lombardi and Milano, 2012).

Input Format. The input is divided into three groups of predicates as follows.
A Time Petri net T PN = (P,T,F,M0,ν ,∆):
iPlace(p,t): place p ∈ P is an input place of activity transition t ∈ T , (p, t) ∈ F
oPlace(p,t): place p ∈ P is an output place of activity transition t ∈ T , i.e. (t, p) ∈ F
aTransition(a): a ∈ T is an activity transition
minActDuration(a,d): the minimum waiting time/default duration of activity a is δmin(a) = d
maxActDuration(a,d): the maximum waiting time of activity a is δmax(a) = d

Temporal knowledge extracted from the event log L :
raDuration(r,a,d): duration of activity a is d when it is executed by resource r (i.e. ψ(r,a) = d)
laDuration(l,a,d): duration of activity a is d by a resource that has role l (i.e. ψ(l,a) = d)
upperBound(u): makespan is bounded at u time units (TU)

RBAC model O = (A,R,L,SAL,SRL,SLL):
alAC(a,l): resources with role l can execute activity a (i.e. (a, l) ∈ SAL)
rlAC(r,l): resource r has role l (i.e. (r, l) ∈ SRL)
llAC(l1,l2): resources with role l1 can execute the same activities that the resources with role l2
can execute (i.e. (l1, l2) ∈ SLL)
aDemand(a,n): an activity a requires n many resources to be executed, (i.e. χ(a) = n)

Output Format. For the output we use the following predicate:
allocate(r,a,s,c): a resource r is allocated to activity a at the start time s until the completion

time c, i.e. (r,a,s,c) ∈ I

14 Giray Havur, Cristina Cabanillas, Axel Polleres

11time (0).
12time(T1) :- T1=T+1, time(T), T1 <=U, upperBound(U).

13alAC(A,L1) :- llAC(L1,L2), alAC(A,L2).

14raDuration2(R,A,D1) :- maxActDuration(A,D), raDuration(R,A,D1), D1 <=D.
15laDuration2(R,A,D1) :- maxActDuration(A,D), laDuration(R,A,D1), D1 <=D.

16defaultRAD(R,A,D) :- raDuration2(R,A,D), rlAC(R,L), alAC(A,L).
17defaultRAD(R,A,D) :- not raDuration2(R,A,D1), laDuration2(L,A,D), rlAC(R,L),

alAC(A,L), time(D1).
18defaultRAD(R,A,D) :- not raDuration2(R,A,D1), not laDuration2(L,A,D2),

minActDuration(A,D), rlAC(R,L), alAC(A,L), time(D1), time(D2).

19defaultRAD(R,A,D1) :- defaultRAD(R,A,D), defaultRAD(R1,A,D1), R!=R1, D1 >D.

20N<={ allocate(R,A,S,E): time(S), defaultRAD(R,A,D), E=S+D}<=N :- aTransition(A),
aDemand(A,N).

21:- allocate(R,A,S,E), upperBound(U), E>U.

22:- allocate(R,A,S,E), allocate(R,A,S1 ,E1), S<S1.
23:- allocate(R,A,S,E), allocate(R,A,S1 ,E1), E<E1.

24:- allocate(R,A,S,E), allocate(R1 ,A,S1,E1), R1!=R, S<S1.
25:- allocate(R,A,S,E), allocate(R1 ,A,S1,E1), R1!=R, E<E1.

26:- adPrec(A,A1), allocate(R,A,S,E), allocate(R1,A1 ,S1,E1), E>S1.

27:- aPar(A,A1), allocate(R,A,S,E), allocate(R,A1,S1 ,E1), S<E1, S>=S1, A<A1.
28:- aPar(A,A1), allocate(R,A,S,E), allocate(R,A1,S1 ,E1), E>S1, E<=E1, A<A1.
29:- aPar(A,A1), allocate(R,A,S,E), allocate(R,A1,S1 ,E1), S<=S1 , E>E1, A<A1.
30:- aPar(A,A1), allocate(R,A,S,E), allocate(R,A1,S1 ,E1), S1 <=S, E1 >E, A<A1.

31greaterExists(E) :- allocate(R,A,S,E), allocate(R1,A1,S1 ,E1), E1 >E.
32maxC(E) :- not greaterExists(E), allocate(R,A,S,E).

33:~ maxC(E). [E@1 ,E]

Fig. 5: ASP encoding for the resource allocation problem

3.2.1 Code Description

We first obtain the ordering relations of activities precedence and parallel (cf. Section 2) using
the encoding in Figure 4. Rules (1-6) identify the activities that are in direct precedence (e.g.
adPrec(a1,a2) means that a1

a−→ a2). Rules (7,10) identify the activities that can be executed in
parallel (e.g. aPar(a1,a2) means that a1||a2) in a smart way by considering the activity-to-role
RBAC relations given in the form alAC(l,a).

Figure 5 is our ASP program for allocating resources to process activities. Rules (11,12) gener-
ate the finite time domain using the upper bound. Rule (13) propagates the permissions of activity
executions of a role l2 to another role l1 (i.e. role-to-role RBAC relations). Rules (14-19) handle
the preference (>) of activity durations: resource-activity duration > role-activity duration >

default activity duration. Rule (20) generates the allocations for each activity (i.e. activity re-
source demand is enforced, (6) in Section Section 2). Constraint (21) restricts the upper bound
on the completion time. Constraints (22,23) enforce a resource to be allocated to an activity only
once and constraints (24,25) impose different resources that are allocated to an activity to start
and end their execution at the same time (i.e. (7) in Section 2). Constraint (26) enforces the time
constraints on directly preceding activities (i.e. (8) in Section 2). Constraints (27-30) enforce the
time and resource constraints on parallel activities (e.g. two parallel activities cannot be executed
by the same resource at the same time, i.e. (9) in Section 2). Rules (31,32) compute the maximum
completion time (i.e the makespan). Weak constraint (33) optimizes the makespan.

15

Table 4: Parameters for generating resource allocation problem instances
Petri net generator RBAC generator Temporal knowledge generator

Number of activities nA Number of resources nR Upper bound u
Degree of parallelism δp Number of roles nL Number of resource-activity duration ndRA

Number of role-activity duration ndLA

3.2.2 Running Example

The result of the running example described in Section 2 is computed by our program as follows:
allocate(amy,tRM,0,1) allocate(glen,tPM,1,2) allocate(glen,tRT,2,8)

allocate(amy,tRT,2,6) allocate(oliver,tRV,2,6) allocate(glen,tPM2,8,9)

allocate(evan,tSPR,9,12)

The optimized makespan is 12 hours. As Receive Manuscript can only be performed by the role
Publisher, and therefore Amy is allocated to it. Glen is allocated to Proofread Manuscript due to
the fact that the solver knows he can execute it faster than others (cf. raDuration(glen,aPR,1)).
Glen and Amy are allocated to Revise Text as it requires two resources to be performed (cf.
aDemand(aRT,2)). Revise Visual takes 4 hours because laDuration(graphicArtist,aRV,4) over-
writes the default duration minActDuration(aRV,5).

3.3 Problem Instance Generator

A formalized problem instance generator is necessary for a thorough evaluation of ASP systems
against problems that have different sizes and properties. Our problem instance generator con-
sists of three main parts: a Petri net generator; an RBAC model and activity resource demand
generator; and a temporal knowledge generator. The required parameters for each of them are
provided in Table 4.

Petri net generator: For our benchmark we first generate conflict-free Petri nets using the Gen-
erate block-structured stochastic Petri net plug-in (Rogge-Solti, 2014) of the process mining tool
ProM (van der Aalst, 2016). This generator performs a series of random structured insertion oper-
ations of new control-flow constructs resulting in a random Petri net that is by generation sound,
free-choice and block-structured. The input of the Petri net generator is as follows: the number of
activities nA ∈Z+ and the degree of parallelism of the generated net δp ∈Z≥0, and 0≤ δp ≤ 100.
The generated Petri net PN = (P,T,F,M0,ν) is described with the predicates: place(p) (i.e.
p ∈ P), transition(t) (i.e. t ∈ T), aTransition(a) (i.e. a ∈ A and A ⊆ T), iPlace(p,t) (i.e.
p ∈ •t) and oPlace(p,t) (i.e. p ∈ t•). By changing the values of the input parameters, different
sequentiality and parallelism degrees are realized in the generated Petri nets. For instance, in
Figure 6 where nA = 6, (a) has no parallel activities, (c) has no sequential activities, and (b) has
both parallel and sequential activities.

The generated Petri nets could be understood as being equivalent to the conflict-free Petri net
that would arise from translating, e.g., a BPMN model to a Petri net first; and then deriving the
branching net of this net and selecting a subnet that holds an assumption set.

As the RBAC model requires the set of activities A, which is necessary for activity-to-role
assignments, now we can further continue describing RBAC model generation.

16 Giray Havur, Cristina Cabanillas, Axel Polleres

tA tBtCtD tE tF

(a) δp = 0

tB

tC

t0_split
t1_join

tD
t2_split

t3_jointE

tF

t4_split t5_join

tA

(b) δp = 50

tA

tB

t0_split

t1_join

tC
t2_split

t3_join

tD
t4_split

t5_join

tE

t6_split

t7_join

tF

t8_split

t9_join

(c) δp = 100
Fig. 6: Three generated Petri nets

RBAC model and activity resource demand generator: We generate a RBAC model O =

(A,R,L,SAL,SRL,SLL) where A⊆ T given a number of resources nR, a number of roles nL and the
output of the Petri net generator by using the following ASP program:

Input: aTransition/1, nR/1, nL/1

Output: alAC/2, rlAC/2, llAC/2, aDemand/2

34resource (1). role (1).
35resource(R1) :- resource(R), nR(N), R1=R+1, R1 <=N.
36role(L1) :- role(L), nL(N), L1=L+1, L1 <=N.

371<={alAC(A,L):role(L)} :- aTransition(A).
381<={rlAC(R,L):role(L)} :- resource(R).
39{llAC(L,L1):role(L1)} :- role(L).
40:- llAC(L,L).

41nrlAC(L,N):- N=#count{R:rlAC(R,L)}, role(L).
42{aDemand(A,N)}<=N :- aTransition(A), alAC(A,L), nrlAC(L,N).

Lines (34-36) generate R = {r1,r2, ...,rnR} and L = {l1, l2, ..., lnL} using the parameters nR and
nL. Line (37) generates the set SAL (i.e. every activity a has at least one assigned role l). Line (38)
generates the set SRL (i.e. every resource r has at least one assigned role l). Line (39) generates
the set SLL and constraint (40) guarantees that a role l cannot be senior to itself. Lines (41,42)
generate the activity resource demand set (i.e. NAR).

Temporal knowledge generator: We generate the temporal knowledge (i.e. ψ(r,a) and ψ(l,a))
along with the default durations of activities (i.e. for each activity a, δmin(a)) given an upper
bound u, a number of resource-activity duration ndRA , a number of role-activity duration ndLA and
the output from the previously defined generators by using the following ASP program:

Input: upperBound/1, ndRA/1, ndLA/1, aTransition/1, alAC/2, rlAC/2, llAC/2

Output: minActDuration/1, raDuration/2, laDuration/2

43nA(N) :- #count{A:activity(A)}=N.
44maxActivityDuration(U/N) :- upperBound(U), nA(N).
45aDurationDomain(M) :- maxActivityDuration(M).
46aDurationDomain(M1) :- aDurationDomain(M), M>0, M1=M-1.

471<={ minActDuration(A,D): aDurationDomain(D)}<=1 :- aTransition(A).

48N<={ raDuration(R,A,D): alAC(A,L), rlAC(R,L), aDurationDomain(D)}<=N :- ndRA(N).
49:- raDuration(R,A,D),raDuration(R,A,D1),D!=D1.

50alAC(A,L1) :- llAC(L1,L2), alAC(A,L2).
51N<={ laDuration(L,A,D): alAC(A,L), aDurationDomain(D)}<=N :- ndLA(N).
52:- laDuration(L,A,D),laDuration(L,A,D1),D!=D1.

Lines (43-46) estimates the maximum value of activity duration from the upper bound u and
derives a variable domain for the activity durations. Line (47) assigns one default duration per
activity (i.e. δmin(a)). Lines (48,49) generates the resource-activity durations. Lines (50-52) gen-
erates the role-activity durations.

17

Table 5: Properties of problem instances
id nA δp nR nL SAT u id nA δp nR nL SAT u id nA δp nR nL SAT u

1 8 50 2 1 yes 90 24 16 30 16 4 yes 90 47 32 90 16 8 yes 330
2 8 75 4 1 yes 70 25 16 30 16 4 yes 85 48 32 80 16 8 yes 260
3 8 100 4 1 yes 105 26 16 90 16 4 yes 140 49 32 90 16 8 yes 310
4 8 100 8 2 yes 70 27 16 30 37 8 yes 65 50 32 90 16 8 yes 360
5 16 90 2 1 yes 200 28 16 50 35 8 yes 75 51 32 50 17 4 yes 145
6 16 50 4 1 yes 75 29 16 75 35 8 yes 130 52 32 50 17 4 yes 145
7 16 90 8 4 yes 175 30 16 90 34 8 yes 190 53 32 50 32 16 yes 160
8 16 50 4 1 yes 120 31 32 90 2 1 yes 330 54 32 80 16 4 yes 330
9 16 90 4 1 yes 185 32 32 95 2 1 yes 360 55 32 50 33 8 yes 380
10 16 75 4 1 yes 145 33 32 30 4 1 yes 100 56 32 90 32 16 yes 345
11 16 90 4 1 yes 210 34 32 60 4 1 yes 210 57 32 90 17 4 yes 350
12 16 90 9 2 yes 205 35 32 75 8 4 no 210 58 32 50 32 16 yes 235
13 16 50 8 2 yes 130 36 32 60 4 1 yes 275 59 32 50 16 4 yes 360
14 16 75 8 2 yes 75 37 32 30 4 1 yes 270 60 32 80 32 16 yes 290
15 16 40 16 8 yes 85 38 32 85 4 1 yes 270 61 32 60 32 16 yes 520
16 16 40 8 2 yes 75 39 32 85 4 1 yes 300 62 32 50 33 8 yes 150
17 16 90 16 8 yes 190 40 32 90 4 1 yes 145 63 32 80 34 8 yes 317
18 16 90 8 2 yes 210 41 32 90 8 4 yes 355 64 32 90 33 8 yes 340
19 16 75 8 2 yes 115 42 32 90 8 4 yes 360 65 64 90 8 4 no 305
20 16 75 16 8 yes 120 43 32 30 8 2 yes 200 66 64 90 8 4 no 310
21 16 90 16 8 yes 165 44 32 75 16 8 yes 280 67 64 60 16 8 yes 295
22 16 90 9 2 yes 200 45 32 90 8 2 yes 315 68 64 90 16 8 yes 710
23 16 30 17 4 yes 75 46 32 50 16 8 yes 170 69 64 60 64 32 yes 320

70 64 90 64 32 yes 620

4 Benchmark for ASP Systems

Our benchmark is configurable in the sense that any combinations of given ASP grounders and
ASP solvers are compared against each other. In order to get a good idea of how challeng-
ing our problem is for the state-of-the-art ASP systems, we have selected the ASP grounders
GRINGO (Gebser et al., 2011) and I-DLV (Calimeri et al., 2017), as well as the ASP solvers
CLASP (Gebser et al., 2015) and WASP (Alviano et al., 2017). We have selected those grounders
and solvers due to their top rankings in the latest ASP Competition (Gebser et al., 2017b). Ev-
ery possible grounder+solver combination is competed against each other. Hence, our baseline
benchmark run consists of four different ASP grounder+solver configurations: GRINGO+CLASP

(i.e. CLINGO (Gebser et al., 2014)), GRINGO+WASP, I-DLV+CLASP, and I-DLV+WASP (i.e. DLV

2.0 (Alviano et al., 2017)). We use the most up-to-date versions of these grounders and solvers:
GRINGO 5.3.0, I-DLV 1.1.1, CLASP 3.3.4, WASP 2.0. These tools are executed on their default
options (i.e., no parameter is given).

Platform: The benchmark has been run on an Ubuntu Linux server (64bit), equipped with 16
core 2.40 GHz Intel Xeon Processor and 128 GB RAM. Time and memory for each run were
limited to 2 hours CPU clock time and 20 GB, respectively.

Problem Instances: We have generated 70 problem instances using our instance generator. The
details of these instances are provided in Table 5. In the table, id is the unique identifier of each
instance, nA is the number of activities to which resources are going to be allocated, δp is the
degree of parallelism of the generated Petri net, nR is the number of resources, and nL is the
number of roles. The SAT column indicates if there exists a feasible solution for the problem
instance, in other words, if there is a feasible makespan cmax where cmax ≤ u. u is the upper
bound for the makespan for the solutions as described in Section 3.3.

Benchmark Results: We have summarized the benchmark results in Tables 6 and 7. Table 6
shows the performance statistics of two grounders while grounding the problem instances. time
is the CPU time in seconds, mem is the memory used in MB, and |g(Π)| is the size of the
ground program in MB. Table 7 presents the performance statistics of only the ASP solvers.
CLASP(GRINGO) indicates the performance of the solver CLASP using the ground program from
the grounder GRINGO. cmax is the makespan computed by the system, which is minimized by

18 Giray Havur, Cristina Cabanillas, Axel Polleres

Table 6: Grounder statistics
GRINGO I-DLV GRINGO I-DLV

id tim
e

m
em

|g
(Π

)|

tim
e

m
em

|g
(Π

)|

id tim
e

m
em

|g
(Π

)|

tim
e

m
em

|g
(Π

)|

1 3 7 29 3 74 20 36 1689 22 16323 960 4403 4526
2 7 8 74 4 86 25 37 1572 23 15544 1049 4272 4347
3 19 8 163 11 174 56 38 1459 18 15766 855 4284 4363
4 7 7 85 3 129 28 39 1860 20 19515 1107 5158 5422
5 68 9 527 76 598 330 40 460 15 4465 265 1300 1218
6 30 9 316 15 193 91 41 672 15 6743 1176 8736 3818
7 30 9 287 52 737 188 42 445 15 6939 925 8969 3927
8 77 9 752 46 439 239 43 513 18 8369 491 3552 2376
9 192 10 1858 116 1024 570 44 233 16 4192 26 150 292

10 112 10 1129 66 643 350 45 1245 24 21315 1307 8285 6056
11 222 11 2301 137 1226 700 46 94 11 1519 10 92 115
12 291 13 2977 252 2003 809 47 356 15 5810 37 174 394
13 95 11 972 87 821 311 48 205 15 3593 23 142 252
14 29 9 297 5 179 46 49 291 14 5129 31 164 350
15 8 8 97 1 30 14 50 463 18 6912 44 187 465
16 27 9 307 5 180 46 51 290 13 5130 20 96 182
17 43 10 456 6 54 67 52 309 16 5530 21 97 191
18 259 11 2449 227 1870 751 53 78 11 1334 8 141 111
19 75 9 684 65 595 222 54 1283 25 23428 2266 14761 6651
20 21 8 184 3 39 27 55 2011 28 32896 120 373 1073
21 31 9 344 4 49 49 56 374 17 6341 35 293 447
22 242 11 2817 151 1869 735 57 1724 21 29670 1508 18263 8335
23 37 8 345 3 32 25 58 154 12 2900 16 207 217
24 45 9 438 3 34 32 59 1643 27 27747 1431 18011 8234
25 40 8 398 3 33 29 60 253 16 4495 25 251 325
26 87 10 1025 17 567 157 61 807 19 14386 83 456 993
27 29 9 308 2 42 26 62 282 13 5158 20 154 201
28 32 9 351 3 45 30 63 1461 26 24932 85 325 800
29 109 10 1161 8 74 84 64 1624 26 26446 102 335 871
30 244 11 2214 17 96 148 65 1120 26 19233 93 198 726
31 591 14 6122 489 3151 3320 66 1268 59 20685 114 204 768
32 814 15 6860 776 3688 3744 67 1094 26 18091 86 308 678
33 246 12 2278 159 717 638 68 - 37 93938 512 737 3847
34 1092 15 9483 669 2598 2582 69 1242 22 21228 78 981 925
35 232 12 2199 21 72 161 70 5118 45 80788 279 1907 3130

the weak constraint. Under this column, bold and italic numbers are the confirmed optima cases;
other values are the instances for which a solution is found but the solution is not proven to be
the optimal one (e.g. when the time or the memory limit is reached). For both of the tables “–”
under time column means “out-of-time” and “–” under mem column means “out-of-memory”.

The box plots in Figure 7 visually summarize Tables 6 and 7. We logarithmically scaled the y-
axis of the plots for the sake of readability. 90% of the samples are in between the upper and lower
whiskers. The solid green line represents the median, and the dashed green line represents the
mean of the sample. Figure 7(a) and Figure 7(b) compare the CPU execution times of grounders
and solvers. Fig. 7(c) and Figure 7(d) compare the memory usage of grounders and solvers.
Figure 7(e) reports on the ground program sizes of the instances. By looking at Figure 7(a) and
Figure 7(c), we find out that I-DLV grounds the problem instances much faster than GRINGO,
however it has a larger memory footprint. The program rewriting (i.e. intelligent projections)
feature of I-DLV is a vital optimization for this problem as the ground programs that are generated
by I-DLV are way smaller than those generated by GRINGO (cf. Table 6 and Figure 7(e)).

The cactus plots in Figure 8 separately compare the grounder and solver performances. Less
steep curves (cf. Figure 8(b)) and smaller memory footprint (cf. Figure 7(d)) of CLASP(GRINGO)
and CLASP(I-DLV)–in comparison to those of WASP(GRINGO) and WASP(I-DLV)–concludes that
the ASP solver CLASP performs better than WASP for our benchmark problem.

19

Table 7: Solver statistics
CLASP(GRINGO) WASP(GRINGO) CLASP(I-DLV) WASP(I-DLV)

id u time mem cmax time mem cmax time mem cmax time mem cmax

1 90 315 279 69 533 680 69 345 169 69 465 415 69
2 70 73 581 54 107 1487 54 12 200 54 37 485 54
3 105 720 1426 79 1535 3588 79 498 439 79 415 855 79
4 70 97 733 55 371 1875 55 21 257 55 50 702 55
5 200 – 5964 200 – 14000 192 3923 1865 149 – 3639 179
6 75 – 2947 68 – 7220 68 – 543 68 3037 1109 68
7 175 2305 3360 133 4788 7821 133 1217 1449 133 2971 3459 133
8 120 – 7912 98 – 18600 101 – 1302 92 – 2650 92
9 185 5302 – 192 19007 – 3196 – 6245 176

10 145 7146 12026 106 – 5279 1941 108 5014 3908 108
11 210 6646 – 207 – – 3876 – 7567
12 205 – 11788 315 – – 5156 192 – 10920
13 130 – 10487 134 96 – 2025 2042 104 2084 4368 104
14 75 1785 3190 59 2278 7411 59 84 467 59 133 983 59
15 85 115 951 64 148 2317 64 3 116 64 17 234 64
16 75 935 2985 56 432 6962 56 34 456 56 56 1003 56
17 190 5134 5547 144 7157 12500 160 68 432 144 279 418 144
18 210 – 10295 267 – – 4825 206 – 10081
19 115 – 8690 109 – 18098 100 377 1482 86 929 3162 86
20 120 479 2067 92 889 4860 92 13 205 92 33 279 92
21 165 1739 4026 124 4562 9450 124 37 344 124 111 373 124
22 200 – 11283 253 – – 4753 160 – 9817 195
23 75 1766 3395 64 1730 8062 64 10 202 64 25 283 64
24 90 4032 4319 64 2545 10498 64 25 234 64 57 299 64
25 85 1785 3793 67 2171 9018 67 14 217 67 30 289 67
26 140 – 11780 83 – 599 1571 106 1609 2888 106
27 65 1060 2995 48 388 7016 48 9 242 48 16 433 48
28 75 1433 3664 56 1013 8255 56 17 260 56 83 449 56
29 130 – 12586 122 101 – 91 609 99 183 803 99
30 190 – 9359 260 – 650 1026 143 933 1082 143
31 330 621 – 1010 – – 11872 284 –
32 360 670 – 1168 – – 13344 297 –
33 100 – 10537 258 – – 2467 – 5751
34 210 635 – 1006 – – 9483 287 –
35 210 5856 – 234 – 271 919 411 553
36 275 605 – 928 – – 16237 312 –
37 270 553 – 938 – – 15679 145 272 –
38 270 582 – 869 – – 15746 243 –
39 300 635 – 1070 – 997 – 221 –
40 145 618 – 555 – – 4612 – 10675
41 355 634 – 1017 – 796 – 161 –
42 360 406 – 795 – 565 – 145 –
43 200 366 – 628 – – 10440 76 170 –
44 280 – 17891 396 – 545 1770 210 1119 1258 210
45 315 366 – 660 – 803 – 124 –
46 170 – 17411 87 – 57 769 125 170 701 125
47 330 414 – 793 – 2194 2289 250 3650 2063 250
48 260 – 14796 307 – 499 1559 197 1034 1079 197
49 310 386 – 573 – 1241 2069 233 2896 1824 233
50 360 391 – 786 – 1998 2818 271 4946 2654 271
51 145 356 – 450 – 197 1142 110 288 954 110
52 145 347 – 506 – 469 1194 118 666 1017 118
53 160 – 15506 150 94 – 58 846 122 204 1076 122
54 330 414 – 757 – 790 – 132 –
55 380 397 – 755 – 2286 6601 163 2644 4370 163
56 345 415 – 723 – 1975 2953 258 4291 2695 258
57 350 369 – 672 – 456 – 47 –
58 235 6300 – 183 – 102 1522 132 553 1580 132
59 360 384 – 770 – 465 – 48 –
60 290 352 – 448 – 655 2120 215 1622 1962 215
61 520 399 – 812 – 677 5929 123 2685 3665 123
62 150 357 – 479 – 266 1437 126 366 1631 126
63 317 394 – 769 – 5339 4903 238 5881 4326 238
64 340 412 – 769 – – 5619 313 – 4394 274
65 305 414 – 783 – 1640 3865 2002 1933
66 310 396 – 713 – 2072 4057 2397 2091
67 295 416 – 769 – 2424 3908 221 3945 2545 221
68 710 481 – – 7885
69 320 395 – 760 – 5794 6307 238 – 7863 313
70 620 378 – 838 – 7152 – – 16188

20 Giray Havur, Cristina Cabanillas, Axel Polleres

gringo idlv
100

101

102

103

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

clasp
(gringo)

wasp
(gringo)

clasp
(idlv)

wasp
(idlv)

101

102

103

gringo idlv

101

102

103

104

M
e
m

o
ry

 (
M

B
)

clasp
(gringo)

wasp
(gringo)

clasp
(idlv)

wasp
(idlv)

102

103

104

gringo idlv
101

102

103

104

105

G
ro

u
n
d
 p

ro
g
ra

m
 s

iz
e
 (

M
B

)

(a) (b) (c) (d) (e)
Fig. 7: Box plots regarding the performance statistics of grounders and solvers

0 20 40 60
Number of grounded instances

0

10000

20000

30000

40000

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

gringo

idlv

0 10 20 30 40
Number of solved instances

0

10000

20000

30000

40000

50000

60000
E
x
e
cu

ti
o
n
 t

im
e
 (

s)
clasp(gringo)

wasp(gringo)

clasp(idlv)

wasp(idlv)

(a) Grounding times (b) Solving times
Fig. 8: Sorted cactus plots

Overall, I-DLV+CLASP completes 41 instances in given time and memory constraints whereas
I-DLV+WASP, GRINGO+CLASP, and GRINGO+WASP complete 40, 16, and 15 instances, respec-
tively. I-DLV+CLASP is clearly the most performant ASP system of our baseline benchmark.

Our benchmark execution scripts, problem instance generator, and the instances described in
Table 5 are available at https://goo.gl/Xrd2Hq.

5 Related Work

The complexity of the resource allocation problem in domains similar to BPM has been widely
acknowledged in other research areas, such as Constraint Programming (CP) and Operations
Research (OR). The survey conducted in (Lombardi and Milano, 2012) studied resource al-
location and scheduling separately and jointly. Pure scheduling problems (which traditionally
assume static task network and resource requirements) have been mostly addressed with CP
techniques (Baptiste et al., 2001). Resource allocation, on the contrary, has been typically tack-
led as a MRCPSP with OR techniques (Brucker et al., 1999). For addressing large problem
instances in real-world scenarios in which scheduling and resource allocation have to be jointly
considered, hybrid CP/OR approaches were developed, including Logic Based Benders Decom-
position (Hooker and Ottosson, 2003) and Self-adaptive Large Neighborhood Search (Laborie,
2009). In (Drexl et al., 2000), the authors extended the MRCPSP to consider further temporal
aspects like travel times between tasks that have to be performed at two different locations by

21

the same resources. New concepts, such as partially renewable resources, were introduced and
incorporated to the ProGen problem instance generator (Kolisch et al., 1995).

The work presented in this paper constitutes a realistic benchmark for declarative formalisms
as our problem also involves the consideration of resource allocation and scheduling aspects.
Specifically, the resource allocation problem in BPM is characterized by the essential ideas
behind designing and managing business processes, and organizational models are crucial for
extracting resource allocation requirements in BPM (Rosemann and vom Brocke, 2015). The
extensive BPM literature with real use cases (Vom Brocke et al., 2010; Brocke and Rosemann,
2014; Dumas et al., 2018) is helpful for inferring those requirements. In our previous work, we
addressed resource allocation in business processes with different problem configurations (i.e.
Petri net semantics based encoding (Havur et al., 2015), extension of MRCPSP (Havur et al.,
2016)). Nevertheless, Petri nets were encoded with ASP also in (Anwar et al., 2013), where
the execution semantics of Petri nets is reflected for simulating biological pathways. However,
in the work at hand, for improving the performance of our encoding we have eliminated these
simulation-oriented aspects, which are redundant for resource allocation and scheduling pur-
poses.

We believe ASP is a powerful formalism for addressing such a hard problem based on our pre-
vious work and on results found in the ASP Programming Competition, a biennial event aimed at
providing challenging benchmark collections and evaluating the advancement of the state of the
art in ASP solving (Gebser et al., 2017b). According to the categories defined based on the ASP
features required for the encoding of the problems, resource allocation in business processes is
an optimization problem (Gebser et al., 2017b). ASP has been successfully used for addressing
optimization problems in other domains, as demonstrated in the 6th ASP Programming Competi-
tion, including, among others, Crossing Minimization (Gange et al., 2010), Valves Location (Ga-
vanelli et al., 2015), MaxSAT (Li and Manyà, 2009), Steiner Tree (Erdem and Wong, 2004),
System Synthesis (Biewer et al., 2015) and Video Streaming (Toni et al., 2014). The problem of
resource allocation in business processes will be subjected to analysis within the 7th edition of
the ASP Programming Competition (Gebser et al., 2017a).

6 Conclusions

We have modeled the resource allocation problem and provided an instance generator for bench-
marking ASP systems. Our results show that this optimization problem is challenging for the
current ASP systems which have received the highest performance scores in the 6th ASP Pro-
gramming Competition held in 2015 (Calimeri et al., 2016).

Future research on optimizing the problem encoding for improving its computational effi-
ciency might extend the applicability of our approach in solving the resource allocation in BPM
in large-scale by using ASP. Apart from it, it is also on our agenda to extend our benchmark
towards a more detailed comparison of many formalisms, and their systems might prove quite
beneficial to both the LP and the BPM communities: the LP community would be provided
with an application-oriented problem domain for assessing the advances in formalisms (the ease
of encoding the resource allocation problem, i.e., the compactness, readability, modularity and
maintainability of problem encoding) and the computational performance of their solvers; and
the BPM community would be given a solid evaluation of different approaches and encouraged
to try these resource allocation methods out-of-the-box, preferably via an interface to already
existing BPMSs.

22 Giray Havur, Cristina Cabanillas, Axel Polleres

References

ALVIANO, M., CALIMERI, F., DODARO, C., FUSCÀ, D., LEONE, N., PERRI, S., RICCA, F.,
AND VELTRI, P. 2017. The ASP System DLV2. In Int. Conf. on Logic Programming and Non-
monotonic Reasoning (LPNMR), M. Balduccini and T. Janhunen, Eds. Vol. 10377. Springer,
215–221.

ALVIANO, M., DODARO, C., LEONE, N., AND RICCA, F. 2015. Advances in WASP. In Int.
Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR), F. Calimeri, G. Ianni,
and M. Truszczynski, Eds. Vol. 9345. Springer, 40–54.

ANWAR, S., BARAL, C., AND INOUE, K. 2013. Encoding Petri Nets in Answer Set Program-
ming for Simulation Based Reasoning. CoRR abs/1306.3542, 1–17.

BAPTISTE, P., PAPE, C. L., AND NUIJTEN, W. 2001. Constraint-Based Scheduling. Kluwer
Academic Publishers.

BIEWER, A., ANDRES, B., GLADIGAU, J., SCHAUB, T., AND HAUBELT, C. 2015. A Symbolic
System Synthesis Approach for Hard Real-time Systems Based on Coordinated SMT-solving.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), W. Nebel and
D. Atienza, Eds. ACM, 357–362.

BONET, B., HASLUM, P., HICKMOTT, S., AND THIÉBAUX, S. 2008. Directed unfolding of petri
nets. In Transactions on Petri Nets and Other Models of Concurrency I. Springer, 172–198.

BREWKA, G., EITER, T., AND TRUSZCZYŃSKI, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

BROCKE, J. V. AND ROSEMANN, M. 2014. Handbook on Business Process Management 2:
Strategic Alignment, Governance, People and Culture. Springer.

BRUCKER, P., DREXL, A., MHRING, R., NEUMANN, K., AND PESCH, E. 1999. Resource-
constrained project scheduling: Notation, classification, models, and methods. European Jour-
nal of Operational Research 112, 1, 3–41.

BUCCAFURRI, F., LEONE, N., AND RULLO, P. 1997. Adding weak constraints to disjunctive
datalog. In APPIA-GULP-PRODE. 557–568.

BURATTIN, A. 2015. Introduction to Business Processes, BPM, and BPM Systems. In Process
Mining Techniques in Business Environments. Vol. 207. Springer, 11–21.

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T.,
LEONE, N., RICCA, F., AND SCHAUB, T. 2013. ASP-Core-2: Input language format. Tech.
rep., ASP Standardization Working Group.

CALIMERI, F., FUSCÀ, D., PERRI, S., AND ZANGARI, J. 2017. I-DLV: the new intelligent
grounder of DLV. Intelligenza Artificiale 11, 1, 5–20.

CALIMERI, F., GEBSER, M., MARATEA, M., AND RICCA, F. 2016. Design and results of the
fifth Answer Set Programming competition. Artificial Intelligence 231, 151–181.

CALIMERI, F., IANNI, G., AND RICCA, F. 2014. The third open Answer Set Programming
competition. Theory and Practice of Logic Programming 14, 1, 117–135.

COLANTONIO, A., DI PIETRO, R., OCELLO, A., AND VERDE, N. V. 2009. A formal frame-
work to elicit roles with business meaning in RBAC systems. In ACM symposium on Access
control models and technologies (SACMAT), B. Carminati and J. Joshi, Eds. ACM, 85–94.

COUVREUR, J.-M., POITRENAUD, D., AND WEIL, P. 2013. Branching processes of general
petri nets. Fundamenta Informaticae 122, 1-2, 31–58.

DENECKER, M., VENNEKENS, J., BOND, S., GEBSER, M., AND TRUSZCZYŃSKI, M. 2009.
The second Answer Set Programming competition. In Int. Conf. on Logic Programming

23

and Nonmonotonic Reasoning (LPNMR), E. Erdem, F. Lin, and T. Schaub, Eds. Vol. 5753.
Springer, 637–654.

DREXL, A., NISSEN, R., PATTERSON, J. H., AND SALEWSKI, F. 2000. ProGen/x An instance
generator for resource-constrained project scheduling problems with partially renewable re-
sources and further extensions. European Journal of Operational Research 125, 1, 59 – 72.

DUMAS, M., ROSA, M. L., MENDLING, J., AND REIJERS, H. A. 2018. Fundamentals of
Business Process Management (Second Edition). Springer.

ERDEM, E. AND WONG, M. D. F. 2004. Rectilinear Steiner Tree Construction Using Answer
Set Programming. In Int. Conf. on Logic Programming (ICLP), B. Demoen and V. Lifschitz,
Eds. Vol. 3132. Springer, 386–399.

GANGE, G., STUCKEY, P. J., AND MARRIOTT, K. 2010. Optimal k-Level Planarization and
Crossing Minimization. In Int. Symposium on Graph Drawing (GD), U. Brandes and S. Cor-
nelsen, Eds. Vol. 6502. Springer, 238–249.

GAREY, M. R., JOHNSON, D. S., AND SETHI, R. 1976. The complexity of flowshop and
jobshop scheduling. Mathematics of operations research 1, 2, 117–129.

GAVANELLI, M., NONATO, M., AND PEANO, A. 2015. An ASP approach for the valves posi-
tioning optimization in a water distribution system. Journal of Logic and Computation 25, 6,
1351–1369.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., ROMERO, J., AND SCHAUB, T. 2015. Progress
in clasp series 3. In Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR),
F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Vol. 9345. Springer, 368–383.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2012. Answer set solving in
practice. Synthesis Lectures on Artificial Intelligence and Machine Learning 6, 3, 1–238.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2014. Clingo = ASP + Con-
trol: Extended Report. Tech. rep., University of Potsdam, Germany.

GEBSER, M., KAMINSKI, R., KÖNIG, A., AND SCHAUB, T. 2011. Advances in gringo series 3.
In Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR), J. P. Delgrande
and W. Faber, Eds. Vol. 6645. Springer, 345–351.

GEBSER, M., MARATEA, M., AND RICCA, F. 2017a. The Design of the Seventh Answer Set
Programming Competition. In Int. Conf. on Logic Programming and Nonmonotonic Reason-
ing (LPNMR), M. Balduccini and T. Janhunen, Eds. Vol. 10377. Springer, 3–9.

GEBSER, M., MARATEA, M., AND RICCA, F. 2017b. The Sixth Answer Set Programming
Competition. Journal of Artificial Intelligence Research 60, 41–95.

HAVUR, G., CABANILLAS, C., MENDLING, J., AND POLLERES, A. 2015. Automated Resource
Allocation in Business Processes with Answer Set Programming. In BPM Workshops (BPI).
Vol. 256. Springer, 191–203.

HAVUR, G., CABANILLAS, C., MENDLING, J., AND POLLERES, A. 2016. Resource Alloca-
tion with Dependencies in Business Process Management Systems. In Int. Conf. on Business
Process Management (BPM) - Forum. Vol. 260. Springer, 3–19.

HOOKER, J. AND OTTOSSON, G. 2003. Logic-based Benders decomposition. Mathematical
Programming 96, 1, 33–60.

HORLING, B. AND LESSER, V. 2004. A Survey of Multi-agent Organizational Paradigms.
Knowledge Engineering Review 19, 4, 281–316.

KOLISCH, R., SPRECHER, A., AND DREXL, A. 1995. Characterization and Generation of
a General Class of Resource-constrained Project Scheduling Problems. Management Sci-
ence 41, 10, 1693–1703.

24 Giray Havur, Cristina Cabanillas, Axel Polleres

LABORIE, P. 2009. IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three
Problems. In Int. Conf. on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR), W.-J. van Hoeve and J. N. Hooker, Eds.
Vol. 5547. Springer, 148–162.

LI, C. M. AND MANYÀ, F. 2009. MaxSAT, Hard and Soft Constraints. In Handbook of Satis-
fiability, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds. Frontiers in Artificial Intelli-
gence and Applications, vol. 185. IOS Press, 613–631.

LOHMANN, N., VERBEEK, E., AND DIJKMAN, R. 2009. Petri Net Transformations for Business
Processes - A Survey. Trans. on Petri Nets and Other Models of Concurrency II 2, 46–63.

LOMBARDI, M. AND MILANO, M. 2012. Optimal methods for resource allocation and schedul-
ing: a cross-disciplinary survey. Constraints 17, 51–85.

OMG. 2011. BPMN 2.0. Recommendation, OMG.
POPOVA-ZEUGMANN, L. 2013. Time Petri Nets. In Time and Petri Nets. Springer, 139–140.
ROGGE-SOLTI, A. 2014. Block-structured stochastic Petri net generator (ProM plug-in). http:
//www.promtools.org/. Accessed: 2018-01-01.

ROSEMANN, M. AND VOM BROCKE, J. 2015. The six core elements of business process man-
agement. In Handbook on Business Process Management 1. Springer, 105–122.

RUSSELL, N., VAN DER AALST, W. M., TER HOFSTEDE, A. H., AND EDMOND, D. 2005.
Workflow resource patterns: Identification, representation and tool support. In Int. Conf. on
Advanced Information Systems Engineering (CAiSE), O. Pastor and J. F. e Cunha, Eds. Vol.
3520. Springer, 216–232.

SCHÖNIG, S., CABANILLAS, C., JABLONSKI, S., AND MENDLING, J. 2016. A Framework for
Efficiently Mining the Organisational Perspective of Business Processes. Decision Support
Systems 89, 87–97.

SPRECHER, A., HARTMANN, S., AND DREXL, A. 1994. Project scheduling with discrete time-
resource and resource-resource tradeoffs. Tech. rep., Instituten für Betriebswirtschaftslehre
der Universität Kiel, Germany.

TONI, L., APARICIO-PARDO, R., SIMON, G., BLANC, A., AND FROSSARD, P. 2014. Optimal
Set of Video Representations in Adaptive Streaming. In ACM Multimedia Systems Conference
(MMSys), R. Zimmermann, Ed. ACM, 271–282.

VAN DER AALST, W. M. 1996. Structural characterizations of sound workflow nets. Computing
Science Reports 96, 23, 18–22.

VAN DER AALST, W. M. P. 2016. Process Mining - Data Science in Action (Second Edition).
Springer.

VOM BROCKE, J., ROSEMANN, M., ET AL. 2010. Handbook on business process management.
Springer.

