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Abstract

Given a set function � with values in a Banach space X, we construct an integration theory for scalar functions with respect to 
� by using duality on X and Choquet scalar integrals. Our construction extends the classical Bartle–Dunford–Schwartz integration
for vector measures. Since just the minimal necessary conditions on � are required, several L1-spaces of integrable functions
associated to � appear in such a way that the integration map can be defined in them. We study the properties of these spaces and
how they are related. We show that the behavior of the L1-spaces and the integration map can be improved in the case when X is
an order continuous Banach lattice, providing new tools for (non-linear) operator theory and information sciences.
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1. Introduction

Lebesgue type integration of scalar functions with respect to a vector measure was originally developed by Bartle, 
Dunford and Schwartz [3] in order to extend the classical Riesz representation theorem for vector valued opera-
tors. Later, an equivalent integration theory was constructed by Lewis [23] using the duality of the vector measure’s 
codomain. Nowadays this theory is well understood and has found many important applications in functional analysis 
and operator theory, among others the extension of linear operators to larger domains, see [29] and the references 
therein for an outlook of this topic. Similar and other applications would be desirable in the case of non-finitely addi-
tive vector valued set functions, as for instance the study of non-linear operators or the construction of some measuring 
tools in information science (e.g. [4,18]). The aim of this paper is to create an integration theory for vector-valued 
capacities—sometimes also called fuzzy capacities—and the corresponding spaces of integrable functions, which fits 
with the integration with respect to vector measures and allows to address this kind of applications in next works. As a 
first step in this process, Choquet type integrals will provide the appropriated framework and will play a fundamental 
role for our goal.
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Let us explain our motivation regarding possible applications of our work. Our interest in this topic is twofold. 
On the one hand, the relevance of our paper from the point of view of the mathematical analysis may be found in 
the aim of finding extensions of recent vector-measure-based developments in operator theory and harmonic anal-
ysis. Indeed, Bartle–Dunford–Schwartz integration has found an upturn of interest due to its use for computation 
of maximal domains of operators, with applications in several applied problems (see for example [10,12,11,29]). In 
this direction, similar techniques would be applied for non-linear operators using the tools developed here, where 
linearity—vector measures—is substituted by non-linearity—fuzzy vector capacities—. Concretely, we are thinking 
about fundamental non-linear operators as the Hardy–Littlewood maximal operator. On the other hand, as a continua-
tion of our research in collaboration with information scientists, we are also interested in the theoretical development 
of mathematical instruments for the bibliometric analysis of the impact of the scientific research and its multiple 
applications—altmetrics, research assessment, big data analysis, just to mention some of them (see [6,16])—. Current 
research on the topic shows that two lines of research make sense. The first one stresses the fact that non-additive 
set functions and integration are more and more needed for constructing such measuring tools (see [4,18,21,26]). The 
second one highlights the fact that multiple scalar indexes—that is, vector-valued indexes—are sometimes needed for 
a suitable mathematical treatment of the information (see [6,17] and the references therein).

Integration with respect to general set functions has a long tradition, and current contributions on this subject are 
hot research topics in several branches of both pure and applied mathematics. In the Introduction of [22], an excellent 
historical review on this integration can be found; see also [24] for an overview of non-additive monotonic measures 
and their properties. There are a lot of mathematical developments related to non-additive integration; the references in 
both papers just mentioned provide a nice selections of works regarding this subject and its broad class of applications. 
We must also refer to the so called pseudo analysis, that is based in the study of the properties of the pseudo measures. 
Different terms are used for related types of set functions, as for example fuzzy measures, capacities, non-monotonic 
measures, pseudo-additive measures and null-additive set functions. Starting from the early work of Choquet ([9]), 
Sugeno and others which may be mentioned here (see for example [27,28] and the references therein), solid integration 
theories have been constructed for related classes of non-additive measures (see the books [13,30,31]; also [33,35]). 
In particular, the Choquet integral has been deeply studied in the case of scalar functions and scalar positive capacities 
(e.g. [13]) and even there are studies about the L1 and other function spaces associated to this integral (e.g. [7]). 
Regarding general (topological) spaces of scalar functions that are integrable, a lot of work has also been made in 
recent years, also from different—theoretical and applied—points of view. Although the literature on the subject is 
really broad, let us mention here the works that are more related to our developments, that are the papers [7,8] for the 
classical Choquet integral for scalar functions, and [32] for general pseudo measures.

Regarding the vector valued case, also vector capacities with values in a Riesz space has been studied (e.g. [20]). 
In this case, thanks to the order structure, a Choquet type vector integral can be defined by using vector Riemann 
integration. Our approach will be different. Starting with a Banach space valued capacity (without any order) we will 
use Choquet scalar integrals and duality in a similar way as in Lewis integration to define a vector-valued integral. 
Several L1-spaces associated to the vector capacity appear along the paper as soon as some specific conditions are 
required. We study the relation among them and the role played by the Dunford and Bochner integration when the 
distribution functions with respect to the vector capacity are considered; we must mention here the paper [15] for a 
similar study in the case of vector measures, that in some sense inspired our work. Finally, we will see how much the 
behavior and the properties of the L1-spaces and the integration map improve when the vector capacity take values in 
an order continuous Banach lattice.

We must remark that the novelty of our results mainly concerns the vector nature of the proposed Choquet integral, 
and the fact that we are directly interested in the structure of the associated spaces of integrable functions, besides 
the properties of the integrals. This is so because spaces of integrable functions are central in both motivations that 
led us to start this study. From the pure-analytic point of view, domains of (linear and non-linear) classical operators 
are normally function spaces, and so the maximal domain must be expected to be such an space too. From the point 
of view of the applications, all the functions that can be used for representing a measuring tool with some fixed 
requirements in information science are also elements of such an space.

The contents of this paper are structured as follows. In the preliminaries we collect the basic concepts and facts 
on scalar capacities and function spaces that are needed. Section 3 is devoted to the space L1(λ) of a scalar positive 
capacity λ, that is, the space of (λ-a.e. classes of) measurable functions f such that 

∫
I
λ|f | dm < ∞ where m is the 

Lebesgue measure on the interval I = [0, ∞) and λ|f | is the distribution function of |f | with respect to λ. Although 



this space has already been studied in [7], as it will be our main tool we have preferred to include here a detailed 
outline in which minimal conditions on λ are required taking care that the identification of functions which are equal 
λ-a.e. is correct.

In Section 4 we consider a family F = (λα) of scalar positive capacities and construct two quasi-Banach function 
spaces associated to F , namely, the space L1(‖F‖) of the capacity ‖F‖ = supα λα and the space L1(F) of (‖F‖-a.e.
classes of) measurable functions f such that supα

∫
I
(λα)|f | dm < ∞. A Banach space valued capacity �: � → X

come into play in Section 5. As particular cases of the results of Section 4, we obtain the quasi-Banach function spaces 
L1(‖�‖), w-L1

v(�), L1(|||�|||), w-L1
qv(�) associated to the families (|x∗�|)x∗∈BX∗ and (qx∗�)x∗∈BX∗ , where |x∗�|

and qx∗� are the variation and quasi-variation respectively of the scalar capacity x∗� given by the composition of �
with the element x∗ in the closed unit ball BX∗ of the topological dual X∗ of X.

Under the appropriate conditions, in Section 6 we associate to � an integration map I�: w-L1
qv(�) → X∗∗, where

〈I�(f ), x∗〉 = ∫
I
x∗�f dm for all positive f ∈ w-L1

qv(�) and x∗ ∈ X∗. For non-positive f we use its positive and

negative parts. Then two new sets appear in the case when X is non-reflexive: the set L1
qv(�) of functions f ∈

w-L1
qv(�) such that I�(f χA) ∈ j (X) for all A ∈ �, where j is the canonical embedding of X into X∗∗, and L1

v(�) =
L1

qv(�) ∩ w-L1
v(�). We find the following containment relations

L1(‖�‖) ⊂ L1
v(�) ⊂ w-L1

v(�)

∩ ∩ ∩
L1(|||�|||) ⊂ L1

qv(�) ⊂ w-L1
qv(�).

In the case when � is a vector measure the vertical inclusions are equalities, w-L1
v(�) and L1

v(�) coincide with the 
spaces of weakly integrable and integrable functions (in the sense of Lewis) with respect to � respectively, and I� is 
the integration operator with respect to �.

In general, since I� is not additive, we cannot know even if L1
qv(�) and L1

v(�) are vector spaces. Section 7 gives

conditions on X and � under which these two sets are Banach function spaces with the norms of w-L1
qv(�) and

w-L1
v(�) respectively. The key is that under these conditions X is a Banach lattice satisfying that j (X) is an ideal

of X∗∗ and the map I� is increasing and subadditive on positive functions. Moreover, I� turns out to be continuous,
the space w-L1

qv(�) coincides with the space of (�-a.e. classes of) measurable functions such that �|f | is Dunford

integrable with respect to m and L1(|||�|||) with the space of functions such that �|f | is Bochner integrable.
We end with Section 8 by showing an example of a vector capacity which satisfies all the conditions required along 

the paper and giving easier descriptions of its associated L1-spaces.

2. Preliminaries

Throughout this paper (�, �) will denote a measurable space. Let λ: � → [0, ∞] be a set function satisfying that 
λ(∅) = 0. Such a set function λ will be called a capacity. A set Z ∈ � is λ-null if λ(A) = 0 for all A ∈ � such that 
A ⊂ Z. Note that every measurable subset of a λ-null set is λ-null. A property holds λ-a.e. if it holds except on a 
λ-null set. If (An) ⊂ � is an increasing sequence with A = ∪An we will write An ↑ A. If the sequence is decreasing 
with A = ∩An we will write An ↓ A. The following properties of a capacity will be used in the sequel:

(P1) λ is increasing if λ(A) ≤ λ(B) for every A, B ∈ � such that A ⊂ B .
(P2) λ is null-additive if λ(A ∪ Z) = λ(A) for all A, Z ∈ � with Z being λ-null.
(P3) λ is quasi-subadditive if there exists a constant K ≥ 1 such that

λ(A ∪ B) ≤ K(λ(A) + λ(B))

for every disjoint sets A, B ∈ �. If K = 1 it is called subadditive.
(P4) λ is superadditive if λ(A) + λ(B) ≤ λ(A ∪ B) for every disjoint sets A, B ∈ �.
(P5) λ is submodular if λ(A ∪ B) + λ(A ∩ B) ≤ λ(A) + λ(B) for all A, B ∈ �.
(P6) λ is continuous from below if λ(An) → λ(A) whenever An, A ∈ � with An ↑ A.
(P7) λ is continuous from above at ∅ if λ(An) → 0 whenever An ∈ � with An ↓ ∅ and λ(A1) < ∞.



Denote by L0(�) the space of all measurable functions f : � → R and by L0(�)+ the positive cone of L0(�), 
that is the set of functions in L0(�) which take values in [0, ∞). Write Nλ for the set of functions f ∈ L0(�) such 
that f = 0 λ-a.e. In what follows we require that ∪Zn is λ-null whenever (Zn) is a sequence of λ-null sets. This fact 
is obtained for instance if λ is continuous from below and has any of the properties (P2,3,5). Under this requirement 
Nλ is a vector space and for fn − gn, f − g ∈ Nλ with fn → f λ-a.e. it follows that gn → g λ-a.e. The support of a 
function f ∈ L0(�) will be denoted by supp(f ). Note that f ∈ Nλ if and only if supp(f ) is λ-null. Denote by L0(λ)

the quotient space L0(�)/Nλ. That is, L0(λ) is the space of all real measurable functions f defined on �, where 
functions which are equal λ-a.e. are identified. For f ∈ L0(�) we will denote by f + and f − the positive and negative 
parts of f respectively, that is, f + = f χPf

and f − = (−f )χNf
where Pf = {ω ∈ � : f (ω) > 0} and Nf = {ω ∈ � :

f (ω) < 0}. We will write S for the space of simple functions on � and Sλ = {ϕ ∈ S : λ(supp(ϕ)) < ∞}.
By a λ-quasi-Banach function space (briefly, λ-quasi-B.f.s.) we mean a quasi-Banach space E ⊂ L0(λ) with quasi-

norm ‖ · ‖E , satisfying that if f ∈ L0(λ), g ∈ E and |f | ≤ |g| λ-a.e. then f ∈ E with ‖f ‖E ≤ ‖g‖E . If E is a Banach 
space we will refer it as a λ-Banach function space (briefly, λ-B.f.s.). In particular, a λ-quasi-B.f.s. is a quasi-Banach 
lattice for the λ-a.e. pointwise order. Note that all inclusions between λ-quasi-B.f.s. are continuous, see the argument 
given in [25, p. 2]. A λ-quasi-B.f.s. E is σ -order continuous if for every sequence (fn) ⊂ E with fn ↓ 0 λ-a.e. it fol-
lows that ‖fn‖E ↓ 0. In this case S ∩ E is dense in E. It is said that E has the σ -Fatou property if for every (fn) ⊂ E

such that 0 ≤ fn ↑ f λ-a.e. and sup‖fn‖E < ∞ we have that f ∈ E and ‖fn‖E ↑ ‖f ‖E .
Let ρ be a λ-quasi-norm function, that is a map ρ: L0(�) → [0, ∞] satisfying the following conditions:

(C1) ρ(f ) ≤ ρ(g) whenever f, g ∈ L0(�) with |f | ≤ |g| λ-a.e.
(C2) ρ(f ) = 0 if and only if f = 0 λ-a.e.
(C3) ρ(af ) = |a|ρ(f )1 for all a ∈ R and f ∈ L0(�).
(C4) There exists K ≥ 1 such that ρ(f + g) ≤ K(ρ(f ) + ρ(g)) for all f, g ∈ L0(�).

Condition (C1) guarantees that ρ: L0(λ) → [0, ∞] is well defined. Then

Xρ = {f ∈ L0(λ) : ρ(f ) < ∞}
is a vector space and ρ is a quasi-norm on it. Moreover, if f ∈ L0(λ), g ∈ Xρ and |f | ≤ |g| λ-a.e. then f ∈ Xρ with 
ρ(f ) ≤ ρ(g).

The λ-quasi-norm function ρ is said to have the σ -Fatou property if ρ(fn) ↑ ρ(f ) whenever fn, f ∈ L0(�) with 
0 ≤ fn ↑ f λ-a.e. In this case, it is known that Xρ is complete. For the sake of completeness we include a proof of this 
fact; it can be obtained by adapting the proof of Theorem 1.6 in [5], taking into account that in this book the definition 
of function norm includes the σ -Fatou property (see also [7] and Sections 2 and 3 in [8]).

Proposition 1. Let ρ be a λ-quasi-norm function with the σ -Fatou property. Then Xρ is a λ-quasi-B.f.s. with the 
σ -Fatou property and ρ is a quasi-norm on it.

Proof. Let r > 0 be such that 2K = 2
1
r where K is the constant of condition (C4). Then

ρ
( n∑

j=1

fj

)
≤ 4

1
r

( n∑
j=1

ρ(fj )
r
) 1

r
(1)

for all finite subset (fj )
n
j=1 ⊂ Xρ , see [19, Lemma 1.1]. Consider a Cauchy sequence (fn) ⊂ Xρ and take (nk)

strictly increasing such that ρ(fnk+1 − fnk
) ≤ 1

2k . Denote gk = fnk+1 − fnk
, A = {ω ∈ � : ∑

k≥1 |gk(ω)| < ∞} and 
g = ∑

k≥1 gkχA. Since 
∑m

k=1 |gk|χA ↑ ∑
k≥1 |gk|χA pointwise, it follows that

ρ(g) ≤ ρ
(∑

k≥1

|gk|χA

)
= lim

m→∞ρ
( m∑

k=1

|gk|χA

)
≤ 4

1
r

(∑
k≥1

ρ(gk)
r
) 1

r
< ∞

1 We use the convention 0 · ∞ = ∞ · 0 = 0.



and so g ∈ Xρ . Similarly, ρ(
∑

k≥m gkχA) ≤ 4
1
r (

∑
k≥m ρ(gk)

r )
1
r for each m ≥ 1. Consider the sets AN

m = {ω ∈ � :∑m
k=1 |gk(ω)| > N} for m, N ≥ 1 and note that χAN

m
≤ 1

N

∑m
k=1 |gk| pointwise and χAN

m
↑ χ∪m≥1A

N
m

as m → ∞. Then,

ρ(χ∪m≥1A
N
m
) = lim

m→∞ρ(χAN
m
) ≤ 1

N
lim

m→∞ρ
( m∑

k=1

|gk|
)

≤ 4
1
r

N

(∑
k≥1

ρ(gk)
r
) 1

r
.

Since �\A = ∩N≥1 ∪m≥1 AN
m and so ρ(χ�\A) ≤ ρ(χ∪m≥1A

N
m
) for all N , taking N → ∞ we have that ρ(χ�\A) = 0.

This implies that �\A is λ-null. Noting that g + fn1 − fnm = ∑
k≥m gkχA λ-a.e., given ε > 0 it follows that

ρ(g + fn1 − fn) ≤ K
(
ρ
( ∑

k≥m

gkχA

)
+ ρ(fnm − fn)

)
< ε

for large enough n and m. Hence, fn → g + fn1 in Xρ and so Xρ is complete.
The σ -Fatou property of Xρ follows clearly from the σ -Fatou property of ρ. �
Let ξ : � → R be a set function satisfying that ξ(∅) = 0. Such a set function ξ will be called a real capacity. A set 

Z ∈ � is ξ -null if ξ(A) = 0 for all A ∈ � such that A ⊂ Z. The variation of ξ is the set function |ξ |: � → [0, ∞]
defined by

|ξ |(A) = sup
{ n∑

i=1

|ξ(Ai)| : (Ai)
n
i=1 ⊂ � is a partition of A

}

for A ∈ �. The quasi-variation of ξ is the set function qξ : � → [0, ∞] defined by

qξ (A) = sup{|ξ(B)| : B ∈ � with B ⊂ A}
for A ∈ �. Note that both |ξ | and qξ are increasing capacities. We also consider the capacity |ξ(·)|: � → [0, ∞) given 
by |ξ(·)|(A) = |ξ(A)| for A ∈ �. The following lemma collects several properties involving the capacities |ξ |, qξ

and |ξ(·)| which can be routinely checked. The reader can find more information on the variation of non-additive set 
functions in [30,36,37].

Lemma 2. Let ξ be a real capacity on �. The following statements hold:

(a) |ξ(·)| ≤ qξ ≤ |ξ |.
(b) ξ -null, |ξ |-null, qξ -null and |ξ(·)|-null sets coincide.
(c) |ξ | is superadditive.
(d) |ξ(·)| = qξ ⇔ |ξ(·)| is increasing, and qξ = |ξ | ⇔ qξ is superadditive.
(e) If �(ξ) denotes any one of |ξ |, qξ , |ξ(·)|, then

(e1) �(a ξ) = |a| �(ξ) for all a ∈ R,
(e2) �(ξ + η) ≤ �(ξ) + �(η) for η being another real capacity on �, and
(e3) if (ξn) is a sequence of real capacities on � such that ξn(A) → ξ(A) for all A ∈ � then �(ξ) ≤

lim inf�(ξn).
(f) If |ξ(·)| has any of the properties (P2,3,6) then qξ has the same property.
(g) If qξ has any of the properties (P2,3,6) then |ξ | has the same property.

The quasi-additivity constant is preserved in (f) and (g).

Note that in the case when ξ takes values in [0, ∞), from Lemma 2.(d), in general ξ does not coincide with any of 
qξ or |ξ |.

3. L1-space of a capacity

Let λ: � → [0, ∞] be an increasing capacity and denote by m the Lebesgue measure on the interval I = [0, ∞).
For f ∈ L0(�)+, the distribution function of f with respect to λ is the map λf : I → [0, ∞] defined by



λf (t) = λ({ω ∈ � : f (ω) > t})
for t ∈ I . Since λ is increasing we have that λf is decreasing and so measurable. Then we can consider the Lebesgue 
integral

Iλ(f ) =
∫
I

λf dm ∈ [0,∞].

Remark 3. If f ∈ L0(�)+ is such that λ(supp(f )) < ∞ then λf is bounded and so Riemann integrable in every 
interval [0, a] with 0 < a < ∞. Then

Iλ(f ) =
∞∫

0

λf (t) dt

is the Choquet integral of f with respect to λ created in [9].

A positive function ϕ ∈ S always can be written in its standard representation, that is ϕ = ∑n
j=1 αjχAj

where 
(Aj )

n
j=1 ⊂ � is a finite collection of pairwise disjoint sets and 0 < α1 < α2 < · · · < αn. Setting α0 = 0, we have that

λϕ =
n∑

k=1

λ
( n⋃

j=k

Aj

)
χ[αk−1,αk)

and so

Iλ(ϕ) =
n∑

k=1

λ
( n⋃

j=k

Aj

)
(αk − αk−1). (2)

In particular, Iλ(χA) = λ(A) for all A ∈ �.
Let us show some properties of the integration map Iλ: L0(�)+ → [0, ∞] which will be needed later on. Similar 

result in a slightly different context can be found in recent papers on the Choquet integral. (See [22, Proposition 3.4], 
and in general Section 3 in this paper; Section 4 gives similar results for other non-additive integrals. See also the 
references in this paper for more information on these matters. The reader can find more information on continuous 
monotone set functions in [24] and the papers quoted in it.)

Lemma 4. The following statements hold:

(a) Iλ(af ) = aIλ(f ) for all f ∈ L0(�)+ and 0 ≤ a ∈ R.
(b) Iλ(f ) ≤ Iλ(g) for every f, g ∈ L0(�)+ such that f ≤ g pointwise.
(c) Iλ(f ) = Iλ(g) whenever f, g ∈ L0(�)+ with f = g λ-a.e. if and only if λ is null-additive.
(d) Iλ(fn) ↑ Iλ(f ) whenever fn, f ∈ L0(�)+ with fn ↑ f pointwise if and only if λ is continuous from below.
(e) Iλ(fn) ↓ 0 whenever fn ∈ L0(�)+ with fn ↓ 0 pointwise and Iλ(f1) < ∞ if and only if λ is continuous from

above at ∅.

Proof. An appropriate change of variables gives (a). Part (b) is also clear as λ is increasing.
(c) Suppose that Iλ(f ) = Iλ(g) for every f, g ∈ L0(�)+ such that f = g λ-a.e. For A, Z ∈ � with Z being λ-null,

taking f = χA∪Z and g = χA we have that f = g λ-a.e. and so λ(A ∪ Z) = Iλ(f ) = Iλ(g) = λ(A). Conversely, 
suppose that λ is null-additive and consider f, g ∈ L0(�)+ with f = g except on a λ-null set Z. For every t ∈ I , 
denote At = {ω ∈ � : f (ω) > t} and Bt = {ω ∈ � : g(ω) > t}. Noting that At ∩Z, Bt ∩Z are λ-null and At ∩�\Z =
Bt ∩ �\Z, we have that

λ(At ) = λ(At ∩ �\Z) = λ(Bt ∩ �\Z) = λ(Bt ).

Then λf = λg pointwise and so Iλ(f ) = Iλ(g).
(d) Suppose that Iλ(fn) ↑ Iλ(f ) for every fn, f ∈ L0(�)+ such that fn ↑ f pointwise. For An, A ∈ � with An ↑ A,

taking fn = χAn and f = χA we have that fn ↑ f pointwise and so λ(An) = Iλ(fn) ↑ Iλ(f ) = λ(A). Conversely, 



suppose that λ is continuous from below and consider fn, f ∈ L0(�)+ with fn ↑ f pointwise. Noting that {ω ∈ � :
fn(ω) > t} ↑ {ω ∈ � : f (ω) > t} for all t ∈ I , we have that λfn ↑ λf pointwise. Then, by applying the monotone 
convergence theorem for the Lebesgue integral with respect to m, it follows that Iλ(fn) ↑ Iλ(f ).

(e) Suppose that Iλ(fn) ↓ 0 for every fn ∈ L0(�)+ such that fn ↓ 0 pointwise and Iλ(f1) < ∞. For An ∈ �

with An ↓ ∅ and λ(A1) < ∞, taking fn = χAn we have that fn ↓ 0 pointwise and Iλ(f1) = λ(A1) < ∞. So λ(An) =
Iλ(fn) ↓ 0. Conversely, suppose that λ is continuous from above at ∅ and consider fn ∈ L0(�)+ with fn ↓ 0 pointwise 
and Iλ(f1) < ∞. Note that λf1(t) < ∞ for all t > 0 as λf1 is decreasing. Since {ω ∈ � : fn(ω) > t} ↓ ∅ for all t > 0, 
we have that λfn ↓ 0 m-a.e. Then, by applying the dominated convergence theorem for the Lebesgue integral with 
respect to m, it follows that Iλ(fn) ↓ 0. �

Related results on the additivity properties of the integral under further requirements on the capacity are known; 
see for example Theorem 4.1 in [7], and Section 4 in this work. See also [30] for a systematic approach to non-additive 
set functions.

Consider the map ‖ · ‖λ: L0(�) → [0, ∞] defined by ‖f ‖λ = Iλ(|f |) for f ∈ L0(�). The following proposition 
gives conditions under which ‖ · ‖λ is a λ-quasi-norm function with the σ -Fatou property.

Proposition 5. Suppose that λ is null-additive, quasi-subadditive and continuous from below. Then, the following 
statements hold:

(a) ‖f ‖λ ≤ ‖g‖λ whenever f, g ∈ L0(�) with |f | ≤ |g| λ-a.e.
(b) ‖f ‖λ = 0 if and only if f = 0 λ-a.e.
(c) ‖af ‖λ = |a| ‖f ‖λ for all a ∈R and f ∈ L0(�).
(d) ‖f + g‖λ ≤ 2K(‖f ‖λ + ‖g‖λ) for all f, g ∈ L0(�), with K being the constant of the quasi-subadditivity of λ.
(e) ‖fn‖λ ↑ ‖f ‖λ whenever fn, f ∈ L0(�) with 0 ≤ fn ↑ f λ-a.e.

Proof. (a) Let f, g ∈ L0(�) be such that |f |χA ≤ |g|χA pointwise for some A ∈ � with �\A being λ-null. Since 
|f |χA = |f | and |g|χA = |g| λ-a.e., from Lemma 4.(b) and (c) it follows that

‖f ‖λ = Iλ(|f |) = Iλ(|f |χA) ≤ Iλ(|g|χA) = Iλ(|g|) = ‖g‖λ.

(b) If f = 0 except on a λ-null set Z, then {ω ∈ � : |f (ω)| > t} ⊂ Z for all t ∈ I and so λ|f | = 0 pointwise. Hence
‖f ‖λ = 0. Conversely, suppose that ‖f ‖λ = 0 and denote An = {ω ∈ � : |f (ω)| > 1

n
}. Since 1

n
χAn ≤ |f | pointwise

we have that

0 = ‖f ‖λ ≥
∥∥∥1

n
χAn

∥∥∥
λ

= Iλ

(1

n
χAn

)
= 1

n
λ(An)

and so λ(An) = 0. Note that An ↑ supp(f ) from which λ(supp(f )) = 0 as λ is continuous from below. Then f = 0
λ-a.e.

(c) Clear from Lemma 4.(a).
(d) For every f, g ∈ L0(�), noting that

{ω ∈ � : |(f + g)(ω)| > t} ⊂ {ω ∈ � : |2f (ω)| > t} ∪ {ω ∈ � : |2g(ω)| > t}
for all t ∈ I and since λ is increasing and quasi-subadditive with constant K , it follows that λ|f+g| ≤ K(λ2|f | + λ2|g|)
pointwise. Then,

‖f + g‖λ ≤ K(‖2f ‖λ + ‖2g‖λ) = 2K(‖f ‖λ + ‖g‖λ).

(e) Let fn, f ∈ L0(�) be such that 0 ≤ fnχA ↑ f χA pointwise for some A ∈ � with �\A being λ-null. Since
fnχA = |fn| and f χA = |f | λ-a.e., from Lemma 4.(c) and (d) it follows that

‖fn‖λ = Iλ(|fn|) = Iλ(fnχA) ↑ Iλ(f χA) = Iλ(|f |) = ‖f ‖λ. �
In the remainder of this section we will assume that the capacity λ satisfies the properties (P1,2,3,6). These prop-

erties guarantee the good behavior of the L1-space of λ defined as

L1(λ) = {f ∈ L0(λ) : ‖f ‖λ < ∞}.



Note that a simple function ϕ ∈ L1(λ) if and only if ϕ ∈ Sλ, see (2).

Theorem 6. The space L1(λ) is a λ-quasi-B.f.s. with the σ -Fatou property and ‖ · ‖λ is a quasi-norm on it. Moreover, 
L1(λ) is σ -order continuous if and only if λ is continuous from above at ∅. In this last case, Sλ is dense in L1(λ).

Proof. The first part follows from Propositions 1 and 5.
Suppose that L1(λ) is σ -order continuous and let fn ∈ L0(�)+ with fn ↓ 0 pointwise and Iλ(f1) < ∞. Since 

fn ∈ L1(λ) as ‖fn‖λ ≤ ‖f1‖λ = Iλ(f1), we have that Iλ(fn) = ‖fn‖λ ↓ 0. Then λ is continuous from above at ∅ by 
Lemma 4.(e).

Conversely, suppose that λ is continuous from above at ∅ and let fn ∈ L1(λ) be such that fn ↓ 0 λ-a.e. Taking 
A ∈ � such that �\A is λ-null and fnχA ↓ 0 pointwise and noting that Iλ(f1χA) = ‖f1χA‖λ = ‖f1‖λ < ∞, from 
Lemma 4.(e) we have that ‖fn‖λ = ‖fnχA‖λ = Iλ(fnχA) ↓ 0. So L1(λ) is σ -order continuous.

Noting that Sλ = S ∩ L1(λ) we conclude the proof. �
Remark 7. Let μ: � → [0, ∞] be a measure. Obviously μ is a capacity satisfying all the properties (P1–7). For every 
positive ϕ ∈ S , from (2) it follows that Iμ(ϕ) coincides with the Lebesgue integral 

∫
�

ϕ dμ. For f ∈ L0(�)+, taking 
a sequence (ϕn) ⊂ S such that 0 ≤ ϕn ↑ f pointwise, from Lemma 4.(d) and applying the monotone convergence 
theorem for the Lebesgue integral with respect to μ, it follows that

Iμ(f ) = lim Iμ(ϕn) = lim
∫
�

ϕn dμ =
∫
�

f dμ.

Then our space L1(μ) is just the classical space of Lebesgue integrable functions with respect to μ.

Now we want to extend the integration map Iλ to non-positive functions of L1(λ). In order to obtain the Lebesgue 
integral in the case when λ is a measure, for a function f ∈ L1(λ) we define Iλ(f ) = Iλ(f

+) − Iλ(f
−). Note that 

the definition is meaningful as Iλ(f
+), Iλ(f

−) < ∞ and if g ∈ L1(λ) is such that f = g λ-a.e., since f + = g+ and 
f − = g− λ-a.e., from Lemma 4.(c) it follows that Iλ(f ) = Iλ(g). It is important to emphasize that the integration map 
Iλ: L0(�)+ → [0, ∞] is not additive in general. In fact this is only the case when λ is a measure, since finite additivity 
and continuity from below imply countable additivity. So the definition of Iλ for a non-positive function depend on 
its positive and negative parts.

From Lemma 4.(a) it follows that Iλ: L1(λ) → R is homogeneous, that is, Iλ(af ) = aIλ(f ) for all f ∈ L1(λ) and 
a ∈ R. Indeed, we only have to note that (af )+ = af +, (af )− = af − if a ≥ 0 and (af )+ = −af −, (af )− = −af +
if a < 0.

It is well known that Iλ is subadditive on the set of positive simple functions if and only if λ is submodular, see for 
instance [13, Ch. 6] and the references therein or [1] for a nice proof. In this case, since λ is continuous from below, 
it follows that Iλ is subadditive on all L0(�)+ and so ‖ · ‖λ is a norm, that is L1(λ) is a λ-B.f.s.

Proposition 8. If λ is submodular then Iλ: L1(λ) → R is continuous.

Proof. Suppose that λ is submodular and so Iλ is subadditive on L0(�)+. Given f, g ∈ L0(�)+, applying 
Lemma 4.(b) we have that

Iλ(f ) ≤ Iλ(|f − g| + g) ≤ Iλ(|f − g|) + Iλ(g),

from which it follows that |Iλ(f ) −Iλ(g)| ≤ Iλ(|f −g|). For f, g ∈ L1(λ), since |f +−g+| ≤ |f −g| and |f −−g−| ≤
|f − g|, we obtain that

|Iλ(f ) − Iλ(g)| ≤ |Iλ(f
+) − Iλ(g

+)| + |Iλ(f
−) − Iλ(g

−)|
≤ Iλ(|f + − g+|) + Iλ(|f − − g−|)
≤ 2 Iλ(|f − g|) = 2‖f − g‖λ . �

We end this section by constructing a class of capacities which satisfy all the necessary properties to obtain a good 
L1-space.



Example 9. Let μ: � → [0, ∞] be a measure and �: I → I an increasing function vanishing only at zero, with 
limx→0+ �(x) = 0 and being derivable in (0, ∞) with a decreasing derivative �′. For instance �(x) = xp with
0 < p < 1, �(x) = 1 − e−x or �(x) = ln(1 + x). Note that

�(a + b − c) + �(c) ≤ �(a) + �(b) (3)

for all 0 ≤ c ≤ a, b < ∞. Consider the capacity λ: � → [0, ∞] given by

λ(A) = �(μ(A))

for all A ∈ �. As usual, �(∞) = limx→∞ �(x). Note that the λ-null and μ-null sets coincide and so L0(λ) = L0(μ). 
It is direct to check that λ is increasing, null-additive and continuous from below. Let us see that λ is submodular and 
so subadditive. For every A, B ∈ � with μ(A), μ(B) < ∞, since μ is a measure we have that

μ(A ∪ B) = μ(A) + μ(B) − μ(A ∩ B).

Applying (3) for a = μ(A), b = μ(B) and c = μ(A ∩ B), we obtain that

λ(A ∪ B) + λ(A ∩ B) = �(μ(A) + μ(B) − μ(A ∩ B)) + �(μ(A ∩ B))

≤ �(μ(A)) + �(μ(B)) = λ(A) + λ(B).

If any of A or B has infinite μ measure then the submodular inequality is clear. Therefore

L1(λ) =
{
f ∈ L0(μ) : ‖f ‖λ =

∫
I

�(μ|f |) dm < ∞
}

is a μ-B.f.s. with the σ -Fatou property and ‖ · ‖λ is a norm on it. Moreover, the integration map Iλ: L1(λ) → R is 
continuous. The space L1(λ) turns out to be an intermediate space between L∞(μ) and L1(μ), that is,

L∞(μ) ∩ L1(μ) ⊂ L1(λ) ⊂ L∞(μ) + L1(μ).

Let us show this fact. For every positive ϕ ∈ S with standard representation ϕ = ∑n
j=1 αjχAj

such that αn ≤ 1, since
� is concave (as �′ decreases) and 

∑n
k=1(αk − αk−1) = αn ≤ 1, it follows that

‖ϕ‖λ =
n∑

k=1

�
(
μ

( n⋃
j=k

Aj

))
(αk − αk−1)

≤ �
( n∑

k=1

μ
( n⋃

j=k

Aj

)
(αk − αk−1)

)
= �

(∫
�

ϕ dμ
)
.

Note that the concave inequality holds even if some ∪n
j=kAj has infinite μ measure. Then, if f ∈ L0(μ) is such that

|f | ≤ 1 μ-a.e., taking a sequence (ϕn) ⊂ S such that 0 ≤ ϕn ↑ |f | μ-a.e., we have that

‖f ‖λ = lim‖ϕn‖λ ≤ lim�
(∫

�

ϕn dμ
)

= �
(∫

�

|f |dμ
)
.

Hence every non-null function f ∈ L∞(μ) ∩ L1(μ) satisfies that

‖f ‖λ ≤ ‖f ‖∞�
( ‖f ‖1

‖f ‖∞

)
and so L∞(μ) ∩ L1(μ) ⊂ L1(λ). On the other hand, since �′ is decreasing we have that

�′(x0) x ≤ �(x) (4)

for all 0 ≤ x < x0 < ∞. Let f ∈ L1(λ) and denote An = {ω ∈ � : |f (ω)| > n}. Note that there exists n such that 
μ(An) < ∞ as in other case �(μ|f |) = �(∞) which contradicts ‖f ‖λ < ∞. Then limμ(An) = 0 as An ↓ {ω ∈
� : |f (ω)| = ∞}. Take x0 > 0 such that �′(x0) > 0 and n0 such that μ(An0) < x0. Then, since μ|f |χAn0

≤ μ(An0)

pointwise, by (4) it follows that



‖f χAn0
‖λ =

∫
I

�(μ|f |χAn0
) dm ≥ �′(x0)

∫
I

μ|f |χAn0
dm = �′(x0)

∫
�

|f |χAn0
dμ.

Hence f = f χ�\An0
+ f χAn0

with f χ�\An0
∈ L∞(μ) and f χAn0

∈ L1(μ) and so we have that L1(λ) ⊂ L∞(μ) +
L1(μ).

Finally note that in the case when �(∞) = ∞ or μ is finite it follows that λ is continuous from above at ∅ and so 
L1(λ) is σ -order continuous having Sμ (S if μ is finite) as a dense subspace.

4. L1-spaces associated to a family of capacities

Let F = (λα)α∈� be a family of capacities on � satisfying the properties (P1,2,6) and being uniformly quasi-
subadditive, that is, there is a constant K ≥ 1 such that

λα(A ∪ B) ≤ K(λα(A) + λα(B))

for all A, B ∈ � and α ∈ �. For each α ∈ �, by Theorem 6, we have that

L1(λα) =
{
f ∈ L0(λα) : ‖f ‖λα =

∫
I

(λα)|f | dm < ∞
}

is a λα-quasi-B.f.s. with the σ -Fatou property and ‖ · ‖λα is a quasi-norm on it.
Consider the set function ‖F‖: � → [0, ∞] given by

‖F‖(A) = sup
α∈�

λα(A)

for A ∈ �. Note that ‖F‖ is a capacity and a set is ‖F‖-null if and only if it is λα-null for all α ∈ �.

Proposition 10. The capacity ‖F‖ satisfies the properties (P1,2,3,6).

Proof. It is clear that ‖F‖ is increasing (as each λα is so) and quasi-subadditive with the constant K of the uniform 
quasi-subadditivity of F .

Let A, Z ∈ � with Z being ‖F‖-null. Since each λα is null-additive and Z is λα-null, we have that λα(A ∪ Z) =
λα(A). Then ‖F‖(A ∪ Z) = ‖F‖(A) and hence ‖F‖ is null-additive.

Let An, A ∈ � be such that An ↑ A. Since ‖F‖ is increasing we have that ‖F‖(An) ↑ and ‖F‖(An) ≤ ‖F‖(A) for 
all n. Then lim‖F‖(An) ≤ ‖F‖(A). On the other hand, since each λα is continuous from below, we have that

λα(A) = limλα(An) ≤ lim‖F‖(An).

Then ‖F‖(A) ≤ lim‖F‖(An). That is, ‖F‖(An) ↑ ‖F‖(A) and so ‖F‖ is continuous from below. �
From Theorem 6 we have that

L1(‖F‖) =
{
f ∈ L0(‖F‖) : ‖f ‖‖F‖ =

∫
I

‖F‖|f | dm < ∞
}

is a ‖F‖-quasi-B.f.s. with the σ -Fatou property and ‖ · ‖‖F‖ is a quasi-norm on it. For each α ∈ � and f ∈ L0(�), 
since (λα)|f | ≤ ‖F‖|f | pointwise, we have that ‖f ‖λα ≤ ‖f ‖‖F‖. On the other hand, since every ‖F‖-null set is 
λα-null, the map [i] which takes a ‖F‖-a.e. class in L0(‖F‖) represented by f into the λα-a.e. class in L0(λα)

represented by the same f is well-defined. Then, [i] takes L1(‖F‖) into L1(λα) and we will write L1(‖F‖) ⊂[i]
L1(λα).

Let us create an intermediate space between L1(‖F‖) and each L1(λα). Consider the map ‖ · ‖F : L0(�) → [0, ∞]
defined by

‖f ‖F = sup
α∈�

‖f ‖λα

for f ∈ L0(�). The following proposition shows that ‖ · ‖F is a ‖F‖-quasi-norm function with the σ -Fatou property.



Proposition 11. The following statements hold:

(a) ‖f ‖F ≤ ‖g‖F whenever f, g ∈ L0(�) with |f | ≤ |g| ‖F‖-a.e.
(b) ‖f ‖F = 0 if and only if f = 0 ‖F‖-a.e.
(c) ‖af ‖F = |a| ‖f ‖F for all a ∈R and f ∈ L0(�).
(d) ‖f + g‖F ≤ 2K

(‖f ‖F + ‖g‖F
)

for all f, g ∈ L0(�), with K being the constant of the uniform quasi-
subadditivity of F .

(e) ‖fn‖F ↑ ‖f ‖F whenever fn, f ∈ L0(�) with 0 ≤ fn ↑ f ‖F‖-a.e.

Proof. By Proposition 5, each map ‖ · ‖λα : L0(�) → [0, ∞] is a λα-quasi-norm function with the σ -Fatou property.
(a) If f, g ∈ L0(�) are such that |f | ≤ |g| ‖F‖-a.e., then for each α ∈ � we have that |f | ≤ |g| λα-a.e. and so

‖f ‖λα ≤ ‖g‖λα . Hence, ‖f ‖F ≤ ‖g‖F .
(b) Recall that for any capacity λ we have that f = 0 λ-a.e. if and only if supp(f ) is λ-null. Then, ‖f ‖F = 0 or

equivalently ‖f ‖λα = 0 for all α ∈ �, if and only if supp(f ) is λα-null for all α ∈ �, that is, supp(f ) is ‖F‖-null.
(c) Clear as ‖af ‖λα = |a| ‖f ‖λα for all a ∈R, f ∈ L0(�) and α ∈ �.
(d) Given f, g ∈ L0(�), since the constant K of the uniform quasi-subadditivity of F is the constant of the quasi-

subadditivity of each λα , we have that ‖f + g‖λα ≤ 2K(‖f ‖λα + ‖g‖λα ). Hence, ‖f + g‖F ≤ 2K(‖f ‖F + ‖g‖F ).
(e) Let fn, f ∈ L0(�) be such that 0 ≤ fn ↑ f ‖F‖-a.e. Since ‖fn‖F ↑ and ‖fn‖F ≤ ‖f ‖F , we have that

lim‖fn‖F ≤ ‖f ‖F . On the other hand, for each α ∈ � we have that 0 ≤ fn ↑ f λα-a.e. and so

‖f ‖λα = lim‖fn‖λα ≤ lim‖fn‖F .

Then ‖f ‖F ≤ lim‖fn‖F . That is, ‖fn‖F ↑ ‖f ‖F . �
Propositions 1 and 11 yield the following result.

Theorem 12. The space

L1(F) =
{
f ∈ L0(‖F‖) : ‖f ‖F = sup

α∈�

‖f ‖λα < ∞
}

is a ‖F‖-quasi-B.f.s. with the σ -Fatou property and ‖ · ‖F is a quasi-norm on it.

For every α ∈ � and f ∈ L0(�) we have that ‖f ‖λα ≤ ‖f ‖F ≤ ‖f ‖‖F‖. So,

S‖F‖ ⊂ L1(‖F‖) ⊂ L1(F) ⊂[i] L1(λα).

Note that ‖χA‖F = ‖χA‖‖F‖ = ‖F‖(A) for all A ∈ �, as ‖χA‖λ = λ(A) for any capacity λ.
Let us see that particular conditions on the family F make that L1(F) is the “intersection” of all the spaces L1(λα)

in the sense:

L1(F) = {f ∈ L0(‖F‖) : f ∈ L1(λα) for all α ∈ �}.
Let E be a real Banach space with norm ‖ · ‖E and denote by BE the closed unit ball of E. Assume that each α ∈ E

is associated to an increasing capacity λα on � in a way that:

(E1) λaα = |a|λα for all a ∈R and α ∈ E.
(E2) λα+β ≤ λα + λβ for all α, β ∈ E.
(E3) If αn → α in E then λα ≤ lim infλαn .

Suppose that N ⊂ BE satisfies the following properties:

(N1) For every α ∈ BE there exists β ∈ N such that λα ≤ λβ .
(N2) For each α ∈ N the capacity λα is null-additive and continuous from below.
(N3) There exists K ≥ 1 such that λα(A ∪ B) ≤ K(λα(A) + λα(B)) for all A, B ∈ � and α ∈ N .



Consider the uniformly quasi-subadditive family F = (λα)α∈N of capacities which satisfy the properties (P1,2,6). 
Note that the map ‖ · ‖λα : L0(�) → [0, ∞] can be considered for all α ∈ E but we only can assure that L1(λα) is a 
λα-quasi-B.f.s. with quasi-norm ‖ · ‖λα if α ∈ N .

Theorem 13. For f ∈ L0(�) the following statements are equivalent:

(a) ‖f ‖F < ∞.
(b) ‖f ‖λα < ∞ for all α ∈ N .
(c) ‖f ‖λα < ∞ for all α ∈ E.

Proof. (a) ⇒ (b) Clear as ‖f ‖F = supα∈N ‖f ‖λα .
(b) ⇒ (c) For each non-null α ∈ E, by (E1) and (N1) we have that

λα = ‖α‖Eλ α
‖α‖E

≤ ‖α‖Eλβ

for some β ∈ N and so ‖f ‖λα ≤ ‖α‖E · ‖f ‖λβ < ∞. Note that for α = 0, by (E1) we have that λα = 0 and so 
‖ · ‖λα = 0.

(c) ⇒ (a) For every k ∈ N denote

Fk = {α ∈ E : ‖f ‖λα ≤ k}.
Let us see that Fk is closed in E. Consider a sequence (αn) ⊂ Fk satisfying that αn → α in E. By (E3) we have that 
(λα)|f | ≤ lim inf(λαn)|f | pointwise. Then, applying the Fatou lemma for the Lebesgue integral with respect to m, it 
follows that

‖f ‖λα =
∫
I

(λα)|f | dm ≤
∫
I

lim inf(λαn)|f | dm ≤ lim inf
∫
I

(λαn)|f | dm ≤ k

and so α ∈ Fk . On the other hand, since E = ∪Fk , from the Baire theorem there exists Fk0 with a non-void interior, 
that is, B(α0, r0) ⊂ Fk0 for some closed ball of E centered at α0 with radius r0 > 0. Let α ∈ N ⊂ BE and take β =
α0 + r0α ∈ B(α0, r0). From (E1) and (E2) it follows that (λα)|f | ≤ 1

r0
((λβ)|f | + (λα0)|f |) pointwise. Since β, α0 ∈ Fk0 , 

we have that

‖f ‖λα =
∫
I

(λα)|f | dm ≤ 1

r0

(∫
I

(λβ)|f | dm +
∫
I

(λα0)|f | dm
)

≤ 2k0

r0

and so ‖f ‖F ≤ 2k0
r0

< ∞. �
From Theorem 13 we have that

L1(F) = {f ∈ L0(‖F‖) : ‖f ‖λα < ∞ for all α ∈ N}
= {f ∈ L0(‖F‖) : ‖f ‖λα < ∞ for all α ∈ E}.

Moreover, from (N1) it follows that ‖f ‖F = supα∈BE
‖f ‖λα for all f ∈ L0(�). This means that L1(F) is independent

of N , that is, any other subset of BE with the same properties as N gives the same space. Also L1(‖F‖) and S‖F‖ are 
independent of N , as ‖F‖(A) = supα∈BE

λα(A) for all A ∈ �.

Remark 14. (I) The only simple functions in L1(F) are those of S‖F‖. Indeed, if ϕ ∈ S is such that ‖ϕ‖λα < ∞ for 
all α ∈ N , then ‖χsupp(ϕ)‖λα = λα(supp(ϕ)) < ∞ for all α ∈ N and so ‖F‖(supp(ϕ)) = ‖χsupp(ϕ)‖F < ∞.

(II) Let a ∈ R and α ∈ N . By (E1) the increasing capacity λaα is null-additive, continuous from below and sat-
isfies (N3). Then we can consider the λaα-quasi-B.f.s. L1(λaα) which satisfies L1(F) ⊂[i] L1(λaα) with ‖f ‖λaα ≤
|a| ‖f ‖F .



5. w-L1-spaces associated to a vector capacity

Let X be a real Banach space with norm ‖ · ‖X and �: � → X a set function satisfying that �(∅) = 0. Such a set
function � will be called a vector capacity. A set Z ∈ � is �-null if �(A) = 0 for all A ∈ � such that A ⊂ Z. For 
each x∗ belonging to the topological dual X∗ of X we consider the real capacity x∗�: � → R defined by x∗�(A) =
〈x∗, �(A)〉 for A ∈ �. The semivariation of � is the increasing capacity ‖�‖: � → [0, ∞] defined by

‖�‖(A) = sup
x∗∈BX∗

|x∗�|(A)

for A ∈ �, where BX∗ denotes the closed unit ball of X∗ and |x∗�| is the variation of x∗�. The quasi-variation of �
is the increasing capacity |||�|||: � → [0, ∞] defined by

|||�|||(A) = sup{‖�(B)‖X : B ∈ � with B ⊂ A}
for A ∈ �. Note that |||�|||(A) ≤ ‖�‖(A) and |||�|||(A) = supx∗∈BX∗ qx∗�(A) for all A ∈ �, where qx∗� is the
quasi-variation of x∗�. It is routine to check that the �-null, ‖�‖-null and |||�|||-null sets are the same. So, in 
the case when the identification works we denote L0(‖�‖) = L0(|||�|||) by L0(�). Moreover, since the notions of 
‖�‖-quasi-B.f.s. and |||�|||-quasi-B.f.s. coincide, we will refer to them as �-quasi-B.f.s. In the case of a real capacity 
ξ : � →R it follows that ‖ξ‖ = |ξ | and |||ξ ||| = qξ .

5.1. The space w-L1
v(�)

Let N ⊂ BX∗ satisfy the following properties:

(vN1) For every x∗ ∈ BX∗ there exists y∗ ∈ N such that |x∗�| ≤ |y∗�|.
(vN2) |x∗�| is null-additive and continuous from below for all x∗ ∈ N .
(vN3) There exists a constant K ≥ 1 such that

|x∗�|(A ∪ B) ≤ K(|x∗�|(A) + |x∗�|(B))

for all A, B ∈ � and x∗ ∈ N .

Each x∗ ∈ X∗ is associated to the increasing capacity |x∗�|. From Lemma 2.(e) it follows that:

(vE1) |(ax∗)�| = |a| |x∗�| for all a ∈R and x∗ ∈ X∗.
(vE2) |(x∗ + y∗)�| ≤ |x∗�| + |y∗�| for all x∗, y∗ ∈ X∗.
(vE3) If x∗

n → x∗ in X∗ then |x∗�| ≤ lim inf |x∗
n�|.

Consider the uniformly quasi-subadditive family F = (|x∗�|)x∗∈N of capacities satisfying the properties (P1,2,6). 
Noting that ‖F‖ = ‖�‖ and denoting by w-L1

v(�) the space L1(F), from all what we have seen in Section 4 we
obtain the next conclusions.

Theorem 15. The following statements hold:

(a) L1(|x∗�|) = {f ∈ L0(|x∗�|) : ‖f ‖|x∗�| = ∫
I
|x∗�||f | dm < ∞} is a |x∗�|-quasi-B.f.s. with the σ -Fatou prop-

erty and ‖ · ‖|x∗�| is a quasi-norm on it for every x∗ ∈ N̂ = {ay∗ : a ∈R, y∗ ∈ N}.
(b) ‖�‖ is a capacity satisfying the properties (P1,2,3,6).
(c) L1(‖�‖) = {f ∈ L0(�) : ‖f ‖‖�‖ = ∫

I
‖�‖|f | dm < ∞} is a �-quasi-B.f.s. with the σ -Fatou property and

‖ · ‖‖�‖ is a quasi-norm on it.
(d) w-L1

v(�) = {f ∈ L0(�) : ‖f ‖|x∗�| < ∞ for all x∗ ∈ X∗} is a �-quasi-B.f.s. with the σ -Fatou property and a
quasi-norm on it is given by

‖f ‖v = sup
x∗∈BX∗

‖f ‖|x∗�|.

(e) ‖x∗‖−1∗‖f ‖|x∗�| ≤ ‖f ‖v ≤ ‖f ‖‖�‖ for all f ∈ L0(�), and x∗ ∈ X∗ non-null.
X



(f) S‖�‖ ⊂ L1(‖�‖) ⊂ w-L1
v(�) ⊂[i] L1(|x∗�|) for all x∗ ∈ N̂ .

For a real capacity ξ : � → R the existence of a set N satisfying (vN1,2,3) is equivalent to |ξ | having the properties
(P2,3,6). Moreover, in this case it follows that L1(‖ξ‖) = w-L1

v(ξ) = L1(|ξ |) with equals norms.

5.2. The space w-L1
qv(�)

Let N ⊂ BX∗ satisfy the following properties:

(qvN1) For every x∗ ∈ BX∗ there exists y∗ ∈ N such that qx∗� ≤ qy∗�.
(qvN2) qx∗� is null-additive and continuous from below for all x∗ ∈ N .
(qvN3) There exists a constant K ≥ 1 such that

qx∗�(A ∪ B) ≤ K(qx∗�(A) + qx∗�(B))

for all A, B ∈ � and x∗ ∈ N .

Each x∗ ∈ X∗ is associated to the increasing capacity qx∗�. From Lemma 2.(e) it follows that:

(qvE1) q(ax∗)� = |a| qx∗� for all a ∈R and x∗ ∈ X∗.
(qvE2) q(x∗+y∗)� ≤ qx∗� + qy∗� for all x∗, y∗ ∈ X∗.
(qvE3) If x∗

n → x∗ in X∗ then qx∗� ≤ lim inf qx∗
n�.

Consider the uniformly quasi-subadditive family F = (qx∗�)x∗∈N of capacities satisfying the properties (P1,2,6). 
Noting that the qx∗�-null and the |x∗�|-null sets coincide and ‖F‖ = |||�|||, denoting by w-L1

qv(�) the space L1(F),
from all what we have seen in Section 4 we obtain the next conclusions.

Theorem 16. The following statements hold:

(a) L1(qx∗�) = {f ∈ L0(|x∗�|) : ‖f ‖qx∗�
= ∫

I
(qx∗�)|f | dm < ∞} is a |x∗�|-quasi-B.f.s. with the σ -Fatou property 

and ‖ · ‖qx∗�
is a quasi-norm on it for every x∗ ∈ N̂ = {ay∗ : a ∈ R, y∗ ∈ N}.

(b) |||�||| is a capacity satisfying the properties (P1,2,3,6).
(c) L1(|||�|||) = {f ∈ L0(�) : ‖f ‖|||�||| = ∫

I
|||�||||f | dm < ∞} is a �-quasi-B.f.s. with the σ -Fatou property and 

‖ · ‖|||�||| is a quasi-norm on it.
(d) w-L1

qv(�) = {f ∈ L0(�) : ‖f ‖qx∗�
< ∞ for all x∗ ∈ X∗} is a �-quasi-B.f.s. with the σ -Fatou property and a 

quasi-norm on it is given by

‖f ‖qv = sup
x∗∈BX∗

‖f ‖qx∗�
.

(e) ‖x∗‖−1
X∗‖f ‖qx∗�

≤ ‖f ‖qv ≤ ‖f ‖|||�||| for all f ∈ L0(�) and x∗ ∈ X∗ non-null.
(f) S|||�||| ⊂ L1(|||�|||) ⊂ w-L1

qv(�) ⊂[i] L1(qx∗�) for all x∗ ∈ N̂ .

For a real capacity ξ : � → R the existence of a set N satisfying (qvN1,2,3) is equivalent to qξ having the properties 
(P2,3,6). Moreover, in this case it follows that L1(|||ξ |||) = w-L1

qv(ξ) = L1(qξ ) with equals norms. Note that if ξ is

positive and satisfies (P1,2,3,6), then qξ = ξ and so L1(qξ ) = L1(ξ).

5.3. Relation between w-L1
v(�) and w-L1

qv(�)

Let N ⊂ BX∗ satisfy the properties (qvN1,2,3). By Lemma 2.(g) we have that N has the properties (vN2,3). Let 
us see that (vN1) also holds. Let x∗ ∈ BX∗ and y∗ ∈ N be such that qx∗� ≤ qy∗�. For every partition (Ai)

n
i=1 ⊂ � of 

a set A ∈ �, recalling that the variation of a real capacity is always superadditive, we have that
n∑

|x∗�(Ai)| ≤
n∑

qx∗�(Ai) ≤
n∑

qy∗�(Ai) ≤
n∑

|y∗�|(Ai) ≤ |y∗�|(A)
i=1 i=1 i=1 i=1



and so |x∗�|(A) ≤ |y∗�|(A). Then, we can consider all the spaces given by Theorems 15 and 16. For f ∈ L0(�)

and x∗ ∈ X∗, since qx∗� ≤ |x∗�|, we have that ‖f ‖qx∗�
≤ ‖f ‖|x∗�| and so ‖f ‖qv ≤ ‖f ‖v . On the other hand, since

|||�||| ≤ ‖�‖, we have that ‖f ‖|||�||| ≤ ‖f ‖‖�‖. Therefore, the following containments hold:

S‖�‖ ⊂ L1(‖�‖) ⊂ w-L1
v(�) ⊂[i] L1(|x∗�|)

∩ ∩ ∩ ∩
S|||�||| ⊂ L1(|||�|||) ⊂ w-L1

qv(�) ⊂[i] L1(qx∗�)

(5)

with equality in the vertical inclusions ∩ if there exists C ≥ 1 such that |x∗�| ≤ C qx∗� for every x∗ ∈ N .
For a real capacity ξ : � → R with quasi-variation qξ satisfying the properties (P2,3,6) it follows that L1(|ξ |) ⊂

L1(qξ ), with equality only in the case when there exists C ≥ 1 such that |ξ | ≤ Cqξ (for instance if ξ is a measure).

Remark 17. In the case when � is a vector measure, it is direct to check that the set N = BX∗ satisfies the properties 
(qvN1,2,3). Since |x∗�| ≤ 2 qx∗� for all x∗ ∈ X∗, all the vertical inclusions in (5) are equalities. From Remark 7 it 
follows that w-L1

v(�) = w-L1
qv(�) is just the space of weakly integrable functions with respect to �, see [34]. Note

that in this case ‖�‖ is finite and so S‖�‖ = S .

6. Integral map for a vector capacity

Let �: � → X be a vector capacity and let N ⊂ BX∗ satisfy the properties (qvN1,2,3). Assume that � has the
following properties:

(�1) � is weakly continuous from below, that is, �(An) → �(A) weakly in X whenever An, A ∈ � with An ↑ A.
(�2) � is null-additive, that is, �(A ∪ Z) = �(A) for all A, Z ∈ � with Z �-null.

For f ∈ L0(�)+ the distribution function of f with respect to � is defined as the map �f : I → X given by

�f (t) = �({ω ∈ � : f (ω) > t})
for t ∈ I . Every x∗ ∈ X∗ yields the map x∗�f : I → R defined by x∗�f (t) = 〈x∗, �f (t)〉 for t ∈ I . Our goal is to 
construct an integration map for � on w-L1

qv(�) through the Lebesgue integrals of x∗�f . Note that if N satisfies

(vN1,2,3) instead of (qvN1,2,3), the same construction works on w-L1
v(�). For this aim the properties (�1,2) are 

crucial as they guarantee the next results.

Lemma 18. The following statements hold:

(a) The map x∗�f is measurable for all f ∈ L0(�)+ and x∗ ∈ X∗.
(b) If f, g ∈ L0(�)+ are such that f = g �-a.e. then �f = �g pointwise.

Proof. (a) Let ξ : � → R be a real capacity continuous from below, i.e. ξ(An) → ξ(A) whenever An, A ∈ � with
An ↑ A. Every positive ϕ ∈ S with standard representation ϕ = ∑n

j=1 αjχAj
satisfies that

ξϕ =
n∑

k=1

ξ
( n⋃

j=k

Aj

)
χ[αk−1,αk)

is measurable. For a general f ∈ L0(�)+, taking a sequence (ϕn) ⊂ S such that 0 ≤ ϕn ↑ f pointwise, since

{ω ∈ � : ϕn(ω) > t} ↑ {ω ∈ � : f (ω) > t}
for all t ∈ I , we have that ξϕn → ξf pointwise with ξϕn being measurable. So, ξf is measurable. By (�1) it follows 
that the real capacity x∗� is continuous from below for each x∗ ∈ X∗ and since x∗�f coincides with the distribution 
function (x∗�)f of f with respect to x∗�, we have the conclusion.

(b) Let f, g ∈ L0(�)+ be such that f = g except on a �-null set Z. For every t ∈ I , denote At = {ω ∈ � : f (ω) >
t} and Bt = {ω ∈ � : g(ω) > t}. Noting that At ∩ Z, Bt ∩ Z are �-null and At ∩ �\Z = Bt ∩ �\Z, by (�2) we have
that



�(At) = �(At ∩ �\Z) = �(Bt ∩ �\Z) = �(Bt ).

Then �f = �g pointwise. �
Denote

D(�) =
{
f ∈ L0(�) :

∫
I

|x∗�|f ||dm < ∞ for all x∗ ∈ X∗},

that is, D(�) is the set of functions f ∈ L0(�) such that �|f | is Dunford integrable with respect to m, see [14, Ch. II, 
§ 3]. For every f ∈D(�) it follows that

‖f ‖D(�) = sup
x∗∈BX∗

∫
I

|x∗�|f ||dm < ∞,

see the proof of (c) ⇒ (a) in Theorem 13.

Remark 19. Note that in general D(�) is not even a vector space. If we can find M ⊂ BX∗ satisfying that for every 
x∗ ∈ BX∗ there exists y∗ ∈ M such that |x∗�(·)| ≤ |y∗�(·)| and (|x∗�(·)|)x∗∈M is a uniformly quasi-subadditive 
family of capacities with the properties (P1,2,6), from Theorems 12 and 13 it follows that D(�) is a �-quasi-B.f.s. 
with quasi-norm ‖ · ‖D(�). But in this case, qx∗� = |x∗�(·)| for all x∗ ∈ M as |x∗�(·)| is increasing and M satisfies
the properties (qvN1,2,3), so w-L1

qv(�) = D(�) with equal norms. This is the reason why we do not consider this
space in Section 5.

For a positive function f ∈ D(�) we define the integral of f with respect to � as the element I�(f ) ∈ X∗∗ given 
by

〈I�(f ), x∗〉 =
∫
I

x∗�f dm

for all x∗ ∈ X∗. That is, I�(f ) is the Dunford integral of �f with respect to m. Note that

|〈I�(f ), x∗〉| ≤ ‖x∗‖X∗‖f ‖D(�).

For a general function f ∈ D(�) we cannot use its positive and negative parts for defining I�(f ) as they could 
not be in D(�), so we will consider functions in w-L1

qv(�). Note that w-L1
qv(�) ⊂ D(�) with ‖f ‖D(�) ≤ ‖f ‖qv

for f ∈ w-L1
qv(�), as |x∗�(·)| ≤ qx∗� for all x∗ ∈ X∗. For a general function f ∈ w-L1

qv(�) we define I�(f ) =
I�(f +) − I�(f −). By Lemma 18.(b) we have that I�(f ) = I�(g) whenever f, g ∈ w-L1

qv(�) with f = g �-a.e. So

the integration map I�: w-L1
qv(�) → X∗∗ is well defined. However, the definition of I� for a non positive function

depends on its positive and negative parts as I� is not additive in general. In fact it can be proved that the additivity is 
obtained only in the case when � is a vector measure on the δ-ring of sets A ∈ � with |||�|||(A) < ∞. The following 
properties of I� will be used later.

Lemma 20. The following statements hold:

(a) I� is homogeneous, that is, I�(af ) = aI�(f ) for all f ∈ w-L1
qv(�) and a ∈ R.

(b) If fn, f ∈ w-L1
qv(�) are such that 0 ≤ fn ↑ f �-a.e. then I�(fn) → I�(f ) in the weak∗ topology of X∗∗.

Proof. (a) For a positive function f ∈ w-L1
qv(�) and a ≥ 0, by making an appropriate change of variables it follows

that 
∫
I
x∗�af dm = a

∫
I
x∗�f dm for all x∗ ∈ X∗ and so I�(af ) = aI�(f ). For general f and a only note that 

(af )+ = af +, (af )− = af − if a ≥ 0 and (af )+ = −af −, (af )− = −af + if a < 0.
(b) Let fn, f ∈ w-L1

qv(�) be such that 0 ≤ fnχA ↑ f χA pointwise with A ∈ � being such that �\A is �-null.
Since

{ω ∈ � : (fnχA)(ω) > t} ↑ {ω ∈ � : (f χA)(ω) > t}



for all t ∈ I , from (�1) it follows that x∗�fnχA
→ x∗�f χA

pointwise for every x∗ ∈ X∗. On the other hand, since
|x∗�fnχA

| ≤ (qx∗�)|f | pointwise, by applying the dominated convergence theorem for the Lebesgue integral with
respect to m we have that

〈I�(fnχA), x∗〉 =
∫
I

x∗�fnχA
dm →

∫
I

x∗�f χA
dm = 〈I�(f χA), x∗〉.

Since I�(fn) = I�(fnχA) and I�(f ) = I�(f χA) the conclusion follows. �
If ξ : � → R is a real capacity continuous from below, null-additive and qξ satisfies (P3), in which case qξ also

satisfies (P2, 6), the integration map Iξ : L1(qξ ) → R is given by Iξ (f ) = ∫
I
ξf + dm − ∫

I
ξf − dm for all f ∈ L1(qξ ).

Remark 21. In the case when x∗ ∈ X∗ is such that x∗� is null-additive and qx∗� satisfies (P3), since x∗� is continu-
ous from below by (�1), it follows that 〈I�(f ), x∗〉 = Ix∗�(f ) for all f ∈ w-L1

qv(�) ⊂ L1(qx∗�).

We have defined I� by using Dunford integration, a natural question now is what is the role of the Bochner 
integration in this play. For Bochner integration theory we refer to [2, Ch. 11, § 8]. Denote by j the canonical 
embedding of X into X∗∗ and

B(�) = {f ∈ L0(�) : �|f | is Bochner integrable}.
Note that

B(�) ⊂
{
f ∈ L0(�) :

∫
I

‖�|f |‖X dm < ∞
}

⊂ D(�). (6)

Every positive ϕ ∈ S with standard representation ϕ = ∑n
j=1 αjχAj

satisfies that

�ϕ =
n∑

k=1

�(∪n
j=kAj )χ[αk−1,αk) (7)

is an X-step function and so Bochner integrable with respect to m with Bochner integral 
∫
I
�ϕ dm =∑n

k=1 �(∪n
j=kAj )(αk −αk−1) ∈ X. Hence, ϕ ∈ B(�) with I�(ϕ) = j (

∫
I
�ϕ dm). From this it follows that S ⊂ B(�).

In the case when the convergence in the property (�1) is in X, i.e. � is continuous from below, we find another func-
tions in B(�).

Proposition 22. If � is continuous from below then L1(|||�|||) ⊂ B(�) and

I�(f ) = j
(∫

I

�f + dm
)

− j
(∫

I

�f − dm
)

for every f ∈ L1(|||�|||).

Proof. Let f ∈ L0(�)+ and take a sequence (ϕn) ⊂ S such that 0 ≤ ϕn ↑ f pointwise. Since � is continuous from 
below we have that

‖�f (t) − �ϕn(t)‖X → 0

for all t ∈ I and so �f is strongly m-measurable. If moreover f ∈ L1(|||�|||), since

‖�f (t) − �ϕn(t)‖X ≤ ‖�f (t)‖X + ‖�ϕn(t)‖X ≤ 2 |||�|||f (t)

for all t ∈ I , by applying the dominated convergence theorem for the Lebesgue integral with respect to m we have 
that 

∫
I
‖�f − �ϕn‖ dm → 0. This means that �f is Bochner integrable with respect to m with Bochner integral∫

I
�f dm such that 

∫
I
�ϕn dm → ∫

I
�f dm in X. So, f ∈ B(�) and I�(ϕn) → j (

∫
I
�f dm) in X∗∗. On the other

hand, from Lemma 20.(b) it follows that I�(ϕn) → I�(f ) weakly∗ in X∗∗. So, I�(f ) = j (
∫
I
�f dm). For a general

f ∈ L1(|||�|||), noting that |f |, f +, f − ∈ L1(|||�|||) we have the conclusion. �



Remark 23. In the case when � is continuous from below, if there exists a constant C ≥ 1 such that |||�||| ≤
C‖�(·)‖X , from (6) and Proposition 22 it follows that

L1(|||�|||) = B(�) =
{
f ∈ L0(�) :

∫
I

‖�|f |‖X dm < ∞
}
.

Now, two natural sets arise when we think about Pettis integration, see for instance [2, Ch. 11, § 10]. Namely,

L1
qv(�) = {f ∈ w-L1

qv(�) : I�(f χA) ∈ j (X) for all A ∈ �}
and L1

v(�) = L1
qv(�) ∩ w-L1

v(�). Since I� is not additive in general we cannot know even if L1
qv(�) and L1

v(�)

are vector spaces. Our goal in the next section is to give conditions under which these spaces are closed subspaces 
of w-L1

qv(�) and w-L1
v(�) respectively. Of course, if X is reflexive there is no problem as in this case L1

qv(�) =
w-L1

qv(�) and L1
v(�) = w-L1

v(�).

Note that S|||�||| ⊂ L1
qv(�) and S‖�‖ ⊂ L1

v(�). Even more, in the case when � is continuous from below we have

that L1(|||�|||) ⊂ L1
qv(�) and L1(‖�‖) ⊂ L1

v(�). All these containments follows from (5), Proposition 22 and the
preceding comments.

Remark 24. If � is a vector measure, in which case it is continuous from below and null-additive, as we have 
already pointed out in Remark 17, it follows that w-L1

v(�) = w-L1
qv(�) is the space of weakly integrable functions

with respect to �. Moreover, every f ∈ w-L1
qv(�) satisfies that I�(f ) = w-

∫
�

f d� is the weak integral of f with 
respect to �, see [34]. Indeed, for a positive ϕ ∈ S , by (7) and since x∗� is a real measure for each x∗ ∈ X∗, it 
follows that 

∫
I
x∗�ϕ dm = ∫

�
ϕ dx∗�. For a positive function f ∈ w-L1

qv(�), taking a sequence (ϕn) ⊂ S such that
0 ≤ ϕn ↑ f �-a.e., by Lemma 20.(b) and applying the dominated convergence theorem for the Lebesgue integral with 
respect to x∗� we have that

〈I�(f ), x∗〉 = lim〈I�(ϕn), x
∗〉 = lim

∫
�

ϕn dx∗� =
∫
�

f dx∗� =
〈
w-

∫
�

f d�,x∗〉.
For a general f ∈ w-L1

v(�), since the weak integration map with respect to � is a linear operator the conclusion 
follows. Therefore, L1

v(�) = L1
qv(�) is the space of integrable functions with respect to � and for every f ∈ L1

qv(�)

we have that I�(f ) = ∫
�

f d� is the integral of f with respect to �, see [34].

7. L1-spaces associated to a vector capacity

Let X be an order continuous Banach lattice, that is, every order bounded increasing sequence in X converges in
the norm of X, see [25, Proposition 1.a.8]. In this case, from [25, Theorem 1.b.16] we have that j (X) is an ideal of 
X∗∗, that is, if x∗∗ ∈ X∗∗ and x ∈ X with |x∗∗| ≤ |j (x)| then x∗∗ ∈ j (X). Recall that X∗ is also a Banach lattice with 
the order x∗ ≥ 0 if and only if 〈x∗, x〉 ≥ 0 for all 0 ≤ x ∈ X.

Consider a vector capacity �: � → X with the following properties:

(o�1) � is increasing, that is, �(A) ≤ �(B) for all A, B ∈ � such that A ⊂ B .
(o�2) � is submodular, that is, �(A ∪ B) + �(A ∩ B) ≤ �(A) + �(B) for all A, B ∈ �.
(o�3) � is continuous from below, that is, �(An) → �(A) in X whenever An, A ∈ � with An ↑ A.

Note that by (o�1) we have that � is positive, that is, �(A) ≥ 0 for all A ∈ �. Then, from (o�2) it follows that � is 
subadditive, that is, �(A ∪ B) ≤ �(A) + �(B) for all A, B ∈ �.

Lemma 25. The vector capacity � has the properties (�1,2) and the set N = {
x∗ ∈ BX∗ : x∗ ≥ 0

}
satisfies

(qvN1,2,3).

Proof. The property (�1) is obvious from (o�3). For every A, Z ∈ � with Z �-null, by (o�1) and since � is 
subadditive, it follows that



�(A) ≤ �(A ∪ Z) ≤ �(A) + �(Z) = �(A)

and so (�2) holds. For every x∗ ∈ BX∗ it follows that |x∗| ∈ N and qx∗� ≤ q|x∗|�, as |〈x∗, x〉| ≤ 〈|x∗|, |x|〉 for all 
x ∈ X. So, (qvN1) holds. For each 0 ≤ x∗ ∈ X∗, from (o�1) we have that the real capacity x∗� is increasing and 
takes values in [0, ∞). Then, qx∗� = x∗�, see Lemma 2.(d). Since by (o�2) we have that x∗� is submodular and 
so subadditive, (qvN3) holds for K = 1. Moreover, by (o�3) and since x∗� is null-additive (as it is increasing and 
subadditive), it follows that (qvN2) holds. �

From the previous lemma, all what we have seen in Section 6 holds for �. In particular,

S‖�‖ ⊂ L1(‖�‖) ⊂ L1
v(�) ⊂ w-L1

v(�) ⊂[i] L1(|x∗�|)
∩ ∩ ∩ ∩ ∩

S|||�||| ⊂ L1(|||�|||) ⊂ L1
qv(�) ⊂ w-L1

qv(�) ⊂[i] L1(x∗�)

(8)

with 0 ≤ x∗ ∈ X∗. Moreover, we can add the following results.

Proposition 26. The following statements hold:

(a) w-L1
qv(�) = D(�) = {f ∈ L0(�) : ∫

I
x∗�|f | dm < ∞ for all 0 ≤ x∗ ∈ X∗} and ‖f ‖qv = ‖I�(|f |)‖X∗∗ for all 

f ∈ w-L1
qv(�).

(b) L1(|||�|||) = B(�) = {f ∈ L0(�) : ∫
I
‖�|f |‖X dm < ∞} and ‖f ‖|||�||| =

∫
I
‖�|f |‖X dm for all f ∈ L1(|||�|||).

(c) S|||�||| = S .

Proof. (a) For the first part only note that qx∗� ≤ q|x∗|� = |x∗|� for all x∗ ∈ X∗. In the second one we use that 
‖y∗‖Y ∗ = sup0≤y∈BY

〈y∗, y〉 for any Banach lattice Y and 0 ≤ y∗ ∈ Y ∗. Namely, for every f ∈ w-L1
qv(�) it follows

that

‖f ‖qv = sup
x∗∈N

∫
I

(qx∗�)|f | dm = sup
x∗∈N

∫
I

x∗�|f | dm

= sup
x∗∈N

〈I�(|f |), x∗〉 = ‖I�(|f |)‖X∗∗ .

(b) Note that ‖y‖Y = sup0≤y∗∈BY∗ 〈y∗, y〉 for any Banach lattice Y and 0 ≤ y ∈ Y . Then, for every A ∈ � we have
that

|||�|||(A) = sup
x∗∈N

qx∗�(A) = sup
x∗∈N

x∗�(A) = ‖�(A)‖X.

From this fact that the conclusion follows, see Remark 23.
(c) Clear as |||�||| = ‖�(·)‖X . �
For each 0 ≤ x∗ ∈ X∗, the capacity x∗� satisfies the properties (P1,2,3,5,6) and 〈I�(f ), x∗〉 = Ix∗�(f ) for all 

f ∈ w-L1
qv(�) ⊂ L1(x∗�), see Remark 21. This gives the following properties for I�.

Proposition 27. The following statements hold:

(a) 0 ≤ I�(f ) ≤ I�(g) for all f, g ∈ w-L1
qv(�) such that 0 ≤ f ≤ g �-a.e.

(b) I�(f + g) ≤ I�(f ) + I�(g) for all positive functions f, g ∈ w-L1
qv(�).

(c) I�: w-L1
qv(�) → X∗∗ is continuous.

Proof. (a) Let f, g ∈ w-L1
qv(�) be such that 0 ≤ f ≤ g �-a.e. For each 0 ≤ x∗ ∈ X∗, since every �-null set is

x∗�-null, by Lemma 4.(b) and (c) we have that

0 ≤ 〈I�(f ), x∗〉 = Ix∗�(f ) ≤ Ix∗�(g) = 〈I�(g), x∗〉.
Since the canonical embedding of X into X∗∗ is order preserving (see [25, Proposition 1.a.2]) and so x ∈ X is such 
that x ≥ 0 if and only if 〈x∗, x〉 ≥ 0 for all 0 ≤ x∗ ∈ X∗, it follows that 0 ≤ I�(f ) ≤ I�(g).



(b) Let f, g ∈ w-L1
qv(�) be positive functions. For each 0 ≤ x∗ ∈ X∗, since x∗� is submodular and so Ix∗� is

subadditive on L0(�)+ (see the comments preceding Proposition 8), we have that

〈I�(f + g), x∗〉 = Ix∗�(f + g) ≤ Ix∗�(f ) + Ix∗�(g)

= 〈I�(f ), x∗〉 + 〈I�(g), x∗〉 = 〈I�(f ) + I�(g), x∗〉.
Then, I�(f + g) ≤ I�(f ) + I�(g).

(c) For every f, g ∈ w-L1
qv(�) and 0 ≤ x∗ ∈ X∗ it follows that

|Ix∗�(f ) − Ix∗�(g)| ≤ 2 Ix∗�(|f − g|),
see the proof of Proposition 8. Then, using that ‖y∗‖Y ∗ ≤ 2 sup0≤y∈BY

|〈y∗, y〉| for any Banach lattice Y and y∗ ∈ Y ∗,
we have that

‖I�(f ) − I�(g)‖X∗∗ ≤ 2 sup
x∗∈N

|〈I�(f ) − I�(g), x∗〉|
= 2 sup

x∗∈N

|Ix∗�(f ) − Ix∗�(g)|
≤ 4 sup

x∗∈N

Ix∗�(|f − g|) = 4‖f − g‖qv. �

Note that the spaces w-L1
qv(�) and w-L1

v(�) are actually �-B.f.s.’. Indeed, for 0 ≤ x∗ ∈ X∗, since x∗� is increas-

ing and submodular it can be proved that |x∗�| is submodular, and so Ix∗� and I|x∗�| are subadditive on L0(�)+. 
Recalling that

‖f ‖qv = sup
x∗∈N

Ix∗�(|f |) and ‖f ‖v = sup
x∗∈N

I|x∗�|(|f |)

for every f ∈ L0(�), it follows that ‖ · ‖qv and ‖ · ‖v are norms.
The properties of I� shown in Proposition 27 allow us to get the main result of this section.

Theorem 28. The sets L1
qv(�) and L1

v(�) are �-B.f.s.’ with norms ‖ · ‖qv and ‖ · ‖v respectively.

Proof. From Lemma 20.(a) it is clear that af ∈ L1
qv(�) for all f ∈ L1

qv(�) and a ∈ R. If f, g ∈ L1
qv(�) are positive

functions, since j (X) is an ideal of X∗∗, from Proposition 27.(b) it follows that f + g ∈ L1
qv(�). For general f, g ∈

L1
qv(�) and A ∈ �, noting that (f + g)+ ≤ f + + g+ and (f + g)− ≤ f − + g−, by Proposition 27.(a) and (b) we 

have that

|I�((f + g)χA)| = |I�((f χA + gχA)+) − I�((f χA + gχA)−)|
≤ I�((f χA + gχA)+) + I�((f χA + gχA)−)

≤ I�((f χA)+ + (gχA)+) + I�((f χA)− + (gχA)−)

≤ I�((f χA)+) + I�((gχA)+) + I�((f χA)−) + I�((gχA)−).

Since h+ = hχPh
and h− = (−h)χNh

for any h ∈ L0(�) (see the Preliminaries), it follows that the last element in the
above inequality belongs to j (X) and so I�((f + g)χA) ∈ j (X). Hence, f + g ∈ L1

qv(�). Therefore, L1
qv(�) is a

linear subspace of w-L1
qv(�), from which it is clear that L1

v(�) is a linear subspace of w-L1
v(�).

Since I�: w-L1
qv(�) → X∗∗ is continuous and j (X) is closed in X∗∗, it follows that L1

qv(�) is closed in w-L1
qv(�).

From this, since w-L1
v(�) ⊂ w-L1

qv(�) and all the containments between �-quasi-B.f.s.’ are continuous, it follows

that L1
v(�) is closed in w-L1

v(�). Then, L1
qv(�) and L1

v(�) are Banach spaces with norms ‖ · ‖qv and ‖ · ‖v respec-
tively.

On the other hand, if f ∈ L0(�) and g ∈ L1
qv(�) are such that |f | ≤ |g| �-a.e. then f ∈ w-L1

qv(�) with ‖f ‖qv ≤
‖g‖qv . Moreover, since (f χA)+, (f χA)− ≤ |g| �-a.e. for every A ∈ �, by Proposition 27.(a) and (b) we have that

I�((f χA)+), I�((f χA)−) ≤ I�(|g|) ≤ I�(g+) + I�(g−).



Then I�((f χA)+), I�((f χA)−) ∈ j (X) and so f ∈ Lqv(�). Hence, L1
qv(�) and L1

v(�) are �-B.f.s.’. �
Finally we conclude this section by characterizing when the space L1

qv(�) is σ -order continuous.

Theorem 29. The �-B.f.s. L1
qv(�) is σ -order continuous if and only if � is continuous from above at ∅, i.e. �(An) →

0 in X whenever An ∈ � with An ↓ ∅. Moreover, in this case S is dense in L1
qv(�).

Proof. First note that S ⊂ L1
qv(�), see (8) and Proposition 26.(c). Moreover, from Proposition 22 it follows that

I�(χA) = j (�(A)) for all A ∈ �.
Suppose that L1

qv(�) is σ -order continuous. Given An ∈ � with An ↓ ∅, since χAn ↓ 0 pointwise and (χAn) ⊂
L1

qv(�), by using Proposition 26.(a) we have that

‖�(An)‖X = ‖I�(χAn)‖X∗∗ = ‖χAn‖qv → 0.

Conversely suppose that � is continuous from above at ∅ and let (fn) ⊂ L1
qv(�) be such that fn ↓ 0 �-a.e. For each

0 ≤ x∗ ∈ X∗, since x∗� is continuous from above at ∅, by Theorem 6 we have that L1(x∗�) is σ -order continuous. 
Then, since fn ↓ 0 x∗�-a.e. it follows that

〈I�(fn), x
∗〉 = Ix∗�(fn) = ‖fn‖x∗� ↓ 0.

Hence, I�(fn) ↓ 0 in the order of X∗∗. Since j (X) is order continuous as X is so, we have that ‖fn‖qv =
‖I�(fn)‖X∗∗ ↓ 0. �
8. Example

Consider the measure space (N, P(N), c) with c being the counting measure. Note that L0(c) is just the space �0

of all real sequences and the c-a.e. pointwise order coincides with the coordinate order. Let X be a σ -order continuous 
saturated c-B.f.s. Recall that X being saturated means that there exists a sequence x = (xn) ∈ X such that xn > 0 for 
all n. In this case, X is a Köthe function space in the sense of [25, Definition 1.b.17]. In what follows we collect some 
properties of X which will be used later in our example.

Denoting the scalar product of two sequences x = (xn), y = (yn) ∈ �0 by (x, y) = ∑
xnyn provided the sum exists, 

the Köthe dual of X is given by

X′ =
{
y = (yn) ∈ �0 : (|x|, |y|) < ∞ for all x = (xn) ∈ X

}
.

The space X′ endowed with the norm ‖y‖X′ = supx∈BX
|(x, y)| for y ∈ X′, is a saturated c-B.f.s. The linear isometry

η: X′ → X∗ given by 〈η(y), x〉 = (x, y) for all y ∈ X′ and x ∈ X is surjective as X is σ -order continuous, see [25, 
pg. 29]. If x∗ ∈ X∗ and y ∈ X′ are such that x∗ = η(y), then x∗ ≥ 0 if and only if y ≥ 0. Note that X ⊂ X′′. From 
[25, Proposition 1.b.18] it follows that ‖x‖X = ‖x‖X′′ for all x ∈ X. The equality X = X′′ holds with equal norms if
and only if X has the Fatou property, see [25, pg. 30]. Also we will use the linear isometry π : X′′ → X∗∗ defined by 
〈π(z), x∗〉 = (

z, η−1(x∗)
)

for all z ∈ X′′ and x∗ ∈ X∗. Note that if z ∈ X then π(z) = j (z).
Let us construct now a vector capacity with values in X. Consider a σ -finite measure μ: � → [0, ∞] and let 

�: I → I be a function as in Example 9. Then, the capacity λ: � → [0, ∞] given by λ(A) = �(μ(A)) for A ∈ �, 
satisfies the properties (P1,2,3,5,6) and the λ-null and μ-null sets coincide. Take a sequence of pairwise disjoint sets 
(�n) ⊂ � such that � = ∪�n and μ(�n) < ∞ for all n and assume that e = (λ(�n))n ∈ X. We define the vector 
capacity �: � → X by

�(A) = (λ(A ∩ �n))n

for A ∈ �. Note that � is well defined as �(A) ≤ e.

Remark 30. The condition e ∈ X holds in many cases. For instance if μ(�n) → 0 then e ∈ c0. This happens whenever 
μ is finite. An example of a non-finite μ could be the measure m on I with density h(x) = 1

1+x
, that is μ(A) =∫

A
h dm. In this case, by taking �n = [n − 1, n) we have that μ(�n) = ln( 1+n

n
) < 1

n
. So e ∈ c0 and for instance if 

�(x) = xp with 0 < p < 1 then e ∈ �q for every 1 < q < ∞.

p



Let us see that � satisfies the requirements of Section 7.

Lemma 31. The vector capacity � has the properties (o�1,2,3) and is continuous from above at ∅. Moreover the 
�-null and μ-null sets coincide.

Proof. Note that � is increasing and submodular as λ is so. Given Ak, A ∈ � such that Ak ↑ A, since λ is increasing 
and continuous from below, for each fixed n we have that λ(Ak ∩ �n) ↑ λ(A ∩ �n). Then �(Ak) ↑ �(A) pointwise 
and so in X, as X is σ -order continuous. Hence, � is continuous from below.

Given Ak ∈ � with Ak ↓ ∅, since μ is a measure, for each fixed n it follows that μ(Ak ∩ �n) ↓ 0 and so λ(Ak ∩
�n) ↓ 0. That is, �(Ak) ↓ 0 pointwise and so in X. Hence, � is continuous from above at ∅.

It is direct to check that a set Z is �-null if and only if Z ∩ �n is λ-null (equivalently, μ-null) for all n. This 
happens if and only if Z = ∪Z ∩ �n is μ-null. �

Therefore, all what we have seen in Sections 5, 6 and 7 hold for �. Moreover we can give nicer descriptions for 
the L1-spaces associated to � in terms of λ.

Proposition 32. The following statements hold:

(a) L1(|||�|||) = {f ∈ L0(μ) : ∫
I
‖(λ|f |χ�n

)n‖X dm < ∞} and for f ∈ L1(|||�|||) we have that ‖f ‖|||�||| =∫
I
‖(λ|f |χ�n

)n‖X dm.
(b) w-L1

qv(�) = {f ∈ L0(μ) : (Iλ(|f |χ�n))n ∈ X′′} and for f ∈ w-L1
qv(�) we have that ‖f ‖qv =

‖(Iλ(|f |χ�n))n‖X′′ . Moreover, (Iλ(f χ�n))n ∈ X′′ and I�(f ) = π((Iλ(f χ�n))n).
(c) L1

qv(�) = {f ∈ L0(μ) : (Iλ(|f |χ�n))n ∈ X} and for f ∈ L1
qv(�) we have that ‖f ‖qv = ‖(Iλ(|f |χ�n))n‖X .

Moreover, (Iλ(f χ�n))n ∈ X and I�(f ) = j ((Iλ(f χ�n))n).

Proof. First note that L0(�) = L0(μ) as the �-null and μ-null sets coincide.
(a) For every f ∈ L0(�)+, since

{ω ∈ � : f (ω) > t} ∩ �n = {ω ∈ � : (f χ�n)(ω) > t}
for all t ∈ I , it follows that �f = (λf χ�n

)n. Then, the conclusion follows from Proposition 26.(b).
(b) Let 0 ≤ x∗ ∈ X∗ and 0 ≤ y = (yn) ∈ X′ be such that x∗ = η(y). For f ∈ L0(�)+ we have that

x∗�f (t) = 〈x∗,�f (t)〉 =
∑

ynλf χ�n
(t)

for all t ∈ I . By applying the monotone convergence theorem we obtain that∫
I

x∗�f dm =
∑

yn

∫
I

λf χ�n
dm =

∑
ynIλ(f χ�n).

From this it follows that f ∈ L0(μ) is such that 
∫
I
x∗�|f | dm < ∞ for all 0 ≤ x∗ ∈ X∗ if and only if 

(
Iλ(|f |χ�n)

)
n

∈
X′′. Then, by Proposition 26.(a), the description of w-L1

qv(�) holds. Moreover, for a positive function f ∈ w-L1
qv(�)

we have that

〈I�(f ), x∗〉 =
∫
I

x∗�f dm = 〈π((Iλ(f χ�n))n), x
∗〉

for all 0 ≤ x∗ ∈ X∗. The same equality holds for a general x∗ ∈ X∗ by taking positive and negative parts of x∗. Hence, 
I�(f ) = π((Iλ(f χ�n))n). Then, for a general f ∈ w-L1

qv(�) it follows that

‖f ‖qv = ‖I�(|f |)‖X∗∗ = ∥∥(
Iλ(|f |χ�n)

)
n

∥∥
X′′ .

For every n it is clear that fχ�n ∈ L1(λ) as (Iλ(|f |χ�n))n ∈ X′′. Noting that (f χA)+ = f +χA and (f χA)− = f −χA

for all A ∈ �, we have that

(Iλ(f χ�n))n = (Iλ(f
+χ�n))n − (Iλ(f

−χ�n))n ∈ X′′



as f +, f − ∈ w-L1
qv(�). Moreover,

I�(f ) = I�(f +) − I�(f −)

= π((Iλ(f
+χ�n))n) − π((Iλ(f

−χ�n))n)

= π((Iλ(f χ�n))n).

(c) For every f ∈ L1
qv(�) ⊂ w-L1

qv(�) we have that (Iλ(f χ�n))n ∈ X′′ and

π((Iλ(f χ�n))n) = I�(f ) ∈ j (X).

Since π coincides with j on X and π is injective it follows that (Iλ(f χ�n))n ∈ X and I�(f ) = j ((Iλ(f χ�n))n). 
Noting that |f | ∈ L1

qv(�), we have that (Iλ(|f |χ�n))n ∈ X and ‖f ‖qv = ‖(Iλ(|f |χ�n))n‖X′′ = ‖(Iλ(|f |χ�n))n‖X .

On the other hand, if f ∈ L0(μ) is such that (Iλ(|f |χ�n))n ∈ X ⊂ X′′ we have that f ∈ w-L1
qv(�). Then, for every

A ∈ � it follows that fχA ∈ w-L1
qv(�) and

|I�(f χA)| = |I�(f +χA) − I�(f −χA)| ≤ I�(f +χA) + I�(f −χA)

≤ 2I�(|f |) = 2π((Iλ(|f |χ�n))n) = 2 j ((Iλ(|f |χ�n))n),

and so I�(f χA) ∈ j (X). Hence, f ∈ L1
qv(�). �

Note that L1
qv(�) is σ -order continuous as � is continuous from above at ∅, see Theorem 29.

In order to give a description in terms of λ for the spaces L1(‖�‖), w-L1
v(�) and L1

v(�), we consider the variation
|λ| of λ defined as in the real capacity case. Since |λ| is superadditive and λ is subadditive it follows that |λ| is finitely 
additive. Moreover, since |λ| is continuous from below as λ is so, we have that |λ| is a measure. We will need the 
following result.

Lemma 33. Let x∗ ∈ X∗ and y = (yn) ∈ X′ be such that x∗ = η(y). For every A ∈ � it follows that

|x∗�|(A) =
∑

|yn| |λ|(A ∩ �n).

Proof. For every partition (Ai)
m
i=1 ⊂ � of A ∈ � we have that

m∑
i=1

|x∗�(Ai)| =
m∑

i=1

∣∣∣∑
n≥1

ynλ(Ai ∩ �n)

∣∣∣ ≤
m∑

i=1

∑
n≥1

|yn|λ(Ai ∩ �n)

=
∑
n≥1

|yn|
m∑

i=1

λ(Ai ∩ �n) ≤
∑
n≥1

|yn||λ|(A ∩ �n).

Hence, |x∗�|(A) ≤ ∑ |yn| |λ|(A ∩ �n). On the other hand, for a fixed k take a partition (Bk
i )

mk

i=1 ⊂ � of A ∩ �k . 
Since Bk

i ∩ �k = Bk
i and Bk

i ∩ �n = ∅ whenever n �= k, we have that

|yk|
mk∑
i=1

λ(Bk
i ) =

mk∑
i=1

∣∣∣∑
n≥1

ynλ(Bk
i ∩ �n)

∣∣∣ =
mk∑
i=1

|x∗�(Bk
i )| ≤ |x∗�|(A ∩ �k).

Then, |yk| |λ|(A ∩ �k) ≤ |x∗�|(A ∩ �k). Since |x∗�| is superadditive and increasing it follows that
n∑

k=1

|yk| |λ|(A ∩ �k) ≤
n∑

k=1

|x∗�|(A ∩ �k) ≤ |x∗�|(A)

for all n and so 
∑ |yn| |λ|(A ∩ �n) ≤ |x∗�|(A). �

Now from the previous lemma we can obtain the following conclusions.

Proposition 34. The following statements hold:



(a) L1(‖�‖) is the space of functions f ∈ L0(μ) such that (|λ||f |χ�n
(t))n ∈ X′′ for all t > 0 and∫

I
‖(|λ||f |χ�n

)n‖X′′ dm < ∞, and for f ∈ L1(‖�‖) we have that ‖f ‖‖�‖ = ∫
I
‖(|λ||f |χ�n

)n‖X′′ dm.
(b) w-L1

v(�) = {f ∈ L0(μ) : (I|λ|(|f |χ�n))n ∈ X′′} and for f ∈ w-L1
v(�) we have that ‖f ‖v = ‖(I|λ|(|f |χ�n))n‖X′′ .

(c) L1
v(�) = {f ∈ L0(μ) : (Iλ(|f |χ�n))n ∈ X and (I|λ|(|f |χ�n))n ∈ X′′}.

Note that I|λ|(|f |χ�n) =
∫
�n

|f | d|λ| for all n as |λ| is a measure.

Proof. (a) By Lemma 33 every A ∈ � satisfies that

‖�‖(A) = sup
x∗∈BX∗

|x∗�|(A) = sup
y=(yn)∈BX′

∑
|yn| |λ|(A ∩ �n).

Then ‖�‖(A) < ∞ if and only if (|λ|(A ∩ �n))n ∈ X′′, and in this case

‖�‖(A) = ‖(|λ|(A ∩ �n))n‖X′′ .

If f ∈ L1(‖�‖), since 
∫
I
‖�‖|f | dm < ∞ and ‖�‖|f | is decreasing, we have that ‖�‖|f |(t) < ∞ for all t > 0. 

So (|λ||f |χ�n
(t))n ∈ X′′ with ‖(|λ||f |χ�n

(t))n‖X′′ = ‖�‖|f |(t) for all t > 0. The converse inclusion follows as if
f ∈ L0(μ) is such that (|λ|fχ�n

(t))n ∈ X′′ for all t > 0 then ‖�‖|f |(t) = ‖(|λ|f χ�n
(t))n‖X′′ for all t > 0.

(b) Let f ∈ L0(μ). For every x∗ ∈ X∗ and y = (yn) ∈ X′ with x∗ = η(y), from Lemma 33 and applying the
monotone convergence theorem it follows that∫

I

|x∗�||f | dm =
∑

|yn|
∫
I

|λ||f |χ�n
dm =

∑
|yn|I|λ|(|f |χ�n).

Then 
∫
I
|x∗�||f | dm < ∞ for all x∗ ∈ X∗ if and only if (I|λ|(|f |χ�n))n ∈ X′′. From this the description of w-L1

v(�)

holds. Moreover, for f ∈ w-L1
v(�) we have that

‖f ‖v = sup
y=(yn)∈BX′

∑
|yn|I|λ|(|f |χ�n) = ‖(I|λ|(|f |χ�n))n‖X′′ .

(c) Clear from part (b) of this proposition and Proposition 32.(c). �
Finally note that in the case when X has the Fatou property (i.e. X = X′′), we have that L1

qv(�) = w-L1
qv(�) and

L1
v(�) = w-L1

v(�) = {f ∈ L0(μ) : (I|λ|(|f |χ�n))n ∈ X}.
The first equality above follows as λ ≤ |λ| and so Iλ(|f |χ�n) ≤ I|λ|(|f |χ�n) for all n. Moreover, ‖f ‖v =
‖(I|λ|(|f |χ�n))n‖X for all f ∈ L1

v(�). Also in this case we have that L1
v(�) is σ -order continuous. Indeed, given

(fk) ⊂ L1
v(�) such that fk ↓ 0 μ-a.e. (equivalently |λ|-a.e.), since L1(|λ|) is σ -order continuous as |λ| is a measure,

for each fixed n it follows that I|λ|(fkχ�n) ↓ 0. Then (I|λ|(|fk|χ�n))n ↓ 0 pointwise and so in X.
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