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Abstract 

The present project aims to study the applicability of additive manufacturing (AM) in the 

automotive industry, namely, the applicability of AM in car parts production. 

A commercial vehicle can be described as a set of systems, all integrated and communicating 

each other, with a common goal, move you from point A to point B as secure as possible. 

The present study focused on the manufacture by AM of a part from one of the systems 

integrated in the vehicle, namely a brake calliper, component of the brake system. The 

Selective Laser Melting (SLM) was the AM process that was used to manufacture the part. 

It is important to understand that nowadays, a great level of evolution is occurring in the 

automotive industry. Some new technology had its origins in the racing world. Race teams 

lead by the big manufacturing car companies have the know-how and the opportunities to 

try and develop new technologies. This leads to a development in manufacturing processes 

associated with new components and materials. After some perfecting, the components and 

manufacturing techniques used in the racing industry find its way into the commercial 

vehicle market, leading to the endless flow of innovation that we see nowadays. 

The component selected to be developed and furthermore manufactured using AM was a 

brake calliper, part of the braking system of a racing vehicle. The new SLM produced brake 

callipers will be used in the Formula Student racing platform. 

 

Keywords: Additive Manufacturing, Brake System, Selective Laser Melting, Formula 

Student. 
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Resume 

O presente projeto tem como principal objetivo estudar a aplicabilidade do processo de 

desenvolvimento e fabrico de um componente do sistema de travagem de um automóvel. 

Uma pinça de travão para ser produzida com recurso ao fabrico aditivo. 

Durante a primeira fase do projeto foi efetuado um estudo associado aos processos de fabrico 

aditivo disponíveis no mercado atualmente, de forma a entender as vantagens e desvantagens 

de cada um. O processo de SLM foi selecionado como o processo a utilizar durante a 

produção do componente, após uma análise cuidada das alternativas disponíveis. 

A segunda parte do projeto consistiu no estudo e dimensionamento do sistema de travagem 

do veículo. O Formula Student da equipa do IPL serviu como a base para o estudo do 

sistema. O monolugar está equipado com um conjunto de pinças produzidas a partir de um 

bloco sólido de alumínio por CNC. Durante este capítulo as forças e constrangimentos 

aplicados ao componente durante um cenário de travagem foram determinados. 

O estudo do sistema de travagem é seguido de uma análise estática com recurso a software 

de simulação por elementos finitos do componente original. De forma a entender o 

comportamento das pinças de travagem em utilização pelo veículo do FSIP. Após esta 

análise inicial foi possível inferir que existe margem para melhoramento do componente 

caso um processo de fabrico diferente seja utilizado para a produção do componente. 

No seguimento dos resultados do estudo estático do componente original, foi efetuado um 

estudo topológico considerando um tipo diferente de material, de forma a entender possíveis 

alterações geométricas a efetuar no componente. Recorrendo mais uma vez a um software 

de simulação por elementos finitos. Um novo design surgiu como uma possível solução para 

responder aos objetivos estipulados no início do projeto. 

O novo componente foi extensivamente estudado com recurso ao mesmo método utilizado 

para estudar o componente original. Desta forma foi possível comparar resultados e 

determinar se o novo componente de facto representa uma melhoria em relação à pinça de 

travão original.  

Após a validação do novo componente projetado foi-lhe atribuído o nome “Prototype 3”, e 

o mesmo foi produzido com recurso ao processo de fabrico aditivo selecionado 

anteriormente (SLM). Embora tenham existido alguns problemas associados à produção do 

componente, o mesmo foi fabricado validando assim a geometria modelada. 

No final foi necessário efetuar um conjunto de operações após-fabrico de forma garantir as 

características mecânicas do componente e a sua correta integração no sistema a que se 

destina. 

Keywords: Additive Manufacturing, Brake System, Selective Laser Melting, Formula 

Student. 
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 Introduction 

1.1. Context and Motivation  

A constant increase in production technology through the last years has made possible an 

increase in material diversity used in competition vehicles. This type of vehicles beneficiate 

from the best materials available in the market regardless of their cost. The use of materials 

and fabrication processes in competition vehicles leads to a development in the processes, 

making them more affordable to everyday vehicles. Example of which are the vehicles that 

came out of production equipped with carbon fibre panels or accessories. 

The Formula Student project allows for students to build and improve a competition vehicle 

to be used in racing against other teams. Constant improvements to the platform are done, 

with the intent of decreasing lap times and improving reliability. The present vehicle is 

equipped with an internal combustion engine producing around one hundred horsepower, 

inserted in a space frame chassis which has proven to be reliable in racing conditions (2014- 

2016). However, in this case, vehicle reliability is related with oversized components, 

leading to an overweight problem. 

Brake callipers are a brake system part and there are four of them all around the vehicle. 

They allow the movement of pistons and pads that rub against the rotor leading to a decrease 

in vehicle speed. The present callipers were chosen from a catalogue of aftermarket 

components and until date have proven to be reliable. However, as time passes, components 

become dated and need to be replaced. With intent of updating the vehicle and reducing 

weight, brake callipers were selected as the component to be improved. 

Wilwood manufactures the callipers in use in the Formula Student vehicle, they are known 

to excel in brake performance components and many race cars use Wilwood brake kits. 

Wilwood uses high grade materials and perfected manufacturing processes to achieve 

maximum performance in each component. However, in the last few years a new type of 

manufacturing technology has been emerging, additive manufacturing. This new technology 

allows for the utilization of a wide range of materials and more complex component 

geometries and might be a possible way of manufacturing a component with better 

mechanical properties and less weight, therefore improving the brake callipers in use. 

Additive manufacturing is a topic containing several processes based on a layer-by- layer 

construction, based on a previous computer 3D model. Initially the component is designed 

using a computer software. After this process, the component is fabricated step by step, each 

step consisting in the deposition of a material layer. After all layers are completed the final 

component is formed. 

One of the additive manufacturing processes is Selective Laser Melting, an additive 

manufacturing process which consists in the consecutive laser melting of powder material   
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layers. SLM allows for the manufacturing of complex geometries that conventional 

fabrication processes do not. 

The powder to be melted in Selective Laser Melting defines the material of the final 

component. It is known that some materials are more difficult to process. For example, 

Titanium is a material with very interesting mechanical characteristics however it is not very 

used due to the difficulty associated with its processing. Other materials like aluminium are 

easier to process by conventional processes, however, the waste produced is considerable. 

SLM addresses both problems, being a process that takes advantage of the laser power to 

melt layers of powder, might be used in materials difficult to process and reduces the material 

waste, allowing for recycling. 

1.2.  Main Goals 

The main goal of the present work is to study the applicability of an Additive Manufacturing 

(AM) process to manufacture a competition vehicle brake system component. 

To accomplish the proposed goal, the following steps were defined: 

- Bibliographic research about different brake systems, the different ways in which 

they can operate and their working parameters. 

- Presentation of the complete brake system currently in use by the Formula Student 

IPLeiria. 

- Bibliographic research about the different types of Additive Manufacturing processes 

and the materials they can use. 

- Definition of operating conditions and restrains of the brake system component, both 

external and imposed by the system. 

- Definition of the chosen AM process and the operating parameters. 

- 3D Modelling and numerical analysis by the finite element method of the original 

brake system component to reach a new optimized component geometry. 

- 3D Modelling and numerical analysis by the finite element method of the new 

optimized component. 

- Comparison between the original component and the additive manufactured 

component in order to identify possible improvements that can be done to the 

manufactured component. 

1.3.  Organization 

The present project is organised in several chapters. The chapter presentation order reflects 

the order in which the work was done. 

Chapter one presents the context as well as the main goals of the project. It sets the beginning 

of the work to be done and the main project objectives are exposed. 
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Chapter two contains the state of the art. This chapter exposes the theoretical framework and 

a more detailed description about the origin and development of Additive Manufacturing 

processes. An initial description of the brake system operation and components is presented. 

Chapter three presents the study of the brake system present in the Formula Student. This 

chapter is of great importance because it sets the loads and constrains to be applied in the 

component in study, resulting in a basis for the performed numerical simulation analysis. 

In chapter four the original component is analysed. It is presented a description of the 

computer modelling process and some finite element studies that were done to understand 

the normal behaviour of the component in service. 

Chapter five presents the prototype stage. Based on the results obtained during the third 

chapter, a possible alternative component starts to take shape. This chapter´s focus is the 

improvement of the new component, always keeping in mind the restrictions caused by the 

circumstances in which the component will be used. 

Chapter six presents the production of the final component. This chapter contains an after- 

fabrication analysis and a description of the processes that might be implemented to improve 

final mechanical properties of the component. 

The final chapter contains the main conclusions taken from each chapter allowing for the 

understanding of the importance of the project. A special set of word aimed for future 

improvements and projects are also presented. 
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 Theoretical Framework 

The need for stopping a vehicle came along with the ability to impel it. Through the years, 

with the improvement of powertrains and the ability to generate high values of torque and 

power, braking systems needed to be in constant evolution. 

A brake is a device by means of which frictional resistance is applied to a moving machine 

member, to retard or stop the motion of the machine [1]. 

In the beginning, horses were used to move vehicles, and in a few years, the first internal 

combustion engines appeared. During this time mechanical brake systems were used. These 

systems used a mechanical link between the pedal/leaver and the component imposing 

friction to the wheels. The mechanism was acceptable to stop low power vehicles. However, 

along with the constant innovations in powertrains, there stood the need for more powerful 

brake systems. Hydraulic systems appeared as the biggest evolution in brake performance. 

From this point on, the main innovations became more focused on the components of the 

system. 

As mentioned before, the main goal of the present project is the study and improvement of 

a brake calliper to manufacture it through an additive manufacturing (AM) process. The AM 

processes offer the possibility of manufacturing components with new materials, as well as 

less limitations regarding component geometry. 

First and foremost, it is of extreme importance to understand how a hydraulic brake system 

works. This will set the mindset for understanding the importance of the component to be 

studied, the consequent manufacturing and geometry changes, that will take place in order to 

optimize the component, and to adequate the geometry to the AM process. 

 

2.1.  Hydraulic Brake System Operation 

The hydraulic brake system was patented in 1924 by Malcom Loughead. The system, as 

mentioned before, proved to be very reliable and it can be found in use in the most different 

applications nowadays (motorcycles, mopeds, commercial vehicles, passage vehicles, etc…) 

[2]. 

The system is composed by the following elements: 

- Brake pedal/lever 

- Pushrod 

- Master cylinder assembly 

- Reservoir 

- Hydraulic lines 

- Brake calliper assembly 
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In a hydraulic brake system, when the brake pedal is pressed a pushrod transfers the force 

into a piston inside the master cylinder assembly. The movement of the piston causes the 

fluid in the reservoir to flow into a pressure chamber, resulting in an increase of pressure 

inside the brake system. The fluid is therefore forced to move in the direction of the brake 

callipers, inside of which there are another set of pistons which move to maintain the pressure 

inside the system. The second set of pistons are pressed against the sides of the brake pads 

(component of the brake calliper assembly) which contact directly with the spinning rotor. 

Subsequent release of the brake pedal leads to a decrease in the force applied to the master 

cylinder, decreasing the pressure in the system, therefore releasing the brake pads from the 

rotor. 

The friction caused by the contact between the brake pads and the moving rotor generates 

brake torque, leading to a decrease in vehicle speed. The heat generated by the operation is 

partly dissipated through the brake rotor and partly conducted through the pads. The system 

is designed as a closed system, meaning that unless there are any leaks or losses, none of the 

fluid enters or leaves the system [2]. 

There are two main types of hydraulic brake systems: 

Drum systems: The friction surface is a drum as represented on figure 2.1. Inside the drum 

there are two brake pads that stay still while the drum spins along with the wheels. Once 

system pressure increases, the brake pads are pressed against the interior of the drum leading 

to a speed decrease. The main material used to manufacture the drums is steel, since it is 

durable and able to endure the friction imposed by the pads. 

 

Figure 2.1- Drum brake system, adapted from [1]. 

 

However, the drum system has the disadvantage of being highly affected by external 

parameters (water, dust, small stones, etc). It is important to consider that the material used 
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in this type of system leads to a significant weight increase when compared to the disc 

system. 

Disc system: The friction surface is a rotor attached to the wheels. The pads are located 

inside the brake callipers that can have one or more cylinders. The cylinders are responsible 

for pushing the pads against the rotor when system pressure increases. The brake rotor has 

two friction surfaces, one in each side of the disc (drum systems only have one friction 

surface). A disc brake system is represented in figure 2.2. 

 

Figure 2.2- Disc brake system, adapted from [1]. 

 

There are two types of brake rotors, and each one will be actuated by a different type of 

brake calliper. The most common brake rotor in use in most commercial and public vehicles 

is the fixed rotor, floating calliper. In this type of system, the brake rotor is fixed to the wheel 

assembly in all directions, only allowing movement when the wheel moves. The callipers 

therefore need to be of floating type, and they can move perpendicularly to the friction 

surface of the brake rotor. 

In the floating rotor fixed calliper configuration, the brake calliper is fixed, attached to the 

sleeve, while the rotor can move perpendicularly to the friction surface. The rotor movement 

and the calliper movement in both types of application should not be more than the enough 

for allowing the brake pads actuation. 

2.1.1. The Component  

As explained before there are two types of brake calliper assembly and each type will 

correspond to a brake rotor type. The present project intends to improve the system already 

in use in the Formula Student vehicle, developed in the School of Technology and 

Management of Polytechnic Institute of Leiria. To save time building different support parts 

and other assembly components, it was decided to use the same attachment points already 
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present in use. The assembly in use has a fixed calliper and floating rotor as shown in figure 

2.3. 

 
Figure 2.3- Brake assembly from FSIP.  

 

The brake calliper assembly consists of the following parts: 

- Brake calliper body: It allows for all the components of the assembly to stay in place while 

in use. The body consists in 2 different parts attached to each other. 

- Brake cylinders: There are 2 equal size cylinders inside the callipers, each cylinder is 

contained inside the correspondent calliper part. 

- O-ring: The O-ring confers a seal between the 2 body parts preventing loss of pressure or 

brake fluid during a braking manoeuvre. 

- Square-ring seal: There are 2 equal size square-ring seals inside each half of the calliper 

assembly. They are placed between the slave cylinder and the calliper. 

- Bleeders: There are 4 bleeders in total for each brake calliper. They allow the system to be 

bleed in order to maintain working parameters. 

- Brake pads: Brake pads are the friction components of the calliper assembly. They are 

pushed by the cylinders against the rotor creating friction. 

- Brake pad holders: The brake pad holders hold the brake pads in place and allow for a fast 

change of the braking pads if necessary. 
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The already in use brake calliper assembly (figure 2.4) is an off the shelf product, 

commercialized by Wilwood [4]. Wilwood is a well renowned brand that focuses on 

aftermarket brake kits and components. 

The “GP200 wilwood” brake calliper is fully produced using a computer numerical control 

(CNC) milling process from a premium grade aluminium alloy [4] and designed in order 

to achieve a low weight component that can be used in racing and commercial 

applications. During braking, the pistons inside the callipers push the pads against the disc. 

The forces applied to the disc by the pads leads to a reaction in the pads caused by the 

disc. These forces act in the opposite direction of the movement of the pistons which can 

lead to a separation of the brake calliper body. This phenomenon is of extremely 

importance and needs to be studied to achieve a new design with improved performance. 

 

 

As it should be understood by now, the callipers currently in use by the formula student 

team are more than capable of dealing with the conditions in which they are used. 

However, there is space for improvement. Wildwood callipers are CNC milled, which 

means that they are built from a solid aluminium block, based on a 3D computer model. 

CNC milling has some limitations, mainly related to tool dimensions and machine 

characteristics which can lead to design restrictions [2]. 

2.2. Additive Manufacturing  

Additive manufacturing (AM) started as a fast way of producing small batches or 

prototypes without the disadvantages related to the high production. The new 

manufacturing processes allowed engineers to study and develop their products without 

the need of using conventional manufacturing processes before final product stage. This 

allowed a reduction in material and costs during prototype stage. 

As the years passed, additive manufacturing started to get more and more attention and 

the processes began to take advantage of new technology available in the market. Only a 

few years after its first appearance it was possible for the public to buy a 3D printer and 

start prototyping. However, it is important to remember that commercial 3D printers 

Figure 2.4- Brake calliper assembly. Adapted from [44]. 
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became affordable not only by the innovations that occurred in the sector but also by the 

patents release that based those innovations. 

The process of additive manufacturing of a component starts with the computer modelling 

of the desired product. The designer must consider the limitations associated with 

production stage (ex: dimension; tolerances, material and equipment). AM presents some 

advantages over more conventional manufacturing processes, however, it is not free from 

constrains and requires attention through all production stages. After the design stage, the 

component is fabricated layer-by-layer. In other words, the manufacturing process consists 

in the deposition of several layers of material on the top of each other to produce the 

desired product. This type of production is inherently less wasteful than more traditional 

subtractive processes and has the potential to generate economic value from the 

environmental impact of business activities. 

Additive manufacturing has proven to be a reliable method for producing a small number 

of complex parts that would be very difficult to produce using conventional manufacturing 

processes and therefore more expensive. Many industries already produce components by 

AM and are constantly improving the technology to answer very specific needs. The food 

and Drug Administration (FDA) of USA has approved the technology for human use 

devices; International space station has a AM machine for producing components that can 

be used in space, decreasing the need of space travels; many automotive manufacturers 

also use AM to produce components that will be used in commercial vehicles [3].  

2.2.1. Additive Manufacturing Families and Processes 

Additive manufacturing can be sorted in seven different families according to the 

processes that lead to the final component: Binder Jetting; Material Jetting; 

Photopolymerization; Sheet Lamination; Directed Energy Deposition; Extrusion; Dust 

Fusion. 

Binder Jetting: The process consists in two main stages. During 1st stage the material is 

applied, layer-by-layer on the build area by the coater. During 2nd stage 

binder material is applied over the material connecting every single 

material grain. After 2nd stage the building area moves and both processes 

are repeated until the final component is obtained. After production, the 

component is cleaned, and any excess material is removed to be recycled. 

Binder jetting examples: VoxelJet and ExOne  

Material Jetting: The process consists in jetting tiny droplets of liquid plastic over the 

build area. After a small layer is obtained, a UV light cures the plastic, solidifying it. The 

process will be repeated several times until the final component is obtained. Most 

advanced systems can build multi-material parts and adjust material properties (heat 

resistance or durability).  

Material jetting examples: Projet and Multi-jet Modeling 

Photopolymerization: This process uses a specific type of liquid resin that is located into 

a tank according to machine specifications. A laser unit directs a UV light beam into a 

reflective mirror that moves allowing the geometry to be drawn on the resin. The path 

drawn by the UV light in the resin becomes solid forming a layer. This process is repeated 

several times until the component is completed.  
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Photopolymerization examples: Stereolithography and DPL  

Sheet Lamination: The process basis on the deposition of a solid sheet of material (metal; 

paper or polymer) that is cut forming a 2D layer. This operation is repeated several times 

as the material is glued or welded together forming a 3D object.  

Sheet lamination examples: Laminated Object Manufacturing  

Direct Energy Deposition : DED is a process where the metal is delivered instead of 

worked in a powder base. The material (powder or wire) is put in contact with an energy 

source (laser) in order to create a melt pool in the nozzle head. This nozzle deposits the 

melted material directly in a platform or part. Usually the nozzle is coupled with a CNC 

system which allows the formation of the desired geometry.  

Direct energy deposition examples: Laser Metal Deposition 

Extrusion: Process used in most commercial 3D printers. It works by depositing melted 

material layer by layer, through a small hole in the machine nozzle, on the top of a 

surface/base. The materials used are mostly thermoplastics.  

Extrusion examples: Fused Deposition Modelling  

Powder bed fusion: In this family of processes a layer of powder (metallic; polymeric or 

ceramic) is spread on the top of a moving bed and the powder is fused by a laser beam as 

it reaches the powder surface. After each step, a new layer of powder is spread and the 

process repeats until the component is completed.  

Powder bed fusion examples: Selective Laser Melting and Selective Laser Sintering 

Hybrid Process:  This type of processes consists in the use of more than one type of 

manufacturing process in order to produce the finish component. One example could be 

the use of an additive process to obtain the part and the use of a machining process in order 

to finish the component. Two types of manufacturing processes were needed in order to 

obtain the final part. 

2.2.2. Additive Manufacturing Stages 

All additive manufacturing processes require a computer 3D model previous to the 

manufacturing stage that can be done using a variety of computer modelling programs. 

The 3D model file needs to be converted to a stereolithography (.STL) file, which 

represents the component by small triangular shapes (the majority of computer design 

programs have an option that allows the file to be saved in the desired format). The size 

of the STL file elements dictates the process precision, a bigger number of small elements 

will lead to a more precise 3D representation of the component.  

AM processes require a geometry split layer by layer split to produce the component, and 

the STL file is split in layers. To achieve this goal, the STL file is converted to a Slice 

Layer Interface (SLI) format. The initial 3D model must take the material to be used into 

account, and, at this point the material should have already been selected. The next step 

will be the definition of production parameters according material, design, and 

manufacturing process. AM allows post processing operations to be performed to improve 

components mechanical properties and surface finish. 
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Additive manufacturing stages are represented in figure 2.5.  

 

Figure 2.5- Manufacturing stages. Adapted from [4] 

 

Layer by layer deposition presents an advantage of allowing the component to be treated 

as a set of 2D layers. However, 2D component sectioning leads to what is commonly 

known as “staircase effect”. Meaning that depending on the process parameters and 

material, final components can present visible layers of material, as presented in figure 2.6 

[5].  

 

Figure 2.6- Staircase effect. Adapted from [6] 
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The “staircase effect” can be overcome in 2 different ways. The first solution is regarding 

pre-manufacturing operations:  

- Computer modelling optimization. 

- Material properties. 

- Process and equipment parameters. 

 

The second approach to eliminate “staircase effect” involves after-manufacturing process: 

- Machining processes. 

- Grinding processes. 

- Coating processes. 

 

Both solutions are applicable in solving the “staircase effect” problem. However, if the 

component is subjected to a post-printing process, the complete component manufacture 

might become an hybrid process.  

 

2.2.3. Advantages and Limitations  

Additive manufacturing, like any other manufacturing process presents advantages and 

limitations. The final component properties will depend on the type of process and material 

used. 

Although some processes present specific advantages and limitations, a set of characteristics 

can be generalized as AM advantages: 

- Cost/Complexity relation: Since additive manufacturing is based on a previous 3D 

model sliced in 2D layers, the freedom of shapes is virtually limitless. In other words, 

2D layer deposition provides the user a design freedom that more conventional 

process cannot fulfil (ex: geometry optimization or the possibility for creating 

geometries that would be impossible or very expensive to produce using more 

common subtractive processes). 

- Assembly sets: AM layer deposition allows the production of assembly sets, instead 

of the conventional individual part production. It is possible to manufacture a 

complete set (building area dimensions must be respected) in one manufacturing 

operation. This allows for a reduction in the total number of different parts and 

assembly costs. 

- Materials: AM allows the use of a materials wide range, depending on the type of 

process to be used. Unlike conventional manufacturing processes (subtractive), AM 

allows the application of materials that would be very difficult to work on using other 

types of processes (table 2.1). 

- Design freedom: 2D layer deposition allows the user to design a virtual limitless 

number of shapes impossible to recreate using more conventional manufacturing 

processes. For more complex shapes it is possible for the software to create support 

structures, to be removed after manufacturing, as shown in figure 2.7.  
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Table 2.1- Additive Manufacturing Material. Adapted from [8] 
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Figure 2.7- Support structures in Selective Laser Melting. Adapted from [7] 

 

It is important to keep in mind that additive manufacturing, as other manufacturing 

processes, presents limitations. 

The following additive manufacturing characteristics are presented as process limitations: 

- Production time: Additive manufacturing is a time-consuming process, depending 

on the component dimensions and the process used, with the manufacturing process 

taking until a few days. Pre-manufacturing processes also take more time than 

conventional methods, computer modelling and the set-up phase must be optimized 

to obtain the best results. 

- Size limitations: AM only allows manufacturing inside the building area, meaning 

thar for each AM process there are dimensional constrains that can not be exceeded, 

otherwise the component can not be produced. 

- Precision: In some cases, layer by layer deposition introduces precision errors, 

meaning that the final component needs to go through post processing processes to 

improve surface quality. 

- Large scale costs: As AM processes are more time consuming than conventional 

manufacturing process, the costs associated increase. This characteristic is enhanced 

in large production batches. 

2.2.4. Metal Additive Manufacturing  

Metal additive manufacturing processes allow the production of components using, as the 

name indicates, metallic alloys. In this type of processes, small metallic particles are used to 

form a new part. 

The most significant metal additive manufacturing processes are as follows: 

- Binder Jetting: This type of process uses a powder bed. An inkjet printer head is 

used to spread a liquid binder onto the powder after each layer of powder deposition 

as shown in figure 2.8. The process is repeated until the part is completed. The 
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process does not require heat to bind the material, however, the new metal component 

needs to be sintered afterward. 

 

 

Figure 2.8- Binder Jetting, adapted from [9]. 

 

- Nanoparticle Jetting: In this type of process the print head deposits a fine layer of 

metal liquid droplets on the building tray. Temperatures can reach up to 300ºC 

leading to the liquid evaporation around the metal particles. A sintering process is 

required after printing. The process is illustrated in figure 2.9. 

 

 

Figure 2.9- Nanoparticle Jetting process, adapted from [10]. 

 

- Electron Beam Additive Manufacturing: Metal is deposited directly into the 

component, layer by layer, from wire feed stock. A dual wire feed system can be used 

to increase productivity. The final component might require a post processing 

operation, for example a machining operation. The process is illustrated in figure 

2.10. 
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Figure 2.10- Electron Beam Additive Manufacturing process, adapted from [11]. 

 

- Sheet Lamination: This type of process consists in the deposition of metal, layer by 

layer, being trimmed and adjusted in between layers as presented in figure 2.11. After 

all layers are linked together, the part is completed. 

 

 

Figure 2.11- Sheet Lamination process, adapted from [12]. 

 

- Electron Beam Manufacturing: It is a type of powder-based print system that uses 

a powerful electron beam to melt the powder (contour melting, hatch melting) layer 

by layer. The electron beam unit allows a fast and accurate beam control. The 

equipment is shown in figure 2.10. 
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Figure 2.12- Electron Beam Manufacturing process. 

 

- Selective Laser Melting: This is a type of manufacturing process similar to Electron 

Beam Manufacturing. The metal powder is melted, layer by layer, to produce the 

final component. SLM is one of the most appealing metal additive manufacturing 

process available today. There is a wide range of materials that can be processed 

using this technology which makes it ideal for rapid prototyping and mass 

production. This type of process will be explored in chapter 2.2.5. Figure 2.11. 

illustrates the equipment used for SLM. 

 

 

Figure 2.13- Selective Laser Melting process [13]. 
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2.2.5. Selective Laser Melting  

Selective Laser Melting is a type of powder bed fusion process. The process consists 

in the selective fusion of powder metals using a laser beam, layer by layer, to produce 

the final component. 

Selective Laser Melting is an iteration derived from SLS technology. Selective Laser 

Sintering is a type of additive process which consists in the melting of powder 

material, typically polyamide or nylon by a laser, layer by layer to achieve a final 

component. 

In SLM the metallic powder is heated above the fusion point (melting), fusing the 

particles together into a solid form. SLS is mainly used to process polymeric 

materials, while SLM can process a wide range of metals. One of the main differences 

between both processes is that in SLM the material is heated above the melting point, 

while in SLS the powder is not fully melted, reaching only sufficient temperatures to 

partial fuse the powder (sintering). 

The SLM equipment includes a chamber, filled with metal powder that is gradually 

spread over the building plate in very thin layers by a roller blade. The powder is fused 

using a high- power laser in a 2D slice of the part selectively melting the powdered 

material. The building plate moves down to allow the roller to deposit another thin 

layer of powder. The process is repeated until the final component is achieved, figure 

2.14. 

 

Figure 2.14- SLM, inside the machine process, from [14]. 

 

The process uses an inert gas (Argon) to control/avoid oxidation and promotes expelling 

fumes generated during the metal melting stage. 

The powder: The size of the powders used in SLM have an average diameter of 20 to 45 µm. 

This powder is spread over the building platform by the roller and melted layer by layer. In 

between each layer of powder deposition, the building table moves down between 25 to 50 

µm. The process is repeated until the final component is achieved. SLM technology uses a 



Additive Manufacturing of a Vehicle Brake System Component 

20 

 

 

wide range of metallic materials: Al-based alloys; Ni-based alloys; Ti-based alloys; Co- 

based alloys; Fe-based alloys; Cu-based alloys [14]. 

The laser: The laser beam allows to selectively melt the material to form solid layers from 

the powder. The light is produced in laser units generally located in the machine lower part. 

It is then guided to the optical unit throw fibre optic cables. The laser´s width is continuously 

optimized by the optical unit through movable lenses. Inside the scanning head two adjusting 

mirrors control the direction of the laser allowing the beam to be directed to the building 

chamber where it melts the metal powder. 

In order to obtain final components according to the initial model dimensions and to 

minimize components porosity a careful configuration of the manufacture parameters is 

required. 

The most influent parameters in the material structure are laser power and scanning speed. 

Melting temperature defines the amount of liquid phase in the metal components which is 

further influenced by the energy transferred to the powder. Both laser power and scanning 

speed influence the energy transferred to the powder, as shown in equation 2.1 [15]. 

 

 
𝐸𝐷 =

𝑃

𝑒. ℎ. 𝑣
 

(2.1) 

   

- P (W): Laser beam power. 

- e (mm): Powder layer thickness. 

- h (mm): Space between each coater. 

- v (mm/s): Laser beam speed. 

 

Depending on different combinations of laser power and scanning speeds the SLM process 

can be divided in four different cases, where each case presents different material mechanical 

properties [15]. 

I. No melting: The laser beam has insufficient energy to melt the powder material, 

therefore, a large amount of powder remains in its initial state. 

II. Partial melting: A liquid phase on the particles’ surface is formed due to a 

combination of medium laser beam performance and low scanning speed (<0.06 

m/s). 

III. Melting with balling phenomenon: A higher laser power and scanning speed are 

used when compared to the partial melting phase, leading to the formation of 

long, thin cylindrical lines which later split into rows of coarse beads. Indicating 

that the parameters are still inadequate. 
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IV. Complete melting: Permanent tracks of molten material are created indicating a 

great laser energy. Lines are formed from the fully melted material forming a 

compact solid surface. 

The different stages can be observed in figure 2.15. 

 

Figure 2.15- SLM mechanical properties parameters, adapted from [15]. 

 

The results shown above regarding the combinations of laser power and scanning speed were 

demonstrated using stainless steel 316L with a layer thickness of 20µm according to D .Gu 

and Y .Shen [16]. 

Another important factor to consider in SLM is the hatch angle. The hatch angle is the angle 

between laser scanning directions on consecutive layers of powder deposition. It means that, 

using a hatch angle of 120º, the fourth row of deposition will be equal to the orientation of 

the first layer rows (as represented in figure 2.16). 

 

Figure 2.16- Hatch angle and interval number, adapted from [17]. 
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According Kay Guan et al. [16] the selection of an unsuitable hatch angle can lead to a poor 

construction quality of the manufactured components. During the study, samples of stainless 

steel 304 built using the same laser power and scanning speed were investigated. See table 

2.2 for SS-304 SLM built samples parametrization. 

Table 2.2- Parameters for SLM manufacturing of SS-304. 

SLM parameters for SS-304 hatch angle analysis 

Laser power 200 W 

Scanning speed 0.25 m/s 

Layer thickness 20 µm 

Overlap rate 40 % 

Building direction 0º 

Hatch angle 90º; 105º; 120º; 135º; 150º 

 

According to the properties of investigated samples, the units built using a 105º hatch angle 

presented the most satisfactory mechanical properties in many applications. During the 

study, a relation between the hatch angle and the mechanical properties was found (Table 

2.3). 

Table 2.3- Mechanical properties of SS-304 depending of hatch angle. 

Hatch angle (º) σ 0.2 (MPa) UTS (MPa) 

90 530-551 696-713 

105 566-570 714-717 

120 540-545 682-685 

135 541-556 691-693 

150 534-555 698-703 

 

2.2.6. SLM vantages and limitations 

Selective Laser Melting, like all AM processes, presents advantages and limitations. It is 

important to remember that it is a relatively new process in constant development, therefore 

constant improvements are being made to maximize its potential as a manufacturing process. 

SLM advantages are as follows: 

- Large range of metals available for use with the process 

- Relatively low cost of the process 

- Optimized designs to reduce the need for assembly 

- Ability to manufacture complex shapes and internal features 

- Ability to produce multiple parts at the same time  

SLM limitations are as follows: 

- Specialized knowledge and skills required 

- Relatively small print area depending on the equipment 

- Rough surface quality 

- The process might be expensive if the component is not optimized for production 
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- Post-printing operations required 

SLM is a high-potential technology being used in many applications. As the technology 

grows, the process and material become cheaper and it should become more and more 

widespread [14]. 

2.2.7. Balling phenomena 

During the SLM process, while the melting track is created by the laser melting the powder, 

a shrinking tendency occurs to decrease surface energy due to surface tension. According to 

Gu. D and Yifu. S, in this condition, the balling effect can easily occur influencing 

thermodynamic and kinetical characteristics during powder melting stage, resulting in the 

formation of discontinuous melted tracks [18]. 

When production parameters are not set up properly the powder is either not fully melted or 

completely melted, forming large drops that quickly increase in size, leading to the formation 

of a large droplet with size that can exceed laser diameter. This phenomenon described by 

Tolochko et al. is called balling [19].  

The balling phenomena leads to disadvantageous effects in process and component quality 

that can be summarized as follows: 

- Increase in surface roughness leading to an increase in post-production operations, 

leading to a more time-consuming process. 

- Increase in component porosity leading to poor mechanical characteristics of the final 

component. 

- Severe cases of balling can lead to an obstruction to paving roller movement, 

scratching the component and in extreme cases to production stoppage. 

Balling effect is not yet fully understood, the formation process and influencing factors are 

extremely complex and not clear. Previous studies have been written in the scope of Balling 

phenomena during SLM. Tolochko et al. and Gu et al. pointed out that balls can be divided 

in two types: Ellipsoidal Balls and Spherical Balls, as presented in figure 2.17. 

 

Figure 2.17- A) Ellipsoidal, big size balls B) Spherical, small size balls. Adapted from [20]. 
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The formation of small balling (spherical balls) during the SLM process can be considered 

as universal. This type of balling will not interfere with the powder paving process, thus the 

negative impact of small size balling can be ignored. On the other hand, the formation of big 

size balls (ellipsoidal balls) can block the powder paving process, leading to component 

damage and in extreme cases, process stoppage. 

The balling phenomena can be reduced by reducing the oxygen content in SLM atmosphere. 

According to Ruidi Li et al. during the process of selective laser melting powders of stainless 

steel and nickel based alloys, on an atmosphere with an oxygen content of about 0.1%, a 

smooth melting surface is created without balling initiation [20]. 

Regarding laser power and scanning speed, both parameters must be carefully adjusted to 

avoid balling formation. The relation between high laser power and low scanning speed 

presents a beneficial continuity in powder melting stage without balling initiation [20]. 

During the powder melting stage, the relation between laser power (P) and scanning speed 

(v) can be estimated by a single parameter, the linear energy density (λ) as presented in 

equation 6.1. 

 
𝜆 =

𝑃

𝑣
 

(6.1) 

 

   

   

According to equation 6.1 either an increase in laser power or a decrease in scanning speed 

will lead to an increase in energy density, thus increasing the temperature during melting 

stage. Leading to a large amount of liquid phase with a lower viscosity that spreads to 

surrounding unmelted solid particles. During this scenario, the liquid spreads and flows more 

easily reducing the chances of balling initiation [16]. 

During powder melting stage, thickness of powder layer has a great influence in balling 

formation. From an energy density viewpoint, it is possible to notice that an increase in layer 

thickness can lead to a decrease in laser intensity per melted volume [16]. “Volumetric 

energy density (VED)” relates laser power (P), layer thickness (d) and scan line spacing (h) 

as presented in equation 6.2. 

 
𝑉𝐸𝐷 =

𝑃

𝑣. ℎ. 𝑑
 

(6.2) 

 

   

   

According to equation 6.2 an increase in layer thickness (d) while maintaining the remaining 

parameters will translate in a volumetric energy density decrease, leading to the initiation of 

balling phenomena.  

The balling phenomena can also be decreased by remelting the surface of the component, 

leading to the melting of previously formed balls.  
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2.2.8. SLM over other AM processes 

As shown until this point, SLM technology presents a set of appealing characteristics which 

make the process an interesting technology for the manufacture of metal components. 

However, it is important to remember that other AM processes are available in the market, 

competing with SLM technology. 

Binder Jetting comes as an alternative to SLM, allowing a “cleaner” process. The absence 

of a melting stage leads to a more energy efficient process with 100% recyclable powder and 

no wrapping areas in the final components. However, the same lack of a melting stage leads 

to a final part with less strength. 

Nanoparticle Jetting allows the production of a high resolution and density component, 

reducing the need for post-production processes (ex: machining, sintering). On the other 

hand, the process is relatively new in the market, leading to a low range of metallic materials 

available and a high production cost. 

Electron Beam Additive Manufacturing is one of the fastest and most cost-effective Additive 

Manufacturing process in the market for producing metal parts. It has the widest range of 

commercial-available metal Additive Manufacturing systems allowing the use of a dual feed 

system for a dual material melting pool. However, the low accuracy of EBAM requires the 

final components to go through a wide range of post-production processes, increasing 

production time and costs. 

Sheet Lamination allows a fast production time and is relatively cost-effective. The process 

does not require support structures and the construction platform is significantly larger when 

compared to other AM processes. However, the process has a limited material selection, 

layer thickness can only be altered by changing the sheets and the waste can be significant. 

After analysing the most prevalent metal additive manufacturing processes, Selective Laser 

Melting was chosen to produce the final component in the aim of the present project. The 

ability to produce complex shapes and internal features (impossible to achieve via 

conventional manufacturing), produce several parts at the same time and manufacture 

components using a large range of materials make the SLM process stand out from the rest 

of the metal AM processes. 
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 Brake System Study 

The sizing of a competition vehicle brake system is a very complex study. The system is 

comprised of many parts including a master cylinder, calliper and brake lines. It is essential 

that all the variables considered match the real-life conditions to obtain the best results 

possible. 

In the type of vehicle to be studied all four wheels are outside of the body as shown in figure 

3.1. This characteristic expose some of the brake system components to advert conditions 

such as water and dust from the road. 

 

Figure 3.1- Formula Student, IPLeiria. 

 

The main goal is to obtain a high-performance brake system that can provide great stopping 

power to the vehicle, considering the conditions in which it will operate. The single seater 

will operate in a closed track reaching speeds up to 100 km/h and each race should not exceed 

de duration of 20 min. 

The single seater already has a functioning brake system that allows for the vehicle to stop 

and reduce speed on demand. However, this system was applied without any previous study. 

Most of the components used are off the shelf components that were put together by the 

students in a short period of time to meet competition deadlines. 

In the following pages the components and forces applied to the braking system are going to 

be analysed to identify possible improvements. 

To compute the variables, Maple software was used. Maple software is a powerful calculator 

that allows changes in the variables to obtain different results. This provides the opportunity 

of trying different values associated with different components to compare results and chose 

the ones more suitable for each situation. 
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3.1.  Forces Applied to the System 

As the vehicle moves through the road a group of forces are applied to it, dictating the 

behaviour during acceleration, cornering and braking. This rule applies to all road vehicles 

with the difference being in the magnitude of the forces that can change according to vehicle 

size, tires, and physic characteristics. In this case the focus is going to be on the braking used 

at the Formula Student Single Seater vehicle. 

The forces considered are shown in image 3.2. 

 

Figure 3.2- Forces applied to the system 

 

The vehicle has two wings that provide downforce while traveling at high speed, a front and 

a rear one. The force provided by the wings is represented as Fd. There is also a force with 

opposite direction of the movement of the vehicle represented by Far corresponding to the air 

force, actuating on the vehicle while it moves. The weight of the vehicle is represented as 

Wc and applied on its mass centre. Contact points with the road are 4 tires, where the forces 

Ra and Rb act. Finally, A, B and C correspond to the distances between the front wheel and 

mass centre (A), the front and rear wheel (B) and the mass centre and rear wheel (C). 

The magnitude of the downforce applied by the front and rear wings can be changed by 

altering the wing’s surface angle, using different shape wings. During calculations it was 

defined a shape and area for both wings to obtain estimated downforce values. However, the 

values can be altered if the wings are changed or modified. 

3.2.  1st Approach  

The first approach consists in the study of the braking system considering maximum disc 

pressure without wheel slide occurring. 
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The data used in this chapter is based on already existing values associated with the single 

seater, obtained from wind tunnel simulations, and this data are shown in table 3.1. 

 

Table 3.1- Data from formula student  

Variable  Value (unit) 

Air density (ρ) 1.225 kg/m3 

Velocity (v) 100 km/h 

Front wing’s projected area 0.2 m 

Rear wing’s projected area  0.4 m 

Front wing’s lift coefficient  0.8 

Rear wing’s lift coefficient 0.4 

Drag coefficient  0.4 

 

It is important to notice that there are 2 different values for the projected area and lift 

coefficient, these values are associated with the front and rear wings. As said before, the 

vehicle´s aerodynamic characteristics can be changed by altering the angle of the wings. This 

alteration will result in a different projected area and lift coefficient. The values found in the 

table are according to the measurements taken before the disassembly of the formula student. 

3.2.1. Aerodynamic Forces 

Aerodynamic forces relate with the vehicle´s air contact. Meaning that the force magnitude 

increases with the vehicle speed. The aerodynamic forces can be divided in 2 categories 

(Figure 3.3): 

1. Downforce 

2. Air resistance (Drag) 

Downforce is caused by the front and rear wing of the vehicle pushing it to the road while 

traveling at speed. This force is related with the projected area of the wing. On the other 

hand, air resistance is caused by the vehicle trying to move through the air. According to K. 

Rao, “Drag is a force acting opposite to the relative motion of any object moving with respect 

to a surrounding fluid” [21].  
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Figure 3.3- Representation of drag and downforce.  

 

The downforce applied to the system can be calculated according to equation 3.1. The 

equation relates air density (ρ), lift coefficient (Cl), projected area of the wing (Aw) and 

vehicle speed (v). The reference area found in downforce and drag equations (A) is often the 

orthographic projection of the object (frontal area) on a plane perpendicular to the motion 

direction. 

 

 
𝐹𝑑 =

1

2
. 𝜌. 𝐶𝑙. 𝐴𝑤. 𝑣2 

 

(3.1) 

 

It is important to notice that velocity has a quadratic influence in the equation result. Since 

air density, projected area and lift coefficient are constant, velocity will impact drastically 

the equation result. Above all it is important to understand this relation. Wings are set at a 

certain angle dictating the amount of air flowing above them. However, if the car is moving 

slowly there would not be enough air passing by the wings to provide downforce. On the 

other hand, if the car is moving at high speeds there will be more air passing by the wings, 

hence providing more downforce. 

The downforce application point on the vehicle is according the wing projected area. 

Meaning that the downforce application point on each wing must be transferred to the 

vehicle according wing location (See figure 3.4 and 3.5). 

https://en.wikipedia.org/wiki/Orthographic_projection
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Figure 3.4- Front wing attachment points. 

 

 

Figure 3.5- Rear wing attachment points. 

 

According to the wing projected area, the downforce application points on the vehicle will 

be around the wing connection points. The exact location of the downforce application points 

will be presented in the following chapter. 

Drag, also known as air resistance, similarly to downforce, relates velocity (v) and air density 

(ρ). The other variable is the projected area of the front of the single seater (Af) and drag 

coefficient (Cd). The relation between the variables is the same as in equation 3.1. as shown 

in equation 3.2. 
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𝐹𝑑𝑟𝑎𝑔 =

1

2
. 𝜌. 𝐶𝑑 . 𝐴𝑓 . 𝑣2 

 

(3.2) 

   

Once more, velocity is the main factor influencing drag. In a real-life scenario, it becomes 

more difficult to overcome the air barrier with the speed increase. 

According to Formula Student Data, the single seater will not overcome 100 km/h so it is 

important to know how this speed will affect the forces imposed to the system. Considering 

the data from table 3.1, and considering a 100 km/h road speed, it was possible to calculate 

the aerodynamic forces, as presented in table 3.2. 

Table 3.2- Results from Maple Software regarding aerodynamic forces. 

Variable  Value (unit) 

Downforce at the front  75.62 N 

Downforce at the rear 75.62 N 

Drag force 340.28 N 

 

It is now possible to have a better understanding of the magnitude of the forces acting on the 

vehicle while traveling at 100 km/h. The downforce would be of 75.62 N at the front and 

back, a total of 151.24 N. Since the single seater weights 3531.6 N with a driver, the total 

downforce applied to the system corresponds to a 4.3 % weight increase (equation 3.3). 

 
𝑊𝑔𝑎𝑖𝑛 = (

151.2

3531.6
) . 100 = 4.3 % 

(3.3) 

 

In normal conditions the force provided by the wings does not translate in a big dynamic 

improvement. In low speed cases the downforce increase can be dismissed. Nevertheless, it 

cannot be forgotten that the angle and size of the wings can be changed, thus changing the 

magnitude of the force. 

Regarding air resistance it acts as a barrier to speed increase, at 100 km/h the force acting 

with opposite direction to the movement of the car is of 340.28 N. This value, similarly, to 

downforce, grows with speed increase. As a reference, the value of drag at a speed of 50 

km/h would be of 85 N. 

In conclusion both aerodynamic drag and downforce play a role in slowing a vehicle down. 

Downforce allows for the vehicle to grip to the surface when in braking conditions it starts 

to slide, even if by just adding 147.15 kg to the car´s mass. On the other hand, air resistance 

imposes a force with opposite direction of the motion of the car that contradicts the single 

seater´s movement. 

3.2.2. Load transfer 

There are two main types of load transfer, lateral load transfer and longitudinal load transfer. 

The main goal during this section is to understand load transfers and how they affect 
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handling during braking conditions. Both lateral and longitudinal loads depend on the 

vehicle mass centre [22]. 

Lateral load transfer occurs during cornering. It can be defined as the shift of mass across 

the wheels due to lateral acceleration and centrifugal force. 

While cornering a vehicle creates a force known as centrifugal force that acts against the 

lateral acceleration which is created by the grip from the tyres (See figure 3.6). 

 

 

Figure 3.6: Lateral forces during cornering. Adapted from [22] 

 

It is possible to relate lateral acceleration (Ay) and centrifugal force while cornering. 

Centrifugal force always acts in the opposite direction of lateral acceleration and will be the 

product of vehicle mass (W) and acceleration as shown in equation 3.4  [22]. 

  

 𝐶𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 = −𝑊. 𝐴𝑦 (3.4) 

 

Longitudinal load transfer occurs during acceleration or braking when a reaction force is 

generated. For example, during acceleration, a force with opposite direction of the vehicle´s 

movement will occur until the vehicle reaches a constant speed.  

Both longitudinal and lateral load transfer are important factors that need to be considered 

when studying vehicle dynamics. For the purpose of the present project the main attention 

will be for longitudinal load transfer occurring during braking manoeuvres. 
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For the present study, the considerations taken were the following: 

- The vehicle brakes in a straight line 

- The mass centre is located at equal distance from left and right wheels 

- The 4 tyres are in constant contact with the ground 

Since the different types of load transfers are already defined, it is imperative to find the 

point in which the load will be applied to continue with calculations. See image 3.7. 

 

Figure 3.7- Striped vehicle main dimensions. 

 

Analogous to what was explained before, during a braking maneuverer the vehicle rolls 

forwards. Meaning that the front wheels will be under more stress than the back wheels. 

Consequently, the front brakes will withstand most of the forces applied to stop or slower 

the vehicle down. So, the front brakes will be the reference for studying the system. It is 

obvious that if the front brakes can impose and withstand the forces needed to stop the car, 

so will the back brakes. 

3.2.3. Resultant Forces 

At this point of the study the main goal is to find the forces acting on the tires during a 

braking maneuverer. Tires are the only part of the vehicle in direct contact with the ground. 

There is no point in applying a tremendous amount of force on the brakes if the tyres can not 

deal with the deceleration imposed, therefore locking, and making the vehicle slide. So, to 

calculate the resultant forces acting on the tyres the variables presented in table 3.3 were 

considered. 
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Table 3.3- Variables to calculate tyre resultant force. 

Variable  Value (unit) 

Drag force   340.28 N 

Front wing’s downforce  75.62 N 

Rear wing’s downforce  75.62 N 

Vehicle’s mass (with pilot) 360 kg 

Gravity acceleration  9.81 m/s2 

L1 510 mm 

L2 833.86 mm 

L3 760.14 mm 

H1 219.80 mm 
 

In the free body diagram presented in figure 3.8 all the forces acting on the vehicle during 

a braking manoeuvre are considered, allowing the definition of the balance equations (3.5, 

3.6 and 3.7). 

 

 Figure 3.8- Forces acting on the single seater. 

 

The balance equations for the static system presented are as follows: 

 ∑ 𝐹𝑥 = 0 → 𝐹𝑎𝑟 + 𝑅𝑎𝑥 + 𝑅𝑏𝑥 − 𝐹𝑑𝑒𝑐 = 0 
(3.5) 

 

 ∑ 𝐹𝑦 = 0 → −𝐹𝑑1 + 𝑅𝑎𝑦 − 𝑊𝑐 + 𝑅𝑏𝑦 − 𝐹𝑑2 = 0 
(3.6) 

  

  ∑ 𝑀𝑎 = 0 → 𝐿1. 𝐹𝑑1 − 𝐻1. 𝐹𝑎𝑟 − 𝐿2. 𝑊𝑐 + (𝐿2 + 𝐿3). 𝑅𝑏𝑦

+ 𝐻1. 𝐹𝑑𝑒𝑐 − (𝐿2 + 𝐿3 + 𝐿4). 𝐹𝑑2 = 0 
 

(3.7) 

 

 

Ra and Rb represent the tyres reaction with the road. For each of the tyres the resultant force 

can be divided in 2 vectors, a horizontal and a vertical one. These vectors are related in the 

matter that one is equal to the other when multiplied by the friction coefficient (See equations 

3.8 and 3.9). 
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 𝑅𝑎𝑥 = 𝑅𝑎𝑦. µ (3.8) 

  𝑅𝑏𝑥 = 𝑅𝑏𝑦. µ (3.9) 

 

Coefficient of friction measures the amount of friction between two surfaces. A high value 

indicates that the force required for sliding to occur is higher than the force required when 

the coefficient is low. Friction coefficient between the asphalt and the rubber tyres is of 1.3 

considering a dry surface and regulated tyres, according to AVON tyres motorsport [23]. 

Deceleration force is caused by vehicle braking and its units are g, with the gravitational 

acceleration of 9.81 m/s2. So, deceleration force in becomes as shown in equation 3.10. 

 
𝐹𝑑𝑒𝑐(𝑔) =

𝐹𝑑𝑒𝑐

𝑚. 𝑔
 

(3.10) 

 

 

Considering the system balance equations (equations 3.5, 3.6 and 3.7), the relation between 

tyre forces and friction coefficient (equations 3.8 and 3.9) and deceleration force (equation 

3.10) it is possible to find the resultant forces acting on the tyres during braking. 

The results obtained are shown in table 3.4. 

Table 3.4- Resultant forces acting on each pair of tyres. 

Variable  Value (unit) 

Front tyre vertical reaction (axle) 2446.03 N 

Front tyre horizontal reaction (axle) 3179.84 N 

Rear tyre vertical reaction (axle) 1236.81 N 

Rear tyre horizontal reaction (axle) 1607.85 N 

 

The values of Rax and Rbx are 3179.84 N and 1607.85 N, respectively. Deceleration causes 

the horizontal component of the tyres reaction force to be greater than the vertical 

component. It is also the reason why Rax is higher than Rbx. During a braking manoeuvre, the 

vehicle rolls forwards due to the deceleration force acting on the gravity centre, causing the 

front wheels to be under more stress than the back ones. 

As shown in figure 3.8, only two wheels were considered (axle), so Ra and Rb values 

correspond to both front and rear wheels respectively. In table 3.5, the resultant horizontal 

forces acting on each tyre are presented. 

Table 3.5- Resultant forces acting on each tyre. 

Variable  Value (unit) 

Front right tyre horizontal reaction  1589.92 N 

Front left tyre horizontal reaction 1589.92 N 

Rear right tyre horizontal reaction 803.92 N 

Rear left tyre horizontal reaction 803.92 N 
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The value in which further calculations will be based on is the front wheel horizontal reaction 

force. Different side wheels from the same axle have the same reaction forces. The value to 

consider is 1589.92 N. 

3.2.4. Brake Torque 

During a braking maneuverer, while the driver presses the brake pedal, the brake pads are 

pushed against the disc creating friction, thus stopping the vehicle. 

Brake torque allows for the determination of maximum pressure that can be applied to the 

brake disc without wheel slide occurring. To continue with calculations, the rolling radius 

needs to be determined. The vehicle is equipped with 13-inch O.Z. alloy wheels and AVON 

tyres in all 4 corners, as shown in table 3.6 [23]. 

Table 3.6- Formula student tire size. Adapted from [23] 

  

Knowing the tyre dimensions, it is possible to calculate the maximum brake torque by 

multiplying the tyre rolling radius (Rwh) by the horizontal tyre reaction (Rax), as shown in 

figure 3.9. 

 

Figure 3.9- Rolling tyre dimension. Adapted from [24] 

 

Since tyre diameter is known, it is now possible to determine maximum brake torque 

according to equation 3.11.  

 𝑇𝑓 = 𝑅𝑎𝑥. 𝑅𝑤ℎ (3.11) 
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Maximum brake torque will occur in the front wheels as explained in 1.3. Tf  stands for the 

maximum brake torque at each front wheel and has a magnitude of 407.81 N.m. 

During races, for different road conditions a different type of tyre can be used, thus changing 

rolling radius (Rwh) and friction coefficient (µ). 

3.2.5. Hydraulic Brake Pressure 

To stop the vehicle, brake pads are pushed against the disc brake as explained before, 

imposing a force (F) perpendicular to the rotor plane. The pressure created by the cylinders 

is calculated by dividing the force (F) by the cylinder contact area (A), as represented in 

Equation 3.12. 

 
𝑝 =

𝐹

𝐴
  

(3.12) 

 

 

Each calliper contains 2 cylinders, on different sides of the calliper, opposed to each other 

as shown in figure 3.10. 

 

Figure 3.10- Calliper exploded view.  

 

At this point, one of the brake callipers already installed in the single seater was disassembled 

to get more accurate measures regarding cylinder size. Once disassembled the cylinder’s 

diameter (Dcyl) was measured at 31.75 mm. Therefore, the area actuated in each wheel by the 

brake calliper (Acyl) will be of 0.00158 m2, according to equation 3.13. 

 
𝐴𝑐𝑦𝑙 = 𝜋. (

𝐷𝑐𝑦𝑙

2
)2. 2  

(3.13) 

 

Inside the wheel hub, both cylinders actuate the brake disc at the same place, but at different 

sides. It was assumed the pressure centre at 2/3 of outer radius of the rubbing path of the disc 

and thus the friction drag force also acts on the disc at this radius, which is termed the 

“effective radius” (Ref), to generated braking torque, with the equation 3.14 from [25].  
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𝑅𝑒𝑓 = 𝑅𝑖 +

2

3
. (𝑅𝑒 − 𝑅𝑖) 

(3.14) 

 

 

Nominal pressure between the brake pad and the disc during braking is usually between 1 

and 10 MPa. The true contact area however is a proportion of the total pad area, 20% to 60% 

for moderate braking loads, distributed over several small areas (plateaux) that protrude by 

a few microns above pad surface. This factor is mainly related with brake pad material and 

fabrication methods and will influence pad behaviour during braking. 

Brake pad friction coefficient affects vehicle performance during braking in the way that 

neither a too high nor a too low value is good. If friction coefficient is too low, brake will 

not be flexible. If the coefficient is too high wheel lock will occur. According to European 

standards brake pads are best suited to work in a high temperature environment of 100 to 

300 ºC [26]. 

A brake pad friction coefficient of 0.56 was considered, according to European standards. 

Considering all variables, it was possible to calculate maximum pressure (Phmax) that can be 

imposed to the callipers without wheel slide occurring, according to equation 3.15. 

 
𝑃ℎ𝑚𝑎𝑥 =

𝑇𝑓

µ. 𝐴𝑐𝑦𝑙 . 𝑅𝑒𝑓
 

(3.15) 

 

 

The value for maximum hydraulic brake pressure on the calliper without occurring wheel 

slide is of 44.65 bar. Meaning that during a brake manoeuvre, in dry asphalt, using the tyres 

indicated in table 3.6, the force imposed by the driver on the brake pedal should never be 

more than the enough to produce 44.65 bar of hydraulic pressure on the calliper. Otherwise, 

tyre lock will occur, and the vehicle will slide. 

3.2.6. Maximum Friction Force 

Maximum brake friction force (Ffri) is the maximum force applied to the calliper by the disc 

during braking considering the maximum brake torque. Ffri is perpendicular to the slave 

cylinders movement plane and coplanar to Rax, as represented in figure 3.11. 

 

Figure 3.11- Friction force representation. Adapted from SW. 
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To obtain the maximum force acting on the calliper, maximum brake torque (Tf) must be 

divided by the disc’s effective radius (Ref). See equation 3.16. 

 
𝐹𝑐𝑚𝑎𝑥 =

𝑇𝑓

𝑅𝑒𝑓
 

(3.16) 

 

 

The maximum frictional force (Fcmax) acting on the callipers is of 3959.36 N. In each brake 

pad acts ½ of Fcmax since there is a couple for each calliper. 

3.3.  2nd Approach 

The second approach consists in the brake system study considering the maximum force 

applied by the driver on the brake pedal. Until this point all calculations took in account the 

maximum brake force that could be applied without wheel lock occurring. However, in some 

scenarios, it is possible for the driver to apply a force on the brake pedal higher than the force 

needed to lock up the wheels. Therefore, if the system is designed taking only in 

consideration the 1st scenario, the possibility for brake failure increases. 

At this point the maximum force that can be applied by the driver on the brake pedal 

regarding wheel lock is considered. The force will be transmitted to the master cylinder 

through the brake pedal. Depending on master cylinder characteristics the force imposed will 

translate in fluid pressure that will feed the calliper´s cylinders, pressing the brake pads 

against the disc. 

First and foremost, it is important to understand the forces applied to the pedal system that 

are represented in figure 3.12. 

 

Figure 3.12- Brake pedal representation.  
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During braking, when the driver pushes the pedal forward, a force Ft is applied in C. The 

brake pedal is attached to the vehicle on point A and to the master cylinder on B. So, when 

the force is applied to the pedal, it will rotate over its support point A. The force transmitted 

to the master cylinder will depend on the actual force applied by the driver and the 

dimensions L1 and L2. 

For this approach it is important to consider a “panic scenario”, meaning that the driver will 

impose to the pedal a force quite superior to the one needed to stop the vehicle without wheel 

slide occurring. 

According to formula student regulations, the pedal box assembly should be able to support 

a force of 2 kN without any damage occurring in the box or in adjacent systems [27]. 

Therefore, the maximum force to consider on the brake pedal is 2000 N. 

3.3.1. Force Applied to Master Cylinder 

The human body is a complex machine capable of producing great strength that translates in 

great forces. Strength is the ability to generate muscular tension and to apply it to an external 

object through the skeletal lever system. Sheer muscle mass (thus, body size) is a significant 

factor, with cross-sectional area of the muscle fibbers being a major determinant of the 

maximum force that can be generated. Maximum muscular force (strength) can be exerted 

for only a few seconds [28].  

For the present study, the forces will be imposed by the driver leg which activate the brake 

pedal. Legs possess the biggest muscles in human body, thus capable of imposing forces of 

great magnitude. 

As explained before (section 3.3), the single seater pedal box must be able to withstand a 

maximum force of 2000 N without suffering any damage in the structure or sub adjacent 

systems. So, to obtain a correct study of the brake system, a maximum force of 2000 N was 

considered as the maximum force to be applied on the brake pedal (Ft). 

Equations 3.17, 3.18 and 3.19 allow the determination of the force imposed to the master 

pump. 

 

 ∑ 𝐹𝑥 = 0 → 𝑅𝑏𝑥 − 𝐹𝑡 + 𝑅𝑎𝑥 = 0 
(3.17) 

 

   ∑ 𝐹𝑦 = 0 → 𝑅𝑎𝑦 = 0 
(3.18) 

 

 ∑ 𝑀𝑎 = 0 → 𝐹𝑡 ∗ 𝐿1 − 𝑅𝑏𝑥. 𝐿2 = 0 
(3.19) 
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The brake pedal dimensions are presented in table 3.7. 

Table 3.7- Brake pedal system variables. 

Variable  Value (unit) 

Force applied to the brake pedal  2000 N 

L1 240 mm 

L2 165 mm 

 

The resultant force acting on the master cylinder has a value of 6400 N, according 

calculations. 

The vehicle in question has 2 central master cylinders, as required by regulations. One for 

both the front wheels and one for both the rear wheels. Since there are 2 master pumps and 

no brake limiter, a mechanism of force distribution is required. Otherwise the force imposed 

on the pedal would result in equal pressure on all 4 callipers. The mechanism used to regulate 

force distribution on the master cylinders is shown in figure 3.13. It allows the distance 

between the force application point on the pedal, and the master pumps to be changed, 

therefore changing the amount of force applied in each pump. If the master brake cylinders 

are equidistant from the force application point, the force applied on each one will be half of 

Rbx. 

The force imposed to the front wheels master cylinder must be greater than the one imposed 

to the rear ones. During a braking manoeuvre, the vehicle rolls forward due to weight transfer 

towards the front. Therefore, the front brakes can create more pressure on the disc without 

wheel slide occurring. To proceed with calculations, a maximum distribution of 80 % of brake 

force was considered. It means that the regulation mechanism allows a maximum of 80 % 

of brake force to be applied on the front brakes master pump, as shown in equation 3.20. 

 

 𝐹𝑚𝑐1 = 0.8. 𝑅𝑏𝑥 (3.20) 

 

 

Considering an 80% force distribution, 5120 N are applied to the front brakes master 

cylinder, while the remaining 20 % are applied to the back brakes’ master cylinder. 

In a real-life scenario, the maximum force applied to the brake pedal would be when the 

driver experiences a “panic situation”, meaning that the brake pedal would be pushed with 

the driver maximum force. 
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Figure 3.13- Brake partition system. 

3.3.2. Master Cylinder Characteristics  

Master cylinder is a control device that converts force into hydraulic pressure. The force is 

imposed by the driver when pressing the braking pedal. Pedal movement forces the 

dislocation of a cylinder along master’s cylinder bore, this movement is transferred through 

hydraulic fluid resulting in slave cylinder movement. Two AP Racing (CP2623-88) master 

cylinders were chosen following the dimensions presented in figure 3.14 [29]. 

 

Figure 3.14- Brake Master Cylinder. Adapted from [29] 

 

Hydraulic pressure created by the movement of the piston inside the master cylinder 

compresses the fluid evenly, but by varying the area of the cylinder the force can be changed. 

When the forward movement of the pistons causes their primary cups to cover the bypass 

holes, hydraulic pressure builds up and is transmitted to the wheel cylinders. When the brake 

pedal retracts, the pistons allow fluid from the reservoir(s) to refill the chamber if needed. 

According to AP Racing official website the inside dimensions of the master cylinder are as 

presented in table 3.8 [29]. 
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Table 3.8: Master pump internal dimensions. 

Variable  Value (unit) 

Bore 23.80 mm 

Push rod length  115 mm 

Full stroke 25.40 mm 

Travel to cut-off 0.68 to 1.09 mm 

 

Knowing the characteristics of the master brake pumps it is possible do calculate maximum 

hydraulic pressure in the system, through the equation 3.21. 

 
𝑃ℎ𝑖𝑑 =

𝐹𝑚𝑐1

𝐴𝑐𝑦𝑙
 

(3.21) 

 

 

Fmc1 refers to the force applied to the master pump, presented in equation 3.20. While Acyl 

refers to the master cylinder area inside the brake pump. The maximum hydraulic pressure 

applied to the system, according equation 3.21, is of 115 bar. 

3.4.  Conclusions 

Formula student brake system study presented until this point was important to establish the 

forces and constrains to be considered during component optimization. From the 1st approach 

it was possible to conclude that the maximum frictional force acting on the brake callipers 

without wheel slide occurring is of 3959.36 N, corresponding to a brake pressure of 44.65 bar. 

The 1st approach study represents the most common brake scenario. When the driver imposes 

a brake pedal force superior to the one needed to produce 44.65 bar of pressure, the vehicle’s 

front wheels lock and the pressure is immediately relieved to unlock them. The 2nd scenario 

study is representative of a panic scenario. The driver imposes a maximum force of 2 kN to 

the brake pedal generating a brake pressure of 115 bar. However, this situation will most 

likely never occur, nevertheless it must be considered, because it is stipulated in the 

regulations. 

The 1st scenario will be the most prevalent during a competition where the driver will always 

be pushing the grip limits of the vehicle. For that reason, it is of extreme importance to 

consider a safety factor to 1st approach load conditions, regardless the 2nd scenario. A safety 

factor of 1.5 was imposed to the 1st scenario load conditions to ensure the safety of 

components design. Therefore, the new load conditions acting on each calliper for static 

analysis are presented in table 3.9. 

Table 3.9- Load conditions for calliper static analysis. 

 1st Scenario 2nd Scenario 

Fcmax (N) 5940 5940 

Phmax (bar) 67 115 
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Each calliper is a two-part assembly, and each half contains a brake pad. Therefore, the force 

distribution is as shown in figure 3.15. 

 

Figure 3.15- Frictional force on the calliper.  

 

When the brake pedal is pressed hydraulic pressure is imposed to all the brake system, from 

the master cylinder to the front slave cylinders. Inside the callipers the cylinders are pushed 

against the disc leading to a reaction on the callipers with the same magnitude as the pressure 

imposed to the system. Hydraulic pressure pushes the callipers apart as shown in figure 3.16. 

 

Figure 3.16- Hydraulic pressure acting on the calliper.  

 

Maximum tangential force observed, considering the 1.5 safety factor is of 2970 N in each 

half of each calliper. This is the maximum value of tangential force regardless of brake 

pressure, due to the friction coefficient between the tires and the road. 
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 Standard Component 

As mentioned before, the calliper used in the formula student vehicle is an off the shelf 

product from Wilwood. The calliper was produced using a high-quality aluminium alloy 

making it light and durable. The component is destined to be used in motorcycles or low-

capacity engine vehicles, improving the brake system by reducing weight and increasing 

stopping power. 

During the following sections the brake calliper will be analysed to understand its limitations 

and possible improvements. The forces acting on the system were determined during chapter 

3 and represent the limit scenarios to which the component will be subjected. 

4.1.  3D Modelling 

To study the original component a CAD model was required. The SolidWorks computer 

software was used to design and study the component. 

After all the measures were completed, the component was designed. It is important to notice 

that the main calliper structure can be divided in 2 parts. Both parts are connected using 2 

M8 bolts. Only one of the parts is attached to the sleeve, allowing for the calliper to stay in 

place while the vehicle is moving (figure 4.1). 

 

Figure 4.1- Brake calliper assembly. Adapted from SW. 

 

Regarding component material, Wilwood does not specify the aluminium alloy type used to 

manufacture the brake calliper. However, according to Àdam Horváth et al, in 

“Development of brake calliper for rally-car”, in the development of a similar type brake 

calliper, the material used to CNC manufacture the component was the 7075-T6 Aluminium 

Alloy, with the material properties according to table 4.1 [30].  
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Table 4.1- 7050-T73510 aluminium alloy properties 

Property Value Units 

Elastic Modulus 71999.9992 N/mm^2 

Poisson's Ratio 0.33 N/A 

Tensile Strength 570.0000034 N/mm^2 

Yield Strength 505.0000031 N/mm^2 

Tangent Modulus  N/mm^2 

Thermal Expansion 

Coefficient 

2.4e-05 /K 

Mass Density 2810.000061 kg/m^3 

Hardening Factor 0.85 N/A 

 

The next step in component analysis is to simulate real life conditions using computer 

software, to understand component behaviour and possible improvements. 

4.2.  Static Study  

The main goal of the static study is to understand the component behaviour during braking, 

analysing maximum stress and displacement occurred. 

Calliper assembly is composed by 2 parts, part A and B, connected to each other by two M8 

bolts, located on the part top sides (attachment points A1 and A2 for part A, B1 and B2 for 

part B). Part B is attached to the vehicle sleeve through two M8 bolts (attachment points B3 

and B4). 

While braking, hydraulic pressure is generated in the brake circuit pushing the slave cylinder 

against the brake pad, leading to a reaction force acting on the calliper with the same 

pressure. When pressing on the moving rotor, a tangential force acts on the pads and is 

transferred to the calliper through the slave cylinder. Both hydraulic pressure and tangential 

force are transferred to the cylinder case during a braking manoeuvre. This is transversal to 

both part A and part B. However, on part B also act the forces generated from part A. 

Meaning that for part B, not only tangential force and brake pressure must be considered, 

but also the reaction forces imposed by part A. 

For the first part (part A), constrains were applied in the attachment points A1 and A2 

preventing the component from moving. Regarding load application, both tangential force 

and pressure were applied inside the cylinder case, as represented in figure 4.2. 
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Figure 4.2- Part A loads and constrains.  

 

For the second part (Part B), constrains were applied in the attachment points B3 and B4 

connecting the calliper to the vehicle sleeve. Tangential force and pressure application points 

were the same as for part A (inside the cylinder case). It is important to also consider the 

loads imposed by part A acting on both attachment points B1 and B2, represented in figure 

4.3. 

 

Figure 4.3- Part B loads and constrains.  

 

According to chapter 3 the static study is divided in 2 scenarios: 

Scenario 1: While braking, the maximum brake pressure for the vehicle to stop without 

wheel lock occurring is generated considering a safety factor of 1.5 (67 bar). 

Scenario 2: While braking, in a panic situation, the driver imposes a force of 2 kN (the 

maximum force that the brake system must withstand without brake failure occurring, 

according to regulations) to the brake pedal, generating maximum brake pressure (115 bar) 

[27]. 

For both scenarios, the maximum tangential force of 5940 N considering a safety factor of 

1.5 is considered, as referred in chapter 3. 
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4.2.1. Scenario 1  

For the first part (part A) the loads and constrains were applied to the model. The pressure 

of 67 bar and the tangential force of 2970 N act on the slave´s cylinder sleeve. The hydraulic 

pressure pushes the calliper away from the rotor, while the tangential force pushes it in a 

direction tangential to the disc. 

Once all variables were considered, it was possible to complete the static simulation. The 

software uses the maximum distortion criterion, also known as von Misses criterion, to 

evaluate the component´s stress. According to von Misses criterion, the maximum stress on 

the component is of 75.21 MPa and occurs in the area below the attachment points (A1 and 

A2). Maximum displacement on the component is of 0.074 mm along OZ axle, as 

represented in figure 4.3. 

 

Figure 4.3- Part A, scenario 1, von Misses stress and displacement.  

 

Maximum von Misses stress is lower than the maximum material yield stress, therefore, the 

component maintains its structural integrity when subjected to 67 bar of pressure and 2970 

N of tangential force. 

Similarly to what was done in part A, loads and constrains were applied to part B. However, 

it was necessary to consider, not only the 2970 N tangential force and 67 bar of pressure, but 

also the reaction forces from A1 and A2 to simulate the loads applied by part A. 

After considering all variables it was possible to complete the simulation. According to von 

Misses criterion, the maximum stress observed in the component is of 357.90 MPa, taking 

place near the calliper to sleeve connection (B3 and B4). Maximum displacement occurs, 

once more in OZ axis, near the attachment point (B1), with a value of 0.20 mm (See Figure 

4.4). 
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Figure 4.4- Part B, scenario 1, von Misses stress and displacement.  

 

According to simulation results, it is possible to conclude that the original component 

withstands the loads applied during a regular brake manoeuvre. This study does not consider 

the panic scenario in which the maximum pressure is applied to the system, therefore it is 

imperative to proceed to scenario 2 analysis. 

4.2.2. Scenario 2  

In scenario 2 the maximum force applied to the brake pedal by the driver is considered. 

According to previous calculations (chapter 3), the force translates in a maximum pressure 

of 115 bar throughout the system. 

Simulation procedure was the same as for scenario 1, apart from the pressure applied to the 

system (115 bar for scenario 2 and 67 bar for scenario 1). 

For part A, according to von Misses criterion, the maximum stress is of 123.50 MPa, 

occurring bellow the attachment points. The maximum von Misses stress observed is below 

the maximum material yield stress of 505 MPa. Meaning that the component will withstand 

the load without plastically deform. Regarding maximum displacement, it occurs on the OZ 

axel with a maximum value of 0.13 mm in the cylinder cage lower region (See Figure 4.6). 

 

Figure 4.5- Part A, scenario 2, von Misses stress and displacement.  
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For part B, according to von Misses criterion, the maximum stress is of 495.10 MPa near the 

sleeve attachment points. This value is also inferior to the maximum material yield stress, 

meaning that the calliper withstands the load without braking. It is important to notice that 

maximum stress observed is near the material yield stress, which can be critical when 

considering a cyclic behaviour. Maximum displacement comes as 0.30 mm near B1 

attachment point, shown in red in figure 4.6. 

 

Figure 4.6- Part B, scenario 2, von Misses stress and displacement.  

4.2.3. Conclusions 

After completing simulation and analysis it is possible to conclude that the brake calliper 

can stand the loads imposed during a normal utilization (scenario 1). Maximum von Misses 

stress observed is below the maximum material yield stress with a safety factor of 0.7, 

considering the safety factor of 1.5 applied to the load conditions. Meaning that the 

component will not plastically deform or fracture during utilization. 

In a limit situation (scenario 2) maximum von Misses stress observed is also bellow the 

material yield stress. Meaning once more, that the component will not plastically deform. 

However, it is important to mention that, in scenario 2, part B maximum von Misses stress 

is close to the material yield stress (505.00 MPa). 

Regarding component displacement, in both scenarios, the maximum displacement observed 

is not sufficient to lead to system failure. The maximum displacement occurring during 

component utilization is not sufficient to limit piston travel. Therefore, the system is reliable 

and ready to deal with real life utilization conditions. 
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 Prototype Stage 

To produce a brake calliper with high mechanical properties with the intent of putting it to 

use in the new formula student vehicle, three prototypes were developed. Each prototype 

integrates a new design allowing for a reduction in weight and improvement in mechanical 

properties. The prototypes are based on a topologic study performed from the original 

calliper, following the steps presented in figure 5.1. 

 

Figure 5.1- Steps to prototype design. 

 

 

The original component is produced from a single block of high-grade aluminium alloy with 

high stiffness-to-weight ratio, making it very durable. However, it is possible to use another 

type of material as titanium to produce the new component, with better mechanical 

properties. Titanium is recognized for its high strength-to-weight ratio [31], reason for it to 

be chosen as the material for the new component. It is a material very hard to machine due 

to its stiffness and thermic characteristics (titanium does not dissipate heat through the part). 

Each prototype design is based in an optimization study applied to the original component. 

This type of study allows for the determination of optimal component geometry based on 

material, goals and constrains set by the user. Optimization studies can be divided in two 

types: 

1. Topology optimization: Removal of material in low stress areas based on loads and 

constrains applied to the component to minimize material usage in component 

production. 

2. Generative design: Generation of a design that meets the requirements imposed by 

the designer (loads, constrains, dimensions and amount of material). 

5.1.   Optimization Study 

To understand possible improvements in the original component geometry according to 

utilization conditions, a topological optimization study was conducted. This type of study 

allows material removal in low stress areas to reduce component mass. 

To start the optimization study, it was important to select the base static study corresponding 

to the worst-case scenario: 115 bar of hydraulic pressure and 2970 N of tangential force 

applied (scenario 2). 
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The main objective was to create a component with same/better mechanical properties when 

compared to the original component. The titanium-alloy chosen for the new design was the 

Ti6Al4V titanium alloy with the characteristics presented in figure 5.2. 

 

Figure 5.2- Ti6Al4V ELI mechanical characteristics. Adapted from [32] 

  

When compared to 7050-T73510 aluminium alloy, Ti6AL4V ELI presents a higher value of 

yield and tensile stress. Meaning that by using this new material, it would be possible to 

obtain a component with the same rigidity as the original, using less material. 

5.1.1. Topology study 

For the topology study to be accurate, goals, constrains and manufacturer controls needed to 

be set up properly. These settings dictate study results and are the base for the optimization 

study. “Goals” define the study intent (best stiffness-to-weight ratio; minimum 

displacement; etc). “Constrains” define a limit to mass reduction (limit material removal by 

percentage). “Manufacturer controls” allows for the software to obtain a part that can be 

produced using a certain type of manufacture process (example: The software can create a 

part that is ready for CNC machine or mould casting without the need of redesigning the 

component).  

To complete topology study, goals, constrains and manufacturer controls were defined as 

follows: 

- Main Goal: Reduce mass material until best stiffness-to-weight ratio is achieved. 

- Constrain 1: Do not remove more than 50% of material. 

- Manufacturer control 1: Maintain 3mm of excess material near the attachment points. 

- Manufacturer control 2: Maintain 2mm of excess material near cylinder case and pad 

support regions. 
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After running simulations using the SolidWorks computer software, a new optimized 

part was obtained, as shown in figure 5.3. 

 

Figure 5.3- Topology study optimized part. 

 

It is important to understand the results obtained to achieve the best design possible. The 

new part analysis, generated from topology study, considering the new material, allows for 

the following conclusions: 

- There is a region between attachment points (A1; A2) and pad support structures 

where material can be removed. 

- Walls connecting the cylinder case to the attachment points (A1; A2) can be 

redesigned using less material. 

- Cylinder case wall thickness can be reduced. 

5.1.2.  Prototype Design 

Prototype design is where, after analysing the data obtained from the topology study, a 

prototype is developed. It is possible to directly manufacture a component from topology 

study results due to Selective Laser Melting geometry freedom. However, it was chosen to 

redesign a new component based on the topology study results, instead of directly 

manufacture one. 

According to optimization study results, it was possible to understand that the component 

main structural region was between the cylinder case and the attachment points (A1 and A2 

for part A). Therefore, it would be possible to remove excess material around this region 

while maintaining the component structural integrity. 

Before reaching a final design, three prototypes were designed. Each prototype integrated a 

different approach to reduce stress levels on critical points of the component based on the 

results of the topology study. It was known from the beginning that the original component 
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presented high stress values, in some regions near the material maximum yield stress when 

considering the second scenario of load application (as abovementioned in chapter 4). By 

altering the material to Ti6Al4V ELI, the stress levels were reduced. However, due to the 

high density levels of the new material, component mass increased. Therefore, geometric 

changes were required to reduce weight while maintaining structural integrity and low stress 

levels. 

Prototypes 1 and 2 integrated a complex geometry with thin walls leading to a large mass 

decrease (50%). However, considering the high rigidity titanium alloy, both prototypes 1 

and 2 were prone to brake due to high stress areas where maximum stress occurs, as shown 

in figure 5.4. 

 

Figure 5.4- Prototype 1 and 2, part A. 

 

To solve the localized stress problem, a different design was used in Prototype 3. The no- 

material areas were maintained however wall geometry was changed to address the high 

stress problem. Some changes were made to Prototype 3 to allow for its real-world utilization 

(O-ring cases, brake fluid canal, pad attachment points). Prototype 3 is presented in figure 

5.5. 

 

Figure 5.5- Prototype 3, parts A and B.  

 

The changes made while redesigning Prototype 3 had in mind a decrease in overall 

components mass, being mass reduction an important goal for the design stage. Therefore, 
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before continuing with the study it is important to understand how the prototype mass 

compares to the original component mass. Computer software allows for mass determination 

based on material density and component volume. The original component was weighted to 

compare with results obtained by the software (See Figure 5.6). 

 

Figure 5.6- Original calliper assembly mass measurement. 

 

According to physical measures, the original assembly, produced from grade 6 aluminium 

alloy has 272.3 g of mass. According to software, the original assembly has a mass of 270.3 

g, allowing a model representation with 0.7 % relative error. 

Prototype 3 mass must not overcome the original component mass to be set as valid for 

further analysis. Table 5.1 presents the real and simulated components mass. 

Table 5.1- Original component and Prototype 3 mass determination  
Part A Part B Original 

Assembly 
Prototype 

3 A 
Prototype 3 

B 
Prototype 3 

Assembly 

Real Mass 
(g) 

133.7 138.6 272.3 NA NA NA 

Simulated 
Mass (g) 

132.1 138.2 270.3 100.7 120.6 221.3 

Error 
Percentage  

1.2 0.3 0.7 NA NA NA 

 

According to initial simulations, Prototype 3 assembly represents an 18% mass decrease 

when compared to the original calliper assembly. Therefore, Prototype 3 is set as valid and 

further analysis can be conducted. 

5.2.  Static Study 

It is of extreme importance to conduct a static study in Prototype 3 to understand its liabilities 

and if it represents an improvement when compared to the original component. Study 
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conditions applied to Prototype 3 must be the same as the ones applied to the original 

component. 

Part A3 from Prototype 3 is attached to part B through two M8 bolts (attachment points A3.1 

and A3.2). Constrains were applied in those points. Tangential force and hydraulic pressure 

were applied inside the cylinder case. See figure 5.7. 

 

Figure 5.7- Prototype 3, part A3, loads and constrains. 

 

Part B3 is attached to the vehicle´s sleeve through attachment points B3.3 and B3.4, similarly 

to B3 and B4 from the original component. Tangential force and hydraulic pressure were 

once more applied inside the cylinder case. Attachment points B3.1 and B3.2 are responsible 

for the load transfer from part A3, as shown in figure 5.8. 

 

Figure 5.8- Prototype 3, part B3, loads and constrains 

 

Prototype 3 load and constrain application points were the same as for the original 

component. According to chapter 3, study scenarios are as follows: 

Scenario 1: While braking, the maximum brake pressure for stopping the vehicle without 

wheel lock occurring is generated considering a safety factor of 1.5 (67 bar). 



59 

Additive Manufacturing of a Vehicle Brake System Component 

 

Scenario 2: While braking, in a panic situation, the driver imposes a force of 2 kN (the 

maximum force that the brake system must withstand without brake failure occurring, 

according to regulations) to the brake pedal, generating maximum brake pressure (115 bar)  

[27]. 

 For both scenarios, a maximum tangential force of 5938.97 N acting on the calliper was 

considered. 

5.2.1. Scenario 1 

As explained before, to compare simulation results it is important for Prototype 3 static 

analysis to be conducted following the same procedures as the original component static 

analysis. 

For the first part (Part A3), load conditions and constraints were applied to run static 

simulations. 2970 N of tangential force and 67 bar of fluid pressure act inside the cylinder 

case while the part is constrained in attachment points A3.1 and A3.2. Static simulation 

results are presented in figure 5.9. 

 

Figure 5.9- Part A3, scenario 1 simulation results. 

 

According to von Misses criterion, the maximum stress on the component is of 457.80 MPa, 

located bellow the attachment points A3.1 and A3.2. This value is lower than the maximum 

material yield stress of 827.4 MPa. Meaning that the component will not plastically deform. 

Maximum displacement occurs in the cylinder case lower region with a maximum value of 

0.23 mm. 

For part B3 constrains were applied in attachment points B3.3 and B3.4 representative of the 

connection between calliper and vehicle sleeve. The load conditions were applied inside the 

cylinder case, in the same way as for part A3, however it was necessary to apply the loads 

imposed by part A3, acting on the attachment points B3.1 and B3.2. Simulation results are 

presented in figure 5.10. 
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Figure 5.10- Part B3, scenario 1 simulation results. 

 

Maximum von Misses stress occurs near the attachment point B3.3, with a maximum value 

of 518.60 MPa, once more, lower than the maximum material yield stress. Maximum 

displacement occurs along OZ axle, near attachment point B3.2, with a maximum value of 

0.38 mm. 

According to simulation results it is possible to conclude that Prototype 3 withstands the 

limit load conditions of a regular braking manoeuvre (scenario 1). However, scenario 1 does 

not consider a panic situation, therefore it is imperative to continue with Prototype 3 analysis 

to validate component design. 

5.2.2. Scenario 2  

Scenario 2 load application conditions are according formula student regulations, imposing 

a maximum force of 2 kN to the brake pedal. This is representative of a panic situation, where 

the driver pushes the pedal with maximum force. According to chapter 3, the force imposed 

to pedal assembly will translate in a maximum fluid pressure of 115 bar and 2970 N of 

tangential force [27]. 

For part A3 constrains were applied to attachment point A3.1 and A3.2. Tangential force 

and hydraulic pressure were applied inside the cylinder case, following previous static 

simulations. 

After all variables considered the simulation was completed (See figure 5.11). 
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Figure 5.11- Part A3, scenario 2 simulation results. 

  

According to von Misses criterion, maximum stress occurs bellow attachment points A3.1 

and A3.2 with a maximum value of 662.70 MPa. Regarding maximum displacement it takes 

place on the lower region of the cylinder case, along OZ axle, with maximum value of 0.34 

mm. Maximum von Misses stress is bellow maximum material yield stress of 827.40 MPa, 

meaning that plastic deformation will not occur. 

For part B3 constrains were applied in attachment points B3.3 and B3.4, tangential force and 

hydraulic pressure on the cylinder case and, once more, the loads from part A3 were applied 

to attachment points B3.1 and B3.2. 

After all variables considered the simulation was completed, see figure 5.12. 

 

Figure 5.12- Part B3, scenario 2 simulation results. 

 

Maximum von Misses stress occurs near attachment point B3.3 with a maximum value of 

776.40 MPa, remaining inferior to maximum material yield stress of 827.40 MPa. Maximum 

displacement occurs near attachment point B3.1 along OZ axle with a maximum value of 

0.59 mm. 
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5.2.3. Conclusions 

The development of a new component is an iterative and time-consuming task. The search 

for a component design integrating low stress areas, easy component access for posterior 

maintenance and reduced material utilization can sometimes be an engineering challenge. 

Topological analysis comes as an alternative for the conventional component design process. 

It allows the definition of goals and constrains set by the user, based on a static study, 

creating new component designs that answer to the requirements imposed by the system. 

After a topological simulation of the original brake calliper, using the new material 

(Ti6Al4V titanium alloy), a new geometry emerged, allowing for a better understanding of 

changes that could be made to reduce material utilization, therefore reducing component 

mass. Several component iterations were designed, based on topology study results, leading 

to a new component with less material utilization, Prototype 3. 

To analyse Prototype 3 during braking, the same load conditions and constrains as the ones 

applied to the original component were considered (1st and 2nd scenario). During both 1st and 

2nd scenarios of load application the von Misses stress distribution of Prototype 3 presented 

maximum values lower to maximum material yield stress. It means that Prototype 3 would 

maintain its structural integrity during utilization. Regarding maximum displacement, the 

values observed during simulation were not significant to limit piston travel or to cause 

system failure. Prototype 3 can therefore be set as valid and continue to production. 
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  Production Stage 

6.1. Prototype 3 production 

Prototype 3 was designed to be produced using a titanium alloy (TiAl4V ELI, grade 23), 

however, there was a printer associated problem during the first stage of production that lead 

to the impossibility of full component production. Problem solution involved a new roller 

installation, which wasn´t available. At this point it was noticeable that a titanium alloy 

calliper wasn´t going to be produced in the timeframe available. To overcome this issue the 

possibility for manufacturing Prototype 3 using a different type of alloy emerged as a 

possible solution, validating the potential of AM redesigns to improve overall process and 

product sustainability. 

To manufacture the new component, a steel alloy (Steel H13) was used, with the support of 

Centro de Desenvolvimento Rápito e Sustentado do Produto (CDRSP), a research unit of 

Polytechnic Institute of Leiria, and the effective production was done by a local company of 

the Additive Manufacturing market. The machine used to manufacture Prototype 3 was the 

EOSINT M280, illustrated in figure 6.1, with the specifications presented in table 6.1. 

Table 6.1- Technical specifications for EOSINT M280, adapted from [33]. 

Characteristics Specification 

Laser type Yb-fibre laser 

Laser power 200 - 400 W 

Diameter 100 – 500 µm 

Power supply       32 A        

Power consumption 8.5 kW (max) 

Building volume 250x250x325 mm 

Nitrogen generator integrated 

Compressed air supply 7.000hPa; 20m3/h 

Argon supply 4.000hPa; 100l/min 

 

 

Figure 6.1- EOSINT M280, adapted from [33]. 
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The stages involved in component production began with the STL type file obtained from 

the 3D computer model of the designed component as shown in figure 6.2. Using this file, it 

was possible to study possible iterations for an optimized component production. 

 

Figure 6.2- STL file from Prototype 3 design. 

 

In the second stage of component production, support structures were added, and the 

component was placed in the building area using a specific software, ‘Magics’, for this 

application (see figure 6.3). This type of structures will support the material layers, and 

furthermore helping in the cooling of the melted material. 

 

Figure 6.3- Component placement and support structures, Magics. 

 

Following the creation of support structures and component placement, the file was 

saved as an SLM type file to begin the third stage of production. Through this file, 

the SLM production parameters were selected and the 3D model was sliced in layers 

with user defined thickness. During this stage of production, it is of extreme 

importance to correctly define production parameters to obtain the best results 

possible. A special attention must be given to laser power, scanning speed and 

component orientation. 
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6.2. Prototype 3 postproduction operations 

The majority of components produced by Selective Laser Melting need a post printing heat 

treatment. During printing, melting of the powder metals leads to the formation of localized 

internal stresses. Heat treatments are used to eliminate residual stress on the components or 

to improve its mechanical characteristics. For the case in study, the heat treatment must be 

conducted in an atmosphere-controlled environment. 

A stress relief process or any other heat treatment process conducted in a titanium alloy 

(Ti6Al4V for this study) must be conducted in vacuum conditions, According to Alessandro 

Fioresse, for the Ti6Al4V titanium alloy [34].  

Sand blasting operations are also a post-printing process, usually conducted to remove 

excess material from the support structures and to improve surface quality. Sand blasting 

must be executed before any type of heat treatment. 

Post printing processes also include machining and drilling to assure dimension compliance. 

During printing stage, the heat generated to melt the powder may cause localized 

deformations, leading to different dimensions from the original model. A common solution 

for this problem is to design the component with over thickness to machine it after 

production. This solution was used for Prototype 3 production. Drilling and threading must 

be conducted after Prototype 3 printing, in the point highlighted in figure 7.1. 

 

Figure 6.4- Post printing operations, Prototype 3. 

 

Drilling, threading, and machining processes was performed in Prototype 3 according the 

figure presented above. Over thickness in those regions was considered in order not to 

remove excess material leading to dimension inaccuracy. Contact surfaces, O-ring and seal 

cases are not visible in figure 7.1, nevertheless also need machining to guaranty system 

safety and functionality. 
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Even though it was impossible to produce Prototype 3 using the desired titanium alloy, and 

a geometrical identic component was produced using a steel alloy (chapter 6). Several post- 

printing operations were conducted in this component to allow its utilization. 

After component production a sand blasting operation was conducted to remove excess 

material and improve surface quality, as shown in figure 7.2. 

 

Figure 6.5- Prototype 3, H13 Steel, after sand blasting. 

 

After the sand blasting, drilling and threading operations took place to assure the connection 

between both parts of the calliper assembly, as represented in figure 7.3. 

 

Figure 6.6- A) Prototype 3 drilling. B) Prototype 3 threading. 

 

All drilling and threading operations are according figure 7.1. 

Finalizing post-printing operations, an additional machining process is required to assure 

surface quality in the contact surfaces between both parts and inside the cylinder cases, 

preventing the braking fluid from leaking and assuring constant fluid pressure in the entire 

braking system. 

The final component is presented in figure 7.4. 
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Figure 6.7- Prototype 3 assembly. 
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 Final Conclusions and Future Improvements 

Finalizing the present project, it is important to remember the main goals and prospect 

possible future improvements. 

Bibliographic research allowed the presentation of different additive manufacturing families 

and processes, and how they´re positioned in the nowadays markets. The present project is 

focused on the metal additive manufacturing process. Therefore, metal AM processes were 

extensively explored to understand advantages and limitations of each process. After a 

careful analysis, the SLM process was selected as the most suitable for the project´s needs. 

Regarding brake system study, it was conducted to be applicable to formula student type 

vehicles. Meaning that it can serve as a base for component selection, vehicle improvement 

and as a reference to future team members. Concluding the brake system study, maximum 

system loads (tangential force and brake pressure at the callipers) were determined for 

component development and testing. 

The first computer static analysis was conducted using the original (wilwood) brake calliper. 

First results served as a validation method for the process used and as a reference for future 

static analysis. Concluding initial studies, it was possible to notice that the wilwood 

component was capable to deal with the loads and constrains imposed by the system without 

failure occurring. However, there was also noticeable localized stress regions with maximum 

values near the material’s maximum yield stress. A component redesign using a different 

material was the approach chosen a possible solution. 

Prototype stage began with the conclusions from the original component study, with the 

intent of developing a new component using less material while maintaining structural 

integrity. A new titanium alloy was chosen as the material for the new component, due to its 

mechanical characteristics and ability to be used in the SLM process. A topological study 

was conducted using this new material to understand possible component improvements. 

Three prototypes were obtained and analysed. Prototype 3 was the most promising and 

therefore selected for further analysis. 

Prototype 3 was analysed using the same study conditions as for the original component to 

obtain comparable results. After completing simulations, it was possible to establish that 

Prototype 3, when compared to the original component, presented better mechanical 

characteristics and a significant reduction in mass. 

Following Prototype 3 static study a new component was manufactured. Due to the 

impossibility of printing the component using the desired titanium alloy, a steel alloy was 

used. This new component served as a validation method for the design, proving that SLM 

technology allows the manufacturing of complex geometries and internal features with tight 

tolerances. 
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The final chapter presented the post printing processes required to make Prototype 3 usable. 

SLM technology allows for the component production, however a series of post-printing 

processes are required to allow the component implementation in the brake system. 

Regarding future improvements it would be interesting to produce Prototype 3 using the 

desired titanium alloy to understand the advantages in mass reduction and component design. 

Furthermore, it would be prominent to implement Prototype 3 in the brake system for 

understanding its applicability. 

Finalizing the present project, it is possible to conclude that SLM technology has evolved to 

the point that manufacturing a component which can serve as an improvement for an already 

existing system has become a real possibility. Constant improvements are being made to the 

SLM technology and it is expected to grow considerably in the following years, allowing for 

component production in the most diverse areas. 
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