
 

 

 

 

 

Biological applications of multimodal imaging 

involving Raman and 4Pi Raman  

microscopy  

 

 

  

Thesis submitted in fulfillment of the requirements for the 

degree of Doctor of Philosophy (Ph.D.) in  

Applied Biological Sciences at Ghent University       

Dmitry Khalenkow 

 

2021 



1 
 

  



2 
 

 

 

 

Nederlandse vertaling van de titel: 

 

 

Biologische toepassingen van multimodale 

beeldvorming met Raman en 4Pi Raman 

microscopie  

 

 

 

 

 

  

 

 

 

 

Funding 

This work was supported by the project grant from the Special Research Fund BOF of Ghent 

University, grant #: BOF14/IOP/003; (project number: 24J201400010). 

 

Copyright  
The author and the promoter do not give the permission to put this thesis to disposal for 

consultation and to copy parts of it for personal use.  

Dmitry Khalenkow 

 

2021 



3 
 

 

“The substructure of life regresses infinitely towards smaller and smaller components. Behind 

tissues we find cells, and behind cells, molecules. Each unraveled layer reveals new secrets, but 

also new questions.” 

Academician Prokhor Zakharov, Datalinks 
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Abstract (EN) 

Raman microscopy is becoming an increasingly important label-free imaging technique. It 

proved to be a viable tool for life science applications allowing to analyze bacteria, cells, and 

tissues at the molecular level. Combining Raman microscopy with complementary imaging 

modalities and techniques is explored here to: (1) analyze mild traumatic brain injury (mTBI) 

in a combination with magnetic resonance imaging (MRI) for detecting mild, and invisible to 

medical imaging techniques, brain tissue damage; (2) reveal complementarity of Raman and 

fluorescence microscopy approaches for investigating and tracking bovine lactoferrin inside 

calf rectal epithelial cells in the presence of enterohemorrhagic Escherichia coli (EHEC); (3) 

apply Raman microscopy along-side the molecular analysis approaches (such as scanning 

transmission electron microscopy-energy dispersive X-ray (STEM-EDX), low energy X-ray 

fluorescence (LEXRF), nanoscale secondary ion mass spectrometry (Nano-SIMS)) to uncover 

the origin of the long-range conductance in cable bacteria; (4) develop multifunctional surface 

enhanced Raman scattering (SERS) platform based on calcium carbonate particles for 

enhancing a weak Raman scattering signal of biomolecules as well as to apply Raman 

microscopy for particle detection in vivo in Caenorhabditis elegans (C. elegans) worms; and 

(5) combine Raman microscopy and atomic force microscopy (AFM) to track Chlamydia 

psittaci in cells. Analysis of described above samples and phenomena is based on Raman 

molecular fingerprint images, where, similarly to fluorescence light microscopy, the resolution 

is limited by diffraction of light. Therefore, efforts are also put to enhance the resolution of 

Raman microscopy-based imaging by adding a 4Pi configuration to a confocal Raman 

microscope. As a result, a possibility to enhance the axial (also called longitudinal) resolution 

is investigated by constructing a 4Pi confocal Raman microscope, which is also applied to study 

bacteria inside cells. Results presented in this work emphasize the added value of multimodal 

microscopy approaches, particularly involving Raman microscopy, in a broad range of 

applications in bioengineering, biomedicine, and biology. 
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Abstract (NL) 

Raman microscopie is een belangrijke labelvrije beeldvormingstechniek voor de 

biowetenschappelijke toepassingen om bacteriën, cellen en weefsels te analyseren op het 

moleculaire niveau. Het combineren van Raman microscopie met complementaire 

beeldvormingsmodaliteiten en technieken wordt hier onderzocht om: (1) het analyseren van 

mild traumatisch hersenletsel (mTBI) in een combinatie met magnetische resonantie 

beeldvorming (MRI) voor het detecteren van mild hersenweefselschade; (2) het onthullen van 

de complementariteit van Raman en fluorescentiemicroscopie benaderingen voor het 

onderzoeken en volgen van runderlactoferrine in kalf rectaal epitheelcellen in de 

aanwezigheid van enterohemorragische Escherichia coli (EHEC); (3) de Raman microscopie toe 

te passen samen de moleculaire analyse benaderingen (zoals scanning transmissie 

elektronenmicroscopie-energie-dispersieve röntgenstraling (STEM-EDX), lage energie 

röntgenfluorescentie (LEXRF), nanoschaal secundaire ionenmassaspectrometrie (Nano-SIMS)) 

om de oorsprong van de lange-afstandsgeleiding in kabelbacteriën aan het licht te brengen; 

(4) het ontwikkelen van een multifunctioneel oppervlakte-versterkte Raman verstrooiing 

(SERS) platform op basis van calciumcarbonaatdeeltjes voor de versterking van een zwak 

Raman-verstrooiingssignaal van de biomoleculen en het toepassen van de Raman microscopie 

voor de in vivo detectie van deeltjes in Caenorhabditis elegans (C. elegans) wormen; en (5) het 

combineren van Raman microscopie en atoomkrachtmicroscopie (AFM) om Chlamydia 

psittaci in cellen op te sporen. De analyse van de hierboven beschreven stalen en fenomenen 

is vaak gebaseerd op Raman moleculaire “vingerafdrukbeelden” waarbij, net als bij de 

fluorescentie lichtmicroscopie, de resolutie beperkt is door de diffractie van het licht. Daarom 

worden er ook inspanningen ingezet om de resolutie van de op Raman microscopie-

gebaseerde beeldvorming te verbeteren door een 4Pi configuratie toe te voegen aan een 

confocale Raman microscoop. Op die manier wordt de mogelijkheid onderzocht om de axiale 

(zogenaamde longitudinale) resolutie te verbeteren door het construeren van een 4Pi 

confocale Raman microscoop, die wordt ook toegepast om bacteriën in cellen te bestuderen. 

De gepresenteerde in dit werk resultaten benadrukken de meerwaarde van multimodale 

microscopische benaderingen met betrekking tot de Raman microscopie in toepassingen in 

bio-ingenieur wetenschappen, geneeskunde en biologie. 
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Chapter 1                    

Introduction to microscopy, Raman 

microscopy, and multimodal imaging 
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1 Introduction to microscopy, Raman microscopy, and 

multimodal imaging  

The first applications of microscopes in life science were revolutionary and led to the discovery 

of cells and bacteria. This discovery played a special role in development of human civilization. 

Evolution of microscopy led to advancements, among which is Raman microscopy. This 

technique permits label-free imaging of molecules. In this chapter, we describe brief history 

of microscopy, basic principles of Raman microscopy, its advantages and disadvantages, and 

its biological applications. We also discuss multimodal imaging, where Raman microscopy 

plays an important role.  
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1.1 MICROSCOPY: HISTORICAL DEVELOPMENTS  

Contemporary microscopy is becoming multimodal. In multimodal imaging, different 

techniques are used on the same or similar samples to obtain complementary structural or 

functional information. It is now used not only in medicine but also in biology, bioscience 

engineering, and life sciences. In all these application areas, molecular imaging has become a 

key attribute covering a broad range of scales from microscopic (mostly used in biology) to 

macroscopic (predominantly used in medicine) levels. Developments in biomedical imaging 

were broadly stimulated by advances in microscopy. 

The origin of microscopy can be traced back to the end of the XVIth century (around 1590-

1595). Then, Hans Lippershey and Zacharias Janssen discovered that a larger magnification 

than that of a single magnifying glass can be obtained by placing several lenses in a tube. It is 

not fully known if they really were the first who discovered this phenomenon, but they were 

the first who tried to patent it. This invention (which is also linked to telescopes) not only 

made the revolution in sea navigation but also led to amazing scientific findings. For example, 

Galileo used a telescope to discover the moons around Jupiter. It was also realized that several 

lenses produce a magnifying effect that can be used not only to observe big objects far away 

but also to study tiny objects nearby. Such a device was named – a “microscope.” Application 

of microscopes in research grew exponentially in the XVIIth century leading to groundbreaking 

scientific discoveries. Interestingly, applications of microscopes in biology began when a Dutch 

trader, Antoni van Leeuwenhoek, invented a method of creating high-quality lenses, which 

allowed him to obtain a magnification of up to 275 times. When observing various objects, 

such as a drop of water or a sample from his tooth plaque, van Leeuwenhoek has found with 

his hand-made microscope that such samples were populated by small living organisms 

invisible to the naked eye. He called them “animalcules.” In modern terminology, we know 

those animalcules as bacteria and protista. Besides being the founding father of microbiology 

and bacteriology, van Leeuwenhoek also made contributions to other life science fields. For 

example, he discovered spermatozoa, bands in muscle tissue, nematode worms, and vacuoles 

in plant cells. The discovery of cells, however, is attributed to Robert Hooke and his famous 

“Micrographia”. The more mysteries of life were discovered with the help of microscopes - 

the more questions appeared; in turn, that drove the need for better microscopes. However, 

even with perfect lenses, conventional light microscopes have the fundamental limit in their 
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spatial resolution 1 of 0.2 µm, as it was introduced by Ernst Abbe. The Abbe diffraction limit 

equation allows calculation of the theoretically possible resolution (for non-coherent light) for 

a microscopic system 2:     

   𝑑 =  
𝝀

2n sin 𝜭
                  (1) 

where d is the minimum resolving distance for light with wavelength λ, which propagates in a 

medium with refractive index n, ϴ - is an angular aperture of the optical system. According to 

the Abbe’s equation, it is not possible to observe individual molecules in conventional 

microscopy using visible light. However, scientists have developed various techniques 

allowing to obtain information at the molecular level: fluorescence, superresolution 

microscopy, spectroscopy, etc. Spectroscopy is based on analysis of how light interacts with 

matter and how such interaction induces changes in light and/or in molecules. Information 

about molecules can be obtained by measuring those changes.  

Light can interact with matter in various ways. Here, we focus on absorption, scattering, and 

electron transition processes resulting from the interaction of a photon with molecular bonds, 

Figure 1.1.  

 

Figure 1.1. Absorption, scattering, and fluorescence processes are illustrated by the Jablonski 

energy diagram. V1-V4 – vibration energy states, Vs – virtual energy state, E1-E3 – higher energy 

vibration and excited states.   
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1.2 INTRODUCTION TO FUNDAMENTALS OF VIBRATIONAL SPECTROSCOPY 

1.2.1 Infrared absorption spectroscopy 

The interaction of incident photons with a molecule can result in absorption of photons. If the 

frequency of an incident photon corresponds to that required for an internal transition 

between electron states in a molecule, then that photon is absorbed, and an electron is 

excited to a higher energy state. Information about the chemical composition of the molecule 

can be obtained by analyzing which frequencies of incident source are absorbed. In this 

regard, infrared (IR) spectroscopy measures absorption of energy required for transitions 

between different vibration states, because each molecule has its own set of vibration modes, 

as it is presented in Figure 1.2 on an example of a CO2 molecule.   

 

 

Figure 1.2. Vibration modes of a CO2 molecule. 

The number of vibrational degrees of freedom for a linear molecule with N atoms is 3N-5. For 

example, carbon dioxide (CO2) is a linear molecule; therefore, it has 4 possible vibration states.  

A non-linear molecule will have 3N-6 potential vibrational modes 3.  

Vibration modes are IR active when there is a change in the dipole moment. In the case of 

carbon dioxide molecule, the asymmetric stretching and bending/deformation are IR active, 

while symmetric stretching is detectable in scattering of molecules, referred to as Raman 

scattering. The selection mechanisms, which allow predicting IR or Raman active modes, will 

be discussed further in this chapter. But first, we provide an overview of basic principles of 

Raman spectroscopy. 
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1.2.2 Raman spectroscopy 

The basic principles of Raman spectroscopy can be described as follows. When light impinges 

on a sample, it can either go through the sample without any interaction, it can be absorbed, 

or it can be scattered by the sample. In the process of scattering, the energy exchange occurs 

between the incident photons and molecules of the sample. This interaction leads to 

vibrations of atoms in the molecule. The energy levels in vibration states are quantized, while 

energy brought by incident photons allows excitation of molecules from their ground vibration 

energy level to the so-called virtual excited state. It is important to note that the so-called 

“virtual state” has no physical meaning. This concept is used to describe a transient state after 

incident photon absorption and before energy emission in the form of a scattered photon. 

After the molecule is brought into the virtual excited state, three scenarios are possible:  

1. Because the virtual energy state is unstable, electrons may fall back to the same 

vibration level (of the electronic ground state) emitting photons with the same 

frequency as the incident photons. This is the elastic scattering process, and it is called 

Rayleigh scattering. 

2. There exists a small but finite possibility that a part of energy carried by the incident 

photon would be used to transfer a molecule into a higher vibrational level of the 

ground state. The energy of the emitted photon would be lower than that of the 

incident photon. This process is referred to as Stokes scattering. 

3.  In a situation, where a molecule is already in a higher vibrational state, the energy 

exchange can go in the opposite direction than that in the Stokes scattering process. 

This would cause the scattered photon to be emitted with higher energy than the 

incident photon. This effect is called anti-Stokes scattering. 

Let us examine those three scattering processes from the point of view of classical theory of 

light scattering. Here, light-matter interaction can be described as the interaction between an 

incident oscillating electromagnetic field and electron clouds of molecules. Such interaction 

will disturb the electronic charge distribution and induce the dipole moment to the molecule. 

The induced oscillating dipole moment will act as an antenna emitting secondary 

electromagnetic radiation (scattered light).  

The induced dipole moment in an irradiated molecule can be written as 4:  
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 �⃗� = �̃��⃗⃗�                                           (2) 

where �⃗⃗⃗� is the molecular dipole induced by an external electric field 𝑬, and �̃� is the 

polarizability tensor. Since we are interested in linear scattering processes, the nonlinear 

components of the polarizability tensor can be neglected. 

The external electromagnetic field can be described as: 

�⃗⃗� =  �⃗⃗�0 cos(𝜔0 𝑡)                                                            (3) 

here 𝑬𝟎 is a vector amplitude of the electromagnetic wave and 𝝎𝟎 is its oscillation angular 

frequency.  

Polarizability is a proportionality factor between an external electromagnetic field and the 

induced dipole moment. It is related to how easily the external electromagnetic field can 

deform electron orbitals of the molecule from their equilibrium position. It is important to 

note that polarizability is not constant. The motions, such as vibrations of atoms, will change 

the polarizability of a molecule since electron clouds adjust for the nuclear geometry to 

minimize energy of the system.  

Assuming that displacement of atoms from the equilibrium position is relatively small, the 

polarizability for an individual normal mode q can be described using a static term and a 

displacement-dependent term: 

 𝛼 = 𝛼0 +
𝜕𝛼

𝜕𝑞
𝑞     (4) 

The normal mode q of oscillation of the molecule at the characteristic frequency 𝝎𝒒 can be 

written as follows:  

𝑞 = 𝑞0 cos(𝜔𝑞𝑡)     (5) 

Combining equations (2), (3), (4), and (5) results in 4:    

𝜇(𝑡) = [𝛼0 +
𝜕𝛼

𝜕𝑞
𝑞0 cos(𝜔𝑞𝑡)] 𝐸0 cos(𝜔0 𝑡)  (6) 

By applying the trigonometric formula for the product of two cosines, equation (6) can be 

reformulated as follows: 
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𝜇(𝑡) = 𝛼0𝐸0 cos(𝜔0𝑡) +
1

2
(

𝜕𝛼

𝜕𝑞
)

𝑞0

𝑞0𝐸0 cos[(𝜔0 − 𝜔𝑞)𝑡] +
1

2
(

𝜕𝛼

𝜕𝑞
)

𝑞0

𝑞0𝐸0 cos[(𝜔0 + 𝜔𝑞)𝑡]

                             (7) 

The frequency in equation (7) is important in vibrational spectroscopy since it points at 

vibrations of atoms in a molecule, and it can be expressed in wavenumbers as follows:  

𝑣 =  
1

2𝜋𝑐
√

𝐾

𝜇
             (8) 

where K is the spring constant, c is the speed of light in vacuum, μ=m1*m2/(m1+m2) is the so-

called reduced mass, and m1 and m2 are masses of atoms.  

Equation (7) shows that Raman scattering can be viewed as a limited case of a general light 

scattering process 4.  The induced dipole moment, which is the source of scattered light, is 

described by three terms: 

1. The first term: 𝜶𝟎𝑬𝟎 𝐜𝐨𝐬(𝝎𝟎𝒕) describes the oscillation with the same frequency 𝝎𝟎 as that 

of incident light, and, therefore, scattered light will also have the frequency 𝝎𝟎. This is 

referred to as elastic Rayleigh scattering.  

2.  The second term illustrates the oscillation with the frequency 𝝎𝟎 − 𝝎𝒒. This means that 

the frequency of emitted light will be decreased, or red-shifted, in respect to the incident light 

frequency. This is called Stokes scattering.  

3. The third term represents emitted light, which has higher energy than that of the excitation 

beam, and it is named anti-Stokes scattering.  

The second and third terms of equation (7) explain why Stokes and anti-Stokes scatterings 

modes form symmetrical, relative to excitation light frequency, patterns in Raman spectra. 

But it is important to note that intensities of emitted Stokes and anti-Stokes light differ. The 

distribution of electrons on different energy levels follows the Boltzmann law. At room 

temperature, most of the electrons will be in the lowest vibrational level of the ground 

electronic state. Anti-Stokes photons are emitted when incident light interacts with electrons 

in a higher vibrational energy level of the ground electronic state. Therefore, most of the 

Raman scattered photons will be Stokes photons, making them easier to detect than anti-

Stokes photons. That is why in subsequent chapters of this dissertation, Raman spectra 
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(scattering intensity as a function of frequency shift in wavenumbers) are referred to and 

plotted as spectra corresponding only to Stokes photons, while the weaker anti-Stokes part of 

the spectrum will be discarded and not shown on spectral plots.    

The power emitted by the induced dipole is given by 4: 

𝑃 =  
𝑞0

2

12𝜋ε0𝑐3 (
𝜕𝛼

𝜕𝑞
)

𝑞0

2

(𝜔0 − 𝜔𝑞)
4

𝐸0
2   (9) 

It can be seen from equation (9) that vibration is Raman active if a change in the polarizability 

of a molecule does not equal zero ( 
𝝏𝜶

𝝏𝒒
≠ 0). In contrast, a vibration is IR active if this vibration 

involves a change of the dipole moment. For a small linear molecule, the polarizability can be 

schematically represented as an ellipsoid drawn around the molecule 5. Using such a 

representation, it is possible to visually demonstrate why for carbon dioxide a symmetrical 

stretching is Raman active (
𝝏𝜶

𝝏𝒒
≠ 0) and an asymmetric stretching vibration is IR active (

𝝏𝜇

𝝏𝒒
≠

0), Figure 1.3.  

 

Figure 1.3. Polarization changes in a carbon dioxide molecule during symmetric and 

asymmetric stretching.  

The intensity of Raman scattering is proportional to the overall power 4:  

𝐼𝑆𝑡𝑜𝑘𝑒𝑠 ∝ (
𝜕𝛼

𝜕𝑞
)

𝑞0

2

(𝜔0 − 𝜔𝑞)
4

𝐸0
2    (10) 

In equations (9) and (10), terms  𝝎𝒒 and (
𝝏𝜶

𝝏𝒒
)

𝒒𝟎

are intrinsic properties of measured molecules, 

while 𝝎𝟎 and 𝑬𝟎 are experimental parameters, which can be modified to affect intensity of 
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scattered light. Equation (10) explains why an increase of laser power and frequency leads to 

an increase of the Raman scattering intensity.  

1.2.3 Role of absorption coefficient of water in vibrational spectroscopy  

Water can be a problem for analyzing life science samples with IR spectroscopy. Figure 1.4 

shows the absorption coefficient of liquid water, from where one can see why water causes a 

problem for IR spectroscopy: a relatively high absorption coefficient of water in the IR range. 

And this problem is even more pronounced in the biologically relevant fingerprint spectral 

area between 1000 and 3000 cm-1, inset in Figure 1.4 (red curve).  

 

 

Figure 1.4. The absorption coefficient of liquid water (reproduced from Bec et al. 6).  

 

On the other hand, excitation light sources with wavelengths in the visible part of spectrum 

(and sometimes ultraviolet (UV) and near-IR) are used in Raman spectroscopy. For those 

excitation light sources, a clear absorption minimum situated in the visible range of the 

electromagnetic spectrum can be seen in Figure 1.4. Therefore, Raman spectroscopy can be 

used for characterizing samples in water. However, challenges in this area still exist: one has 

to avoid autofluorescence, which is originated in the visible spectral range (that prompts to 

increase the wavelength of the excitation source). But, at the same time, one should not 

increase too much the wavelength of the excitation source (increasing wavelength decreases 

the scattered intensity according to equation (10)). Overall, water poses a problem for IR but 

not for Raman spectroscopy.  
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1.2.4 Advantages and disadvantages of Raman microscopy and spectroscopy 

Raman microscopy, where spectroscopy is applied for spatial mapping and imaging, has the 

following advantages. 

1. Raman microscopy is label-free. This means that, in contrast to fluorescence microscopy, 

no external label-molecules are required to obtain information about a sample. This is very 

relevant for cell biology, where the presence of labels can alter the molecular state of cells. 

2. Water molecules produce a very weak Raman scattering. Therefore, the presence of water 

does not pose a problem (in contrast to infrared spectroscopy). This makes Raman microscopy 

particularly interesting for analysis of biological samples.   

3. In most cases, Raman spectroscopy is non-destructive, which is essential, because that 

allows development of in vivo applications. Raman measurements do not often alter the 

sample at the molecular level in any detectable way, samples can be subsequently analyzed 

with other techniques. 

4. Compared to alternative analytical microscopy techniques, like immunofluorescence, no 

special sample preparation techniques are required.  

5. Implementation of the confocal principle (which is often done by connecting an optical fiber 

between a Raman microscope and spectrometer and using the fiber core as the pinhole) and 

focusing the excitation light through a high NA objective allows acquiring Raman spectral 

information from a specifically selected volume of a sample.   

On the other hand, Raman microscopy has the following disadvantages. 

1. Raman scattering produces very weak signals, which may lead to long measurement times. 

It may cause problems if, for example, the analyzed samples can degrade and/or change their 

molecular composition over time. Also, sample damages may occur in cases of long laser 

exposures. 

2. Weak Raman signals may lead to long measurement times making it difficult to analyze 

many samples in a reasonably short period of time.  

2. Autofluorescence from samples may oversaturate the detector and mask the Raman signal.  
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3. Complex organic molecules, such as proteins consist of similar atoms: hydrogen, oxygen, 

nitrogen, carbon, sulfur, and phosphorus. Therefore, it is challenging to identify specific 

organic molecules inside cells.   

4. Sophisticated data analysis is often required to extract information from spectral datasets.  

5. Raman microscopy has a similar resolution limit as that of fluorescence light microscopes. 

Development of specialized Raman-based techniques, such as CARS, SERS, and Raman labels, 

allowed to solve some of the above-mentioned issues by enhancing Raman signals, improving 

the sensitivity, the resolution, and signal acquisition time. In the next section, we briefly 

discuss those techniques.  

1.3 SURFACE-ENHANCED RAMAN SCATTERING (SERS), COHERENT ANTI-STOKES RAMAN 

SCATTERING (CARS) AND STIMULATED RAMAN SCATTERING (SRS)  

1.3.1 SERS 

Surface-Enhanced Raman scattering (SERS) technique allows for a significant enhancement of 

Raman signals. There are two mechanisms, which contribute to signal enhancement: chemical 

and electromagnetic. Electromagnetic enhancement is the result of a localized nanoplasmon 

excitation within a SERS substrate. Noble metal nanoparticles with sizes smaller than the 

excitation wavelength of light are often used as SERS substrates. Such nanoparticles act as 

dipoles by creating strong local electromagnetic fields. Such fields act as an excitation source 

for molecule located near the nanoparticles, thus enhancing the Raman scattering. 

Additionally, Raman scattered light from a molecule is further amplified by a localized surface 

nanoplasmon resonance, leading to an even stronger Raman signal enhancement. Chemical 

enhancement can result from the resonance Raman effect induced by physicochemical 

interactions of a molecule with the metal surface. This interaction causes a charge transfer 

between the molecule and the surface, modifying its polarizability and thus enhancing the 

Raman scattering process.  
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1.3.2 Multiphoton Raman spectroscopy:  CARS, SRS 

Multiphoton Raman spectroscopy includes both coherent anti-Stokes Raman scattering 

(CARS) and stimulated Raman scattering (SRS) and allows for molecular imaging 7.  

Conventional CARS microscopy is based on irradiating a sample with two laser beams with 

different frequencies: a pump beam at the frequency ωP and a Stokes beam at ωS, Figure 1.5 

(A). The pump beam is used for the excitation of electrons from the ground level into the 

virtual state Vs1, Figure 1.5 (A). Next, illumination by the Stokes beam forces electrons to fall 

into a higher vibrational energy state of the ground energy level, red arrow in Figure 1.5 (A). 

The pump beam can be adjusted so that the residual differences Δω = ωP-ωS would correspond 

to the desired vibrational energies of the molecule. The result of this double beam illumination 

is a higher population of electrons in a certain vibrational energy state of the ground electron 

level. Then, the pump beam can be used to excite those electrons into the second virtual 

energy state, Vs2 in Figure 1.5 (A). From there, electrons relax back into the ground state 

emitting anti-Stokes photons with frequency ωcars = ωP+Δω, blue arrow in Figure 1.5 (A). As a 

result, a strong Raman signal with the frequency ωcars = 2ωP-ωS can be detected. The intensity 

of this signal can be up to five orders of magnitude higher than the signal from conventional 

(spontaneous) Stokes Raman scattering 8.  

 

Figure 1.5. Schematics of: (A) coherent anti-Stokes Raman scattering (CARS) and (B) stimulated 

Raman scattering (SRS) processes.  

Such strong signals in CARS processes allow for a decrease of signal acquisition times up to 10 

μs per datapoint. (As it will be shown in subsequent chapters, slow signal acquisition is one of 

the limiting factors of conventional Raman microscopes during analysis of biological samples).  

The additional benefit of CARS is that the autofluorescence background, commonly present in 

a conventional Raman spectrum, does not pose a problem. This is because anti-Stokes 
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photons, detected in CARS microscopes, are blue-shifted (i.e., possessing higher energies), 

while photons emitted through fluorescence are red-shifted. Therefore, the latter photons 

can be easily discarded during the measurement.  

Developed in 1962 9, stimulated Raman scattering (SRS) is similar to CARS. Two laser beams 

are used is SRS: a pump beam at ωp and a Stokes beam at ωS, Figure 1.5 (B). When the 

frequency difference (ωP − ωS) matches the frequency of a particular molecular vibration, an 

amplification of Raman signal is achieved. This results in a decrease of the pump beam 

intensity, called stimulated Raman loss (SRL), and an increase in the Stokes beam intensity, 

called stimulated Raman gain (SRG). When (ωP − ωS) does not match any of the molecular 

vibrational frequencies, SRL and SRG cannot occur. The spectral fingerprint of a molecule can 

be obtained by maintaining the pump beam frequency constant and using Stokes beam to 

scan at various frequencies 10. SRS differs from CARS in that SRG as well as SRL in SRS do not 

exhibit a non-resonant background 10.  

1.3.3 Polarized and Resonance Raman spectroscopy 

Polarized Raman spectroscopy allows obtaining additional information about the symmetry 

of vibration modes. Raman scattering is sensitive to the polarization of incident light. If linearly 

polarized light is used, then the majority of Raman scattered signals will be aligned in the same 

plane as that of incident light. It is possible to measure two orthogonally polarized 

components of Raman spectra by using a polarizer, an optical filter that only allows light of a 

specific polarization to pass through it. The depolarization coefficient of a particular peak can 

be obtained by calculating the ratio between intensities of parallel and orthogonal 

components of the scattered signal. The depolarization coefficient provides information about 

the symmetry of vibrational modes. Polarized Raman microscopy can be used to analyze 

isotropic and anisotropic samples. In anisotropic samples the changes in polarization or 

sample orientation will result in changes in relative intensities of scattering signals with 

different polarizations, allowing to obtain additional information about the sample. For 

example, such an approach was used to investigate the molecular orientation distribution in 

cellulose fibers 11.  

Raman scattered signal is weak. But when energy of incident light is close to energy of an 

electronic transition of a molecule, the resulting resonance leads to an increase of Raman 
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signal by several orders of magnitude 12. The smaller the difference between the frequency of 

incident light and the electronic transition is, the stronger the resulting resonance Raman 

intensity will be. In large molecules, only those vibration modes coupled to the chromophore 

molecular groups can be enhanced by the resonance Raman scattering 13. The main challenge 

of resonance Raman spectroscopy is the influence of strong fluorescence, Figure 1.6.   

 

Figure 1.6. Raman Stokes scattering, resonance Raman and fluorescence processes illustrated 

by Jablonski energy diagram.  

 

1.4 RECENT DEVELOPMENTS IN RAMAN MICROSCOPY 

1.4.1 Advances in biological applications of Raman microscopy 

Even though significant attention is devoted now to fluorescence microscopy due to the 

resolution revolution, Raman microscopy is steadily becoming a popular tool in molecular 

biology and histopathology 14.  It is widely used in cancer research to identify malignant cells. 

For example, discrimination between osteosarcoma cells and mesenchymal stromal cells was 

recently shown 15, where the differentiation between cells was based on comparing their 

Raman molecular fingerprints. A similar approach is also used in tissue engineering. Recently, 

Raman molecular fingerprints were used to identify different stages of stem cell 

differentiation 16 17. A comparison of Raman molecular fingerprints also enabled a fast and 

label-free identification of bacterial species 18. In addition, Raman spectroscopy not only 

allowed for discrimination between bacteria species, but also permitted identification of 

variations in phenotypes of bacteria at a single cell level 19. Also, Raman spectra can be used 
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to analyze the molecular composition of the sample, for example, to evaluate the bone 

mineral crystallinity 20.  

Raman microscopy also proved to be a useful tool to study cells and tissue biochemistry 21.  

Here, research is often based on using Raman molecular images. Typical Raman molecular 

images are constructed based on multiple molecular fingerprints collected from an area of 

interest. The principles of Raman molecular imaging are discussed in detail in Chapter 2. 

Raman molecular imaging was used to analyze the extracellular matrix arrangement of 

engineered articular cartilage 22. It was also shown that Raman imaging can be applied for 

histopathological studies 23 and in rheumatology 24. In cancer research, Raman molecular 

images were used to compare biochemistry of eosinophils versus leukemia cells 25. 

The cell metabolism of such molecules as glucose 26 , cholesterol 27, and drugs 28 has been 

studied with coherent Raman scattering in live cells. A possibility to detect the protease 

activity was also shown using waveguide-based SERS 29.   

Raman microscopy is often used for qualitative analysis in cells and tissue studies. However, a 

possibility to obtain quantitative information about the molecular composition of cells and 

cell organelles was recently shown 30. The presented approach relies on data mining and 

previously acquired reference databases containing spectra of basic molecular components 

measured at various concentrations but under the same conditions. The quantification is 

based on fitting a measured spectrum of a sample to the reference spectrum generated based 

on the weighted spectra of the molecular components and acquired under the same 

conditions as those used for investigation of the sample  30.  

Furthermore, developments in treating the autofluorescence background of Raman spectra 

should be mentioned. Background removal is a standard practice in Raman spectroscopy 

because this procedure can significantly improve the downstream analysis. At the same time, 

background removal can result in information loss, because the autofluorescence background 

may carry information about the sample. Specifically, it was shown that the autofluorescence 

part of the Raman spectrum can be used to obtain information about the cell differentiation 

state31. It was also demonstrated as a part of the emerging multimodal microscopy concept 

that a combined application of autofluorescence and Raman spectroscopy allows achieving 

97.3 % accuracy in skin cancer diagnostics, while the accuracy determined separately for each 

spectroscopic method was less than 79 % 32.  
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1.4.2 Reference databases for Raman peak assignment and analytical calculations  

Biological molecules are complicated and many of them consist of similar atoms. That 

represents a challenge in the identification of molecules, especially in cells. Therefore, precise 

and extensive databases 33 are particularly desirable in this area. In fact, dedicated databases 

are also necessary for many fields, for example, pharmaceutical 34.  

In addition, modeling of the frequencies of Raman vibrational peaks is a desired feature that 

can help to confirm the peak assignment and analyze the structure of molecule35. Even when 

the structure of a molecule is known, as it was shown for phthalocyanine 36, modeling allows 

investigating the influence of the environment on atomic vibrations (Supplementary 

Information for Chapter 1, Appendix, Figure S1.1). Different methods for performing 

calculations have been recently overviewed 6 and a good comparison between the modeled 

data provided additional insights (Supplementary Information for Chapter 1, Appendix, Figure 

S1.2).  

1.4.3 Raman labels 

Raman microscopy is a label-free technique. However, it is possible to enhance the detection 

sensitivity of Raman microscopy by applying Raman labels in, for example, surface enhanced 

Raman scattering (SERS). Similarly to fluorescent labels, Raman labels can be used to mark and 

detect molecules inside the complex organic medium. There are different categories of Raman 

labels: SERS labels, chemical labels, and isotopes.  

SERS labels can be used as labels in immunofluorescent techniques, with the only difference 

that instead of a fluorescent tag, antibodies are attached to a SERS label.  Such label can be 

created by covering the SERS substrate, like a gold particle, with a reporter molecule and then 

conjugated with an antibody against the molecule of interest 37. There is a great variety of 

molecules that can be used as reporters: Rhodamine 6G, tetramethylrhodamine, 2-bromo-4-

mercaptobenzoic acid, etc. There is also an ongoing effort in developing new SERS platforms 

38. Numerous novel SERS nanoparticles were synthesized by material scientists, for example, 

star-like nanoparticles 39 40, nanocubes 41 42, etc. 

An advantage of SERS labels is a possibility to use many different types of labels 

simultaneously, and thus detect various target molecules. Additionally, all labels can be 
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detected with a single laser. So, there is no need for multiple lasers with different wavelengths 

like in fluorescence microscopy. The disadvantage of such SERS labels is that their size is much 

bigger than that of conventional fluorescent labels.  

The idea behind chemical labels is based on direct tagging of a molecule with that having a 

distinct molecular fingerprint. Alternatively, one can chemically modify molecules for 

facilitating the detection of its molecular fingerprint. One of the promising reporters for 

chemical labeling is an alkyne tag. Besides its small size, another advantage of alkyne tagging 

is that alkynes have a strong Raman peak at ∼2120 cm-1, outside of typical biologically relevant 

Raman spectrum regions (600~1800 cm-1 and 2800~3200 cm-1). It was demonstrated that 

alkyne tagged thymidine analogs can be used to monitor DNA synthesis in live cells using a 

Raman microscope 43.  

Isotope labeling is based on the substitution of certain atoms in a molecule with their isotopes. 

Isotope substitution results in a characteristic downshift in the Raman spectrum of the 

molecule due to the replacement of light atoms with heavier and more stable isotopes. 

Isotope labels can be used to find the presence of atoms in a biological structure or to study 

and quantify the metabolic activity of microorganisms 44. It was also recently demonstrated 

that general metabolic activity of bacteria can be probed by simple addition of deuterium 

oxide (D2O), also called heavy water, to the growth medium 45. Metabolically active 

microorganisms would then incorporate deuterium into cells forming a C-D bond with a 

distinct peak around 2040–2300 cm−1.   

1.4.4 Superresolution fluorescence and Raman microscopy 

Although fluorescence microscopy is not the focus of this study, it is not possible to discuss 

superresolution without mentioning superresolution microscopy, which was developed to 

overcome the diffraction limited resolution of light microscopes. Superresolution provides a 

possibility to push the resolution beyond the half-wavelength diffraction limit set by Abbe: 

imaging of cellular organelles, structures, and even molecules is now possible with an 

unprecedented level of details, even comparable with that obtained in electron microscopy 

46. 4Pi fluorescence microscopy is one of the earliest additions to the growing number of such 

superresolution methods. It is based on the interference of two coherent light sources, 

focused on the same spot on the sample plane, allowing a great improvement in axial 
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resolution 47. Another superresolution technique, which utilizes light interference, is 

structured illumination microscopy (SIM) 48. In SIM, a sample is illuminated with structured 

light in the form of a specific pattern (often strips) and information is collected in the 

reciprocal frequency space. The interaction between the excitation pattern, produced by 

phase-shifting, and the sample results in large-scale interference patterns (the so-called Moiré 

fringes), which contain information about the sample and illumination patterns (shifted by 

phase). Analysis of resulting image datasets involves reverse Fourier transform and enables 

reconstruction of the original image with a higher lateral resolution by approximately a factor 

of two. An essential advantage of SIM is that no special fluorophores are needed. Besides 4Pi 

fluorescence microscopy and SIM, there is a growing number of other superresolution 

techniques: stimulated emission depletion microscopy (STED) 49, photoactivated localization 

microscopy (PALM) 50, total internal reflection fluorescence (TIRF) 51 microscopy, etc.  

In analogy to what is performed in fluorescence microscopy, in Raman microscopy several 

solutions to achieve superresolution were developed. One of such techniques is tip-enhanced 

Raman scattering (TERS) 52. In TERS, SERS active nanoparticles or coating are mounted on a tip 

of an atomic force microscope (AFM); scanning the tip over the sample area allows to achieve 

a high special resolution (at the nanometer scale). A  possibility to measure live cells in an 

aqueous medium using TERS was demonstrated 53. In addition, it was shown that TERS allows 

obtaining sequence information of DNA molecules 54 because the surface is scanned with a 

sub-molecular precision. An interesting approach to achieve superresolution in Raman 

microscopy is to transfer concepts of superresolution methods used in fluorescence 

microscopy. One of such superresolution methods, inspired by STED, involves specially 

shaping the laser beam to selectively excite and detect signals from specific points 55.  Another 

recently implemented superresolution Raman microscope is based on the structural 

illumination approach, in analogy to SIM in fluorescence; there, using a mice brain slice, 1.4 

fold lateral resolution improvement was achieved in comparison to conventional Raman 

microscopes 56.  

1.4.5 Other applications of Raman microscopy 

The range of applications of Raman spectroscopy and microscopy is extremely large, so only 

selected applications are highlighted here.  
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Relevant for Belgian history and culture, medieval paintings have been investigated with 

Raman spectroscopy to determine pigments and dyes 57. In addition, Raman spectroscopy has 

been broadly applied in geology, where experiments are performed in remote places, for 

example in plains in Patagonia, Argentina, necessitating portable Raman instruments 58.  

Besides biology and geology, Raman spectroscopy is a popular tool in food science. Recently, 

the portable Raman in combination with SERS was applied for detecting food contamination 

59. SERS was also used to study specific food components, such as food colorants 60 and to 

investigate the interaction of food packing with food 61. 

1.5 MULTIMODAL IMAGING AS AN EMERGING TREND  

Complementarity of different microscopy modalities means that different (but 

complementary) information about samples can be obtained using those approaches. In this 

regard, a special term, the so-called correlative microscopy, has been used to cross-compare 

results obtained from scanning the same areas of samples by using different microscopy 

modalities. Some examples of such correlative microscopy include a combination of light and 

electron microscopy to investigate infectious cell cultures 62; correlative light and electron 

microscopy to investigate biological samples 63; atomic force microscopy (AFM) and electron 

microscopy (EM) to investigate the structure of actin cytoskeleton 64. Interesting results are 

also expected by adding X-ray analysis, where X-rays with small wavelengths, 10 pm to 10 nm, 

are used to obtain information about the atomic structure of a sample. Very detailed atomic-

level information can be obtained by combining different microscopy techniques 65. It can be 

noted that in medical imaging and clinical practice, multimodal imaging has been also at the 

forefront of research 66.  

Addition of X-ray scattering methods to Raman spectroscopy provides particularly important 

structural information, because X-ray methods use a much smaller wavelength of the 

excitation source and can provide essential structural information about samples. For 

example, a combination of Raman microscopy with X-ray fluorescence, electron dispersive X-

mass ray spectroscopy, and gas chromatography-mass spectrometry has been applied to 

study beads from archaeological excavations in the Democratic Republic of Congo 67, where a 

gap in history has been filled by discovering new details. Furthermore, a combination of 

Raman and energy dispersive X-ray (EDX) analysis was applied to investigate dentin and tooth 
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enamel in dentistry, where the mineralization depth has been measured 68. Within Raman 

microscopy area itself, various approaches were developed combining different modalities: 

SERS, SRS, CARS, TERS.  

Combining medical and microscopy multimodal imaging is particularly attractive 69 and Raman 

microscopy has a special place in such application due to its inherently label-free nature of 

image acquisition. Research has been already carried out combining Raman microscopy and 

other types of imaging. For example, fluorescence microscopy has been combined with Raman 

microscopy to investigate biofilms 70, where it was identified that a combination of these 

techniques allows for a deeper understanding of complex biological events than made 

possible by either of these techniques.  

 

 

We hypothesize that combining Raman microscopy with other imaging modalities, including 

medical imaging, would enable uncovering important information relevant for various 

bioscience applications.  

We hypothesize also that development of new approaches in Raman microscopy, including 

superresolution (achieved by interfering two coherent beams in the direction of their 

propagation, i.e., 4Pi microscopy) would be an important tool in many fields, including 

bioscience and bioengineering.   
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1.6 GOALS OF THIS THESIS WORK 

 

The goals of this work are focused on developing biological applications of multimodal 

imaging techniques involving Raman microscopy and exploration of complementarity of such 

analytical and microscopic techniques for analysis of biological and biomedical samples.  

Investigation of biomedical and biological samples is organized here starting from large-scale 

objects (tissue) and followed by smaller objects (cells and bacteria) as well as biomolecules 

(the molecular level). While investigating objects with sizes close to the resolution limit of a 

confocal Raman microscope, a new approach, namely 4Pi Raman confocal microscopy, is 

developed and applied for investigation of bacteria inside cells.  

Specifically, these goals are described as follows.  

1) Brain tissues: exploration of complementarity of Raman microscopy with magnetic 

resonance imaging (MRI) based on an example of pathological changes in brain tissues 

after mild traumatic brain injury (mTBI), (Chapter 2).   

 

2) Cells: investigation of complementarity of Raman and fluorescence microscopy for 

detection and intercellular localization of bovine lactoferrin inside calf rectal epithelial 

cells in the presence/absence of a bacterial infection, (Chapter 3).  

 

3) Inter-bacterial molecular substructures: application of Raman microscopy along-side 

X-ray and mass spectrometry methods for establishing the molecular composition of 

conductive fibers inside cable bacteria exhibiting long-distance electron transport, 

(Chapter 4).  

 

4) Development of multifunctional SERS (surface enhanced Raman scattering) particles 

for molecular detection and drug delivery. Testing a possibility to localize 

multifunctional particles and induce drug release in vivo inside Caenorhabditis elegans 

(C. elegans) worms using SERS, (Chapter 5).  

 

5) Development of a 4Pi Raman confocal microscope and its application, together with 

atomic force microscopy (AFM), to study Chlamydia psittaci bacteria inside 

mammalian cells, (Chapter 6).  
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Chapter 2 
 Added value of brain tissue analysis 

using Raman microscopy and magnetic 

resonance imaging (MRI) 
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Chapter 2 is based on the following publication: 

Added value of microscale Raman chemical analysis in mild traumatic brain injury (TBI): A 

comparison with macroscale MRI. D. Khalenkow, S. Donche, K. Braeckman, C. Vanhove, AG. 

Skirtach. ASC Omega 2018, 3, 12. 
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2 Added value of brain tissue analysis using Raman 

microscopy and magnetic resonance imaging (MRI) 

In this chapter, we investigate the capability of Raman confocal microscopy to analyze 

biological samples at the tissue level. In addition, we combine Raman microscopy with 

magnetic resonance imaging (MRI). The latter technique is widely used in medicine for tissue 

analysis, but it lacks the resolution of microscopy techniques and provides limited molecular 

information. Therefore, a combination of MRI with histological microscopy techniques, such 

as Raman microscopy, can be a valuable tool to better understand the structural and 

molecular changes in the brain after an injury, particularly when the injury is not very 

pronounced, as it is the case in mild traumatic brain injury (mTBI). In this work, we analyze 

brain tissue samples before and after traumatic brain injury using both MRI and Raman 

microscopy. Furthermore, we have developed protocols for sample preparation, scanning, 

and analysis of the resulting data with a confocal Raman microscope. This chapter discusses 

how to analyze biological tissue samples using Raman microscopy when no prior information 

about its state was known.  
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2.1  INTRODUCTION  

The definition of traumatic brain injury (TBI) is the following: it is a pathological change in brain 

structure and function caused by an impact of an object or brain rapid 

acceleration/deceleration 71. TBI is, unfortunately, a frequently occurring trauma in military 

and other conflicts. Besides, it is also common in everyday life since TBI can also be a result of 

sport activities, particularly in American football or boxing, or a car, motorcycle, or bicycle 

accident 72. TBI is divided into several categories: mild, moderate, and severe. Gradation is 

based on the Glasgow Coma Scale and the severity of symptoms 73. In this work, we study the 

mild TBI (mTBI), which is diagnosed in 80 % of head trauma patients in the US (CDC 2010) 74. 

It is considered the least severe and dangerous form of TBI. However, at least 30 % of mTBI 

patients were not able to achieve full neurologic recovery and have developed prolonged 

behavior and cognitive changes 75.  

Magnetic resonance imaging (MRI) is a conventionally used method to study TBI 76 and it 

provides a possibility for non-invasive in vivo visualization of tissue. MRI uses strong magnetic 

field that forces the spins of protons in the sample to align with magnetic field 77. Next, an 

intense radio frequency radiation causes the spins out of alignment with magnetic field. After 

the radiofrequency radiation is turned off, protons realign with magnetic field, emitting the 

radio pulses. These pulses are detected and used to construct the MRI image. The analysis of 

resulting MRI images allows the detection of damage caused by TBI, such as brain white 

matter shearing, foci of axonal injury, and small subacute hemorrhages 78. These brain lesions 

were observed with MRI in patients with moderate and severe TBI 79. However, the MRI scans 

of the patients with mild TBI often show no abnormalities since conventional MRI is not 

sensitive enough to detect the micro-bleedings and diffuse/traumatic axonal injuries, which 

are the common complication of mTBI. Therefore, little is known about mTBI underlying 

causes and mechanisms 80 81. That is why we have decided to test whether Raman confocal 

microscopy would be a viable addition to conventional neuroimaging tools for uncovering 

pathological changes in the brain tissue caused by mTBI.  

There are two reasons why Raman microscopic molecular images can have an added value to 

MRI. The first reason: while it is possible to perform deep in-tissue imaging with a conventional 

MRI scanner, its spatial resolution is not as high as that of an optical microscope (100 µm 

versus under 1 µm for MRI and light microscopy, respectively). The second reason: MRI misses 
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specificity to detect the underlying biological changes in the brain after mTBI 80, where Raman 

spectroscopy, with its ability to obtain data on a molecular level 82, might provide a valuable 

and complementary addition in this case. It may be possible to use MRI to locate the damaged 

spot and then use Raman microscopy to obtain information about molecular changes in this 

area. It should be noted that advanced forms of MRI, such as diffusion-weighted MRI, are 

more sensitive than conventional MRI. It was shown that diffusion-weighted MRI could detect 

changes in brain after mTBI invisible by conventional MRI 83 84. Diffusion MRI image analysis 

based on white matter tract integrity metrics allows studying changes in axons after mTBI 85.  

But even advanced forms of MRI in a combination with sophisticated data analysis lack the 

specificity of histological techniques. For example, it was possible to detect changes in mTBI 

rat brains after a cognitive training program using diffusion tensor MRI, but it was not possible 

to link those changes to specific region of the brain or to understand the molecular nature of 

those changes 84. Here Raman microscopy can be particularly attractive.  

Raman spectroscopy has been already used in neuroscience for analysis of biochemical 

changes in peripheral nerves after an injury 86 and to track molecular changes on the surface 

of the brain hemispheres after TBI 87. Raman spectroscopy was also used to study the lipid 

content of the brain and brain tumors 88. Recently, it was shown that TBI can be diagnosed 

with SERS by detecting specific biomarkers in blood  89.  

The studies mentioned above were focused on either individual neurons, biomarkers in body 

fluids, brain surface or the molecular composition of brain lipids, while, to the best of our 

knowledge, no analysis of changes in corpus callosum after mTBI has done to-date using 

Raman microscopy. That is why the primary goal of our study was to investigate whether any 

changes in brain regions can be observed after mTBI using a simultaneous application of MRI 

and Raman microscopy. We have chosen the corpus callosum region of the brain as the main 

focus of our study, because significant changes in volume and morphology in the corpus 

callosum areas were reported in humans after severe TBI 90.  
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2.2 MATERIALS AND METHODS 

2.2.1 Experimental layout 

 

Figure 2.1. Schematics of the experiment studying mTBI impacts on mice brain.  

(A) Marmarou’s setup for mTBI induction in rats: a rat in the device is shown in the insert. (B) 

MRI scans were done before and after mTBI induction to detect the damaged brain region. (C) 

Raman scans were conducted to obtain information about the molecular changes after mTBI 

in the corpus callosum region of the brain.  

 

The experimental layout is shown in Figure 2.1. First, mTBI is induced in a rat by controllable 

force impact of a brass weight. Next, we have performed MRI scans to analyze the impact of 

this injury in vivo, Figure 2.1 (B). The brains of the rats were scanned with conventional T2-

weighted MRI (a) before, (b) one day after, and (c) one week after mTBI to identify and image 

the damaged areas. Subsequently, the brains were extracted and subjected to Raman 

histological analysis with the focus on the corpus callosum region, Figure 2.1 (C). Raman and 

MRI scans were done by applying both techniques to similar areas in the brain before and 

after mTBI.  
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2.2.2  mTBI induction 

To induce mTBI in a controllable and, most important, repetitive way, the replica of the 

Marmarou weight-drop model91 was built (Figure 2.1 (A)). In such a device, the severity of the 

TBI can be controlled by adjusting the mass of the weight and the drop height. The 

experiments were carried on eight adult female Wistar rats (n=8, weight 26516 g), purchased 

from Janvier Labs (Le Genest-Saint-Isle, France). Studies were approved by the Animal Ethics 

Committee at Ghent University (ECD 17/96), and experiments were conducted in accordance 

with the guidelines of the European Commission (Directive 2010/63/EU).  

 All rats were anesthetized with a mixture of isoflurane and O2 (5% induction, 2% 

maintenance). This was done not only to immobilize rats during TBI induction but also to 

reduce the stress and suffering of the animals. Additionally, rats were injected with 0.05 mg/kg 

buprenorphine (Temgesic, Indivior) subcutaneously. Buprenorphine is an opioid drug that is 

used to relieve pain in human TBI patients.  

After 30 minutes, the rat’s head was shaved, 100 L of 2% xylocaine (AstraZeneca) was locally 

injected into the scalp and an incision was made to expose the skull. A metallic disc with a 

diameter of 10 mm and 3 mm thickness, which served as a helmet, was glued onto the skull 

1/3 before and 2/3 behind bregma. Next, five rats have received a mild traumatic brain injury 

with varying severity by dropping the 450 g brass weight. One rat received the impact from 

the weight dropped from 1.0 meter (TBI100), two from 1.30 meters (TBI130), and two from 

1.45 meters (TBI145). The last three rats did not receive the impact and were used as a 

reference control group (sham). 1 mL of physiological solution (0.9 % NaCl) was injected 

through a catheter inserted in the lateral tail vein, to reduce the hemodynamic shock. 

Subsequently, the helmet was removed, and the incision was stitched. Additionally, the rats 

were imaged with a CT scan (X-Cube, Molecubes, Ghent, Belgium) to rule out any skull 

fractures because this is a criterion for euthanasia and the sign of severe TBI. To minimize the 

radiation dose, a general-purpose low dose one-bed position scan was performed. One day 

post impact the rats received an extra dose of 0.05 mg/kg buprenorphine.  

 

2.2.3 In vivo longitudinal MRI imaging 

MRI scans were conducted to analyze the impact of induced brain injury in vivo. MRI data were 

acquired on a 7T MRI scanner (BioSpin Pharmascan 70/16, Bruker, Ettlingen, Germany) using 

a volume rat brain/mouse whole-body RF coil. The brains of all rats participating in the 
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experiment were scanned with conventional T2-weighted MRI before, one day after, and one 

week after TBI. The purpose of the scans was to identify and image the damaged areas. Control 

rats were subjected to similar scans and drug treatment as mTBI rats. During imaging, the 

animals were under 2% isoflurane anaesthesia, their body temperature was kept constant 

using circulating warm water heated blanket and bubble wrap, and respiration rate was 

monitored with a pressure pad. For each time point, a whole-brain anatomical T2-weighted 

scan was done using a Rapid Acquisition with Refocused Echoes (RARE) sequence: TR=5.5 

seconds, TE=37 milliseconds, RARE factor=8, FOV=2.5 x 2.5 cm. There were 45 slices scanned 

with a thickness of 600 µm per slide and with an in-plane resolution of 109 x 109 µm. The 

acquisition time was 12 minutes.  

 

2.2.4 Sample preparation, Raman microscopy data acquisition, and pre-processing 

Unfortunately, in contrast to MRI, it is not possible to access the deep brain structures in vivo 

with a confocal Raman microscope. The solution we found was to extract the brain, cut it into 

slices, which then can be scanned with Raman. The main challenge here is how to cut the brain 

in a repeatable way with minimum changes in molecular or histological structures. The 

conventional way in life science and pathological anatomy for microscopic tissue slice 

preparation is to embed the sample tissue in paraffin or plastic and then cut it with a 

microtome. We found that such methods cannot be used for Raman microscopy for two 

reasons: 

1. Raman spectra of both plastic and paraffin contain intense peaks that overlap and 

oversaturate the cellular peaks;  

2. the embedment procedure requires heating and/or dehydration of samples, which may 

influence its molecular or structural composition.  

Therefore, we developed the protocol for tissue slides preparation for confocal Raman 

microscopy, which is based on deep freezing of the tissue. Such a procedure gives it the 

necessary hardness to be cut with a microtome. This step is particularly relevant for such soft 

tissue as the brain. Tissue freezing was followed by cutting it with cryo-microtome and 

immediate fixation during the de-freezing. We opted to do fixation after cutting and not 

before, because it was not possible, without sacrificing more rats, to evaluate how good 

fixation would work on the whole brain, in particular, how deep and how fast formaldehyde 
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would penetrate in the brain. Also, there was a danger that the whole brain fixation would 

create a formaldehyde concentration gradient, where surface brain proteins would undergo 

more cross-linking than proteins in deep brain regions92. The sample preparation was done as 

follows: one week post mTBI induction, all rats were euthanized with 100 mg/kg of sodium 

pentobarbital (20%) (Kela NV, Hoogstraten, Belgium). Brains were extracted from the skulls 

and immediately snapped frozen in liquid nitrogen-cooled 2-methylbutan (Reagent-Plus® 

99%, Sigma Aldrich). Next, brains were cut into 20 μm thick slices with a cryo-microtome 

(CM3050 S, Leica Microsystems, Belgium). Three tissue slices per animal were produced. The 

obtained tissue slices were placed on quartz slides (Ted Pella, Inc.) fixed for 10 minutes with 

4% formaldehyde (4078-9001, Klinipath) and scanned with a Raman confocal microscope.  

The Raman microscope (Alpha300R+, WITec, Ulm, Germany) was equipped with a 785 nm 

laser (Toptica, Munich, Germany) and an UHTS 300 spectrometer with a charged coupled 

device (CCD) camera (ANDOR iDus 401 BR-DD, Belfast, Great Britain) cooled to -72 ˚C.  

The same microscope, laser, and CCD camera were used for all research described in this 

thesis. Therefore, information about microscope setup will not be repeated in subsequent 

chapters. Only relevant experimental details, such as laser power, integration time, objectives 

will be described in the following chapters.  

All tissue studies were conducted with laser power of 225 mW. A water immersive 20x/0.6 NA 

objective (Nikon) was used for scanning. Tissue areas of 400 μm x 200 μm were mapped with 

the step size of 10 μm/pixel and an integration time of 1.5 seconds per data point. Three area 

scans per slice were performed. Brain slices were kept in the Hanks’ Balanced Salt solution 

(14025050, ThermoFisher) during the whole scan to avoid tissue detachment from the quartz 

slide, dehydration, and osmotic damage.  

Spectral datasets were pre-processed in R.3.4 using the HyperSpec package 93. Background 

subtraction and baseline correction were done by applying the Asymmetric Least Squares 

function, and normalization by applying the area-under-curve method using the Baseline 94 

and MALDIquant 95 packages, respectively. The detailed information about the basics of 

Raman datasets pre-processing and analysis can be found in Appendix (Supplementary 

Information for Chapter 2 (Appendix), S1). 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Scanning tissue samples with Raman microscope 

Tissue slices were prepared similar to the protocol presented by Bergner et al. 96 Next, a step-

by-step approach to optimize sample handling and scan acquisition was carried out with the 

aim to investigated and minimized all external factors which could interfere with the scans.  

Initially, a possibility of discriminating between different rat tissue types in the Raman 

datasets described in literature on mice 97 and rat 98 was investigated. Subsequently, a 

procedure was developed to apply such protocols for MRI-Raman microscopy-based 

approach. First, we have measured and compared Raman spectra of brain, heart, and kidney 

rat tissues. As it can be seen from Figure 2.2 (A), each tissue type produces a distinct molecular 

fingerprint highlighted with grey rectangles.    

 

Figure 2.2. Comparison of molecular fingerprints of tissues of rats. (A) Raman scattering 

spectra from brain, kidney, and heart tissues. (B) Raman scattering spectra from the brain 

cortex and corpus callosum regions. 
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Next, we have tested if Raman confocal microscopy is sensitive enough to discriminate 

between different structures inside brain tissue slices. It was found that the cortex and corpus 

callosum areas have distinct molecular fingerprints, Figure 2.2 (B). After we had confirmed 

that confocal Raman microscopy allows obtaining spectra with a high enough resolution to 

discriminate between tissue types, we have moved to identification and removal of possible 

sources of external noise, which can potentially influence the measurements. 

It was found that the main factor in this case is the structural integrity of the tissue slice over 

time. It is important to remember that tissue slices in our case were only 25 µm thick and they 

were not fixed to the surface of the slide (quartz slides were used). It was also found that 

water currents produced by stage and microscope objective movement during scans can 

cause detachment and degradation of the sample around its edges. For the brain tissue, this 

effect started to be noticeable only after 3 hours of active scanning and moving the stage. 

While the corpus callosum area situated in the center of the slice is not affected, the detached 

pieces of brain tissue can be captured by the scanning laser beam and cause distortions on 

the molecular image.  

The next step was to find an optimal integration time per measured spot in an area scan. 

Integration time can be defined as the amount of time the Raman signal is measured by a CCD 

camera to obtain the single spectrum. At a low integration time, small peaks can be masked 

by noise. Therefore, higher integration times lead to an improved resolution of the peaks. 

However, this trend is not always applicable: at a certain point, an increase in the integration 

time would produce no measurable increase in spectrum quality. The second factor to 

consider is that each area scan can consist of hundreds of individual Raman spectra, and 

because of that, the measurement of a single area can take hours. If the sample is not 

structurally stable, then long multi-hour scans may affect it. That is why, it is crucial to find the 

optimal integration time, since it allows decreasing the overall scanning time. It was done by 

taking multiple Raman spectra at the same spot, gradually increasing the integration time 

after each scan, until no improvement in peaks resolution was detected.  

The last factor to consider is whether the confocal volume, from which the Raman signal is 

measured, is the same for all points of the dataset. Because we use a confocal microscope to 

collect the Raman scattering signal, the diffraction limited focal area of the microscope will 

affect the peak resolution. The scanned samples were placed on a thick quartz slide, which 



59 
 

was then mounted inside a Petri dish. Both quartz and plastic Petri dish bottom sides are not 

perfectly flat, and this induces a slight tilt of the sample. The average brain slice length was 

around 4000 µm in the largest dimension. The difference in the axial position of the optimal 

focus was found to be offset by up to 100 µm compared to the position at the opposite edge 

of the sample. The solution to this potential problem was to divide a sample in a set of 

rectangular areas with average dimensions of 400 µm x 200 µm and calibrate the microscope 

to have the optimal focus at the center of each area.  

2.3.2 Construction of Raman molecular images of tissue samples  

Each area scan produces in a large dataset of 800 entries, where each entry is a single 

spectrum consisting of 1024 data points. After pre-processing steps were performed, entries 

in the dataset were grouped based on how similar their spectra were. Because different tissue 

types have their unique molecular fingerprints, the dataset entries containing spectra from, 

for example, the cortex can be separated from the datapoints belonging to the corpus 

callosum area. Such clustering can be done using both supervised and un-supervised data 

mining. 

In data processing, no pre-processed and annotated brain Raman datasets were available, 

which could have been used as a training set for supervised data mining. Therefore, 

unsupervised hierarchical clustering has been applied to select those data points belonging to 

the corpus callosum region. This method also allowed detecting structural and molecular 

abnormalities of the scanned tissue. The main disadvantage of unsupervised clustering is that 

it is necessary to make an intelligent guess about the number of groups, into which datasets 

need to be divided. Splitting the dataset into a low number of groups leads to losing valuable 

information, while dividing the obtained data into too many groups would lead to separation 

of the datasets based on slight differences generated by the background noise or laser power 

fluctuations. Therefore, such separation will provide no useful information. In our case, we 

have used the silhouette plot method and preliminary knowledge of what types of tissues we 

expected to find in the investigated area to determine the optimal number of clusters. The 

silhouette plot can be constructed by plotting the measure of how close each point in one 

cluster is to points in the neighboring clusters versus the number of clusters. The histological 

optical images of the scanned area, Figure 2.3 (A), can also provide important information on 
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the number of clusters. It is possible to use the following approach: start with two clusters and 

then gradually increase the number of clusters, while comparing the resulting molecular 

images with those obtained by an optical microscope and performing the manual inspection 

of each cluster. By giving each cluster of data points a unique color, and plotting each data 

point as a single pixel, we can create a molecular image of the scanned area, Figure 2.3 (B), 

where various tissues and structural abnormalities can be also visualized. After background 

subtraction, normalization, and clustering – information about the anatomical and molecular 

composition can be extracted from the resulting pre-processed datasets.  

 

Figure 2.3. (A) Light microscopy image of cortex and corpus callosum, and (B) the 

corresponding Raman spectroscopic image produced by the hierarchical clustering analysis. 

Numbering of colors corresponds to clusters.  

It is important to note that the resulting molecular images can contain artifacts and 

distortions, which may introduce bias into the image interpretation and analysis. The nature 

of such artifacts may depend on the structure and topography of analyzed tissue. If the tissue 
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slice is not flat, if it has a rough surface with significant variations in height between points, 

then that can result in molecular image distortion. Because of a rough surface, the number of 

molecules in the confocal volume varies between the points, translating into variations in peak 

intensities, Figure 2.4 (A, B).  

 

 

Figure 2.4. (A) Light microscope images of rat heart tissue. The red rectangle marks the area 

scanned with Raman microscopy. (B) Raman molecular image constructed based on the 

clustering analysis. No data normalization was done. (C) Raman molecular image, constructed 

based on the clustering analysis performed on a normalized dataset. Numbering of colors 

corresponds to clusters.  

On heatmaps and clustering images, such variation results in the appearance of false 

substructures, which are not actually present in the tissue. The problem can be partially solved 

with intensity normalization across the dataset. However, normalization itself may introduce 

additional artifacts on the image or remove actual substructures, Figure 2.4 (C). This creates 
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certain challenges for samples with a rough surface, such as heart tissue slices. Because it is 

not possible to conclude with a high degree of certainty if the identified substructure on the 

molecular image is a scanning artifact or if it is present in the sample. Additionally, samples 

with a rough surface may pose the challenge of reproducing the results using conventional 

confocal Raman microscope scanning due to obstacles associated with precisely focusing on 

the same plane. This problem may be solved by scanning a high number of samples and by 

scanning the same area at different confocal planes. However, such an approach extensively 

increases the scanning time. Combining Raman microscopy with atomic force microscopy 

(AFM) is useful for interpreting Raman molecular images of samples with a rough surface. The 

complementarity of Raman and AFM will be discussed in detail in Chapter 6. 

As it is already mentioned in section 2.3.1, the second problem encountered during 

measurements was sample degradation. The degradation was noticeable in a microscope: 

small particles of organic material appeared in the sample due to tissue degradation. 

Peculiarly, these small particles can be captured by a laser beam and distort the image. Such 

distortions manifest themselves in the form of parallel lines on the image. The lines can be 

present both on the heatmap and the clustering image. The problem of particle detachment 

was especially relevant during the imaging of rat's kidney tissue slices, Figure 2.5 (A, B). Such 

artifacts, caused by captured particles, cannot be removed with normalization, Figure 2.5 (C). 

The lines were present not only when the scan was performed at the edge of the slice, but 

also in the central regions of the sample (Supplementary Information for Chapter 2 

(Appendix), Figure S2.6). The fast degradation of kidney tissue slices makes it challenging to 

image such a sample with Raman microscope.  
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Figure 2.5. (A) Transmission light microscopy images of rat kidney tissue. The red rectangle 

marks the area at the edge of the slice scanned with Raman microscopy. (B) Raman scattering 

heatmap of the rat kidney tissue based at the 1004 cm-1 peak; red and blue arrows mark image 

artifacts caused by detached tissue debris. Clustering analysis is shown on the right-hand side 

of panel (B). (C) Comparison of non-normalized (left) and normalized (right) Raman clustering 

image. Numbering of colors corresponds to clusters. 
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2.3.3 MRI results 

 

Figure 2.6. T2-weighted MRI brain images (A) before mTBI, and (B) 1 week after impact. 

Arrows point to the corpus callosum area. 

The anatomical T2-weighted MRI scans (with distinct sequences of pulses) of the brain of a rat 

were obtained in the next step. In Figure 2.6, the scans are shown before (A) and one week 

after (B) the impact. Anatomical T2-weighted images were very similar in all animals; 

therefore, Figure 2.6 is representative of all animal brains analyzed in this experiment. The 

MRI scan resulted in a dataset of images, from which we have chosen the slices, where the 

corpus callosum and the lobes of the hippocampus are clearly visible. No significant changes 

were observed in these regions on slices obtained one day and one week after the TBI; these 

scans were also compared to those from the control rats. This supports the evidence that the 

produced impact induces only a mild TBI. 

2.3.4 Analysis of Raman molecular images of the corpus callosum 

After analysis of 54 molecular images, we have found a histologically abnormal area (15-20 

μm in size) in a brain slice obtained from a rat in 1 week after the medium force TBI, Figure 

2.7 (A).  This area had two times higher Raman signal intensity compared to the signal from 

the surrounding tissues, Figure 2.7 (B). A similar signal pattern was noticed in molecular 

fingerprint from dried rat blood, suggesting that the observed abnormal area may be the 

result of micro-hemorrhages common in mTBI 81.  

Blood in the corpus callosum area was found only in one animal. Two factors can explain the 

absence of such areas in other TBI samples. The first possible explanation is that because the 

slices were very thin, blood could be washed away during the fixation or scanning. 
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Figure 2.7.  (A) Light microscopy image of the corpus callosum and corresponding Raman 

molecular image of the corpus callosum with an abnormal region. (B) The mean Raman spectra 

of the corpus callosum (blue) and high-intensity spectrum of the abnormal region (red) from 

the image in the panel (A). Numbering of colors corresponds to clusters. 

The second explanation is that an insufficient number of brain slices was analyzed in this 

experiment or that observed micro-hemorrhages were present only in a limited number of 

mTBI cases.  

2.3.5 Analysis of corpus callosum molecular fingerprints before and after mTBI 

Data points corresponding to the corpus callosum of rats were compared between control 

(rats with no impact) and mTBI affected rats with the focus on the 2800-3000 cm-1 Raman 

spectral region, Figure 2.8 (A). We have focused on this part of the spectrum because of the 

existence of neurological interpretation for the peaks in this region. It was found that in the 

peripheral nerves, the peak intensity in the 2940 cm-1 region of Raman neuronal spectrum is 

proportional to the neurofilament protein concentration, and the peak in the 2855 cm-1 region 
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corresponds to myelin lipids concentration, respectively 99. A comparison of peak ratios 

between the samples was done using average spectra calculated from each scanned area. In 

total, 54 areas were scanned. A comparison of spectra between the control rats and mTBI rats 

has shown a significant decrease of the 2940 cm-1 to 2855 cm-1 peak ratios after mTBI with p= 

0.001299 for TBI130 versus control rats. A decrease in peak ratios was also observed for 

TBI145 rat versus the control rats with p= 0.00076, Figure 2.8 (B).  

 

Figure 2.8. (A) Raman spectrum of the CH stretching region used for peak intensity analysis. 

(B) Changes in the Raman scattering intensity peak ratio at 2940 cm-1 to that at 2855 cm-1 

after the mTBI. The control column in the plot shows the peak ratio obtained from the corpus 

callosum area of a rat not exposed to TBI. The TBI 130 and TBI 145 columns are the peak ratios 

from rats, in which the mild TBI was induced by the weight drop from 1.30 m and 1.45 m 

heights, respectively. Error bars show the standard deviation between the data points.  

There was observed a larger change in peak ratios in TBI145 compared to control than in 

TBI130, Figure 2.8 (B). But it is important to note that only one brain from the TBI145 group 

was scanned with Raman microscopy, as the second rat was found dead the next day after the 

impact. Due to ethical consideration, it was decided not to subject additional animals for 1.45 

m weight drop impact. That is why it is not possible to conclude with high certainty whether 

the larger difference in peak ratios observed in TBI145 compared to TBI130 is caused by 

individual differences between animals or is the result of more severe brain damage by the 

weight drop from 1.45 m.   

Because our analysis was based on the mean spectrum of the scanned areas, it was challenging 

to deduce whether the observed differences in molecular fingerprint between control and 

TBl130 present in all axons in the corpus callosum area or only in a limited number of them. 
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2.3. CONCLUSION 

 

A combination of MRI and Raman imaging is demonstrated to be a viable approach to study 

mTBI on macro- and micro- scales. TBI caused by an impact of dropping a 450 g weight from 

1.30 m and 1.45 m heights did not produce lesions detectible with conventional MRI, 

measured one day and one week after the impact. The absence of lesions in MRI images was 

a good reference that the applied force did not cause a severe TBI in rats. However, no damage 

could be detected with MRI. On the other hand, analysis of corpus callosum regions revealed 

detectable changes in brain tissue using Raman microscopy, even under conditions of mTBI. 

This is evidenced by analyzing the decrease in the ratio of axon proteins to myeloid lipids as 

detected in the corpus callosum region after mTBI. The hierarchical clustering analysis allowed 

discriminating between different anatomical regions of the brain, detecting structural and 

molecular abnormality inside the corpus callosum region, which is presumably the result of 

micro bleeding caused by mTBI. The addition of Raman microscopy to brain study provides the 

means to track changes in the brain, undetectable by conventional MRI. However, it was 

necessary to cut the brain to get access to the corpus callosum region. Invasiveness and 

associated with it challenging for in vivo scans are the main disadvantages of the presented 

protocol of tissue analysis with Raman microscopy. However, Raman spectroscopy itself is 

nondestructive for tissue slices. It is essential to mention here that even more detailed analysis 

is possible, for example, an area of a sample can be cut-off from a slice, scanned with Raman 

microscopy, and used for further analysis, such as genomic sequencing or immunostaining.  
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Localization of bovine lactoferrin inside 

calf cells by fluorescence and Raman 

microscopy 
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Chapter 3 is based on the following publication: 

Lactoferrin translocates to the nucleus of bovine rectal epithelial cells in the presence of 

Escherichia coli O157: H7. J. Rybarczyk (*), D. Khalenkow (*), E. Kieckens, AG. Skirtach, E. Cox, 

D. Vanrompay. Veterinary Research 2019, 50, 75 (* - equal first-author contribution). 
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3 Localization of bovine lactoferrin inside calf cells by 

fluorescence and Raman microscopy 

 

In this chapter, we investigate samples on a significantly lower scale, where each spectrum is 

obtained from an area of around one micrometer in diameter. Such an acquisition enables the 

identification of the position of molecules inside cells and bacteria. Also, similarly to previous 

chapters, we continue the investigation of a combination of Raman microscopy with various 

analytical techniques to obtain additional information about samples. We aim to achieve this 

goal by investigating complementarity of Raman and fluorescence microscopy for localizing 

molecules (bovine lactoferrin) with known molecular composition inside cells. Translocation 

of bovine lactoferrin to cell nuclei is investigated after cellular uptake; the influence of bacteria 

on the bovine lactoferrin translocation is also studied.  
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3.1 INTRODUCTION 

It was already shown how to perform the analysis on the tissue level (this was described in 

Chapter 2). Next, we test the capability of conventional confocal Raman microscopy to analyze 

samples at the cell level. To achieve this goal, we have carried out research to identify the 

position of lactoferrin inside bovine rectal epithelium cells. Lactoferrin is a member of 

transferrin family of iron-binding glycoproteins. One of the main roles of transferrin is to 

supply iron to the cell. Transferrin can reversibly chelate iron ions with a high affinity (Kd=10−20 

M) 100. Iron-loaded transferrin binds to cell surface transferrin receptor 1 101. Next, 

transferrin/receptor complex is taken inside the cell via endocytosis. The endosome with 

transferrin inside undergoes acidification, mediated by the ATPase proton pump. The drop of 

pH to 5.5 inside the endosome triggers the release of iron ions from transferrin.  Transferrin 

is then either degraded or released from the cell for another iron transport cycle 101.   

Besides iron transport, lactoferrin can also modulate the immune response and it is known to 

possess antimicrobial properties 102. Lactoferrin is secreted by epithelial cells and can be found 

in milk, tears, sweet, gastrointestinal, and other exocrine fluids103 104 105. It is also present in 

serum and secondary granules of neutrophils 106. It was recently found that the administration 

of bovine lactoferrin (bLF), extracted from milk, allows removal of Enterohemorrhagic 

Escherichia coli (EHEC) from rectal mucosa in cattle107. Enterohemorrhagic Escherichia coli is a 

foodborne pathogenic bacterium. The gastrointestinal tract of cattle acts primarily as 

reservoirs for this microorganism 108 109. Typically, infected cattle hosts show no symptoms of 

illness. However, EHEC can infect humans via contaminated water, food, or direct contact with 

the animals. In humans, those bacteria colonize the colon and cause a broad range of 

pathologies: hemorrhagic colitis, hemolytic uremic syndrome, watery or bloody diarrhea, and 

hemolytic uremic syndrome 110. The additional danger of EHEC infection is that the treatment 

with conventional antibiotics triggers the SOS response in these bacteria, which leads to the 

release of Shiga toxin and therefore resulted in an increase in the mortality rate of the patients 

111. That is why the possibility to remove EHEC infection in cattle would provide significant 

benefits for healthcare by decreasing the chances of human contact with those bacteria. The 

anti-EHEC property of bLF are especially interesting because it may allow clearing EHEC by 

modulating of native immune response of the animal and without the use of antibiotics.  
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In humans exist various isoforms of lactoferrin. One of the isoforms, called delta-lactoferrin 

(ΔLF), is known to be able to translocate to the nucleus and act there as a transcription factor 

112 113,114. No ΔLF or its analog, to the best of our knowledge, was found in animals up to date. 

Therefore, we aimed to find if the bLF can be uptaken by calf rectal epithelium cells and 

whether it is translocated then to the nucleus, similar to ΔLF in humans. Additionally, we 

aimed to find how the presence of EHEC influence the uptake and translocation of bLF.  

The Raman spectroscopy was already used to study bovine lactoferrin 115. Nevertheless, to the 

best of our knowledge, no Raman studies describing the changes caused by bLF in the 

molecular fingerprint of bovine rectal epithelium cells were done. The absence of such 

information brought an additional challenge to localizing bovine lactoferrin inside the cell. The 

bovine lactoferrin is a glycoprotein. Therefore, its peaks may be masked by the peaks 

originated from other proteins and glycoproteins inside cells. However, Raman is a very 

sensitive technique. If we scan the cell, which was incubated in the presence of bLF, and 

compare the spectrum of this cell with the spectrum of untreated control cells – we may 

detect the difference in the spectra between those cells. If we compare the spectra of the 

nuclear region between the treated and untreated cells – we may also observe the changes in 

the Raman spectrum. However, it is not possible with a significant degree of certainty to 

conclude that the found differences in molecular fingerprints were caused by bovine 

lactoferrin presence in the nucleus. The observed differences may be the result of biochemical 

processes caused by bLF in the growth medium or the cytoplasm or by the presence of EHEC 

or by other factors. This problem can be solved by using fluorescent microscopy as a 

complementary tool to confirm that changes in the molecular fingerprint in a particular region 

inside the cell can be attributed to the bovine lactoferrin.  
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3.2 MATERIALS AND METHODS 

The first problem we faced was that the bovine rectal epithelial cell culture was not 

commercially available. This was solved by developing the primary cell culture from a sample 

of calf rectum. All subsequent experiments were done using the cells from this culture. The 

isolation of bovine rectal crypt was performed according to protocols described in other 

studies 116 117 118 119 with minor modifications 120. 

Rectal epithelial cells were seeded on CaF2 Raman grade 75 × 25, 1 mm polished slides 

(Crystran Ltd., UK) and grown till a monolayer was formed. The nalidixic acid-resistant Shiga-

toxin negative Escherichia coli O157: H7 (EHEC) strain NCTC 12 900 121 was grown overnight at 

37 °C in 10 mL Luria–Bertani broth medium (Becton–Dickinson, Claix, France).  

Next, the cells were washed with PBS and inoculated with EHEC (107 CFU/mL, diluted in 

DMEM). Then, inoculated cells were incubated for 5 hours at 37 °C, allowing EHEC to attach 

to the cells. In the following step, the inoculated cells were washed with PBS and treated with 

100 μL (1 mg/mL DMEM) of Alexa Fluor 488-labelled bLF or Alexa Fluor 488 dye or unlabeled 

bLF and incubated for 2 hours (37 °C, 5 % CO2). All treatment conditions were tested in 

triplicates, with two biological replications. bLF was fluorescently labelled with Alexa Fluor 

488, using Alexa Fluor® 488 Protein Labeling Kit. Labeling was done according to the standard 

protocol provided by the manufacturer (Molecular Probes, Eugene, OR, USA).  

 After two hours of incubation, cells were washed with PBS (4 °C) and fixed with 4 % 

paraformaldehyde (30 minutes, at room temperature). In samples allocated for only 

fluorescence microscopy analysis, nuclei were additionally stained using the Hoechst 33258 

nucleic acid dye (Sigma). This was done to visualize the nuclei of the cells on fluorescent 

images. Staining was done for 10 minutes at room temperature. 

Fluorescence imaging was performed using a Nikon Ti confocal laser scanning microscope 

(Nikon, Belux, Brussels, Belgium) with a Nikon Plan Apo VC 60x Oil DIC N2 objective (1.40 NA). 

Two types of images were obtained: high-resolution axial imaging of a single cell with 

subsequent three-dimensional (3D) cell reconstruction, Figure 3.1, and wide-scale lateral 

mapping of multiple cells, Figure 3.2. Next, cells, where the presence of bLF was confirmed by 

fluorescent microscopy, were mapped with a Raman microscope. Laser power was set to 180 

mW. A 100x/0.9 NA (Nikon, Japan) objective was used. The mapping resolution was 2 points 
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per μm. Integration time was 1 second. The cells treated with Alexa 488 dye were used as 

control. The heatmaps were generated with Project FOUR v.4.0 (WITec 2014).  

3.3 RESULTS AND DISCUSSION 

3.3.1 Analysis of Fluorescent images 

The overlapping of nuclei stained with Hoechst 33258 and bLF-Alexa-stained region confirms 

that bLF is translocated to the nucleus of the cell, Figure 3.1. Interestingly, the axial scan of 

the bLF-Alexa positive cells and the following 3D reconstruction showed that all lactoferrin is 

localized in the nucleus area and nearly absent in the cytoplasm. The concentration of 

lactoferrin in one spot inside the cell was also observed in Raman images. 

 

  

Figure 3.1. Three-dimensional fluorescence confocal microscopy images of a calf rectal 

epithelium cell. (A) Fluorescent image of the nucleus stained with the Hoechst dye. (B) 

Fluorescence microscopy image of the region inside the cell with bLF- Alexa- Fluor 488. (C) 

Merged image of A, B, and transmission. (D) The corresponding transmission microscopy 

image.  
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Next, cells with or without fluorescent marked bLF in the nuclei were counted using the Cell 

counter plugin from the ImageJ v.150b. The counting results showed that the presence of 

EHEC O157:H7 leads to a significant increase (p<0.5) of bLF translocation rate. In samples 

inoculated with EHEC, on average 480 cells (38.5 % ) from 1248 were bLF-Alexa Fluor positive, 

Figure 3.2 (D, E, F). However, in the absence of EHEC, only 17 cells (1.34 % ) from 1270 showed 

the presence of bLF in the nucleus Figure 3.2. (A, B, C). 

 

Figure 3.2. Fluorescence microscopy images of bovine rectal epithelial cells. Cells were stained 

with bLF-Alexa Fluor 488 and Hoechst 33258. -EHEC panel shows images of the cells grown in 

the absence of EHEC. +EHEC panel shows the images of the cells grown in the presence of EHEC. 

(A), (D) show cell nuclei stained with the Hoechst nuclear dye. (B), (E) show cells with bLF-Alexa 

Fluor 488 inside. (B) The localization of bLF-Alexa Fluor 488 without the EHEC infection is 

depicted. (C), (F) – merged images of A and B, or D and E respectively, show the cells, marked 

with arrows, with bLF-Alexa in the nuclei.  

Such upregulation of bLF translocation can be explained by activation of cellular innate 

defense mechanism, caused by EHEC presence, where bLF may act as an immunomodulator. 

An alternative explanation can be that bacterial uptake of iron resulted in its deficiency inside 

the cell. The iron deficit leads to the rise of bLF receptor numbers on the plasma membrane 

and, therefore, to increase of lactoferrin uptake by the cell and its subsequent translocation 

to the nucleus.  
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3.3.2 Lactoferrin localization with Raman 

The Raman molecular fingerprint of pure unlabeled bLF in PBS (35 mg/mL) was used to localize 

the bLF inside the cell. The fluorescent image was used to localize the region where the bovine 

lactoferrin was present. Comparing this region Raman spectrum with the spectrum of pure 

unlabeled bLF revealed that the 1555 cm-1 peak can be used for lactoferrin localization inside 

the cell, Figure 3.3 (A, B, D). The shape of the area with an intense 1004 cm-1 peak, assigned 

to phenylalanine 33, correlates with the shape of the cell visible on a light microscopic image, 

Figure 3.3 (A, C). On the other hand, the region with a highly intense 1555 cm-1 peak was found 

only in an area where according to fluorescent imaging, lactoferrin is present. The strong 1555 

cm-1 peak in the lactoferrin molecular fingerprint was observed before 115. In this study, a 1555 

cm-1 peak was assigned to the tryptophan (Trp) indole ring 115. Interestingly, the peptides rich 

in Trp are known to have a high antimicrobial activity 122. The 1555 cm-1 intense peak was 

absent in scans of control cells. After the molecular fingerprint of bLF inside the cell was 

identified, Raman can be used in subsequent studies to identify the bLF cellular localization, 

and in contrast to fluorescent microscopy, no labels are required.  However, it is essential to 

note that the evaluation of many cells with conventional Raman was extremely time-

consuming. The recording of a single spectrum from one cell took us approximately 1 minute. 

Minimum 20 minutes were required to obtain the molecular image of a single cell with Raman, 

while fluorescent microscopy allowed us to image more than 1000 cells in 10 minutes. 

The low throughput of Raman was the result of the technical limitations of the microscope we 

were using. The performance of Raman can be significantly improved with more sensitive 

detectors. This can be done, for example, by changing the CCD camera to an Electron 

Multiplying CCD (EMCCD) camera. A higher sensitivity of EMCCD would allow us to process a 

larger number of cells in a shorter time frame.  
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Figure 3.3. Fluorescence and Raman microscopy images of a calf rectal epithelial cell with bLF-

Alexa 488. (A) Fluorescence microscopy image of bLF-Alexa Fluor 488 inside a rectal epithelial 

cell. (B) The heat map of the cell is generated using the 1555 cm−1 peak assigned to tryptophan 

in bLF. (C) The heat map of the cell is generated using the 1004 cm−1 peak. This heatmap reveals 

the protein distribution inside the cell 123. (D) Raman scattering spectra show peaks used for 

the generation of the heat maps in (B) and (C). The upper spectrum (the red curve), taken inside 

the nucleus in the area marked with the red rectangle on (B) and (C), contains the peak at 1555 

cm−1. In the bottom spectrum (the blue curve), obtained outside the nucleus in the area marked 

with the blue rectangle in (B) and (C), the 1555 cm−1 peak is absent.  
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3.4 CONCLUSION 

 

In this chapter, it is demonstrated how to use Raman microscopy to identify the position of a 

molecule inside a cell. Here, the structure of the molecule (lactoferrin) was known before the 

experiment. Additionally, it was possible to obtain the molecular fingerprint of pure 

lactoferrin. However, it was challenging to visualize lactoferrin inside the cell due to the 

cellular fluorescence background. Additionally, the peaks originated from lactoferrin were 

masked by the overlapping peaks originating from other molecules inside the cell. Because of 

this, it was challenging to predict which peaks from bovine lactoferrin molecular fingerprint 

would be visible inside the cell. The challenge was solved by using fluorescent microscopy, 

which showed to be a viable complementary tool. Fluorescent labels allowed localization of 

lactoferrin and tracing its translocation to the nucleus of calf rectal epithelium cells. The rate 

of lactoferrin uptake and subsequent translocation increased in the presence of EHEC. Analysis 

of the Raman scattering spectrum measured inside the nucleus allowed identification of the 

unique lactoferrin-related peak. After the molecular fingerprint of the chosen molecule 

(bovine lactoferrin) was identified, it was possible to study intracellular translocation of 

lactoferrin with a Raman microscope, without using fluorescent labels. It is important to note 

that, if a molecule does not possess peaks distinct from its environment, it would be difficult 

to localize it with a conventional Raman microscope, especially at low concentrations. Such 

lack of specificity is a disadvantage of Raman microscopy.  
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Molecular analysis of conductive fibers 

in cable bacteria by Raman microscopy, 

X-ray, and mass spectrometry-based 

methods 
 

 

 

  



81 
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Efficient long-range conduction in cable bacteria through nickel protein wires. H.T.S. 
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4 Molecular analysis of conductive fibers in cable 

bacteria by Raman microscopy, X-ray, and mass 

spectrometry-based methods  

 

In the previous chapter, we have investigated the translocation of bovine lactoferrin to calf 

cell nuclei using Raman and fluorescent microscopy. The molecular composition of bovine 

lactoferrin was known, and the goal was to localize it inside the cell.  In this chapter, an 

example of a different situation is presented, where the position of certain structures is 

known, their molecular composition is unknown. The previously unknown molecular 

composition of long conductive fibers inside the so-called cable bacteria is thus investigated 

using Raman microscopy in a combination with mass spectrometry and X-ray analytical 

methods. Such fibers have important value for molecular electronics due to their unique 

electrochemical properties: long-distance electron transport.  
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4.1 INTRODUCTION 

In the previous chapter, we have demonstrated application of molecular fingerprinting for a 

localization of a molecule inside cells; there, the chemical composition of the chosen molecule 

(bovine lactoferrin) was known before the experiment. Next, we discuss here how to use 

Raman scattering to obtain information about the chemical composition of unknown 

molecules and nano-scale structures. Fibers inside the filamentous cable bacteria of the 

Desulfobulbaceae family were chosen as a sample for proof-of-concept analysis. Cable 

bacteria are multicellular microorganisms, known for their unique property to generate and 

conduct electric current over centimetre-scale distances 124 125 126 127.   

Cable bacteria are unique as their existence challenges the established dogma that each cell 

individually generates the energy for its existence by using electron donors and acceptors 

from the surrounding media 127. This rule applies not only to microorganisms such as sulfur 

oxidation bacteria, but also to complex multicellular life forms. Here, the specialized cells 

supply the energy-rich molecules, which are then transported to distant cells to keep them 

alive. For example, in humans, metabolically active cells are supplied through the bloodstream 

with the electron donors, such as glucose, and electron acceptors, such as oxygen.  The 

reduction-oxidation of those molecules produces the energy necessary to keep the cell alive. 

Those reactions are based on electron transport over nanometre scale distance and are 

performed by each cell individually.  

Cable bacteria use a very different strategy. Here, the cooperation between specialized cells 

is not based on the exchange of energy-rich molecules but on the generation of electric 

current to supply the electrons to distant cells and produce the energy. The ability to transport 

the electrons over centimetre long distances allows the cable bacteria to spatially separate 

between the cells the oxidation and reduction parts of the single metabolic reaction of energy 

production. The anode cells generate electrons by sulfur oxidation. Then, the resulting 

electrons are transported to cathode cells and used for oxygen reduction.  The ability to 

transport electrons over long distance allowed the cable bacteria to use the sulfur-rich deep 

layers of the sea bottom, inaccessible for other organisms. Long distance separation of 

oxidation and reduction parts of metabolic reaction is the tremendous evolutionary advantage 

over single-cell sulfur oxidation bacteria, which can exist only in a small niche in the seafloor, 

in the interface between sulfur-rich and oxygen-rich mediums, Figure 4.1.   
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Figure 4.1. (Left) Sulfur oxidation bacteria use sulfur and oxygen to produce energy. The 

oxidation and reduction reaction occurs in the same location. (Right) Cable bacteria separate 

the process of oxidation and reduction by using long-distance electron transport. This allows 

cable bacteria to use sulfur stored in deep layers of the seafloor (reproduced from Meysman 

et al 127).  

In cable bacteria, electrons are channelled internally from cell to cell via a network of parallel 

fibers 128 129. Fibers (~ 50 nm diameter) are formed inside of the periplasmic space, which is 

shared by all cells. They run along the whole length of bacteria filament and demonstrate 

interesting electric properties. The conductivity of fibers was found to be higher than 20 S/cm 

130. That means that fibers are more conductive than currently produced synthetic organic 

conductive polymers. At the same time, bacterial fibers can support the electric current 

density of ~ 100 A m-2. This value is comparable to that of conventional household copper 

wire. Such extraordinary properties of naturally occurring biomaterial have an excellent 

potential for advancing the field of bioelectronics, offering the possibility for developing new 

devices and technology. However, before moving to the direct technological application, we 

must learn about the chemical composition and structure of the conductive fibers. Such 

knowledge would allow one to build a deeper understanding of the working of electron 

transport through the fibers. Currently, these aspects are poorly understood.  
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The conductive properties of the filaments were confirmed with direct electrical 

measurements and Conductive Atomic Force Microscopy (C-AFM) 131. The analysis of the 

filaments with Resonance Raman approach shows the presence of cytochrome associated 

molecular fingerprints in the intact filaments spectra, but it was found that cytochromes play 

no role in electron transport125 130. These facts allowed us to conclude that the electron 

transport mechanism in cable bacteria differs from the electron transport through conductive 

nanowires in other bacteria species, such as Shewanella 132 133. Up to date, the chemical 

structure of the conductive fibers in cable bacteria remained unresolved.  
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4.2   MATERIALS AND METHODS  

4.2.1 Sample preparation 

Cable bacteria, used for analysis, were collected from natural sediments obtained from the 

Rattekaai salt marsh (The Netherlands). This sediment was chosen because of the size of 

bacteria inhabiting this area. They consistently formed thick 4 µm diameter cables. The 

relatively big size facilitates easier (compared to other bacteria) handling during collection and 

fiber sheath extraction. Additionally, higher mass per cell resulted in a stronger Raman signal 

during analysis. Sediment was homogenized, packed in PCV core liner tubes, and incubated in 

aerated artificial seawater.  

Next, using a stereo microscope, the intact cable bacteria were picked up from the top 

sediment layer. They were washed at least six times with MilliQ water to remove the sediment 

microparticles and transferred to a glass microscope coverslip.  

One of the challenges we faced during fibers analysis with Raman microscope was the problem 

of sample immobilization. If the scans were conducted in air, the extracted fibers and intact 

bacteria could be damaged by prolonged laser exposure. The heat problem can be solved by 

conducting all the scans in the liquid, such as PBS or artificial seawater. However, it was 

challenging to conduct the area scans because bacteria, in contrast to adherent cell cultures, 

were not attached to the bottom of the glass. Therefore, the liquid microcurrents from the 

objective and stage movement resulted in a semi-random shift of bacteria from its original 

position. Several solutions to this problem were developed. The first approach was to cover 

cable bacteria with low-density agar. This was done by first finding the density of agar, which 

produces minimal interference with the samples' molecular fingerprints. At the same time, 

the agar layer should be dense enough to prevent the sample movements. Next, the time 

required for the agar with the chosen density to start the solidification was determined. The 

agar should be applied to the sample as close to the solidification time point as possible to 

avoid heat damage of the sample.  

The sample was immobilized in 100 µL of agar. The agar was delivered via a pipette. The 

deposition was done by deploying the agar solution from the pipet by performing circular 

motion with the pipet tip around the sample. This allows us to form a flat, thin, and 

homogeneous agar layer. The developed agar-based sample immobilization procedure was 

also successfully applied in subsequent research projects for other types of samples, such as 
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cells, worms, and algae. However, this method was time-consuming and incorrect timing can 

result in loss of the sample. Additionally, because of the small size of cable bacteria, it was 

problematic to localize them inside the agar layer. Therefore, it was used for cross-section 

scans, while for single spectrum and line scans – an alternative immobilization procedure was 

developed. The custom made ultrathin (100 μm thick) CaF2 cover slides were produced. 

Bacteria were deposited on the CaF2 slide inside the 20 µL droplet of PBS or artificial seawater. 

Ultrathin CaF2 cover slide was gently set on the top of the droplet. Then the glass was 

immobilized with nail polish (Essence, Luxembourg) delivered with a thin brush. After the nail 

polish solidifies, the sample was scanned with Raman. Additionally, it was controlled that nail 

polish did not dissolve and contaminate the sample. The solidified droplet of nail polish was 

set in PBS for 3 hours and scanned with Raman microscopy. No traces of nail polish were 

detected in PBS. 

4.2.2 Raman microscopy 

Cable bacteria were scanned with a confocal Raman microscope equipped with near-IR 785 

nm laser. The laser power was set to 180 mW (measured before the objective). A 100x/0.9 NA 

objective (Nikon) was used, while the integration time was set to 10 seconds. Axial profiles 

were generated with the step of 0.1 µm per point. Obtained Raman spectra were pre-

processed in R.3.4. as described in Supplementary Information for Chapter 2 (Appendix), S2.1 

and S2.2, resulting in the removal of cosmic rays and baseline correction. Baseline adjustments 

were made using the Asymmetric Least Squares method from the baseline package. 

Additionally, the background was measured next to each filament and subtracted from 

filament spectra. 

Spectra were recorded from various points inside bacteria. Besides molecular imaging 

described in Chapter 2, we have also performed the line scans to profile the nanowires 

distribution inside the bacterial filament segment. The line scans were made by taking Raman 

scattering measurements every 0.3 µm across the sample and combining the resulted spectra 

in one dataset. The distribution of molecules in the sample can be visualized by plotting the 

peak intensity versus the axial coordinates. This method is less time consuming than the area 

scan and can be used in situations when molecular imaging is not required.  
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4.2.3 X-ray and mass spectrometry methods 

Intact cable bacteria and extracted fibers were characterized by STEM-EDX using Tecnai Osiris 

microscope (Thermo Fischer Scientific). The acceleration voltage was 200 kV. Measurements 

were done using ChemiSTEM system. The resulting data was analyzed by Bruker ESPRIT 

software. 

LEXRF measurements were done using TwinMic Beamline in the Elettra Sincrotrone (Trieste, 

Italy). Excitation energy was 2 keV and the beam spot size was 570 nm. The acquisition time 

was 20 seconds per pixel. The resulting LEXRF datasets were processed with PyMCA 

multiplatform software to obtain LEXRF maps.  

Extracted fiber sheaths were also characterized by Nano-SIMS using NanoSIMS 50L (Cameca). 

The high-energy Cs+-ion beam (16 keV, 0.5 pA) was used for detection of secondary ions: 12C−, 

12C14N−, 16O−, 31P−, and 32S−. The beam size was ~ 50 nm. The area of 10 μm x 10 μm was 

mapped with the lateral resolution of 30 nm per pixel. The dwell time was 1 ms per pixel.  600 

frames of the mapped area were collected. The same area was also mapped using the primary 

O−-ion beam (2 pA) to detect positive secondary ions 56Fe+, 58Ni+, 60Ni+, 63Cu+ and 66Zn+. The 

beam size was beam size ~ 100 nm. The dwell time was 5 ms per pixel. 168 frames were 

collected.  
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4.3   RESULTS AND DISCUSSION  

4.3.1 Localization of fibers inside the intact cable bacteria with confocal Raman 

Single spectrum, line scan, and area scans of cable bacteria were done using a near-IR laser. 

Line scans were performed across the bacteria filaments, as it is shown in Figure 4.2(A, B). The 

averaged spectra showed the typical bands found in the majority of cell and bacteria spectra: 

1004 cm-1 band from phenylalanine ring deformation, lipid-associated CH2 bending at 1462 

cm-1, amide I protein peak at 1672 cm-1, and C-H stretching at 2950 cm-1 134, Figure 4.2 (C).  

 

  

Figure 4.2. Application of Raman microscopy to study cable bacteria. (A) Light microscopy 

image of a cable bacteria; the red line marked the scanned area. (B) Peak intensity profiles 

across the scanned area. (C) Raman scattering spectrum of the cable bacteria. 
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The cable bacteria spectrum contained two low-frequency bans at 371 cm-1 and 492 cm-1. The 

analysis of the line scans revealed that 1004 cm-1, 1462 cm-1, 1672 cm-1 peaks show a similar 

uniform distribution across the bacteria. The low-frequency bands have different distribution 

patterns, showing the increase in signal at the edges of bacteria, Figure 4.2 (A, B). 

Such an increase suggests that 371 cm-1 and 492 cm-1 bands can be associated with the 

conductive fibers, which are situated as parallel bundles around bacteria. Because of the low 

axial resolution of confocal Raman at the edges of bacteria, the volume from which the Raman 

signal is acquired contains more fibers than measured volume in the center. This leads to an 

increase in low bands intensity around the edges, Figure 4.3. 

 

 

Figure 4.3. Correlation between the number of fibers in the scanned area and the 

corresponding 492 cm-1 peak intensity profile.  

 To confirm this hypothesis, we have conducted a cross-section scan. The intact cable bacteria 

were immobilized in agar. Next, the multiple line scans were done. After each line scan, the 

axial position of the sample was changed by 0.1 µm with a high precision stage. The resulted 

line scans were combined in one dataset, and the molecular images of the bacteria cross-

section were constructed. Images were generated as heatmaps, based on 371 cm-1, 492 cm-1, 

1004 cm-1 and 1672 cm-1 peaks intensities, Figure 4.4 and (Supplementary Information for 

Chapter 4 (Appendix), Figure S4.1), respectively. 
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Figure 4.4. Raman heatmap images of a cross-section of a cable bacterium. Colors in molecular 

images correspond to counts in arbitrary units.  

The heatmaps of the 1004 cm-1 and 1672 cm-1, Figure 4.4 and (Supplementary Information for 

Chapter 4 (Appendix), Figure S4.1), respectively, have similar uniform intensity distribution to 

what was observed during the line scans. However, the 371 cm-1 and 492 cm-1 heatmaps 

showed that molecules associated with these peaks are primarily concentrated in periplasmic 

space and/or cell wall of bacteria. According to the heatmaps of the 371 cm-1 and 492 cm-1 

peaks, the molecules associated with those low bands are not evenly distributed. There are 

two hot spots at the edges of the bacteria. However, those two high concentration spots at 

the axial heatmaps are, probably, the artefacts caused by a low axial resolution, similar to the 

edge peaks observed in line scan bacterial profile. The alternative hypothesis is that indeed 

these molecules are concentrated in two spots around the edges. The cross-section profiling 

of other cable bacteria does not show the presence of two hot spots of 371 cm-1 and 492 cm-

1 peaks associated molecules. However, a comparison of 371 cm-1 and 1004 cm-1 heatmaps 

showed the 371 cm-1 associated molecules are present in highly concentrated only in the 

upper periplasmatic space of bacteria, Figure 4.4 and Figure 4.5. The first conclusion which 

can be drawn from axial molecular images is that those molecules are concentrated in the 

form of half-circle on only one side of bacteria. However, it is highly improbable that all 

scanned bacteria were randomly deposited on CaF2 slide in such a way that the observed half-

circle is oriented parallel to the surface of the glass on all images. Also, the observed 

distribution pattern contradicts the electronic microscopy data according to which the fibres 
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are spread around the whole bacteria. Therefore, the observed image may be the artefact 

coming from low transparency of the fibres to a specific wavelength, where the signal from 

the lower part of bacteria is blocked and cannot reach the detector. The observed molecular 

imaging artefacts illustrate the need to critically analyse the microscopic data while taking into 

consideration all the factors that could influence the measured Rama signal.  

 

Figure 4.5. Raman heatmap images of a cross-section of a cable bacterium. Colors in molecular 

images correspond to counts in arbitrary units. 

4.3.2 Analysis of extracted conductive fibers 

Next, the fibers were extracted by incubating bacteria in 1 % (w/w) sodium dodecyl sulfate 

(SDS) for 10 minutes and then washed with MilliQ water. To remove the traces of SDS, which 

may be absorbed by the fibers, filaments were treated with 1 mM sodium 

ethylenediaminetetraacetate (EDTA), pH 8 for 10 minutes. Finally, the fibers were washed six 

times with MilliQ and analyzed with an atomic force microscope – infrared spectroscope 

(AFM-IR). The recorded spectra showed the presence of amide I 1643 cm-1, amide II 1562 cm-

1, and amide III 1290 cm-1 peaks, suggesting that the fibres mainly consists of proteins 135 136. 

The relatively intense peak at 3056 cm-1 (C-H stretching) indicates that fibre protein is rich in 

aromatic amino acids. The spectra also contained the peaks at 1765 cm-1 (from C=0 stretching) 

and 1398 cm-1 (from C=O bending) associated with polysaccharides 136. Most likely, the source 

of polysaccharide peaks were the remains of peptidoglycan layer. Such peptidoglycan layer is 

present in periplasmic space of all Gram-negative bacteria. Probably, the peptidoglycan 

molecules were not completely removed during fibers extraction.  
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 Subsequent scanning of extracted fibers with NIR confocal Raman provided additional insights 

into filament structure. The resulted Raman spectrum contained bands at a low wavenumber 

range: 371 cm-1 and 492 cm-1, analogous to the spectrum of intact bacteria, Figure 4.6.  

 

Figure 4.6. Raman microscopy study of fibers extracted from cable bacteria. (A) Light 

microscopy image of the fibers. The point, where the Raman spectrum (presented in (B)) was 

taken, is marked with the red cross. (B) Raman scattering spectrum of extracted cable bacteria 

fibers.  

This confirms the hypothesis that fibers are the source of 371 cm-1 and 492 cm-1 peaks. The 

low wavenumber of those peaks suggests that they may be originated from metal ion 137, 

present in the fibers. One of the possible candidates for the metal was Nickel (Ni). The Raman 

spectra of extracted fibers showed similarities with Ni diethylene ligand 138. In this case, the 

492 cm-1 peaks may be originated from the breathing of diethylene containing an aromatic 

ring. The central peaks at 1164 cm-1, 1182 cm-1, and 1222 cm-1 may be the results of C-N and 

C-C stretching in aromatic rings. The alternative possibility was that low bands are originated 

from Ni-S found in S-ligated Ni-metalloproteins. Here, the 371 cm-1 peak is assigned to the Ni-

S stretching 139 140, while 492 cm-1 is assigned to the S-S stretching 137.  

The presence of sulphur (S) was later confirmed using the isotope labelling method 141. Sulfate, 

which contained 34S isotope, was added to the bacteria growth media. Then the Raman 

spectrum of cable bacteria incubated in the presence of S isotope was obtained using a green 

laser 138. The resulting spectra were compared with bacteria grown under normal conditions. 

The isotope labelling method is based on the fact that the substitution of the atom with 
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isotope leads to a change of vibration energy and the small shift of corresponding Raman 

peaks position 142. The shift to low wavelength numbers was indeed observed for both low 

bands in isotope-labelled bacteria. This provides strong evidence that sulfur is present in the 

fibers and suggests that it is ligated with the metal ion.  

The theory that nickel is a part of conductive fibres, deducted from the analysis of Raman 

spectra, was confirmed using scanning transmission electron microscopy-energy dispersive X-

ray (STEM-EDX), low energy X-ray fluorescence (LEXRF), and nanoscale secondary ion mass 

spectrometry (Nano-SIMS).  

In STEM-EDX, a sample is irradiated with a highly focused electron beam, which causes atoms 

within the beam path to emit characteristics X-rays. X-rays are measured in order to determine 

the atomic composition of sample 143. STEM-EDX analysis showed the presence of 

metalloproteins, such as Fe, Ni, and Cu, both in intact filaments and in extracted fiber sheaths, 

Figure 4.7 (A-B). The amount of Fe decreased after fiber sheaths extraction, while Ni was 

enriched by a factor of 2-4 compared to that in intact bacteria. The decrease in the Fe signal 

can be explained by cytochrome loss because of the extraction procedure. Intact cable 

bacteria and extracted sheaths were also analyzed with low energy X-ray fluorescence (LEXRF) 

to confirm the results obtained with STEM-EDX. LEXRF uses soft X-ray (X-ray with the energy 

bellow 5 keV) beam to cause the characteristic low energy X-ray fluorescence emission from 

atoms in a sample. This low energy X-ray fluorescence approach is particularly suited to obtain 

information about elements with a low atomic number 144. Data from LEXRF analysis confirm 

that Ni is primarily concentrated in the fiber sheath, Figure 4.7 (C-E).  Here, again the Fe counts 

decreased in extracted fibers, in accordance to what was observed in the STEM-EDX analysis. 

In contrast, Cu levels exceeded the STEM-EDX values. This can be explained by a 

contamination during the LEXRF analysis. Next, extracted fibers were analyzed with Nano-

SIMS. Nano-SIMS is an analytical technique based on secondary ion mass spectrometry (SIMS). 

In SIMS, ion beam illuminates the sample and ejected secondary ions are analyzed 145. In Nano-

SIMS, high-resolution microscopy is linked with secondary ion mass spectrometry analysis to 

provide information about the molecular and isotopic composition of samples at a high spatial 

resolution. This technique is obtaining increasing attention in regard with biological 

applications 146. The high-resolution Nano-SIMS analysis showed the presence of parallel line 

pattern on the images of extracted fibers sheaths, Figure 4.7 (F). Those lines were rich in Ni 
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and S. The spacing between the lines was 150-200 nm, similar to the spacing expected to exist 

between the fibers 147.  

 

Figure 4.7. Analysis of molecular composition of intact cable bacteria and extracted fiber 

sheaths. (A) STEM-EDX spectra of intact cable bacteria. (B) STEM-EDX spectra of extracted fiber 

sheaths. (C) Synchrotron low energy X-ray fluorescence (LEXRF) maps of intact cable bacteria 

(SP+C is Scatter Peak plus Compton). (D) Synchrotron LEXRF maps of fiber sheaths. (E) 

Comparison of average counts per pixel for detected transition metals between intact cable 

bacteria and extracted fiber sheaths. SP+C data was scaled by changing the average of the 

intact counts to 100. (F) Nanoscale Secondary Ion Mass Spectrometry (Nano-SIMS) images of 

fiber sheath. The figure is adapted from Boschker et al. 141 Colors in molecular images 

correspond to counts in arbitrary units. 
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4.4   CONCLUSION 

 

In this chapter, we have investigated a situation opposite to that discussed in Chapter 3. 

Specifically, the localization of a structure inside bacteria was known, but its molecular 

composition was unknown. That is why the aim was to understand the molecular structure of 

conductive fibers situated inside cable bacteria. Using the line scans and cross-section 

mapping, we have localized two peaks, the position of which overlaps with the position of the 

fibers. The connection between those peaks and fibers was confirmed by the filament 

extraction procedure using a destructive chemical treatment. The analysis of spectra of fibers 

hints for the presence of nickel ions inside the fibers. The presence of nickel ions inside the 

fiber structure was confirmed by subsequent analysis with electron microscopy, X-ray and 

mass spectrometry analytical methods. Such a finding is remarkable, because the presence of 

nickel in conductive fibres proposes the existence of yet unknown form of long-range electron 

transport in bacteria.   

In analogy to lactoferrin study, the identification of the fiber-related molecules was possible 

due to the presence of unique peaks in molecular fingerprints. The “unique peak” in this 

context means that it is not ordinarily present in the cytoplasm of cells or bacteria.  

Confocal Raman microscopy provided insights into molecular composition of the fibres. 

However, because of the complex nature of biological samples and the sensitivity of Raman 

spectroscopy, multiple interpretations of the measured molecular fingerprints are possible. 

Therefore, the findings deduced from the Raman analysis was confirmed with alternative 

techniques such as isotope labelling, time-of-flight secondary ion mass spectrometry, etc.  

The cross-section scans of the cable bacteria also revealed that a low axial resolution of 

conventional confocal Raman can produce artefacts in the images. This only augments the 

need for multimode imaging approach. 
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Chapter 5 

Drug delivery systems with SERS 

functionality in vitro and in vivo 
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Magnetic and silver nanoparticle functionalized calcium carbonate particles—Dual 

functionality of versatile, movable delivery carriers which can surface-enhance Raman 

signals. B.V. Parakhonskiy, A. Abalymov, A. Ivanova, D. Khalenkow, and A.G. Skirtach Journal 

of Applied Physics 2019, 126, 203102. 

Laser-induced remote release in vivo in C. elegans from novel silver nanoparticles-alginate 

hydrogel shells. E. Lengert, B.V. Parakhonskiy, D. Khalenkow, A. Zečić, M. Vangheel, J.M. 

Monje Moreno, B.P. Braeckman, A.G. Skirtach. Nanoscale 2018, 10, 17249-17256.  
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5 Drug delivery systems with SERS functionality in 

vitro and in vivo 

In the first part of this chapter, a novel SERS platform is developed and evaluated. The 

platform is based on silver-coated calcium carbonate microparticles designed with dual 

functionality: a drug carrier and a SERS sensor for molecular detection in vitro. The particles 

are also functionalized with magnetite, giving them the ability for controllable movement in a 

magnetic field. In the second part of this chapter, the calcium carbonate microparticles are 

used for the development of alginate-based drug delivery platform for in vivo applications. 

The built-in SERS functionality of alginate microparticles allowed their localization inside C. 

elegans worms and controllable initiation of drug release. Peculiarly, the presence of a high 

Raman background, which is usually attempted to be removed from the signal, is used here 

for particle localization. 
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5.1 CHARACTERIZATION OF CALCIUM CARBONATE DRUG CARRIERS WITH SERS       

FUNCTIONALITY  

5.1.1 Introduction 

One of the goals in drug delivery research field is to find the carriers capable of delivering the 

drugs at the desired site of action, while at the same time avoiding the premature drug release 

148. An untargeted drug release can occur because of the diffusion of active substance before 

the carrier reaches the site of interest or because of premature degradation of the carrier. Up 

to date, a number of drug delivery carriers were proposed: liposomes, silica, polymeric 

particles, carbon-based carriers, inorganic particles such as calcium carbonate, etc. 149 

Liposomes are small vesicles build from lipid bilayers. They are attractive for drug delivery 

because of their ability to fuse with the cell membrane, providing an efficient intercellular 

drug delivery. Nevertheless, liposomes have some disadvantages 150. For example, sterilization 

is challenging due to their sensitivity to heat. The other problem is the physicochemical 

instability of liposomes since hydrolysis of the ester bond in phospholipids can take place, 

leading to aggregation of liposomes and drug escape. Porous silica-based particles are 

versatile drug carriers, possessing several beneficial characteristics such as biodegradability, 

porosity, and high surface area 151. The disadvantage of silica-based drug carriers is that their 

interaction with phospholipids can lead to potential hemolysis of red blood cells. It was also 

found that porous silica nanoparticles can promote metabolic changes in cells leading to 

cancer.  

Calcium carbonate-based microparticles present an attractive alternative to the above-

mentioned drug delivery systems. They pose several advantages, such as versatility, high 

loading volume, and lack of cellular toxicity 152. They also are shown to be applicable in 

regenerative medicine and tissue engineering 153 154 155. The degradation products of calcium 

carbonate are non-toxic Ca2+ and CO3
2- ions, naturally present in blood. It was shown that a 

local increase of an extracellular Ca2+ concentration could promote bone tissue regeneration 

156. Calcium carbonate can exist in three anhydrous crystalline forms: vaterite, calcite, and 

aragonite. The most stable form in water is calcite, while vaterite is the least stable crystalline 

form of calcium carbonate 157 158. Although vaterite is thermodynamically unstable, because 

of its high solubility in water, it can be stabilized with metal ions or organic molecules. In 

addition, polycrystalline vaterite spheres are attractive as drug carriers because of their high 
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surface area to volume ratio, due to their porous nature, and as a result – a high loading 

capacity 152. Calcium carbonate drug carriers can be modified to get additional functionality 

by covering their surface with organic or inorganic molecules. Magnetic nanoparticles can be 

used for functionalization of calcium carbonate. The modification of a drug carrier with 

magnetic nanoparticles provides the ability to control carrier motion using a magnetic field. 

Such control was shown to be possible not only in cells and tissues 153 but also in vivo in a living 

body 159.  

Silver nanoparticles (NPs) can be also used for vaterite functionalization due to their unique 

thermal, optical, and electrical properties. Silver NPs have antibacterial properties 160: a 

desired feature in wound bandages, cosmetics, and textile products. Silver NPs possess high 

thermal and electrical conductivity and can efficiently absorb and scatter light 161. Light 

absorption and scattering for a specific wavelength are dependent on the diameter and shape 

of NPs. The aggregation of the silver particles can produce surface plasmon resonance effect 

in the near-IR part of the spectrum which can be used for SERS 162. The SERS was first 

discovered in 1974 by Fleischmann et al, who described a substantial increase in Raman signal 

from pyridine after it was absorbed on a rough surface of sliver electrode 163. Since then, SERS 

found its application in such areas as medical testing 164, forensic analysis 165, drug discovery 

166, biological and chemical sensors 167. 

SERS properties of silver NPs make them an attractive candidate for Raman-based biosensors. 

It was shown that SERS platforms can be applied for a pathogen detection 168. Both magnetic 

and silver NPs can be adsorbed on drug carriers adding them complementary functionalities. 

It was even demonstrated that silver on magnetic nanoparticles could be used for analyte 

molecules separation, and such a process can be monitored by SERS 169. It should be also noted 

that elaborate novel platforms are now under development, including optical waveguides for 

more stable SERS detection 170. 

In this study, porous vaterite calcium carbonate particles were designed and tested as 

multifunctional drug carriers. The schematic of the experiments is shown in Figure 5.1.  The 

multifunctionality of the particles was achieved by modifying them with two types of 

nanoparticles: (a) magnetite nanoparticles for providing magnetic field-controlled motion 

capability, and (b) silver nanoparticles for enabling molecule detection on the surface of 

particles with SERS. The possibility of utilizing silver/magnetite functionalized calcium 

carbonate particles as a SERS platform was demonstrated using Rhodamine 6G as a model 
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system. Subsequently, the cytotoxicity of silver/magnetite calcium carbonate particles and the 

speed of their motion in a magnetic field were tested 171. Nevertheless, to stay within the 

boundaries of the topic of the thesis, in this chapter, we will focus primarily on the label-free 

SERS molecular detection functionality of the developed silver/magnetite drug delivery 

platform.  

 

 

 

Figure 5.1. Schematics of experiments. The synthesized CaCO3 microparticles were modified 

with magnetic and silver nanoparticles. Then, their capabilities to move in a magnetic field and 

feasibility as SERS biosensor platform were tested.  
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5.1.2 Materials and methods 

 

Synthesis of CaCO3 particles and coating them with 30 nm silver nanoparticles 

Spherical CaCO3 microparticles, 4 μm in diameter, were synthesized according to the protocol 

described by Volodkin et al. 172. The solutions of sodium carbonate NaCO3 (1 mL, 0.2 M) and 

calcium chloride CaCl2 (1 mL, 0.2 M) were mixed in equal volumes and stirred for 1 minute at 

room temperature at a rotation speed of 500 revolutions per minute (RPM). The participated 

particles were separated from the solvent by centrifugation (3000 RPM, 3 minutes) and 

washed with pure ethanol. The centrifugation and washing steps were repeated three times. 

The obtained micrometer vaterite particles were dried in an oven for 1 hour at 70 °C and 

stored in a freezer (- 10 °C). The magnetite was absorbed on the micrometer particles by 

adding 10 mg of vaterite into 1 mL of magnetite solution. Ultrasound was used to avoid large 

aggregations of magnetite. The resulting suspension was vortexed for 30 minutes and was 

cooled afterward for 15 minutes in a freezer (10 °C). The deposition of silver 30 nm 

nanoparticles on vaterite was done based on the protocol described in Kamyshinsky et al. 173 

using a silver mirror reaction. First, equal volumes of 0.5 M AgNO3 and 0.5 M NH4OH were 

mixed. Next, NH4OH was added to the solution until it became transparent. This reaction 

resulted in the formation of [Ag(NH3)2]OH, called the Tollens’ reagent. 1.5 mL of water, 150 

μL of Tollens’ reagent, and 20 μL of 5 % dextrose were added to particle suspension to absorb 

silver NPs (nanoparticles) onto the vaterite carrier. The resulting solution was then shaken for 

10 minutes. The functionalized particles were separated by centrifugation (3000 RMP, 3 

minutes) and stored in water.  

 

SERS enhancement factor evaluation 

The evaluation of microparticles, functionalized with silver and magnetite nanoparticles, as 

possible SERS platform was done by estimation of the SERS enhancement factor. The 

calculations were based on the Raman spectral data. The particles were divided into groups 

and incubated with various concentrations (10−3 M, 10−4 M, and 10−5 M) of Rhodamine 6G. 

Then, particles were deposited on the surface of a quartz slide, and the spectrum of 

Rhodamine 6G was measured with Raman microscopy for each dilution. Laser power was set 

to 15 mW, and the integration time was 3 seconds. Next, the reference solution of Rhodamine 
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6G (10−3 M) without the particles was deposited on the quartz surface, and the Raman 

spectrum was obtained. For this measurement, the laser power was set to 130 mW, and the 

integration time was 3 seconds. All measurements were done using a Nikon 40×/0.6 NA 

objective. Spectra were obtained by conducting 100 μm x 100 μm area scans with the step of 

10 μm per datapoint, and the average spectrum of the scanned area was calculated. All 

measurements were done in triplicates. The signal intensity of three characteristic peaks of 

Rhodamine 6G (1319 cm−1, 1375 cm−1, and 1514 cm−1) was compared between spectra of 

Rhodamine 6G from the measured reference sample and Rhodamine 6G adsorbed on the 

particles to evaluate the SERS enhancement factor.  

The SERS enhancement factor can be experimentally determined by measuring an analyte 

with a conventional Raman microscope and with SERS. If the same laser frequency is used for 

both measurements and collection geometry is similar, then (after normalization by laser 

power and integration time) the enhancement factor can be given as 174: 

 

Enhancement factor =
Isers

Nsers
Iref

Nref

                       (11) 

 

where I – Intensity of analyte peak measured with SERS or conventional Raman spectroscope,  

N – number of molecules in volumes measured with SERS or with conventional Raman. 

Equation (11) describes the overall enhancement of Raman signal intensity for molecules near 

the surface of a SERS active nanostructure. It should be noticed that it is often challenging to 

estimate the number of molecules responsible for the measured Raman signal. And it is 

particularly difficult to estimate the number of molecules in close proximity to multifunctional 

microparticles, because of the porous nature of calcium carbonate and a random amount and 

distribution of silver nanoparticles on the surface of calcium carbonate particles. Additionally, 

it is challenging to precisely estimate the total number of multifunctional microspheres in the 

measured volume. Therefore, we normalize the measured SERS and Raman intensities based 

on the concentration of an analyte instead of the number of molecules. Here, we assume that 

the change in the concentration of analyte molecules in the solution will result in a 

proportional change in the number of molecules near the SERS sensor. This allows estimating 

the enhancement factor, which was calculated as follows: 175 
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Enhancement factor =
Isers

Psers∗Csers
Iref

Pref∗Cref

        (12) 

 

where I – Raman scattering intensity, C – the concentration of the analyte, P – laser power 

during measurement.  

 

5.1.3 Results and discussion 

To evaluate properties of composite silver/magnetite functionalized microparticles as a SERS 

sensor platform, we have calculated the SERS enhancement factor using data measured for 

Rhodamine 6G, as a model molecule. Figure 5.2 (A) depicts Raman spectra of Rhodamine 6G 

measured in a solution and absorbed on the surface of calcium carbonate particles. The 

measured spectra contain characteristic peaks of Rhodamine 6G at 1375 cm−1, 1514 cm−1, and 

1319 cm−1, in agreement with data reported in literature 35,176. These three peaks were present 

both in the reference spectrum obtained with a conventional Raman microscope and in the 

spectrum measured that with SERS; therefore, they were used for calculation of the enhanced 

factor. The results show that the presented SERS platform can enhance the Raman signal by a 

factor of 10 at the concentration of 10-3 M, but the enhancement factor can be as high as 1000 

for the concentration of analyte of 10-5 M, Figure 5.2 (B).  

Figure 5.2 (B) reveals also that the enhancement factor is decreasing with increasing 

concentration of the analyte (Rhodamine 6G), which was somewhat unexpected. But it can be 

explained by a high absorbing capability of vaterite particles, which results in an 

oversaturation of the surface of microparticles with Rhodamine 6G. That is why the amount 

of measured Rhodamine 6G molecules is not directly proportional to the concentration of 

Rhodamine 6G in the solution. While such a property of the tested platform makes the task of 

precise quantification of analyte concentration challenging, the experimental results show 

that the presented vaterite SERS platform can be utilized for detection of a low quantity of 

analytes in a solution. Additionally, the high absorption capability of the calcium carbonate 

particles allows using them for the development of specialized drug delivery systems. Such a 

system is discussed in the next section of this chapter.   
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Figure 5.2. (A) Raman spectra of Rhodamine 6G.  (Top grey spectrum) SERS spectrum of the 

Rhodamine 6G (10−5M) adsorbed onto calcium carbonate particles functionalized with 

magnetic and silver nanoparticles, measured with 15 mW of laser power. (Bottom blue 

spectrum) The reference spectrum of Rhodamine 6G in a solution measured with laser power 

of 130 mW. (B) Comparison of enhancement factors for various Rhodamine 6G concentrations 

obtained by dilution. Calculations were based on the intensity of 1514 cm−1, 1375 cm−1, and 

1319 cm−1 peaks. 
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5.2 DRUG CARRIER DETECTION AND RELEASE INDUCTION IN VIVO USING SERS 

5.2.1 Introduction 

In the first part of this chapter, we have discussed the various drug carriers and their 

advantages and disadvantages. However, drug transportation is only the first part of the drug 

delivery process. Drug release from carriers is the next crucial subsequent step in drug delivery 

and it can be induced by a broad range of stimuli: chemical (dissolution) 177, biological 

(targeting and biodegradability) 178, or physical (remote action) 179. The delivery system based 

on chemical or biological release mechanisms has several problems. In the case of biological 

stimuli, it is difficult to control the onset of release, while release based on a chemical 

dissolution of the carrier can be used in biology only under certain conditions, such as change 

of pH inside the target tissue or cell.  

On the other hand, the release system activated by physical stimuli is well suited for 

controllable intracellular drug delivery, and it can be implemented using a broad range of 

physical effects: heating nanoparticles with light 180, heating 181, and deformation as a result 

of magnet-magnetic nanoparticle interaction 182, mechanical action and cavitation with 

ultrasound 183. A light-induced release can be done using of polymer-photoresponsive linker-

drug conjugates 184, polymers with the capability to undergo light-dependent structural 

changes 185 or by heating nanoparticles with a laser 186. In the case, where the release is based 

on laser-nanoparticle interaction on polymeric capsules, it can be conducted in two different 

ways. Depending on the nanoparticle density in the microcapsule wall, release can be either 

non-disruptive 187 or explosive 188. The latter is not always a disadvantage. It was shown that 

explosive release could be used in photo-thermal therapy of cancer cells, where cells are 

destroyed through excessive heat accumulation around nanoparticles 189. On the other hand, 

non-destructive, light-controlled release of biomolecules from polymeric capsules inside a 

living organism or a single cell provides the possibility to study biological processes with 

optimized time control. Therefore, we aimed to develop such kind of capsules and test them 

in vivo. We have chosen C. elegans for in vivo testing, because it is one of the best-established 

animal model190, which is widely used in a broad range of life science fields such as 

neurotoxicology, disease study, and anti-aging research. It is a small non-parasitic nematode 

with a short life cycle, which is approximately three days at 20 oC. It has a high reproduction 

rate (>300 eggs per nematode) and the ability to self-fertilize 191.  
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In contrast to cell culture, the drug delivery method based on diffusion from the culture 

medium can be challenging in the case of C. elegans because of the worm's thick cuticle. 

Uptake by C. elegans can take place via ingestion by pharyngeal pumping. The problem is that 

such a drug delivery strategy does not allow massive controllable uptake of compounds that 

are solubilized in the medium, although uptake does occur in low quantity. Nematodes have 

a specialized filter feeder that (with every pumping cycle of the pharynx) takes up a small 

amount of microbial suspension and spits out the liquid while retaining the bacteria, which 

are then further transported to the intestine 192. It is possible to load compounds in 

microparticles to increase uptake rates. Particles must be compatible in size with the C. 

elegans feeding apparatus. Such particles must also be stable in a dry state. This can be a 

problem for some types of drug carriers, such as polyelectrolyte capsules. They may collapse 

in air, because they are produced and designed to be applied exclusively in an aqueous 

solution.  

In this study, micro alginate shells, stable in a dry state, were synthesized using calcium 

carbonate as a core template and modified with silver nanoparticles allowing shells detection 

with SERS and a controllable drug release. The mechanism of the release was based on 

localized heating of plasmonic nanoparticles sitting in the walls of alginate capsules. For such 

a drug delivery/release system, the use of Raman microscopy is particularly attractive because 

it allows drug carrier detection inside nematodes with SERS, enabling localization of the 

carriers upon controllable drug release at the desired location. It should be noted that Raman 

microscopy has already been proved to be a useful tool to study C. elegans metabolism since 

it was already used to investigate glycogen content193, fat metabolic pathways194, and image 

the distribution of lipids 195.   
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5.2.2 Material and methods 

 

Synthesis of hollow silver alginate hydrogel shells from calcium carbonate template 

The synthesis procedure of silver alginate hydrogel shells is shown in Figure 5.3, showing that 

molecules can be absorbed in CaCO3 microparticle. Then, drug-containing particle is used as a 

core, Figure 5.3 (A), which is subsequently covered with alginate, Figure 5.3 (B).  

Further, CaC03 particles were loaded with tetramethylrhodamine bovine serum albumin 

(TRITC-BSA), which was chosen here as a model system due to its size (comparable to other 

biomolecules in the case of BSA) and a possibility of visualization in fluorescence microscopy 

(due to fluorescence of TRITC). This dye was used as a model drug delivery molecule. TRITC 

fluorescence allows using fluorescence microscope images of the particles to confirm the 

particle localization. Then, silver nanoparticles were formed in the alginate walls, and calcium 

carbonate core was dissolved, leaving alginate shells filled with TRITC-BSA Figure 5.3 (C). The 

described above synthesis was done according to the following procedure: first, 40 mg of 

CaCO3 microparticle powder was prepared according to the protocol by Lengert et al. 196 Next, 

microparticles were placed in a 2 mL Eppendorf tube and suspended in 1 mL of sodium alginate 

(5 mg/mL). This suspension was vortexed (2000 RPM) for 10 minutes. The resulting sodium 

alginate coated CaCO3 microparticles were washed three times with deionized water. Next, 0.5 

mL of 0.75 M AgNO3 was added to previously prepared sodium alginate CaCO3 microparticles 

to initiate cross-linking of sodium alginate. The mixture was agitated for 10 min in a shaker and 

then washed with deionized water. In the last step, the CaCO3 core was dissolved by the 

addition of 0.5 mL of ascorbic acid (0.1 M) leaving the alginate shell filled with TRITC-BSA. 

Ascorbic acid also induced the formation of silver nanoparticles in the walls of alginate shells. 

Finally, silver alginate microspheres were precipitated by centrifugation, and the supernatant 

was removed. The microspheres were washed three times with MilliQ water and stored in the 

water for further use.   

Scanning electron microscopy (SEM) was used to visualize 3D surface of the particles. SEM was 

done after each synthesis using MIRA II LMU (Tescan). The operating voltage of SEM was set 

to 30 kV.  
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Figure 5.3. Synthesis of silver alginate hydrogel microspheres loaded with TRITC-BSA for laser-

induced release inside C. elegans worms. (A)  СaCO3 particles loaded with TRITC-BSA. (B) СaCO3 

particles covered with alginate and functionalized with Ag nanoparticles. (C) Alginate 

microspheres with incorporated Ag nanoparticles and loaded with TRITC-BSA. (D) Laser 

irradiation results in destruction of alginate microspheres and release of TRITC-BSA. 

 

 Uptake of shells by C. elegans 

The C. elegans worms were grown according to the standard protocol: the wild-type strain N2 

was cultured on nematode growth medium (NGM) agar plates, seeded with the Escherichia 

coli strain OP50 as a food source for the worms. Plates were incubated at 20 oC.  

The silver alginate microspheres were loaded with fluorescent TRITC-BSA molecules. Then, 0.1 

mL of 20 mg/mL microspheres were mixed with 0.1 mL Escherichia coli suspension. The 

resulting mixture was added to the plate with the worms and incubated for 20 hours.  For 

controllable drug release experiments, worms were paralyzed with levamisole (100 mM) in S-

basal buffer (50 mM potassium phosphate, 100 mM NaCl, pH 6). It was added directly to the 

agar plate with nematodes. Then, the nematodes were investigated using fluorescent, 

confocal, Raman, and Nomarski differential interference contrast microscopes. C. elegans 

motility before and after experiments served as the vitality test. 

 

Evaluation of focused laser beam exposure on the viability of C. elegans worms  

We have tested whether exposure to 785 nm laser would harm the worms. The C. elegans 

worms were grown according to the standard protocol: the wild-type strain N2 was cultured 
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on nematode growth medium (NGM) agar plates, seeded with the Escherichia coli strain OP50 

as a food source for the worms. Plates were incubated at 20 oC. To test the effect of laser 

irradiation worms were divided into four groups, with a minimum of ten worms per group:  

1. The positive control group: worms in this group were not treated with levamisole and were 

not irradiated with a laser. 

2. The second control group: worms were treated with levamisole but were not exposed to a 

laser. 

3. The third control group: worms were treated with levamisole and exposed to 15 mW of 

laser radiation (similar to the power required to open the capsules). 

4. The fourth group: worms were treated with levamisole and exposed to 160 mW of laser 

radiation. 

 

The worms were first grown on NGM plates with Escherichia coli OP50 until they reach the 

day two adult stage. Next, they were transferred onto bacteria-free NGM plates. The groups 

2, 3 and 4 were paralyzed with levamisole (100 mM final concentration) in S-basal buffer (50 

mM potassium phosphate, 100 mM NaCl, pH 6). Levamisole is an acetylcholine receptor 

agonist. The continuous muscle activation by levamisole leads to temporary muscle paralysis 

in nematodes. Levamisole solution was added directly to the agar plate with nematodes. The 

laser exposure was done by focusing the 785 nm laser beam for 10 seconds on the head 

region, tail region, and the middle section of each worm in groups 3 and 4. A 100x/0.9 NA 

objective (Nikon) was used for laser focusing, and laser power was measured before the 

objective. 

After the laser exposure, all worms were transferred onto new NGM plates, seeded with 

Escherichia coli, for recovery and subsequent vitality evaluation. The evaluation was done 

after 2 hours and 20 hours after the laser exposure.  

 

Alginate shells localization inside C. elegans and drug release activation 

The alginate capsule localization inside C. elegans and subsequent drug release was done using 

a home-build setup, which combined Raman and fluorescent microscope. It was created by 

adding a CCD camera and an excitation LED source to the Alpha300R+ confocal Raman 

microscope. The alginate shell was localized inside the C. elegans by conducting the area scans 

with Raman. The laser power was set to 1 mW (measured before the objective). A 100x/0.9 



113 
 

NA (Nikon) objective was used for all types of scans. To conduct anatomical molecular imaging, 

laser power, measured before the objective, was set to 165 mW, and the integration time was 

1 second per point. The Head region of the worm was mapped with a resolution of 2 spectra 

per μm. For particle detection, worms were mapped with a resolution of 1 spectrum per μm. 

The laser power was 1 mW, and scans were done with 1 second and 0.1 second integration 

time. The laser power of 15 mW was used for the induction of drug release. The release of 

fluorescent dye from the shell was confirmed by comparing fluorescence microscopic images 

of the region around the shell before and after laser irradiation.  

 

Raman data analysis 

The heatmaps based on 1665 cm-1 peak were generated with Project FOUR v.4.0 (WITec 2014). 

The spectra preprocessing and analysis was done in R.3.4. using the hyperspec package. The 

preprocessing was conducted using the pipeline and R scripts described in Appendix 

(Supplementary Information for Chapter 2 (Appendix), S2.2). The background was removed 

with the als algorithm from the package baseline. Intensity heat maps and anatomical 

molecular images were constructed using a biological relevant spectral region between 600 

and 1800 cm-1. For visualization of the spatial arrangement of anatomical features inside the 

C. elegans, the datasets were first normalized using vector normalization, and then data points 

were grouped based on their spectral similarity using hierarchical clustering.  

 

5.2.3 Results and discussion 

 

Evaluation of the effect of laser irradiation on C. elegans viability 

The preliminary tests showed that irradiation of C. elegans with 160 mW laser for 20 seconds 

could lead to worm death because of the destructive explosion, Figure 5.4. Such effect can be 

explained by the fact that worms were dried on CaF2 slides and scanned in the air; therefore, 

laser heat was not diffused fast enough, causing the temperature increase inside the worm 

and its subsequent destruction.  
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Figure 5.4. Effect of laser irradiation on C. elegans. (A) Intact worm on a CaF2 slide before laser 

exposure. The red dot marks the spot, where laser (power of 160 mW) will be focused. (B) The 

destroyed worm’s body segment around the laser spot.  

 

All further laser scans of C. elegans were done on agar. Additionally, worms were covered with 

~ 50 µm thin layer of S-buffer to solve the problem of heat accumulation.  

Next, we have tested whether laser exposure under such conditions is not destructive for the 

worms, Table 5.1.   

 

Group 1 Group 2 Group 3 Group 4 

- levamisole 
- laser exposure 

+ levamisole 
- laser exposure 

+ levamisole 
+ 15 mW laser exposure 

+ levamisole 
+ 160 mW laser exposure 

 

Table 5.1. Experimental setup for testing the effect of laser exposure on the vitality of C. 

elegans. 

 

Worms were divided into four groups, Table 5.1., where group 1 served as control. Group 2 

was the second control group and was used to validate that paralyzing effect of levamisole 

had no long-term negative effect on worm’s viability. Groups 3 and 4 were used to evaluate 

the effect of laser irradiation. Group 3 was exposed to 15 mW of laser light. Such laser power 

setting was chosen because the preliminary tests showed that similar power is required to 

open the alginate shells. Group 4 was irradiated with 160 mW: this power is commonly used 

to measure cells with Raman microscopy. This laser power allowed obtaining cellular spectra 

with a good resolution and a relatively short integration time.   
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No explosive worm’s death or structural damage was observed in groups 3 and 4, proving that 

a combination of agar with liquid solved the heat dissipation problem.   

The motility of the worms was used to evaluate whether levamisole or laser affected their 

viability. The evaluation was done 2 hours after the exposure. Worms from groups 2, 3, and 4 

showed very low motility compared to control group 1. After gentle touching with a platinum 

wire probe, a small movement was observed only in the head region. The viability evaluation 

was repeated after 20 hours. All worms from groups 2, 3, and 4 showed the same motility as 

the control group 1. This leads to the conclusion that low motility observed 2 hours after 

exposure can be explained by the paralyzing effect of levamisole. No difference in viability was 

observed in 20 hours between worms with and without laser exposure. This observation 

suggests that 15 mW and 160 mW laser irradiation had no significant effect on C. elegans 

viability under tested experimental conditions.  

 
SERS functionalized alginate micro-shell localization and release induction inside C. elegans  

Next, we aimed to demonstrate the possibility of a controllable laser-induced release of TRITC-

BSA from the shells inside the C. elegans. Nematodes were fed with silver functionalized 

alginate shells and paralyzed with levamisole. Each alginate shell was loaded with TRITC-BSA. 

Fluorescence of TRITC-BSA was used to track the particle position inside the nematode with 

fluorescent microscopy, Figure 5.5 (A, B). Additionally, we have used Raman microscopy for 

verification of the particle position and to obtain molecular images based on the biochemical 

composition of the tissue Figure 5.5 (C). In contrast to the method discussed in Chapter 3, we 

did not use molecular fingerprint features, such as the presence of a unique peak in spectra 

of the particle or the TRITC-BSA, to discriminate between tissue and particle data points on 

Raman area scans. Instead, our detection method was based on the contrast between the 

high Raman signal intensity in the proximity to silver-functionalized shells and the relatively 

weak average Raman signal of the surrounding tissue. 
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Figure 5.5. (A) Transmission microscopy image of a C. elegans worm on agar. (B) Fluorescence 

microscopy image of the same worm. (C) The heatmap of the C. elegans worm’s segment is 

shown with the alginate silver-functionalized shell. The heatmap is constructed based on the 

average Raman signal intensity in the 600 cm-1 - 1800 cm-1 spectral region. Because of the SERS 

signal amplification, the shell can be localized due to the highest signal intensity (red and 

orange pixels) relative to other points in the dataset. Colors in the molecular image in (C) 

correspond to counts in arbitrary units. 

The high signal intensity was the result of the SERS effect caused by the presence of silver 

nanoparticles in the walls of shells. The particle on the fluorescent image obtained from C. 

elegans correlates with the particle position was on Raman the heatmap image, identified due 

to the highest Raman signal intensity relative to the other spectra in the dataset, Figure 5.5 

(C). The Raman area scans were made with 1 mW of power and with 1 second integration 

time. Such scan settings allowed to localize the particle without inducing the release of the 

loaded compound. In the next experiment, the integration time of the Raman microscope was 

decreased ten times: from 1 to 0.1 seconds. The particles can be still localized inside the 

worms Figure 5.6 (A) and (B). At such low laser power settings and short integration time, the 

worms tissue produces no detectable Raman signal, Figure 5.6 (D), while the particles still can 

be detected because of Raman background, due to the SERS signal amplification Figure 5.6 

(C). Typically, background is removed from a Raman spectrum to improve the quality of the 

dataset. Nevertheless, in this approach, we demonstrate that the presence of the background 

itself can be beneficial and can be utilized for the detection of the particle position on the 

spectral image.  
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Figure 5.6. (A) Transmission microscopy image of a C. elegans segment functionalized with Ag 

nanoparticles. (B) The Raman scattering heat map generated using the average Raman signal 

intensity in the 600 cm-1 - 1800 cm-1 spectral region. Particles are visible as yellow dots. (C) 

Spectrum of the particle inside the worm. (D) Spectrum of C. elegans’ tissue (with no features).  

The “built-in” SERS detection functionality in the tested particles allows for label-free particle 

location without additional SERS-tagging molecules. A strong SERS signal provides the 

possibility to decrease the scanning time significantly. Ultrafast scanning not only lowers the 

chance of unintentional drug release but also decreases the possibility that the worm's 

metabolism would be influenced by a laser. A disadvantage of the detection approach based 

on background in SERS signal is that, in contrast to conventional SERS-labels, only one type of 

particles can be detected simultaneously.  

It is essential to note that in general, Raman microscopy can be used not only to localize the 

shell with the drug inside nematodes but also to obtain information about the biochemical 

composition of tissues and organs inside C. elegans without dissecting or adding fluorescent 

labels before and after internalization of particles, Figure 5.7 (A-D), (Supplementary 

Information for Chapter 5 (Appendix), Figure S5.1, Figure S5.2). The heatmaps based on 

selected bands allow studying the distribution of such biomolecules as proteins and lipids 

inside a living nematode, Figure 5.7 (C). 
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Hierarchical clustering analysis based on a spectral similarity between data points was used to 

group data points from similar tissues together. By giving each group a unique pseudo color 

label, it was possible to visualize such anatomical structures as pharynx and intestine inside 

the worm, Figure 5.7 (D). 

 
 
 
Figure 5.7. (A) Optical microscopy image of a C. elegans worm. (B) DIC image of the head 

region of the same C.elegan worm. The area scanned with Raman microscopy is marked with 

the red rectangle. (C) Raman heatmap constructed based on intensity of the 1665 cm-1 peak 

showing the alpha-helix proteins and unsaturated fatty acids distribution. (D) Molecular image 

is generated by clustering analysis, where pixels with similar molecular fingerprints are 

depicted with the same false colors. Numbering of colors corresponds to clusters. 

It can be seen in Figure 5.7 that positions of anatomical structures on the image generated by 

clustering analysis of datapoints with similar Raman molecular fingerprint, Figure 5.7 (C), 

correlate with those on differential interference contrast (DIC) microscopy image, Figure 5.7 

(B). The body wall of the worm in the scanned area was found to consist of 3 types of 

datapoints marked with grey, dark purple, and pseudo blue colors. The data points marked 

with yellow and blue color form the pharynx (metacorpus and isthmus), the orange marked 

data points form the nerve ring. The mean Raman spectra of each cluster in Figure 5.7 (C) can 

be found in Supplementary Information for Chapter 5 (Appendix), Figure S5.3.  
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5.3 CONCLUSION 

 

New drug delivery carriers based on calcium carbonate particles are developed and 

functionalized with SERS active silver nanoparticles and with magnetite. Such an assembly was 

found to provide a SERS enhancement factor of up to 103
. Calcium carbonate particles have 

been also functionalized with magnetic nanoparticles. A possibility to control the movement 

of the particles with a magnetic field may be desirable for cellular studies because it may allow 

moving particles to a specific region in a cell, where Raman scattering signals can be measured 

specifically from that area. However, it is essential to note that a high absorbing capability of 

the particles has made the quantification of analyte concentration with SERS challenging.  

The high absorption capability of calcium carbonate particles was used to create alginate 

shells, which were functionalized with silver nanoparticles for SERS signal enhancement in 

Raman microscopy. In contrast to the first part of the work carried out in this chapter, SERS 

was not used for molecular detection. The SERS was applied here for precise localization of 

the alginate-based drug carriers inside C. elegans. Furthermore, temperature increase on 

silver nanoparticles induced by illuminating laser was used for controllable light-induced drug 

release. The fabricated drug carriers were tested in vivo in C. elegans worms. The SERS 

functionality of the particles allowed detecting them inside worms with very fast area scans 

using only 1 mW of laser power. The detection method was based on using the strong 

background in the SERS signal for drug carrier localization.  

 

 

 

 

 

 

 

 

 

 

 



120 
 

 

 

 

 

 

 

 

Chapter 6 
4Pi Raman microscopy and atomic force 

microscopy investigation of Chlamydia 

infected cells 
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Chapter 6 is based on the following publication and manuscript: 

Superresolution 4π Raman microscopy.  A. Diaz Tormo, D. Khalenkow, K. Saurav, A.G. 

Skirtach, N. Le Thomas. Opt Lett. 2017, 42, 4410-4413.   

Complementary multimodal microscopy study of Chlamydia psittaci infected cells: 4Pi 

Raman and atomic force microscopy. D. Khalenkow D, A. Diaz Tormo, J. Rybarczyk, J. Verduijn, 

L. Van Der Meeren, D. Vanrompay, N. Le Thomas, A.G. Skirtach, submitted. 
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6 4Pi Raman microscopy and atomic force microscopy 

investigation of Chlamydia infected cells  

 

In this chapter, the 4Pi Raman microscope and its basic working principles are described. 

System calibration and 4Pi Raman microscopy data acquisition and processing are illustrated 

by constructing axial profiles of polystyrene nanoparticles. Subsequently, 4Pi Raman 

microscopy in a combination with an atomic force microscope (AFM) is applied to investigate   

Chlamydia psittaci inside eukaryotic cells. 
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6.1 INTRODUCTION  

Understanding structures and interactions between molecules, cells, tissues, and organisms is 

the goal of biological sciences, where transmission and fluorescence microscopy remain the 

most used visualization techniques.  

After invention of Fluorescence Recovery After Photobleaching (FRAP), Fluorescence 

Resonance Energy Transfer (FRET), and Fluorescence Correlation Spectroscopy (FCS) 

techniques, development of novel approaches in microscopy has paused, only to be vigorously 

rekindled again with the invention of superresolution microscopy techniques 197. In the area 

of superresolution microscopy, novel molecular localization algorithms, new fluorophores for 

superresolution microscopy as well as instrument development, for example, the STED 

microscopy approach have led to an increase of the resolution in the lateral plane of a 

microscope by a staggering amount of almost an order of magnitude 198. This would not have 

been particularly essential if not for the fact that such a resolution becomes comparable with 

the sizes of single molecules. This ultimately sparked substantial interest and brought together 

scientists from optics, photonics with those working in cell biology and medicine to further 

develop and optimize superresolution microscopy techniques.  

Another superresolution technique is 4Pi fluorescence microscopy, which leads to a significant 

improvement of the axial resolution 47. The development was seen to be essential since the 

axial resolution of a microscope is about ~ three times worse than the lateral resolution. The 

improvement of lateral resolution in 4Pi microscopy (4Pi effect) is achieved through the 

interaction of two coherent laser beams focused on the same point. The resulting interference 

between the light waves produces the pattern where the area of maximum light intensity is 

narrower than that produced by a single beam, Figure 6.1. 

  

Figure 6.1. A comparison of (A) confocal, and (B) 4Pi microscopes. 
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The described above principle of 4Pi axial resolution improvement in fluorescence microscopy 

can be applicable to Raman microscopy. Indeed, just as in fluorescence microscopy, a 

combination of Raman spectroscopy with confocal microscopy allows obtaining high-

resolution Raman molecular images of the tissues, cells, and cellular components but in this 

case without using any labels. Furthermore, just as in fluorescence microscopy, the axial 

resolution of a conventional Raman microscope is about three times lower than the lateral 

resolution. The limitation in the axial resolution is overcome by combining the confocal Raman 

microscopy approach with the 4Pi Raman technique. We have shown that such a technique 

allowed us to resolve nanometer-thick structures 199.  Here we applied 4Pi Raman microscopy 

for nanolayer analysis. The nanolayers are used in a broad range of fields, such as energy 

storage 200, optics 201, and drug delivery 202. We have demonstrated that 4Pi Raman 

microscopy can be used for non-destructive and simultaneous characterization of each 

nanolayer in nanolayers stack 114 (Supplementary Information for Chapter 6 (Appendix), Figure 

S6.1), providing information about its chemical composition, optical properties, and 

microstructure.  Such an analysis of multiple properties at the same time is challenging with 

techniques commonly used for nanolayers characterization like ellipsometry, X-ray, and 

electron microscopy.   

Application of the developed 4Pi Raman microscopy to analysis of different samples, including 

those in cell biology, is an interesting topic. However, it is essential first to discuss basic 

principles of 4Pi Raman microscopy developed in the course of this work. First, we discuss the 

microscopy setup pointing out the interaction and interference of the interacting beams. An 

important detail of the setup is a possibility to control phases of the interacting beams. 

Subsequently, we discuss measurement procedure, peculiarities of the setup and data 

processing.   
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6.2 THE 4Pi RAMAN MICROSCOPE SETUP AND CHARACTERIZATION 

 

 

Figure 6.2. Schematics of a 4Pi Raman microscope showing two beams impinged on a sample 

and the generated interference pattern.  

The 4Pi Raman microscopy setup was built on the basis of a custom-made confocal Raman 

microscope (Alpha300R+, WITec), which provides the possibility for both top and bottom 

sample excitation with a laser. Similar to the measurements performed with a conventional 

confocal Raman microscope described in previous chapters, we have used a laser source 

(Toptica, Munich, Germany) operating at 785 nm as a light source to minimize potential 

fluorescence in the visible spectral range.  

The schematics of the 4Pi Raman microscopy setup is shown in Figure 6.2. The laser beam 

from a single laser source is split into two beams, which are then focused back on the sample 

through the objective lens. The interaction of the beams can result in constructive or 

destructive interference. The resulting interference pattern on the sample plane is dependent 

on the beam phases. Light in both beams undergoes the phase shifts relative to the phase of 

the original laser beam. The ΦT is the phase shift in the arm connected to the top objective, 

and ΦB, phase shift is the phase shift in the arm connected to the bottom objective. The 
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photodetector provides information about the phases of the beams to the controller of the 

translation stage. The translation stage is then used to modify the phase relationship between 

the beams by changing the length of the optical pathway of one of the arms. That creates a 

feedback loop, which allows us to stabilize and change the interference pattern on the sample 

plane. The main challenge in this approach was that we could not measure the phases of the 

beams directly at the sample plane. To solve this problem, we installed the partial reflector to 

one of the arms. By measuring the beam, which was the result of interference between the 

reflected light from one arm and transmission light from the second arm, we were able to 

obtain the phase information indirectly. The resulting phase, measured by the photodetector, 

can be described by the following formula: 

 

Φ= (ΦTr +  ΦSample - ΦRef - ΦS)          (13) 

 

where ΦTr – phase of the transmission beam before the sample, ΦSample – phase change caused 

by sample, ΦRef – phase of reflected light from the second beam, ΦS – shift introduced by an 

optical path to detector. 

To evaluate the presented 4Pi microscope setup and demonstrate the possibility of resolution 

improvement, a single 500 nm monodisperse polystyrene nanoparticle was measured in the 

4Pi mode, and the axial particle's profile was constructed using the obtained data. The light 

microscope image of the scanned particle and its molecular fingerprint, recorded with a 

convention Raman microscope, is shown in Figure 6.3. The 1005 cm-1 peak was used for 

system calibration and axial profile construction. This peak was chosen because it was the 

most intense peak on the spectrum. 

For 4Pi measurements, the following objectives were used: a 100x/0.95 NA objective (Zeiss) 

was mounted in the top arm (the top objective), and a 20x/0.5 NA (Nikon) objective was used 

in the bottom arm (the bottom objective). The laser power at fiber output before 

interferometer was 260 mW. However, only 35 mW was recorded before the objectives in 

both arms. For all measurements in the 4Pi mode, the Raman signal was collected through the 

top objective. The collected signal was sent to spectrograph through multimode fiber with 100 

μm core-diameter. Measurements were done with 7 seconds integration time.  



127 
 

 

Figure 6.3. (A) A transmission light microscope image of 500 nm polystyrene nanoparticles. 

The particle measured with Raman microscopy is marked with the red dashed rectangle. (B) 

The Raman scattering spectrum of the measured particle.  

Before measurements, the laser power in both beams was calibrated to produce an equal 

contribution to the Raman signal intensity. This was done by blocking the upper or lower arm 

and measuring the Raman signal of the particle.  

Next, we have confirmed that the change in the beam's interference pattern in the sample 

plane influences the measured Raman signal. The configuration of the assembled microscope 

allows altering the phase of one of the beams relative to the other one. As expected, the 

change in phase translated to the change in the peak intensity, Figure 6.4. 

It can be seen from Figure 6.4 that intensity of the peak of 4Pi Raman microscopy scanning 

(the red line) is higher compared to the trace corresponding the confocal scanning (the black 

dashed line). Further, the size distribution of the particle in the axial plane was measured. 

During axial profiling, both laser beams remained stationary focused on one point, while the 

particle was moved in an axial direction by high precision piezo stage with the step of 100 nm. 

It should be noted that the chosen commercially available particles were very monodisperse 

– that allowed not only choosing any particle on the slide, but also provided a solid reference 

in regard with the diameter of particles. In addition, the molecular composition of the particles 

was also controlled by the manufacturer (Micromod Partikeltechnologie GmbH, Germany).  
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Figure 6.4. Effect of the phase change on Raman peak intensity. Spectra drawn with solid lines 

are Raman spectra of a polystyrene particle taken in the 4Pi mode under different phase 

interferences. The spectrum drawn with the dashed line is that obtained with a conventional 

Raman microscope.  

For each axial coordinate point, 4Pi Raman spectra were recorded with different phase 

interactions and as a result different Raman peak intensities. Because we do not measure the 

phase directly in the sample plane – it is challenging to determine the position of the 

translation stage, which would allow obtaining the phase configuration with the maximum 

positive or negative laser beams interference. To solve this problem we were recording 

multiple Raman spectral datapoints, each with a different phase configuration. This allows 

application of a non-linear regression based on the measured peak intensities to interpolate 

the profile of the phase interference. Peak intensities with maximum constructive 

interference can be extracted from the resulted cosine curves. By plotting intensity of the 

obtained peak versus the axial coordinate - the profile of the particle was constructed.  
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Figure 6.5. The axial profile of a 500 nm polystyrene particle constructed using the built 4Pi 

Raman microscope. The side lobes are marked with red arrows. The central lobe is marked 

with dashed lines. 

The size of the central lobe in the resulted profile corresponds to the size of the particle. The 

smaller side lobes are visible in Figure 6.5 near the central lobe. This is expected because of 

the interference pattern in the 4Pi mode, which consists of a large central and two smaller 

side fringes, Figure 6.5. Because the reflections used for phase control are collected before 

the objectives, the fringe position was independent of the sample movement. 

The resulted polystyrene particle profile is a combination of the size distribution of the 

measured particle and the points spread function (PSF) of the microscope system. To obtain a 

better approximation of the PSF, the measurements were repeated using smaller (100 nm) 

particles. Besides the challenge to localize such particle on the surface of CaF2 and to 

discriminate between single particle and conglomerate of two or three particles, the main 

problem was that the Raman signal from a single particle was too weak to be detected.  

Therefore, we used 250 nm particles to estimate the PSF, Figure 6.6 (A-C). An atomic force 

microscope was used to additionally confirm the size of the particle, Figure 6.6 (B).   
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Figure 6.6. (A) A light microscopy image of nanoparticles. (B) A 3D image of a nanoparticle 

obtained using an atomic force microscope. (C) The point spread function (PSF) of 4Pi Raman 

and confocal microscopy scans (scaled on the Y-axis). 

 The resulting PSF profiles, shown in Figure 6.5 and Figure 6.6, demonstrate a possibility of an 

axial resolution improvement in the 4Pi Raman microscopy mode (similar to that in 

fluorescence microscopy). Nevertheless, to achieve such a resolution improvement, the side 

lobes must be eliminated or suppresed from the PSF profiles. This can be done digitally and 

by improving the hardware part of the microscope and interferometer.     
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6.3 APPLICATION OF 4Pi RAMAN AND AFM FOR ANALYSIS OF INTECELLULAR BACTERIA 

6.3.1 Introduction 

Next, we have tested the 4Pi Raman microscope capability to image mammalian cells. In this 

regard, it was shown that a cell could significantly influence the beam phase203. Therefore, 

imaging of mammalian cells with a 4Pi Raman microscope was expected to be a challenging 

task, because of difficulties to obtain a stable interference between the two laser beams 

caused by phase fluctuations. For such an optically highly inhomogeneous object as a cell (with 

intracellular bacteria), this problem may be particularly essential. On the other hand, such 

testing provides an opportunity to demonstrate the feasibility of application of 4Pi Raman 

microscopy for imaging of complex biological samples. Therefore, we have chosen two types 

of cells for 4Pi Raman microscopy (axial imaging): HeLa cells - a well-established model of 

research in cell biology, and monkey lung cells infected with Chlamydia psittaci (C. psittaci), 

which is a Gram-negative bacterium. Similarly to other Chlamydia species, C. psittaci is an 

obligate intracellular parasite. It cannot grow and reproduce outside of the host cell. After C. 

psittaci is taken inside the cell, it forms inclusions in the cellular membrane 204. Inside the 

inclusion, C. psittaci replicates, taking the nutrients from the host cell, while avoiding the 

destruction of its membrane compartment by lysosomes. The exact mechanism of how 

Chlamydia escapes the intercellular defense mechanism is not fully understood 205. Upon 

finishing the development cycle, C. psittaci leaves the host cell and infects the neighboring 

cells, repeating the cycle 206, Figure 6.7. More detailed overview of Chlamydia life cycle in the 

light of host cell membrane interaction can be found in Supplementary Information for 

Chapter 6 (Appendix), Figures S6.2.  

C. psittaci proliferates inside the avian species and therefore represents a significant economic 

risk to the poultry industry 207. More important, it can also infect humans via zoonosis causing 

so-called "parrot fever", which is atypical pneumonia with a broad range of symptoms such as 

difficulty breathing and nonproductive cough, high fever, low pulse, chills, and headache 208. 

Because of its relatively small size (from 0.3 to 1 micrometer, depending on the stage of the 

life cycle) and significant importance to industry and healthcare, C. psittaci constitutes an 

exciting but challenging subject to study, where it is difficult to obtain information about 

intercellular organisms in vivo without destroying the host cell 209. This problem can be solved 
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with Raman microscopy, since it allows obtaining information about the metabolic state of 

intercellular bacteria in a label-free and non-destructive way.  

  

Figure 6.7. Life cycle of Chlamydia psittaci. Elementary body (EB) of C. psittaci is taken inside 

the cell. It forms the inclusion inside the cellular membrane. Next, EB transition into reticulate 

body (RB) inside the inclusion. RB is a metabolically active form of C. psittaci which is capable 

to multiply through binary fission. After several multiplications, RBs reorganize back into EBs 

and leave the cell to repeat the cycle (a comprehensive schematics is shown in Supplementary 

Information for Chapter 6 (Appendix), Figure S6.2).  

An increased axial resolution of 4Pi Raman microscopy would be thus a very desired feature 

to precisely localize bacteria inside cells. In addition, this would allow for a more accurate 

discrimination of spectral information coming from bacteria and from surrounding cellular 

cytoplasm.  

Another high-resolution technique applied in this study is atomic force microscopy (AFM). It 

allows imaging and characterizing cells infected with C. psittaci in a label-free and non-

destructive way. In this case, the surface is scanned with a sharp tip attached to the cantilever. 

Upon approaching the surface, the cantilever bends due to the interaction of the tip with it. 

By measuring the cantilever deformation, it is possible to reconstruct the topography and 
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even measure mechanical properties of samples 210. However, in contrast to Raman 

microscopy, this technique permits imaging only the surface of cells. Therefore, AFM would 

be an attractive complementary to 4Pi Raman microscopy technique for characterization of 

the surfaces. We aimed thus to implement the multimodal microscopy approach to study 

Chlamydia infected cells using both 4Pi Raman microscopy and AFM, Figure 6.8.  

 

 

Figure 6.8. Schematic setup of experiments conducted in multimodal microscopy approach 

combining Raman microscopy and AFM. 4Pi Raman microscopy is used therein to characterize 

cells infected with C. psittaci, while AFM is used to scan the surface of infected cells.  
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6.3.2 Materials and methods 

To scan biological samples with 4Pi Raman microscopy, we have designed custom-made Petri 

dishes, where a part of the bottom surface was substituted with an ultrathin (0.1 µm thick) 

CaF2 slide. Bringing CaF2 slide is necessary to avoid additional background from silica glass or 

plastic if 785 nm laser is used. And such a laser allows avoiding the autofluorescence from 

biological samples, while still providing a relatively strong Raman signal. However, it scatters 

strongly on glass and plastic. This represents a particular problem in our case of 4Pi Raman 

microscopy, because the laser from the bottom arm must go through the Petri dish before 

reaching the sample. Therefore, substituting plastic with CaF2 slide grants the possibility to 

obtain spectra of cell adhered to the bottom. The low thickness of the CaF2 slide allows 

minimizing the effect of the substrate on the phase of propagating beams.  

Experiments were conducted using HeLa and Buffalo Green Monkey (BGM) cells, which were 

cultured with DMEM (Lonza, catalog number: 12-604F) supplemented with 10 % FBS 

(ThermoFisher, catalog number: 10500-064) and 1 % PenStrep (Lonza, cat no DE17-602E) and 

seeded upon the custom-made Petri dish (with CaF2 slide) and incubated for 24 hours at 37 oC 

and 5% CO2. BFM cells were cultured using the Eagle's minimal essential medium (MEM) 

supplemented with 10 % heat-inactivated fetal bovine serum (Greiner Bio-one, Vilvoorde, 

Belgium), 1 % L-glutamine (Gibco®, Merelbeke, Belgium), 1 % vitamins (Gibco®), 2 % 

vancomycin (Sandoz®, Vilvoorde, Belgium) and 1 % streptomycin sulfate (Gibco®). The virulent 

C. psittaci strain 92/1293 (ompA genotype D), isolated from diseased turkey broilers on a 

turkey farm in the Netherlands, was used to inoculate the BGM cells as described by 

Vanrompay et al. 211 Briefly, BGM cells were seeded into a custom-made Petri dish with CaF2 

bottom and incubated until they formed a monolayer. After 24 hours, the culture medium was 

removed, and 75 μL of the bacterial inoculum was added to the cells, followed by adding a 

complete C. psittaci culture medium (CCKM). The inoculated cells were incubated for 3 days 

at 37 oC and 5% CO2. After incubation, the complete culture medium was removed, and cells 

were washed with sterile PBS and fixed for 10 minutes with 4 % formaldehyde. Next, 

formaldehyde was removed, and cells were kept in PBS at 4 oC until further analysis with AFM 

and 4Pi Raman microscopes.  

Topographical AFM images were acquired using a Nanowizard 4™ BioAFM (Bruker/JPK 

Instruments) in the JPK Quantitative imaging (QI®) mode using ATEC-CONT cantilevers. These 
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sharp-tip cantilevers (the radius of the curvature < 10 nm) have an increased tip height (15 

µm) to avoid contact of the cantilever beam and the cells during imaging. JPK QI™ (or 

quantitative imaging) mode is a unique alternative to acoustic (AC) mode AFM also known as 

the tapping mode AFM. This mode represents a combination of the contact mode AFM and 

AC mode. For each pixel, a force curve is acquired, thus allowing to gather high-resolution 

images without having the lateral drag often observed in the contact mode, and contrary to 

tapping mode, the vertical force exerted upon the sample can be controlled, which allows for 

much richer data analysis. 

In addition to AFM, cells were also scanned using 4Pi Raman microscopy. The 4Pi Raman 

spectra were recorded on the microscope setup described in the first part of the chapter. The 

only difference was that instead of the 100x/0.95 NA (Zeiss) objective in the top arm, a 63x/1.0 

NA (Zeiss) water immersive objective was used. The cytoplasmic part of the BGM cell with C. 

psittaci and the cytoplasmic part of the HeLa cell with lipid droplet were selected for analysis 

with 4Pi Raman, Figure 6.9 (A). The 4Pi measurements were made using a similar pipeline as 

for polystyrene nanoparticle profiling - each point in the area of interest was measured four 

times, and the Raman scattering intensity was interpolated. The distance between the points 

was 0.2 μm on both axes. Integration time and laser power were 10 seconds and 35 mW, 

respectively. The resulting 4Pi datasets were used to construct molecular images. Molecular 

images were constructed based on the intensity of the following peaks: the peak at 1004 cm-

1 is associated with proteins, the peaks at 1453 cm-1 and 1662 cm-1 are associated with lipids, 

Figure 6.9 (B). The pseudo-color was assigned to each pixel based on the calculated Raman 

scattering intensity of the peaks at this point. Next, hierarchical clustering analysis of 4Pi 

dataset was used to calculate average Raman spectra of C. psittaci inside BGM cell and lipid 

droplet inside HeLa cell, Figure 6.9 (C).  
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6.3.3 Molecular imaging with 4Pi Raman microscopy   

 

 

 

Figure 6.9. (A) (Left) Optical microscopy image of HeLa cell with lipid droplets. Cytoplasmic 

cellular parts along the red line were analyzed with a Raman microscope. (Right) Optical 

microscopy images of a Buffalo Green Monkey (BGM) cell infected with C. psittaci. (B) The 

resulting heatmaps obtained from intensities of 1004 cm-1, 1453 cm-1 and 1662 cm-1 peaks.  (C) 

The average Raman spectra of C. psittaci and lipid droplet inside the cell. Colors in molecular 

images correspond to counts in arbitrary units. 
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The presented setup allowed us to obtain a stable beam interference during axial molecular 

imaging despite the phase changes induced by cellular substructures. The resulted dataset 

was used to generate 4Pi Raman molecular images of lipid droplets in the cytoplasm of HeLa 

cell and C. psittaci inside the BGM cell, Figure 6.9. Hovewer, it took over 10 hours to generate 

a single molecular image.  Such a long time acquisition is due to multiple image recordings 

(four times) with a different phase configuration; additionally, it required at least 10 seconds 

to change and stabilize the phase configuration before each of those four measurments. The 

main challenges to work with living cells and bacteria are substantially long scanning times. 

In experiments, it was not possible to detect an increase of the axial resolution in axial 4Pi 

Raman microscopy images. In contrast, an increase in axial resolution in fluorescence 4Pi 

microscopy has been been achieved by deconvolution, i.e. by removing (digitally) the 

secondary lobes from the PSF of each pixel.  

In the case of 4Pi Raman microscopy, if developing the deconvolution algorithms for 4Pi 

Raman microscopy is pursuied, then, the following factors should be taken into consideration. 

1. During the axial imaging, it was found that all molecules influence the Raman signal 

intensity of every pixel along the laser pathway both in the confocal and 4Pi mode. If 

the molecule produces an intense Raman signal, a strong Raman signal from this 

molecule would be detected even when it is present outside of the actual confocal 

volume. This effect is illustrated in Figure 6.10.   

 

2. In fluorescent microscopy, the signal is originated only from isolated points where the 

fluorescent labels are present. In contrast, in Raman microscopy, it is more challenging 

to distinguish the pixels, because every point inside the cell can produce similar Raman 

scattering signals. This is particularly relevant for the C-H molecular vibrations, which 

are omnipresent in cells. It is also essential to note that a Raman peak in organic 

samples can be a sum of scattering signals originated from different molecules 

possessing similar molecular vibrations 212. 
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Figure 6.10. The heat maps constructed based on the 321 cm-1 peak is assigned to CaF2. Both 

heatmaps obtained with (A) confocal and (B) 4Pi Raman microscopes show the presence of the 

shadow effect when the signal originating from the CaF2 peak is visible, while focusing the 

microscope at a location of 6 μm above the physical location of the CaF2 slide casts a "shadow" 

on the image. Colors in molecular images correspond to counts in arbitrary units. 

 

The fact that different molecules have different signal intensities, but the same overlapping 

peaks, makes the deconvolution of 4Pi Raman microscopy data a challenging and interesting 

topic for further research. 

6.3.4 Analysis of Raman scattering data 

The hierarchal clustering analysis was used to obtain molecular fingerprints of C.psittaici, 

localize its position inside a BGM cell and separate the data points corresponding to C. psittaci 

from the cellular cytoplasm. The average spectrum was calculated for each resulting cluster, 

Figure 6.11 (A). Next, the intensities of the following peaks: 1004 cm-1, 1453 cm-1 and 1662 

cm-1 were compared between the C. psittaci and the BGM cytoplasm. The intensity value of 

the 1004 cm-1 peak was similar for both C. psittaci and its surrounding cellular cytoplasm. The 

1453 cm-1 and 1662 cm-1 peaks were found to be more intense in C. psittaci spectra by ≈ 47 % 

and ≈ 24 %, Figure 6.11 (B).  

The 1453 cm-1 and 1662 cm-1 peaks can be used as markers to localize C. psittaci inside of the 

host cell. It is essential to mention that higher peak intensities in C. psittaci spectra versus the 

those in spectra of the host cell cytoplasm were previously reported 209. In that study, a higher 

intensity was observed for all peaks, including the 1004 cm-1 protein peak. However, it was 

suggested that such differences in intensities were the result of a cellular deformation caused, 

for example, by sample preparation. Using data analysis, we have also observed an increase 
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in intensity of Raman scattering peaks associated with C. psittaci. Nevertheless, the number 

of peaks there, including the 1004 cm-1 protein peak, had similar scattering intensity in both 

C. psittaci and the host cell cytoplasm. This prompts to suggest that a deformation of the 

sample did not cause the difference in intensity of the observed lipid peaks. 

 

Figure 6.11. Analysis of 4Pi Raman microscopy data. (A) The average spectra of data points 

assigned to C. psittaci (the black curve) and to the host cell cytoplasm (the red curve). (B) A 

comparison of 1004 cm-1, 1453 cm-1 and 1662 cm-1 peak intensities in the cytoplasm of the 

host cell and C. psittaci. Each column is calculated based on the spectral points allocated to the 

cytoplasm (221 datapoints) or Chlamydia (26 datapoints) by the hierarchical clustering 

analysis. Error bars represent the standard deviation between the data points. 
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A strong Raman scattering signal can be explained by the fact that a dense lipid membrane 

may cover C. psittaci or that bacteria change the lipid composition and/or density of cellular 

membrane inclusion. Those changes may be utilized by C. psittaci to protect it from the host 

cellular defense mechanisms.  

 

Figure 6.12. (A) Transmission and fluorescent microscopy images of the same cell showing lipid 

droplets inside a HeLa cell. The scanned lipid droplet is marked with the red arrow (top). The 

area scanned with 4Pi Raman microscopy is marked with the rectangle (bottom). (B) Raman 

scattering spectra of the lipid droplet and cytoplasm. On the heatmap (insert), the red and 

black dots point to locations, from which the cytoplasm and lipid droplet spectra were taken. 

Colors in molecular images correspond to counts in arbitrary units. 

We have noticed a similar significant increase in the intensity of the lipid peaks in spectra of a 

lipid droplet of the HeLa cell, which was measured to test the 4Pi microscopy system, Figure 

6.12. A lipid droplet is a subcellular structure composed of densely packed lipids. That is why 

the presence of intense lipid peaks is expected – and the measured spectra of lipid droplets 

were similar to lipid droplet molecular fingerprints reported in literature 213 214.  

To obtain more information about the C. psittaci lipid envelope, we have compared its 

spectrum with that of a lipid droplet. A comparison of the lipid droplet spectrum with the 

spectrum of the surrounding cytoplasm showed that 1453 cm-1 and 1662 cm-1 peaks are more 

intense in the lipid droplet spectrum, similar to what was observed in BGM cell infected with 
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C. psittaci. However, the intensity of the 1004 cm-1 peak was found to be higher in the lipid 

droplet compared to that in the C. psittaci spectrum. The presence of the intense 1004 cm-1 

peak was expected in lipid droplet molecular fingerprint because it is known that lipid droplet 

is covered with proteins. These proteins are essential for cellular lipid metabolism regulation. 

The low 1004 cm-1 peak intensity in C. psittaci may be explained by the lower concentration 

of proteins in the bacterial outer membrane or inclusion wall compared to the amount of 

lipids. The ratio of 1662 cm-1 and 1453 cm-1 peaks (I1662/I1453) can be used to estimate the lipid 

unsaturation level 214 215. We have obtained the ratio value of 0.87 for the lipid droplet. 

However, for C. psittaci, it was only 0.53, suggesting that the C. psittaci membrane contains 

fewer unsaturated lipids than the lipid droplet.  

It was established in previous studies that lipid droplets are accumulated on the surface and 

inside the inclusion of Chlamydia and it may be a part of the host defense mechanism 216. But 

to the best of our knowledge, the study of lipid droplet interaction with Chlamydia were only 

done using C. trichomonas, and no research was done on C. psittaci 217. Our finding shows that 

C. psittaci may also accumulate host lipid droplets like C. trichomonas. Previous work reported 

the presence of lipid droplets at the surface or inside of inclusion bodies of C. trichomonas as 

early as 18 hours after the inoculation 216. However, in our case, C. psittaci reticular body 

spectrum shows the presence of high-density lipids similar to what is found in a lipid droplet 

in 8 hours after the inoculation.  This suggests that the interaction of C. psittaci with the host 

cell lipid droplets may have started at earlier stages of infection, and such interaction may be 

a part of early mechanism of host defenses evasion. A decrease of intensity of the 1004 cm-1 

peak suggests that the protein part of lipid droplets is modified by C. psittaci. The changes in 

the lipid saturation level hint that C. psittaci similar to C. trichomonas may use host lipid fatty 

acids for synthesis of its membrane constituents218.  

6.3.5 AFM topographical imaging  

 The lipid-associated peaks on C. psittaci molecular fingerprints are 2-3 times more intense 

than the peaks from the cellular cytoplasm – this makes imaging of the cellular surface with 

Raman microscopy challenging. To solve this problem, AFM was used as a complementary 

tool, because it allows obtaining high-resolution topographical images of the cellular 

membrane. Similar to Raman microscopy, AFM is a label free and non-destructive imaging 
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technique, where a tip is used for scanning the surface of a sample. Using AFM, we aimed to 

find morphological surface irregularities in the C. psittaci infected cells in comparison to 

control cells (without C. psittaci). The AFM images revealed the presence of the holes/deep 

cavities in the cellular membrane of the infected cells. Such holes were absent in the control 

cells, but they were found on infected cells surface, Figure 6.13.  

The presence of bacteria inside every cell in the scanned samples was confirmed by both 

optical and Raman microscopy. We were not able to provide the direct evidence that bacteria 

were present in the holes using Raman and/or transmission microscopy, because those holes 

were invisible on normal microscopic images. However, these holes were present only in 

infected cells and were not observed in any of the control images (Supplementary Information 

for Chapter 6 (Appendix), Figure S6.3 and Figure S6.4). This strongly suggests a link between 

bacteria and the holes observed in the membranes.  

The observed holes varied in size (diameter) from 0.5 µm to 10 µm, and in depth from 500 nm 

up to 5 µm. These cavities can be associated with the location, where C. psittaci had entered 

cells. However, the sizes of the holes can be up to 10 times bigger than those associated with 

an individual Chlamydia. An alternative explanation is that the cavities are the result of the 

cytoplasmic inclusion formation. The holes in the plasma membrane of infected cells were 

detected both at early (8 hours after inoculation) and late (36 hours) stages of the infection 

(Supplementary Information for Chapter 6 (Appendix), Figure S6.3 and Figure S6.4). The 

secondary infection can explain this observation potentially being due to not properly carried 

out washing away procedure after the inoculation. However, this also raises questions about 

the speed of the cellular membrane re-sealing, the holes caused by the C. psittaci cellular 

entry, and the duration of the bacteria exposure to the intercellular media after infecting the 

cell. Such information may be beneficial for a better understanding of the bacteria interaction 

with the cell and anti-Chlamydia drug development. Therefore, it is anticipated that the 

proposed multimodal method of using the Raman microscopy (to detect infected cells) in a 

combination with AFM (to obtain surface topography of such cells) will be promising for such 

applications.  
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Figure 6.13. AFM images of the plasma membrane of BGM cells. (A) Topography image of the 

surface of cells infected with C. psittaci. Holes in the plasma membrane are marked with blue 

arrows. (B) Topographic image of the surface of control non-infected cells. (C) A high-resolution 

image of the holes in the plasma membrane of the infected cell. (D) 3D reconstruction based 

on data presented in the panel (C). 
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6.4 CONCLUSION  

 
In this chapter, we have described the 4Pi Raman setup and have shown how the system can 

be characterized using well-defined polystyrene nanoparticles. To change the interference 

between beams, we have used the reflection of one laser beam to stabilize the interference 

pattern of coherent laser beams at the sample plane and modify the phase relationship 

between the beams. Next, we have applied 4Pi Raman microscope in a combination with 

atomic force microscopy to image C. psittaci inside Buffalo Green Monkey cells.  

The resulting datasets are used to obtain molecular images generated in the form of a two-

dimensional (2D) map based on the distribution of the molecules in the sample. The axial 

profiling of polystyrene nanoparticle showed the possibility of axial resolution improvement, 

like in 4Pi fluorescence microscopy. However, for high-resolution imaging of biological 

samples, such as cells and bacteria, the novel deconvolution algorithms must be developed. 

The analysis of C. psittaci associated data points on the resulting non-deconvoluted 4Pi 

Raman microscopic images revealed the presence of densely packed lipids inside the 

membrane inclusion, similar to what was observed in intercellular lipid droplets, but with a 

lower ratio of saturated to unsaturated lipids. The presence of intense lipid-associated peaks 

in C. psittaci molecular fingerprint can be used as a marker for bacteria localization inside the 

cell. The high-resolution topographic imaging of C. psittaci infected cells surface with AFM 

revealed the presence of irregularly shaped cavities on the cell membrane. Such cavities were 

absent in non-infection cells. Complementarity of 4Pi Raman microscopy and AFM proved to 

be a practical approach for the analysis of C. psittaci infection. AFM was used to get the 

topographic image of the cellular surface. It offers the advantage of detecting irregularities, 

such as pores on the cellular surface. A pore has low contrast and is difficult to detect with 

light microscopy techniques. AFM, however, can correctly pick up these surface irregularities 

and therefore has a unique application in this research. But it was not possible to evaluate if 

the scanned cell was infected with C. psittaci. On the other hand, Raman microscopy provided 

the possibility to localize C. psittaci inside cells and to obtain information about the chemical 

composition, but not cell topography. Therefore, a combination of those two techniques, 

AFM and Raman microscopy, provided information not accessible if they are used separately. 

A multimodal approach of Raman microscopy with AFM can also be of interest for the analysis 

of drug effects on bacteria inside the cell.  
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7 General discussion, conclusions and perspectives  

 

7.1. GENERAL DISCUSSION   

 

In this dissertation, complementarity of Raman microscopy is investigated in a combination 

with other techniques in the context of multimode imaging. Protocols for measurements of 

biological and medical samples with a Raman microscope and other multimodal imaging 

approaches are developed and discussed.  

General introduction as well as recent developments in Raman microscopy and multimode 

microscopic biological and macroscopic medical techniques are presented in Chapter 1.  

The study of mTBI effect on brains of rats, presented in Chapter 2, allowed evaluating 

perspectives of using a combination of Raman microscopy with MRI to study brain tissue 

damage. The results and future perspectives of this study must be discussed from several 

different angles. First, we discuss the obtained results and then evaluate perspectives of 

complimentary use of Raman and MRI for tissue analysis.  

The primary motivation for using Raman microscopy for brain tissue analysis is to understand 

the nature of pathological changes caused by mTBI. The study of brain tissue slices with Raman 

microscopy revealed a decrease in the ratio of axon proteins to myeloid lipids in the corpus 

callosum region after mTBI. Raman microscopy generated molecular images showing 

structural and molecular abnormality inside the corpus callosum region, which is presumably 

the result of micro-bleeding caused by mTBI. Micro-hemorrhages are common in mTBI 81. 

However, blood was found in the corpus callosum area only in one animal. This can be 

assigned to very thin slices resulting in washing out of blood or to the fact that micro-

hemorrhages in mTBI are present only in a limited number of cases  219. A logical continuation 

of this research would be to investigate whether changes in the ratios of Raman scattering 

signal intensities of axon proteins to those of myeloid lipids are influenced by an axon 

degradation or by an increasing number of myeloid lipids. Recently, a possibility to detect 

changes in a brain after mTBI was demonstrated using a diffusion tensor MRI approach  220, 

where it was found that mTBI causes axon degradation in the corpus callosum. However, even 
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an advanced form of MRI, used in that study, required histological analysis of brain slices to 

understand and interpret the diffusion tensor MRI data. Raman microscopy can be particularly 

attractive for such analysis. And, after scanning with Raman microscopy, brain slices can be 

subjected to further investigation. For example, axon proteins can be quantified by 

conventional western blotting 221 or reverse transcription polymerase chain reaction (RT-PCR) 

222. Alternatively, coherent Raman scattering techniques can be used since they were shown 

to be applicable to neuroscience 223. Due to high acquisition speeds of recent  CARS 

microscopes 224, it would be possible to scan a larger number of tissue slices in a shorter time 

period compared to what is possible with a conventional Raman microscope.  

Addition of Raman microscopy for investigation of the brain tissue of rats provides the means 

of detecting changes in the corpus callosum area, which are otherwise invisible by a 

conventional MRI. It can be pointed out, however, that the main disadvantage of the used 

protocol of tissue analysis with Raman microscopy is the need to cut an organ into thin slices 

to perform such a study. Therefore, this procedure is destructive for organs and cannot be 

used in vivo. However, it does not mean that tissue analysis with Raman is limited to pure 

laboratory research on animals, because it may be applied in clinics, in post-mortem 

pathological anatomy studies, or for analysis of biopsy of patients. In this regard, it is 

important to mention that Raman spectroscopy is nondestructive for tissue slices. After 

scanning, slices or identified areas can be subjected to further analysis, such as genomic and 

proteomic sequencing or immunostaining. The main advantage of the used protocol of sample 

preparation is that it does not contaminate the samples with chemicals, such as paraffin, 

which may affect Raman scattering measurements. The negative effect of tissue degradation 

on the quality of molecular images may be solved by embedding samples in a low-density agar 

layer. Alternatively, a tissue slice can be covered with an ultra-thin CaF2 slide.  

One of the main challenges of tissue analysis with conventional Raman microscopy is that 

scanning even a single slice is time-consuming. This potential problem may be overcome:  

1) if analyzed molecules are omnipresent in tissue. Then, scanning any part of the tissue 

with Raman microscopy would produce desired information; or  

2) if preliminary information about spatial location of molecules or areas is available. In 

this case, a combination of Raman microscopy with MRI is particularly attractive for 
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brain analysis: MRI would facilitate identification of abnormal areas of the brain in vivo, 

which can be then scanned with Raman microscopy.  

However, if analyzed molecules are present only in a small area of investigated tissue and no 

information about the position of this area is known, then identification of such area with 

Raman microscopy may be extremely challenging, partially due to long scanning times. For 

example, analysis of the surface of a single brain tissue slice of a rat can take more than 10 

hours. And hundreds of such slices must be scanned to image the whole brain or other organs. 

Progress in this area can be enabled by developments in the area of Raman microscopy based 

on improvements in software, sensors, and mechanical components. Then, scanning of 

multiple slices can be effectively performed to generate a detailed 3D image of the whole 

organ. Such whole organ Raman 3D molecular images are seen to be of great interest in 

pathological anatomy and life science fields.  

After analysing samples at the tissue level (Chapter 2), a multimodal approach was applied for 

sample investigation at the cellular level, where a combination of Raman and fluorescence 

microscopy was used to localize bovine lactoferrin inside cells (Chapter 3). In this study, each 

Raman spectrum was obtained from an area of around 1.0 µm in diameter, which is close to 

the resolution limit for a 785 nm laser (using an objective with NA 1.0). Nevertheless, that 

allowed investigating localization of molecules inside cells and bacteria.  

It was found in our studies that bovine lactoferrin molecules translocate to the nuclei of calf 

rectal epithelial cells. This is a particularly interesting finding, because one of the main roles 

of secreted forms of lactoferrin and other transferrin molecules is to transport iron to cells 

from the surrounding medium. After iron delivery, lactoferrin is either degraded in endosomes 

or released from cells for the next cycle of iron transport. It can be noted that the process of 

iron delivery, lactoferrin recycling, and degradation occurs in the cytoplasm. Therefore, 

secreted isoforms of lactoferrin are not typically known to be capable to translocate to the 

nuclei of cells.  

It was also found that the presence of EHEC significantly increases bovine lactoferrin cellular 

uptake from the growth medium and subsequent translocation to the nuclei of cells. An 

interesting continuation of this study would be to determine if the bovine lactoferrin 

translocation is a part of the innate immune response of calf epithelial cells triggered by EHEC. 
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This can be investigated by repeating experiments with different types of bacterial and viral 

pathogens. Additionally, it would be interesting to study the effect of bovine lactoferrin 

translocation on gene expression. This can be done by ribonuclease (RNA) extraction, 

deoxynucleic (DNA) synthesis and subsequent sequencing.  

Conventional fluorescent microscopy proved to be a complementary tool for Raman 

microscopy. Indeed, application of fluorescent labels significantly simplified identification of 

the Raman scattering molecular fingerprint of bovine lactoferrin inside cells. However, care 

must be taken to control that the corresponding molecular fingerprint is originated from the 

investigated molecule, and not from fluorescent labels or other molecules. Raman microscopy 

enables identification and intracellular localization of molecules without fluorescent labels, 

but fluorescent microscopy can be advantageous in comparison to Raman microscopy if:  

1) localization of specific molecules is desired in a large sample or cell; 

2) fluorescent labeling of such molecules is technically possible;  

3) photobleaching would not affect image acquisition.  

Fluorescent microscopy allowed imaging of multiple (hundreds) cells in 20 minutes, while it 

takes approximately 20 minutes to scan a single cell with Raman microscopy. Also, Raman 

data analysis often requires extensive post-processing and data mining to extract desired 

information.  

Raman microscopy has an essential advantage over conventional fluorescent microscopy by 

contributing to establishment of molecular compositions of materials and biological objects. 

Such a situation is discussed in Chapter 4. There, the goal was to determine the molecular 

structure of conductive fibers inside cable bacteria. In such case, it was not possible to use 

fluorescent labels to localize the fibers inside intact cable bacteria. However, the general 

location of fibers was known from electron microscopy images of fiber sheaths. Analysis of 

Raman molecular images of cable bacteria cross-sections revealed the presence of intense 

peaks at 371 cm-1 and 492 cm-1 in the spectra of the area, where the fibers are expected to be 

located. Raman microscopy measurements of the chemically extracted fibers allowed to 

confirm that 371 cm-1 and 492 cm-1 peaks originate from the fibers. The presence of these two 

peaks revealed that nickel is a part of the fiber structure. This finding was confirmed by 

subsequent X-ray and mass spectrometry analysis using Nano-SIMS, LEXRF, and STEM-EDX.  
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Studies described in Chapter 2 and Chapter 4 have shown that Raman microscopy is an 

attractive tool for life science applications under conditions, where information about the 

nature of molecular changes in samples or molecular structure of investigated molecules is 

limited. In such cases, Raman microscopy provides the means to obtain general information 

about the sample, which can be used as a starting point for further investigation using 

multimodal microscopy approaches.  

It is essential to note that in both bLF (Chapter 3) and conductive bacteria studies (Chapter 4), 

possibilities to obtain reference spectra of molecules outside of the cell was particularly 

important for intracellular localization of those molecules. Additionally, localization and 

subsequent analysis of molecules inside cells and bacteria would be challenging at low 

concentration of the molecule, particularly if molecules do not have distinct molecular 

fingerprints. The SERS technique can significantly amplify intensity of the Raman scattering 

signal, and, therefore, such an approach allows measuring molecules at much lower 

concentrations.  

In Chapter 5, we have focused on development of SERS platforms based on modified calcium-

carbonate particles. The intriguing property of those particles is their multi-functional nature 

– they were designed to be used both as drug carriers, controlled by a magnetic field, and as 

SERS sensors. Such SERS sensors can be applied for detecting low concentrations of an analyte 

in a solution using 100 times less laser power than that required to detect the same 

concentration with a conventional Raman microscope. However, the high absorbing capability 

of the particles made SERS quantification of analyte concentration a challenging task. Another 

potential disadvantage of using such SERS functionalized particles is that the enhancement 

takes place only near silver nanoparticles. Therefore, in situations with multiple different 

molecules in a solution, the sensor might be oversaturated by one type of the molecules 

because they sediment faster or are absorbed better than other molecules in the solution. In 

such a case, only those molecules would be detected with a Raman microscope. On the other 

hand, this property can be used as a foundation for Raman microscopy-based molecular 

separation system, similar to separation columns in chromatography. The magnetic field can 

be applied to selectively remove particles when the Raman spectrum would confirm 

absorption of molecules. This can be performed as a continuation of presented research.  
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The high absorption capability of the calcium carbonate particles was used in developing a 

specialized drug delivery system that allows controllable drug release in vivo. Calcium 

carbonate particles were used as cores for the synthesis of alginate drug carriers with SERS 

functionality. We aimed to use SERS not for biosensing but for localizing particles for 

implementation of a light-induced drug release mechanism. This mechanism is based on the 

fact that SERS signal enhancement is linked with local temperature increase. Localized 

temperature increase results in alginate capsule destruction and drug release. Subsequently, 

the described above SERS drug carrier was successfully tested in vivo in C. elegans worms. We 

have demonstrated detection and induction of drug release from an alginate capsule using a 

Raman microscope. The capsules cannot be used as biosensors inside C. elegans worms, 

because alginate molecules located around silver nanoparticles generate a strong SERS 

background. This makes the detection of most organic molecules challenging. However, a 

strong background can be an advantage. We have demonstrated that it can be used for fast 

particle detection inside a nematode worm. Detection is based on the principle that the 

Raman signal originates only from the SERS functionalized alginate capsule, while the rest of 

the measured nematode tissue acts as a “dark” field (does not produce any signal). In such a 

situation, the detection of a particular peak is not necessary to localize the particle.  

The main challenge of applying the presented drug delivery system in humans is that laser 

radiation must reach particles through the tissue, and then the scattered light must reach a 

detector. In nematodes, we were able to obtain Raman scattering using 1 mW of laser power 

with 0.1 second integration time. With longer integration times, the Raman scattering signal 

may be detected using even lower laser powers. However, the experiment was only done in 

C. elegans worms – small and transparent nematodes. Therefore, an interesting continuation 

of the research would be to determine whether the presented drug delivery system can be 

used in vivo in larger eukaryotic organisms. It was found that at 10 W, around 2 % or 20 mW 

of near-infrared light can penetrate 3 cm of tissue 225. We have shown that 10 mW is sufficient 

to induce drug release. This suggests a possibility to use alginate capsules for targeted 

subcutaneous drug delivery.  

In addition to developing and extending the range of biological applications, one further goal 

of this dissertation was to find the means to improve the resolution of a Raman microscope. 

To achieve this goal, we have developed a 4Pi Raman microscope. We have shown that under 
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certain conditions, 4Pi Raman microscopy can confirm structure of a coating with thicknesses 

in the range of around 6 nm 199. The construction of a 4Pi Raman microscopy setup is described 

in Chapter 6. There, polystyrene nanoparticles were used for characterization of the built 4Pi 

Raman microscope.  

Subsequently, the developed 4Pi Raman microscope was applied to study Buffalo Green 

Monkey (BGM) cells infected with C. psittaci. The results showed that the presented Raman 

4Pi system could compensate the phase fluctuations originated from such complex 

heterogeneous biological samples as BGM cells with intracellular bacteria. It is not possible 

yet to demonstrate an increase in the axial resolution of 4Pi Raman microscopy images of BGM 

cells. But this can be partially addressed by scanning with higher numerical aperture objectives 

and applying dedicated deconvolution algorithms, which facilitate removal of the secondary 

lobes from the PSF. But such algorithms should take into account the complex nature of 

Raman molecular images. The main difference with fluorescent microscopy is that in Raman 

molecular images there is no “dark field,” and every pixel in the image acts as a light source. 

The presence of a particularly intense peak at some points along the excitation laser pathway 

may add additional image distortions.   

The second essential challenge with Raman 4Pi microscopy was a long measurement time. It 

took multiple hours to obtain a single axial image from an area of 20 x 25 pixels. Such a long 

scanning time was the result of low laser powers of the beams (due to coupling losses), and, 

therefore, 10 seconds (or more) of the integration time per single measurement was needed 

to resolve all peaks. A more powerful laser and improved hardware may solve or at least 

alleviate this problem. The main advantage of 4Pi Raman microscopy is a better resolution 

and an increase in the strength of the measured signal intensity due to better power 

concentration. Therefore, it is not particularly useful to apply 4Pi Raman microscopy to study 

tissues, organs, and other relatively large samples without the need for high resolution 

imaging. However, for samples like cable bacteria, 4Pi Raman microscopy could be particularly 

interesting since it may facilitate avoiding image artifacts described in Chapter 4.  

Additionally, we were interested in applying a multimodal approach to study cells using 4Pi 

Raman in a combination with AFM. The analysis of C. psittaci associated data points revealed 

the presence of densely packed lipids in the inclusion membrane. Those molecular fingerprints 

of lipids were similar to those of intercellular lipid droplets, but with a lower ratio of saturated 
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to unsaturated lipids. High-resolution imaging of C. psittaci infected cells with AFM revealed 

the presence of irregularly shaped protrusions or cavities on the cell membrane.  

Multimodal (Raman and AFM) approach opens possibilities to retrieve relevant information 

about the state of infected cells, their topography, and their chemical composition. It is 

plausible to obtain information about the molecular structure of bacteria inside the cytoplasm 

using Raman microscopy. However, it is challenging to obtain information about the cellular 

surface topography at the same resolution as that in AFM. Specifically, surface irregularities, 

such as pores, have a low contrast and are difficult to detect with light microscopy techniques. 

AFM, on the other hand, proved to be capable of detecting these surface irregularities, and, 

therefore, has an unique application potential in this research. Therefore, a combination of 

those two techniques allows obtaining information not accessible if they were to be used 

separately. A possibility of non-destructive analysis of intercellular bacteria, for example, 

Chlamydia, would allow advancing research and understanding of the interaction of such 

bacteria with cells.   
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7.2. GENERAL CONCLUSIONS   

 

During this dissertation work, Raman microscopy has been combined with various multimodal 

nanoscopic, microscopic and macroscopic medical imaging modalities to investigate diverse 

applications in bioengineering, life science, and biology. The results obtained in that research 

can be concluded as follows.  

Conclusions are presented here according to the goals set for this work in Chapter 1.  

1) Brain tissues: complementarity of Raman microscopy with magnetic resonance 

imaging (MRI) is explored on an example of pathological changes in brain tissues after 

mild traumatic injury (mTBI), Chapter 2.  

The analysis of brain slices with a Raman microscope revealed the decrease in the ratio 

of axon proteins to myeloid lipids in corpus callosum region after mTBI. A combination of 

MRI with Raman microscopy appears to be highly promising. MRI can be used to identify 

the regions inside the tissue. Then, high-resolution molecular images of this region can be 

obtained with a Raman microscope – thus allowing to obtain information and details 

otherwise not accessible to MRI.  

 

2) Molecular transport in cells: application of Raman microscopy as a label-free technique 

with fluorescence microscopy for intracellular detection of bovine lactoferrin inside 

calf rectal epithelial cells in the presence/absence of bacteria, Chapter 3.   

It was found that bovine lactoferrin molecules translocate to nuclei of cells. Such 

translocation is not typical for secreted forms of the transferrin family of molecules. The 

rate of bovine lactoferrin uptake and translocation to the nucleus was increased by the 

presence of EHEC bacteria.  The combined use of conventional fluorescence microscopy 

with Raman microscopy is beneficial only in specific cases. Fluorescent labels enable 

precise localization of molecules inside the cell.  This can be used to identify the Raman 

molecular fingerprint of a molecule inside cells.  
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3) Intra-bacterial molecular substructures: application of Raman microscopy along-side 

X-ray microscopy and mass spectrometry for establishing the molecular composition 

of conductive fibers inside the so-called cable bacteria, Chapter 4.  

Nickel has been identified as the key element responsible for long-range conductance of 

fibers in cable bacteria. This finding suggests the existence of a yet unknown mechanism 

of a long-distance electron transport in these bacteria. A combination of Raman 

microscopy with mass spectrometry and X-ray analytical tools has the following benefits. 

Mass spectrometry and X-ray microscopy techniques allowed obtained information on an 

atomic level. But they cannot be used in vivo and often cannot penetrate deep inside the 

sample. Raman microscopy allowed obtaining axial cross-section molecular images of the 

sample, is non-destructive, and can be used in vivo. Therefore, Raman microscopy can be 

applied to obtain general information about the sample, which can be used as a starting 

point for further investigation with X-ray microscopy and/or mass spectrometry. 

Additionally, information about molecular bonds obtained from Raman spectrum is 

complimentary with information about atomic composition provided by X-ray methods.  

 

4) Tracing microparticles as drug delivery carriers in worms: test a possibility to localize 

microparticles in vivo by surface enhanced Raman scattering (SERS) and induce a drug 

release from those microparticles inside C. elegans worms, Chapter 5.  

Elaborate drug delivery systems based on calcium carbonate particles were developed. 

Raman microscopy and its combination with SERS modality allowed, on the one hand, 

detection of particles inside C. elegans worms, while, on the other hand, it permitted for 

controllable induction of drug release. The proposed approach facilitated particle 

localization inside worms, but it was not based on detection of a particular molecular 

fingerprint. Instead, it is demonstrated here that the presence of the background, due to 

the SERS signal amplification, can be utilized for detection of the particle position inside 

worms.  
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5) Development of a 4Pi Raman confocal microscope and its application, together with 

atomic force microscopy (AFM), to study Chlamydia psittaci infected cells, Chapter 6. 

The 4Pi Raman microscope was successfully developed during this dissertation work. We 

have achieved this by combining the 4Pi technique with a confocal Raman microscope to 

build a 4Pi Raman microscope with an improved axial resolution. The resulting microscope 

was characterized using nanoparticles. A possibility of applying 4Pi Raman microscopy to 

study complex samples is shown, and advantages and potential challenges in such an 

analysis are identified. While a significant distinction of ultra-thin layers of an inorganic 

sample was achieved, significant improvements of the axial resolution of cell images have 

not yet been demonstrated. In fluorescence 4Pi superresolution microscopy, the labels act 

as sources of very strong and distinct fluorescence, while the rest of the sample is dark. In 

Raman scattering, every point of the sample acts as a source of a scattering signal, and 

development of novel deconvolution algorithms is required.  

Application of Raman 4Pi microscopy in biological sciences is carried out on an example of 

cells infected with C. psittaci. This analysis revealed the presence of densely packed lipids 

inside the membrane inclusion, similar to what was observed in intercellular lipid 

droplets, but with a lower ratio of saturated to unsaturated lipids. The high-resolution 

topographic imaging of C. psittaci infected cells surface with AFM showed the presence of 

irregularly shaped cavities on the cell membrane. Complimentary application of Raman 

microscopy with atomic force microscopy (AFM) has excellent potential. AFM can be used 

to obtain the surface topography or mechanical properties of the samples, which can be 

then combined with Raman axial or lateral molecular images to obtain information 

otherwise not accessible for each of these techniques.  

 

Overall, the results of this thesis work reveal that multimodal imaging involving Raman 

microscopy is a very promising approach for a broad range of applications in bioscience 

engineering, biomedical and biological sciences.  
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7.3. PERSPECTIVES AND FUTURE DIRECTIONS   

 

I. Development of multimodal imaging – industrial perspectives  

The multimodal imaging approach is envisioned to play an increasingly important role in 

analysis of biological processes.  Therefore, industrial companies are trying to develop new 

instruments, where multimodal scanning is incorporated in one device, as it was done, for 

example, by adding atomic force microscopy (AFM) modality to a Raman microscope by WITec 

(Ulm, Germany): https://www.witec.de/techniques/afm/ (accessed 10.01.2021). Other 

industrial companies are using a similar approach. Bruker (Billerica, MA, U.S.A.) and NT-MDT 

(Zelenograd, Russia) have been teaming-up with Renishaw (Wotton-under-Edge, U.K.): 

https://www.renishaw.com/en/renishaws-invia-confocal-raman-microscope-connects-to-

brukers-dimension-icon-afm--37345 (accessed 10.01.2021) and Horiba (Edison, NJ, USA): 

https://www.horiba.com/en_en/products/by-segment/scientific/surface-

characterization/afm-raman-publications/ (accessed 10.01.2021), to add AFM capabilities to 

Raman microscopy.  

As it was described in Chapter 1 and from results obtained in this thesis, Raman microscopy is 

foreseen to play a very important role in multimodal image acquisition. Therefore, it is 

essential to discuss emerging trends in Raman microscopy and spectroscopy.  

 

II. The following emerging trends are identified for Raman microscopy and spectroscopy 

(1) Reproducibility and analysis of obtained data. For advancing Raman microscopy 

further, a strong need exists for standardization in sample preparations, measurements, and 

data analyses. This has not been left without attention by the Raman community, where the 

European initiative “Raman4Clinics”: www.raman4clinics.eu (accessed 10.01.2021) aims to 

address the issues of standardization and promotes the application of Raman in clinical 

diagnostic 226.  

Regarding the data analysis: the main challenge here is not the complexity of Raman spectrum 

analysis, but the availability of databases for interpreting the data shown on the spectrum. 

https://www.witec.de/techniques/afm/
https://www.renishaw.com/en/renishaws-invia-confocal-raman-microscope-connects-to-brukers-dimension-icon-afm--37345
https://www.renishaw.com/en/renishaws-invia-confocal-raman-microscope-connects-to-brukers-dimension-icon-afm--37345
https://www.horiba.com/en_en/products/by-segment/scientific/surface-characterization/afm-raman-publications/
https://www.horiba.com/en_en/products/by-segment/scientific/surface-characterization/afm-raman-publications/
http://www.raman4clinics.eu/
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For example, while analyzing the brain tissue, we have used the ratios of axon and myelin 

related peaks, because it was experimentally established that these peaks are related to axon 

proteins and myelin. However, limited information was available, which could help to 

understand the changes in other peak intensities, their ratios, or shapes in corpus callosum 

after mTBI. Therefore, there is a clear need to establish open-source databases, like 

the National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) used in 

bioinformatics, which would link changes in Raman spectra with experimentally observed 

changes in molecular composition of samples. After such databases would be established, the 

specialized data mining tools are expected to be developed for analysis of Raman datasets and 

their interpretation. It was demonstrated that precisely controlled and standardized scanning 

conditions in a combination with high-quality reference database allow not only qualitative 

but also quantitative molecular analysis of cellular components 30.  

(2) Increasing stability and sensitivity of SERS. Raman measurements are highly 

susceptible to small changes in sample composition, its surrounding, and equipment used for 

acquiring spectra. The problem of stability and reproducibility is particularly relevant for SERS 

because of the nature of the surface enhancement effect. In this regard, a comparison of free-

space (nanoparticle and nanostructure-based ones) and waveguide-based SERS structures 227 

has revealed the potential of waveguides to increase stability, reproducibility, and sensitivity 

of Raman measurements. Waveguide-based SERS approaches enhance the stability of signal 

acquisition and that represents a particularly promising area for biological applications, for 

example, in toxicology 228. SERS platforms based on biocompatible and biodegradable 

polymer-based waveguides 229 are seen to be of importance for decreasing potential costs in 

medical diagnostics.  

(3) High-throughput screening and analysis of biological samples.  Raman spectroscopy 

is used to obtain information about the molecular composition of samples. It is label-free, 

non-destructive, and, therefore, it can be used in vivo. Its application for high-throughput 

analysis of biological samples seems extremely promising. However, it is still challenging to 

analyze a large number of cells or bacteria in a short time frame using conventional Raman 

microscopes. This problem can be solved by developing specialized high-throughput Raman 

spectroscopy and microscopy approaches. Such a high-throughput Raman platform was 



160 
 

recently presented and was used for rapid screening of eukaryotic cells 230.  A combination of 

Raman scattering techniques and microfluidics 231 232 is seen as interesting and promising 

advance, and development of high-throughput screening platforms based on Raman 

scattering is expected to be continued. Such platforms are envisioned to play an increasingly 

important role both in research and in clinics. 

 (4) Improving the resolution of Raman microscopy. There is an ongoing effort to increase 

the resolution in Raman microscopy and a number of techniques is proposed to achieve this 

goal. For example, on-chip applications can be used to improve the resolution. The total 

internal reflection (TIRF) superresolution on-chip approach serves as a good example of such 

a development 233. However, TIRF-based approaches are limited to the surface, in this case to 

the surface of the chip, where the evanescent wave of the waveguide excites molecules. Also, 

application of the principles used in fluorescence superresolution microscopy can help to 

achieve superresolution in Raman microscopy 234.   

For improving resolution in 4Pi Raman microscopy and applying this technique further in 

biology, the following steps can be taken: higher numerical aperture objectives on both arms 

and faster scanning capabilities are desirable, while for facilitating alignment of the interacting 

beams – waveguides can be employed. Furthermore, a dedicated 4Pi Raman microscopy 

deconvolution algorithm is expected to improve images and open full potential of a resolution 

improvement in the 4Pi Raman scattering microscopy mode. Here, measurement 

standardization in combination with reference databases, similar to the approach discussed 

earlier 30, would be useful for development of such deconvolution algorithms. 
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Figure S1.1. (A) Molecular structure of Cu–phthalocyanine tetrasulfonic acid tetrasodium salt 

(Cu–Pc). The sulfonate groups and sodium ions are omitted for clarity. (B) UV–vis spectra of Pc, 

Cu–Pc and Fe–Pc molecules. (C) FTIR absorption spectra of Cu–Pc molecules measured as a dry 

KBr pellet. (D) Experimentally measured resonance (line 1); experimentally measured non-

resonance (line 2); and theoretically calculated (line 3) spectra of Cu–Pc. Adapted from: 

Bratashov, D. N. et al. 36  

 

Although the structure of phthalocyanine is known, Figure S1.1, modeling its Raman vibrations 

can be useful. On the one hand, modeling allows to assure that proper peak assignment is 

made. And it allows to investigate the influence of surrounding atoms and environment, in 

which these atoms are located.  
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Figure S1.2. Band assignments in the experimental and calculated near-IR spectra of low 

concentration (5 10−3 M CCl4) ethanol. The calculated NIR spectrum is based on the CPCM-

B2PLYP-D/SNST level of theory. Details of the 5200–4600 cm−1 region, adapted from Bec et al. 

235 

 
As it is shown in Figure S1.2, peak or band assignments can be also facilitated by simulation of 

the peaks in Raman scattering spectra. Tracing the influence of a solvent or other molecules 

is often enabled by simulation of scattering spectra.  
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S2.1 Basics of Raman data processing and analysis 

Raw Raman datasets must be preprocessed before further analysis or image generations1. Pre-

processing is done to remove the outliers, improve the signal-to-noise ratio, reduce the 

dimensionality and complexity of data. This leads also to the improvement of the accuracy 

and robustness of downstream data analysis. It was also found that preprocessing significantly 

enhances the performance of data mining techniquess2 s3. 

 

S2.1.1 Pre-processing of Raman spectra 

Smoothing of the spectral curve 

The pre-processing can be started with the smoothing of the spectral curve. The goal of this 

operation is to remove the low intensity noise from the measured spectra. It is caused by small 

fluctuations in laser power and thermal and shot noise in the detector. Typically, smoothing 

algorithms rely on the fact that data points are changing gradually from point to point in a real 

peak, while the noisy spectral points tend to change their values quickly. Therefore, the signal-

to-noise ratio can be improved by replacing each spectral intensity value with the average 

value calculated from the surrounding data points. There are multiple smoothing algorithms, 

such as the Savitzky-Golay filter, moving average filter, weighted average, wavelet 

transformation. However, our tests show that smoothing can lead to slight changes in 

intensity of some peaks. Also, sometimes small peaks can be lost. Such alternation may result 

in false positive or false negative conclusions when two different spectra are compared. 

Therefore, we decided to exclude the smoothing from our pre-processing pipeline. Instead, it 

was found that the effects of the thermal and shot noise, and laser power fluctuation can be 

removed by increasing the measurement time or by acquiring several spectra and calculating 

the mean spectrum. The spectrum becomes smoother over time because counts from the real 

peaks are accumulating faster than counts from the false peaks caused by noise. It is also 

possible to remove the noise by taking multiple spectra from the same point of the sample 

and calculate the mean spectrum.    

Background removal 

We start the spectrum pre-processing with the background removal. A CCD camera used to 

detect Raman signal continuously generates a low intensity background signal. It can be 
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removed by, first, taking the measurements with excitation laser off so that the resulting 

spectrum will contain only background noise from the CCD camera, and then subtracting this 

spectrum from the spectrum of the sample. The other, more problematic, source of 

background is fluorescence of the sample itself. The strong fluorescence background is nearly 

always present in biological samples. However, excitation with a laser operating at 785 nm 

results in a lower background signal than that with lower excitation wavelengthss4.  

There are several ways to remove the background from the measured spectra. The first 

method, which we have tested, was polynomial background subtraction. Here, a polynomial 

curve is fitted to the spectrum and subtracted. The high order polynomials tend to follow the 

spectrum relatively accurate but often introduce the wave-like artifacts around zero. On the 

other hand, the curve, resulted from low order polynomial fitting, poorly subtracts the 

background from complex spectra with many peaks. Therefore, we aimed to find a more 

optimal method of background removal. Among the tested algorithmss5, we have chosen the 

asymmetric least square (als) method for the background curve fittings6. Here, a background 

curve, also called – the baseline, is estimated via smoothing of the raw Raman spectrum. The 

function describing the baseline curve can be found using the least-squared method. The 

function is iteratively estimated, aiming to minimize the squared difference between the 

original Raman spectrum and the baseline. In the conventional least-square method, negative 

and positive residual errors have similar weights. However, the preference is given to positive 

residual square errors in the asymmetric least-square algorithm. It is done to keep the Raman 

peaks intact. The curve is additionally smoothed by adding the second-order derivative as 

another term to the estimated function. The als algorithm is accurate and fast, and we have 

confirmed that it can be applied for a broad range of biological spectra. 

Additionally, after optimization of the als algorithm parameters for complex spectra, the same 

set of parameters can be used for any spectral data with lesser complexity. This removes the 

need to re-adjust algorithm parameters for every new dataset. An example of background 

removal with als is shown in Figure S2.1. 
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Figure S2.1. Background subtraction. The baseline curve, drawn in red, is estimated with als 

background subtraction algorithm, implemented in the baseline package for R.3.4.  

Cosmic-ray removal  

Cosmic rays are highly energetic particles that originated from the sun or from outside of the 

solar system. When they hit atoms in the Earth atmosphere, the impact produces a cascade 

of charged mesons, which, subsequently, degrade to muons. The interaction of muon with 

CCD camera resulted in a sharp, intense peak on the Raman spectrum, Figure S2.2. 

 

Figure S2.2. Raman spectrum of a bacterium. The peaks marked with red arrows originate 

from cosmic rays.  
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We have developed several methods for cosmic ray removal. In the first method, all single 

spectra are taken in triplets. Measurements must be done in the same spot, with the same 

objective and excitation laser power. Then cosmic ray in one spectrum can be filtered out by 

substitution with the average intensity values at this point from the other two spectra. 

Alternately, it is possible to solve the cosmic ray problem by merely discarding the affected 

spectrum and taking the new measurement. 

However, none of the mentioned above approaches can be applied for area scans. Re-

measuring a single datapoint in an area scan can be challenging because of possible software 

and hardware limitations. Taking multiple area scans in the same spot is extremely time-

consuming. Also, pixels from different scans may not perfectly match, due to small changes in 

sample position caused by stage instability or motions of the sample. The identification of the 

affected spectra can also cause problems, because it may require to visually inspect hundreds 

of spectra from which the common area scan dataset comprises. This can be solved by 

constructing the heatmaps for peaks of interest. The principles of heatmap generation will be 

discussed in detail later in this section. The spectra with cosmic rays can be identified by 

looking for the most color intense pixels on the heatmap image. Then, spectra associated with 

those pixels can be manually inspected to confirm the presence of cosmic rays. Next, the 

affected part of the spectrum is substituted with the averaged intensity values calculated from 

the spectra of 2, 4, 6, or 8 direct neighbors. The exact number of data points used for averaging 

is dependent on a particular situation. For example, if the affected pixel is found at the edge 

of the cell membrane, it is probably not the most efficient way to calculate the substitution 

datapoint using the neighboring pixels associated with the cytoplasm or intracellular space. 

Therefore, only two neighbors may be taken into account. At the same time, if the affected 

pixel is in the middle of a homogeneous region of a sample, then taking the maximum number 

of direct neighbors would produce the most optimal result.  

 

Normalization 

Normalization is an essential step in pre-processing. Even measuring the same homogeneous 

sample at different points or on different days may result in significant variations in peak 

intensity across recorded spectra. This bias in intensity has two sources. The first is the 

hardware conditions, such as instrument alignment and changes in laser power. The second 
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is caused by differences in microscope focus across the scanned points. In the area scans, the 

bias can be additionally introduced by fluctuations in microscope Z-stage (vertical stage) 

position over time, variations in the sample thickness, and by tilts of the sample.  

Normalization is the transformation of data, wherein each point is divided by the largest value 

on the curve. In literature, there are descriptions of various normalization methodss5. 

Depending on the nature of samples and the goal of the measurements, one normalization 

technique may be more suitable than another. Some of the methods developed in this thesis 

work are discussed below. 

 

Peak normalization 

This method is applicable if a particular peak is present in all spectra in the dataset. The 

molecule, which produces such a peak must have the same concentration in all measured 

samples. Additionally, such a peak must not overlap with the peaks from other molecules in 

samples. If both conditions are satisfied, then the normalized spectrum is calculated by 

dividing the intensity of each data point in the spectrum by intensity of this peak.  

Let us represent a single spectrum as a vector Sp = ( I1,I2,I3,…,In); where I is the intensity of a 

single spectral data points and n- the total number of data points. Then, normalized spectrum 

SpN can be defined as follows:  

SpN= (IN1,IN2,IN3,..,INn); IN- normalized intensity of a single data point. n- the total number of 

data points.  

INi= Ii/PN; i=1…n, where PN intensity of the peak used for normalization.  

 

The min-max normalization 

In this method, the minimum and maximum intensities among the data points of the spectrum 

are calculateds5. Then, the normalized spectrum is obtained by subtracting from each spectral 

point the minimum and dividing the result by the difference between the maximum and the 

minimum. 

  

Spmax=max (( I1,I2,I3,…,In)  

Spmin= min (( I1,I2,I3,…,In) 

INi= (Ii-Spmin)/(Spmax-Spmin); i=1…n  
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It is essential to note that in the case of the spectrum with subtracted background, the 

minimum intensity would be zero. Therefore, the min-max normalization de facto becomes 

the peak normalization, where the peak used for normalization is the most intense one in the 

spectrum. If the wavelength of the peak with the maximum intensity is different between the 

normalized spectra – the min-max normalization may introduce a significant bias in the 

dataset.  

 

Vector normalization 

Here, the norm of the spectrum, SpNorm, is calculated by taking the square root of the sum 

of the squared intensities of the spectrum: 

SpNorm = √𝐼1
2 +  𝐼2

2 + 𝐼3
2+. . 𝐼𝑛

2 

 Then, the normalized spectrum is obtained by dividing each spectral data point by the norm:   

INi= Ii / SpNorm; i=1…n. 

 

Peak detection and reduction of data complexity  

While each peak consists of many spectral points, often only the peak’s position and maximum 

intensity values are required for the downstream analysis. In this case, the rest of the points 

may be discarded, leading to a significant reduction of spectrum complexity. This reduction 

not only simplifies the spectral analysis but also increases the accuracy of data mining 

algorithms. The peak identification can be made manually by visual analysis of the plotted 

spectrum. However, a dataset may contain hundreds or thousands of spectra. In this case, a 

manual approach would be time consuming and may have a negative effect on the emotional 

state of the data analyst. Additionally, a possibility of human errors may introduce bias in the 

dataset. Therefore, it may be beneficial to make the peak identification in multi-spectral 

datasets using the data mining approach.  

We have developed the following algorithm for peak detection and data complexity reduction, 

(Supplementary Information for Chapter 2 (Appendix), S2.2). It is implemented in R 3.4. The 

script is designed to be used inside the hyperspec package93 data frame but can be effortlessly 

adjusted to be used with any data structures.  
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Our algorithm is based on the fact that the highest point of the peak is always the local 

maximum of signal intensities in the subset of data points, which forms this peak. Therefore, 

the task of peaks identification can be reduced to the task of finding all local maxima higher 

than a certain threshold defined by the user. This can be implemented with a sliding window 

approach. The window, defined by lower_window_bound and upper_window bound, is moved 

across the dataset, and at each step, the local maximum is calculated. When the position of 

the local maximum inside the window overlaps with the current center of the window – then, 

this position is considered to be the position of the peak. The algorithm returns two vectors. 

First, named wavelength stores the wavelengths of the found peaks, and second- 

table_of_peaks contain the corresponding maximum intensities of the found peaks. The input 

parameter threshold allows the user to set the minimum intensity that the datapoint must 

have to be considered the peak. This allows filtering out the background noise.   

The complexity of the algorithm is approximately O(N²), where N is the size of the dataset. 

That is faster than brute force approaches, such as iterative least square fit based on the 

Gaussian or Lorentzian functions. Additionally, in contrast to peak identification algorithms, 

which are using neural-network-based image recognition for peak identification, the 

presented algorithm does not require any training sets. The results of applying the algorithm 

for peak identification and data complexity reduction are illustrated in Figure S2.3. 

 

 

Figure S2.3. Spectral data complexity reduction. The reduction is made by identifying the point 

with maximum intensity for each peak and removal the rest of the data point.  
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S2.1.2 Raman data analysis 

In this section, a brief description is given on how information can be extracted from Raman 

spectra.  

 

The single spectrum analysis 

Analysis at the single spectrum level will be illustrated on an example of the spectrum taken 

from the spine of a fish, Figure S2.4. 

 

Figure S2.4 Raman spectrum of a fish spine.  

 

This spectrum has the following information content. 

1. The peak at a specific position indicates the presence of a molecular bond, and, therefore, 

the molecule, associated with this position. The peak at 1665 cm-1, assigned to the amide I 

bonds in a protein, indicates the presence of peptides in a sample. The peaks at 1004 cm-1 and 

850 cm-1 show the presence of amino acids phenylalanine and proline, respectively.  
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2. The width at half maximum of the peak can be used as a measure of crystallinity and 

structural orientation relative to the laser polarization. In this example, the width at half 

maximum of the 959 cm-1 peak, associated with the phosphate (PO4) group in bone, can be 

used to evaluate the crystallinity of the bone mineral matrixs7. 

3. Intensity of a Raman peak is directly proportional to the concentration of molecules in a 

sample. However, without taking multiple spectra and estimating the calibration curve, it is 

challenging to quantify the concentration of the molecule of interest in the sample. This 

information can be accessed indirectly by comparing the peak ratios. For example, the 

phosphate to amide I peak ratios in the spectrum shown in Figure S2.4 allows making a 

qualitative estimation of the mineral content of the bone.  

 

The analysis of the multiple spectrum dataset 

There are two types of multiple spectra datasets. The first type consists of single spectra taken 

from different samples and/or under various experimental conditions. Here, the dataset can 

be represented as a two-dimensional (2D) matrix, where each row is the intensity vector from 

a single spectrum. 

The second type is the dataset resulted from the area scan. This data can be also stored in the 

form of a matrix, similar to the first type. However, the spectra positions on the scanned area 

are adding the extra dimensions to the matrix.  

 

Clustering analysis 

Multispectral analysis can be started with sorting spectra inside the subsets according to their 

similarity. This can be achieved with clustering analysis. The separation, or clustering, is done 

using the distance between the spectra. Single Raman spectrum obtained using a Alpha300R+ 

Raman confocal microscope (WITec) typically consists of 1024 recorded intensities of the 

corresponding wavelengths. Therefore, the Raman spectrum can be represented as a single 

point, or vector, in the 1024-dimensional space, where each spectral point is one axis, and 

point intensity is the value along this axis. The spectra, which have a high degree of similarity, 

will be close in the 1024-dimensional space. Clustering algorithms can use the distance 
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between spectra in multi-dimensional space to separate spectra in clusters. After testing 

various basic clustering algorithmss8, such as the hierarchical clustering, fuzzy mean, and k-

means, it was found that the hierarchical clustering is the most suited approach for analysis 

of Raman multi spectra datasets. However, before discussing its advantages and 

disadvantages, it is essential to describe the working principles of hierarchical clusterings8. 

Application of this method to the multispectral dataset results in a set of linked clusters 

represented in the form of a tree, Figure S2.5.  

 

 

Figure S2.5. Example of a tree generated by the hierarchical clustering analysis.  

 

There are two ways to generate such a tree. The divisive clustering starts from the stem – the 

central cluster, which contains all data points. Next, this cluster is split up into smaller data 

subsets, or branches. The separation is performed according to the datapoints similarity. Data 

subsets are divided further into smaller branches. The separation process continues until each 

branch contains only one data point. In the agglomerative clustering, the order is reversed. 

Here, one starts from individual spectra and merges them in small branches. Then, they are 

merged in larger branches and so on, till the arrival to the stem. In both methods, the final 

number of clusters can be obtained by cutting the tree at the chosen level. It should be noted 

that there are various methods in hierarchical clustering analysis to estimate the similarity 
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between the datapoints s9. For, example, it is possible to use the Euclidian distance between 

the points in a multidimensional space (as it was discussed above in this section). Alternatively, 

it is possible to use such a non-Euclidian distance, such as the Bray-Curtis method, as a 

measure of the datapoints (dis)-similarity s10. In the latter case, the counts stored in Raman 

spectra are used to calculate the dissimilarity coefficient, which shows how (dis)-similar two 

spectra are. 

 The advantage of hierarchical clustering is that this is a semi-unsupervised method. The 

datapoint separation is calculated only once, and the number of final clusters can be changed 

by simply cutting the tree at different levels. In other basic clustering methods, it is often 

necessary to define the desired number of clusters before the clustering analysis. This often 

requires the data analyst to make an educated guess on how many subsets can exist in such a 

dataset. The quality of a guess may depend on the amount of known information about the 

dataset. Then, the resulted clusters must be examined, evaluated, and in case of non-

satisfactory result – the clustering analysis is repeated with a different number of clusters. In 

hierarchical clustering, it is also necessary to make such a guess. However, the structure of the 

tree provides an additional level of information about how the spectra are related to each 

other, helping to select the optimal number of clusters.   

Clustering analysis can be used for sample identification and outlier removal. This concept is 

illustrated in Figure S2.6. The spectrum from the sample of interest, marked sample1, was 

grouped together with spectra from Escherichia coli (E. coli) on the lowest level of the 

hierarchy. This indicates the high similarity between the spectra and is a strong indication that 

the unknown sample of interest is an E. coli bacterium. It may be beneficial to include a few 

outliers in the dataset to increase the degree of certainty. In this example, outliers are spectra 

from a HeLa cell and silica. It should be noticed that the spectrum from a HeLa cell is also 

clustered together with spectra from an E. coli bacterium but at a higher hierarchical level. It 

is however expected, because bacteria and cells share a certain degree of similarity in their 

biochemical composition. At the same time, the spectrum from silica was set entirely apart 

from organic spectra on the hierarchical tree. Interestingly, according to the hierarchical tree 

in Figure S2.6, the spectrum from E. coli bacterium is more similar to an eukaryotic cell than 

to a Bacillus bacteria. This example illustrates the fact that the hierarchical tree based on 

Raman spectra does not always correlate with the phylogenic tree.  



192 
 

 

Figure S2.6. Sample identification using hierarchical clustering.  

 

Generation of molecular images 

An image can be represented as a two-dimensional matrix, where the column and row indexes 

of the matrix cell correspond to the coordinate point of a pixel on the image.  The value stored 

inside the matrix cell corresponds to the color of this pixel. The area scan dataset can be 

depicted in a similar manner. The matrix column and row indexes would also correspond to 

the position on the scanned area. However, here matrix cell would contain the spectrum taken 

at this point. These spectra are vectors in a multidimensional space. Therefore, the task of 

generating images from the Raman area scan is reduced to the task of transforming the 

multidimensional spectral vectors to the form that can be visualized on a two-dimensional 

image. There are two main approaches to the Raman molecular imaging problem: univariate 

and multivariate. In an univariate approach, the image is generated as a heatmap based on 

intensity of a single peak. The higher the intensity of the peak in a specific position on the area 

scan is – the brighter the corresponding pixel on the molecular image is. The peak selected for 

heatmap generation may be associated with a molecule of interest. In such a case, the resulted 

image allows estimating the concentration of this molecule in various points of the scanned 

area. The disadvantage of such an approach is that most of spectral data points are discarded.    
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In multivariate approaches, the image is generated based on multiple peaks. As it is mentioned 

above, it is challenging to represent multidimensional information on a two-dimensional 

image. Therefore, the complexity of the Raman dataset must be reduced. This can be done by 

dividing the analyzed Raman spectrum into groups based on their similarity. Then, each 

spectrum in the area scan matrix is substituted by the identifier of the group, to which this 

spectrum belongs. By assigning to each similarity group an unique pseudo color, the molecular 

image can be generated. It allows visualization of the distribution of various molecules of 

interest in the scanned area. At the same time, it does not always allow estimating the 

concentration, like in the univariate approach.  

An example of implementation of basic pre-processing and imaging pipeline in R can be found 

in Supplementary Information for Chapter 2 (Appendix), S2.2.  

S2.2. Raman data preprocessing in R 

Single spectrum dataset 

The script presented in this section is designed for pre-processing the single Raman spectra in 

.spc format, generated by WITec Control4 software. 

The pre-processing includes background subtraction, normalization, intensity values 

adjustments, data labeling. The results are then converted into the table text file, which can 

then be imported into Excel or Matlab. 

 

#loading required libraries 

library("hyperSpec") # hyperSpec package 

library("baseline") # Contains all kinds of functions for baseline removal 

library(MALDIquant) #library used for vector normalization 

 

#set working directory where raw spectra are stored 

setwd('d://test') 

 

files=list.files(pattern=".spc") 
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# initialize the variables 

 

#variable is used to control whether the meta-data is already stored in a save file. 0-is not 

stored. 1- is stored 

header_of_saved_file=0  

 

#flags used while combining the single spectral datasets into one dataset. see bellow 

i2=0 

total=0 

 

#Start loop. It will process spectra in spc format one by one, save the results into a file #and 

combine single spectra into one dataset named ”total”, which can be then used  

#for further analysis 

#f is the name of spc file currently processed 

for (f in files) 

 { 

#read the spectrum from the file and store it in hyperspec format inside the variable c1 

c1=read.spc(f) 

#select the region of interest. In example bellow it is the region from 200 till 3200 cm-1 

c2=c1[,,200~3200] 

#substract the background 

wavelengths=c2@wavelength 

b<-baseline(c2$spc,method="als",lambda = 4, p = 0.001, maxit = 50) 

c2$spc=getCorrected(b) 

 

#check that all intensity values after background subtraction are positive 

for(i in 1:length(c2$spc)) 

{ 

if(c2$spc[i]<0){c2$spc[i]=0} 
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} 

 

#Normalisation using vector normalization method from MALDIquant package 

hs=c2 

mq <- list() 

for (i in 1:length(hs)){ 

mass.spectrum <- createMassSpectrum(mass=wavelengths, intensity=hs@data$spc[i,]) 

#metaData(mass.spectrum) <- list(name=cell.name[i]) 

mq <- c(mq,mass.spectrum) 

} 

mq.norm <- calibrateIntensity(mq, method="TIC",range=c(200, 3200)) 

matrix.spectra <- matrix(nrow= length(mq.norm), ncol = length(wavelengths)) 

for (i in 1:length(mq.norm)){ 

matrix.spectra[i,] <- intensity(mq.norm[[i]]) 

} 

#c2 is hyperspec dataframe which will now contain normalized spectrum with subtracted 

#background 

c2 <- new ("hyperSpec", spc = matrix.spectra, wavelength = wavelengths) 

 

#alternative normalization methods. They may be used instead of the one presented above  

########################################################################### 

 #vector normalization 

  

 #a.k1 <- c2$spc - rowMeans(c2$spc) # Centering of intensities  

 #a.k2 <- a.k1/sqrt(rowSums(a.k1^2)) # Centered intensities divided by the length of the 

#spectrum (as vector) 

 #rowSums(a.k2^2) # This should be 1 

 #c2.norm=c2 

 #c2.norm$spc=a.k2 
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 #c2=c2.norm 

  

 ## min-max normalization- extremely simple-just one line of code 

 # can be used only if all spectra have the same max peak 

 #make sure that all minimum points are equal or greater than 0 

 

#c2.norm=c2  

#c2.norm$spc=(c2$spc-min(c2$spc))/(max(c2$spc)-min(c2$spc)) 

#c2=c2.norm  

  

########################################################################## 

 

#label the spectrum. Here the label is automatically generated based on the name of the 

#processed spc file  

 

f=gsub(" ","_",f) 

f=gsub(".spc","",f) 

c2$label=f 

 

#Multiply normalized intensities by 1000 because intensity values after normalization are 

#very low. This step is not mandatory and does not affect the data in any way. The reason to 

#do this is to make it easier to read final spectra                                                                      

c2$spc=c2$spc*1000 

 

#Combine all the normalized spectra into a single hyperspec dataframe 

#if variable i2 is 0 then we initialize the dataframe named “total,” where we want to store all 

#our spectra, by storing the current spectrum inside it 

#if i2 equals to 1; then we simply add the next spectrum to it 

if (i2==1) 
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{ 

 total=rbind(total,c2) 

} 

if (i2==0) 

 { 

 total=c2 

 i2=1 

 } 

 

#Save as text file, one string at a time. The string contains the Raman intensities of the 

resulting #pre-processed spectrum 

#First, we write the header. The flag variable header_of_saved_file is used to make sure that  

#header will be written only once 

if (header_of_saved_file!=1) { 

# Header format: Row title "Wavelength", followed by all the wavelengths in this example 

#by wavelength from 200 till 3200 cm-1.  

 a=c("wavelength",wl(c2)) 

 write(a,"test2.txt", append=TRUE,ncol=length(c2$spc)+1) 

 header_of_saved_file =1 

} 

#write the raman intencities of pre-processed file 

a=c(f,c2$spc) ## Row title 'name of the current file', followed by all the intensities. 

write(a,"test2.txt", append=TRUE,ncol=length(c2$spc)+1) 

} 

 

Pre-processing area scan dataset 

The script is written to process data stored in spc format and produced by WITec Control-4 

software package. The pre-processing of the area scan is similar to single spectrum pre-

processing. The only difference is that in order to generate a molecular image of the scanned 

area the spatial coordinates must be assigned to each data point. A potential challenge with 
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the used software package (WITec Control-4) is that it stores the area scan as a single vector 

of multiple single spectra. No metadata such as spatial coordinates is stored. This can be 

solved by calculating the coordinate axis using data provided by an user such as the number 

of scanned points per line, the number of lines, and the resolution. Then, a label containing 

the spatial coordinates is assigned to each point of the spectral vector.  

The script will store the pre-processed file in a table text file, which is compatible with Excel 

and Matlab.   

 

#area scan pre-processing 

library("hyperSpec") # hyperSpec package 

library("baseline") # Contains all kinds of functions for baseline removal  

library(MALDIquant) #contains function for vector normalization 

 

#make the list of all files in spc format in the working directory 

files=list.files(pattern=".spc") 

print(files) 

#choose file you want to process – here we choose the 4th spc file in the list 

f=files[4] 

print(f) 

#read file and store it in hyperspec dataframe 

hs=read.spc(f) 

#select the spectral range of interest. Here it is from 600 to 1800 cm-1 

hs=hs[,,600~3200] 

wavelengths <- hs@wavelength 

 

#it is necessary to manually set the size of the scanned area so that the coordinates vectors 

#can be calculated. 

#ppl scanned points per line or the size of X-axis,  

#lines- how many lines were scanned or Y-axis of the image,  
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#pxl.um- is the resolution- how many points are scanned per um. The correct settings of this 

parameter are necessary to correctly display the dimensions on all generated molecular 

images 

ppl <- 40 

lines <- 30 

pxl.µm <- 1 

 

#generate the XY coordinate matrix 

XY <- data.frame(cbind(rep((1:ppl)*1/pxl.µm,lines),rep((1:lines)*1/pxl.µm,each=ppl))) 

colnames(XY) <- c("X","Y") 

#and assign the coordinates to the scanned points 

hs$x <- XY$X 

hs$y <- sort(XY$Y, decreasing=TRUE) 

 

labels(hs,"x") <- as.character("x / µm") 

labels(hs,"y") <- as.character("y / µm") 

plot(hs, "spcprctl5") 

#generate the raw molecular image using the averaged intencities of datapoints in the 

#selected spectral range 

plotmap(hs,spc~x*y,func.args = list(na.rm = TRUE),col.regions = topo.colors(100))    

 

#background removal 

for (ab in 1:length(hs)) 

{ 

 b<-baseline(hs[ab]$spc,method="als",lambda = 3, p = 0.001, maxit = 50) 

 hs[ab]$spc=getCorrected(b) 

 for(i in 1:length(hs[ab]$spc)) 

 { 

  if(hs[ab]$spc[i]<0){hs[ab]$spc[i]=0} 
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 } 

} 

#generate the molecular image after background removal 

plotmap(hs,spc~x*y,func.args = list(na.rm = TRUE),col.regions = topo.colors(100)) 

 

#normalization 

wavelengths <- hs@wavelength 

mq <- list() 

for (i in 1:length(hs)){ 

 mass.spectrum <- createMassSpectrum(mass=wavelengths, intensity=hs@data$spc[i,]) 

 #metaData(mass.spectrum) <- list(name=cell.name[i]) 

 mq <- c(mq,mass.spectrum) 

} 

mq.norm <- calibrateIntensity(mq, method="TIC",range=c(2800, 3200)) 

 

matrix.spectra <- matrix(, nrow= length(mq.norm), ncol = length(wavelengths)) 

for (i in 1:length(mq.norm)){ 

 matrix.spectra[i,] <- intensity(mq.norm[[i]]) 

} 

hs <- new ("hyperSpec", spc = matrix.spectra, wavelength = wavelengths) 

hs$x <- XY$X 

hs$y <- sort(XY$Y, decreasing=TRUE) 

labels(hs,"x") <- as.character("x / µm") 

labels(hs,"y") <- as.character("y / µm") 

hs$spc=hs$spc*1000 

#after the normalization and background removal 

#hs dataframe now contains the final normalized spectra 

##saving the data 
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c2=hs 

#check if the dataset is an area scan 

if (length(c2[])>2){ 

 

#generate header 

 a=c("x","y",wl(c2)) 

f_name=”put name of the file where the data must be saved” 

 write(a,f_name,append=TRUE,ncol=length(c2$spc)+2) 

#write_data 

x1=1 

y1=1 

i=1 

x=ppl 

y=lines 

for (x1 in 1:x) 

 { 

 for (y1 in 1:y) 

 { 

  a=c(x1,y1,c2[i]$spc) 

  write(a,f_name,append=TRUE,ncol=length(c2[i]$spc)+2) 

  i=i+1  

 } 

 } 

}  

 

#heatmap generation 

#the peak variable define the peak of interest used for heatmap generation 
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peak=1004 

plotmap(hs[,,peak],spc~x*y,func.args = list(na.rm = TRUE),col.regions = topo.colors(100)) 

 

#clustering analysis and molecular image generation 

#clustering 

# Hierarchical Cluster Analysis (HCA) 

par(mfrow = c(1,1)) #set to plot in 1 windows 

dist <- dist(c2$spc) 

dendrogram <- hclust(dist,method="ward") 

plot(dendrogram) 

 

#select the height where to cut the dendogramm. Here we cut it into 6 clusters 

c2$clusters=as.factor(cutree(dendrogram,6)) 

 

#bellow is demonstrated how to examine the clusters and compare their mean spectra  

x1=subset(c2,clusters==1) 

rownames(x1) #examine which spectra were allocated to cluster 1 

x2=subset(c2,clusters==2) 

rownames(x2) 

x3=subset(c2,clusters==3) 

rownames(x3) 

#plotting the mean spectra of the clusters 1, 2, 3 

plot(mean(x1)) 

plot(mean(x2),add=TRUE,col="red") 

plot(mean(x3),add=TRUE,col="blue") 

 

#plot the molecular image based on clustering analysis 

plotmap(c2, clusters~x*y,col.regions= topo.colors(100)) 
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Complexity reduction 

The algorithm below will identify all peaks and reduce the complexity of spectral data by 

keeping only the data points, where the maximum corresponding peak intensities are stored. 

All other data points will be set to zero. The algorithm uses a sliding window approach. The 

window is moved (once) through the vector, which contains the measured intensities and will 

find the local maximum inside the window. If the found maximum is directly in the middle of 

the window, then this point is the top point of the peak. 

 

#function extracts peaks by finding local MAXIMUM in the centre of the window. 

#function arguments- spectr- spectrum in hyperspec format. step – defines the sensitivity  

#of the algorithm. The smaller the value-the smaller peaks will be resolved. Must be integer 

#number and be >1 

make_peak_table<-function(spectr,step) { 

#initialization of variables. peaktable- vector where the found peaks will be stored. 

#wavelength – vector where the wavelengths of the found peaks will be stored  

 peaktable=0 

 wavelength=0 

 #c3 - temporary variable to store the analyzed spectrum.  

 c3=spectr 

 a1=0 

 for (i in (step+1):(length(c3$spc)-step)) 

 {c=i-step 

 b=i+step 

 d=max(c3$spc[c:b]) 

#if local maximum is in the middle of the window- store its intensity inside the peaktable 

#vector and wavelength inside the wavelength[] vector  

if (d==c3$spc[i]) {peaktable[a1]=d 

 wavelength[a1]=wl(c3)[i] 

 a1=a1+1} 

 } 

#return the results in the form of hyperspec format dataframe 
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#set intensities of all data points in analyzed spectrum to 0 and fill the dataframe with found 

#maximum intensities of the identified peaks  

c3$spc[]=0  

a1=1 

 d=length(wavelength) 

 for (i in 1:length(wl(c3))) 

 {  

  if(wavelength[a1]==wl(c3)[i]){ 

   c3$spc[i]=peaktable[a1] 

   if(a1<d) {a1=a1+1} 

   } 

 } 

#return the resulting dataframe to the user  

 return(c3) 

}  

 

#example of usage 

#total dataframe contains multiple pre-processed single spectra. Let’s reduce the 

#complexity of the first spectrum in this dataset 

#call function make_peak_table 

a1=make_peak_table(total[1],3) 

#plot the original spectrum 

plot(total[1]) 

#plot the transformed spectrum 

plot(a1) 
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S2.3 Raman molecular images 

 

 

 

Figure S2.6. (A) Light microscope images of rat kidney tissue. The red rectangle marked the 

area scanned with Raman. (B) Red and blue arrows marked the image artifacts caused by 

detached tissue debris. (C) Comparison of normalized and non-normalized Raman clustering 

image.  
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Figure S4.1. Raman heatmap images of a cross-section of a cable bacterium.  
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Figure S5.1. (A) Optical microscope image of head region of C. elegans worm. (B) Raman 

heatmap constructed based on intensity of 1665 cm-1 peak. It shows the alpha-helix proteins 

and unsaturated fatty acids distribution. (C) Molecular image is generated by clustering 

analysis where pixels with a similar molecular fingerprint are depicted with the same false 

color. 
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Figure S5.2. (A) Optical microscope image of oocytes in the middle section of C. elegans worm. 

(B) Raman heatmap constructed based on intensity of 1665 cm-1 peak. It shows the alpha-helix 

proteins and unsaturated fatty acids distribution. (C) Molecular image is generated by 

clustering analysis where pixels with a similar molecular fingerprint are depicted with the same 

false color. 
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Figure S5.3 The mean Raman spectra of clusters from Figure 5.7 (C). The color and the number 
of each spectrum corresponds to the color and the number of the cluster in Figure 5.7 (C). 
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Figure S6.1. (A) Raman spectrum of scaffold composed of three nanolayers and deposited on 

a CaF2 slide. (B) Schematics of the scaffold composition. (C) PMMA and ARP spectrum under 

different phase configuration, (D).  

 

The multilayer scaffold was analyzed with Raman 4Pi microscope. Sample was composed of 

three nanolayers: polymethyl methacrylate (PMMA), amorphous titanium oxide (TiO2) and     

e-beam resist (ARP). Each layer has a distinct peak on Raman molecular fingerprint of the 

scaffold, Figure S6.1, A. Nanolayers were deposited on an ultra-thin CaF2 slide, Figure S6.1, B. 

Next, 4Pi Raman spectra were recorded, each with different phase interactions and, as result, 

different Raman peak intensities, Figure S6.1, C. In the next step, the profile of the phase 

interference, which follows the cosine curve, is interpolated for each layer, Figure S6.1, D. The 

maximum of Raman intensity (the maximum point of the cosine curve) is chosen when the 

fringe maximum is in the middle of the layers. Therefore, using ϴ - the phase shift between 

the cosine from different layers and the distance between those layers can be estimated. 
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Figure S6.2. Chlamydia alternates between two morphological forms: Elementary body (EB) 

and reticulate body (RB). (a) At the start of infection, extracellular infectious EBs use bacterial 

ligands to bind receptors on the surface of the host cell. The attachment subsequently enables 

internalization of bacteria into a vesicle inside the host cell, called the inclusion. Internalization 

can be both dependent or independent of actin, but since the actin-dependent process has 

been studies more extensively, it is the one depicted in the figure. Herein, EBs inject pre-packed 
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T3SS effectors into the host cytoplasm as soon as contact with the host is established, leading 

to reorganization of actin and uptake of the EBs. Next, the EBs, residing inside the inclusion, 

are transformed into RBs. RBs are metabolically active particles, which are capable to amplify 

through binary fission. (b) These RBs immediately produce early effectors, which modify the 

inclusion membrane in order to prevent lysosomal degradation. (c) Furthermore, the inclusion 

starts traveling across microtubules away from the periphery and towards the microtubule 

organizing center (MTOC). (d) Once the inclusion reaches the nutrient-rich peri-Golgi region, 

the pathogen hijacks host cell metabolites to support its own growth as well as the growth of 

the inclusion membrane, necessary to allow room for the expanding RBs. Nutrients are 

obtained through specific interactions of the inclusion with multiple host cell organelles such 

as fragmented Golgi mini-stacks, the ER, lipid droplets, peroxisomes, lysosomes, recycling 

endosomes, mitochondria, and multivesicular bodies (MVBs). (e) Finally, the expanded 

inclusion fills up most of the host cell cytoplasm, after which the RBs are transformed back to 

EBs. These then exit the host cell to infect new cells. Figure was adapted from Gitsels et al. 206  
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Figure S6.3. Imaging of BGM cell plasma membrane with AFM 8 hours after infection. (A) 

Topographic image of the surface of infected cells, 8 hours after infection. (B) 3D 

reconstruction of the surface of infected cells based on (A). (C) Topographic image of the 

surface of control cells. (D) 3D reconstruction of the surface of control cells based on (C). The 

number of hours is highlighted in this figure caption for distinguishing it from figure caption in 

Figure S6.3.  
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Figure S6.4. Imaging of BGM cell plasma membrane with AFM 36 hours after infection. (A) 

Topographic image of the surface of infected cells, 36 hours after infection. (B) 3D 

reconstruction of the surface of infected cells based on (A). (C) Topographic image of the 

surface of the control cells. (D) 3D reconstruction of the surface of control cells based on (C). 

The number of hours is highlighted in this figure caption for distinguishing it from figure 

caption in Figure S6.2. 
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Multimodal imaging plays an ever-increasing role in modern microscopy and medicine, while 

Raman microscopy has an important role due to possibilities of label-free detection of 

molecules, organisms, and tissues. Raman microscopy is a label-free, optical method based on 

the inelastic laser light scattering from molecular vibrations inherent to any material. It can be 

used for a non-destructive analysis and imaging of biological materials with the spatial 

resolution in the micrometer range. Raman microscopy was successfully used in various areas 

of life science, such as cancer research, medical diagnostic, tissue engineering, and 

biomolecule sensing (Chapter 1).  

In Chapter 2, we have investigated how a combination of MRI with Raman molecular imaging 

can be applied to tissue analysis. Such a combination was used to study the effect of mild 

traumatic brain injury (mTBI) on macro-(MRI) and micro-(Raman microscopy) scales. MRI can 

be applied to identify the damaged area inside brain tissue, which can be subsequently 

analyzed on a molecular level with a Raman microscope. No brain damage in the case of mTBI 

was detected on the macro-scale with MRI. The analysis of brain tissue on the molecular level 

with Raman showed a decrease in the ratio of axon proteins to myeloid lipids in the corpus 

callosum region after mTBI. The Raman molecular imaging-based on the hierarchical 

clustering analysis allowed detection of structural and molecular abnormality inside the 

corpus callosum region, which presumed to be the result of a micro bleeding caused by mTBI. 

The addition of Raman microscopy to the brain analysis pipeline provides the means to track 

changes in the brain, undetectable by a conventional MRI. However, such analysis is not 

possible to do in vivo, and the scanning of even a single tissue slice is still extremely time-

consuming. In Chapter 2, the analysis was done at the tissue level and each spectrum in 

analyzed datasets was recorded from the area of 10 µm in diameter.  

In Chapter 3, the samples were investigated on a lower microscopic scale. Here, each Raman 

spectrum was obtained from an area of around 1.0 µm in diameter. Such resolution provided 

the means to localize and study the molecules of interest inside cells and bacteria. In Chapter 

3, a combination of Raman and fluorescent microscopies is carried out. Such a combinatory 

approach was used to study the movement of bovine lactoferrin inside the calf rectal epithelial 

cell in the presence of EHEC. The molecular composition of bovine lactoferrin was known, but 

information about its Raman molecular fingerprint inside the cell was not available. Raman 
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microscopy appears to be a complementary tool to fluorescent microscopy allowing 

identification of the Raman molecular fingerprint of bovine lactoferrin inside cells. It is 

established that bovine lactoferrin molecules translocate into the nucleus of calf rectal 

epithelium cells. Additionally, it was found that the presence of EHEC increased the rate of 

bovine lactoferrin uptake and its subsequent translocation.  

In Chapter 4, the molecular structure of conductive fibers inside cable bacteria is investigated. 

Here, the localization of fibers inside the bacteria was already known, but their molecular 

composition was unknown. The analysis of Raman scattering spectra of fibers pointed out that 

the electrical conductivity occurs due to the presence of nickel. This was confirmed by 

subsequent analysis with STEM-EDX and Nano-SIMS. This work demonstrated the need for 

complementary tools to confirm the information obtained from the analysis of the Raman 

spectrum.  

Research conducted in Chapter 3 and Chapter 4 showed that analysis and localization of 

molecules inside cells and bacteria are challenging if the concentration of the molecule of 

interest is low and it does not have a distinct molecular fingerprint. Such a problem can be 

solved with SERS. In Chapter 5, we have developed and characterized the calcium-carbonate 

based particles with dual functionality: drug carriers, controlled by a magnetic field, and SERS 

biosensors. Such SERS biosensors showed to be able to detect the low concentration of the 

analyte in a solution using 100 times less laser power than what is required to detect the same 

concentration with conventional Raman. However, the high absorbing ability of the particles 

made the quantification of analyte concentration with SERS challenging. However, the high 

absorbing ability of calcium carbonate particles was used to create the alginate drug carriers 

with SERS functionality. Such functionality provides the means of controllable light-induced 

drug release. The resulting drug carrier was tested in vivo in C. elegans. The SERS was used for 

the induction of drug release and precise localization of the shells inside the C. elegans. 

Because of the SERS functionality, the shells ultra-fast detection in vivo was possible with 

Raman using only 1 mW of laser power. The presented detection method was based on 

measuring the SERS background and not on the signal intensity of a particular Raman peak. 

Subsequently, Raman 4Pi microscope was developed. Such a system has a better axial 

resolution and enhanced Raman signal compared to standard Raman. It was shown that under 

certain conditions 4Pi Raman microscope can have the resolution of 6 nm. Chapter 6 describes 



223 
 

the Raman 4Pi setup and shows how the system can be characterized using polystyrene 

nanoparticles. Next, a 4Pi Raman microscope in a combination with atomic force microscopy 

(AFM) was applied to study the Buffalo Green Monkey (BGM) cells infected with C. psittaci. 

The complementary use of 4Pi Raman and AFM proved to be a practical approach for analysis 

of C. psittaci infection. The combination of those two techniques grants us information not 

accessible if they were to be used separately. The application of Raman 4Pi allowed us to 

identify the presence of dense-packed lipids in the C. psittaci inclusion membrane. These lipids 

had molecular fingerprint similar to intercellular lipid droplets, but with a lower ratio of 

saturated to unsaturated lipids. The high-resolution imaging of C. psittaci infected cells with 

AFM revealed the presence of irregularly shaped cavities on the cell membrane surface. 

Additionally, axial imaging of C. psittaci infected cells allowed identifying the sources of 

interference that influence the data points on the 4Pi Raman molecular image. Such 

information will be essential for development of the Raman 4Pi deconvolution algorithm, 

necessary to open the full potential of resolution improvement in the 4Pi mode.  
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Multimodale beeldvorming speelt een steeds grotere rol in de moderne microscopie en 

geneeskunde, terwijl Raman-microscopie een belangrijke rol speelt vanwege de 

mogelijkheden van labelvrije detectie van moleculen, organismen en weefsels. 

Ramanmicroscopie is een labelvrije, optische methode die gebaseerd is op de inelastische 

laserlichtverstrooiing door moleculaire trillingen die inherent zijn aan elk materiaal. Het kan 

worden gebruikt voor een niet-destructieve analyse en beeldvorming van biologisch materiaal 

met ruimtelijke resoluties in het micrometerbereik. Ramanmicroscopie werd succesvol 

gebruikt in kankeronderzoek, medische diagnostiek, weefselengineering en biomolecuul 

detectie, zoals het geschreven in hoofdstuk 1. 

In hoofdstuk 2 onderzoeken we hoe de combinatie van MRI met de Ramans moleculaire 

beeldvorming op de weefselanalyse kan worden toegepast. De combinatie werd gebruikt om 

het effect van licht traumatisch hersenletsel (mTBI) op macro- en microschalen te bestuderen. 

De MRI kan worden toegepast om het beschadigd gebied in de hersenen te lokaliseren en te 

identificeren, om deze vervolgens met behulp van een Ramanmicroscoop op moleculair 

niveau te kunnen analyseren. Er werd geen hersenbeschadiging gedetecteerd op de macro-

schaal met de MRI. De analyse van het hersenweefsel op moleculair niveau met Raman 

toonde na het mTBI een afname in de verhouding tussen de axon-eiwitten en de myeloïde 

lipiden in het corpus callosum gebied. De Ramans moleculaire beeldvorming, op basis van 

hiërarchische clusteranalyse, stelde ons in staat om structurele en moleculaire afwijkingen in 

het corpus callosum te detecteren, die vermoedelijk het gevolg zijn van microbloedingen, 

veroorzaakt door het mTBI. De toevoeging van Raman aan de pijplijn van de hersenstudie 

biedt de mogelijkheid om veranderingen in de hersenen op te sporen, die niet met behulp van 

conventionele MRI kunnen worden gedetecteerd. Een dergelijke analyse kan echter niet in 

vivo worden uitgevoerd en het scannen van zelfs maar één enkel stukje weefsel is uiterst 

tijdrovend. 

In hoofdstuk 2 werd de analyse gedaan op weefselniveau en werd elk spectrum in de 

geanalyseerde datasets opgenomen uit het gebied van 10 µm in diameter. In hoofdstuk 3 

werden de monsters onderzocht op een lagere microscopische schaal. Hier werd elk Raman 

spectrum verkregen uit het gebied van ongeveer 1,0 μm in diameter. Een dergelijke resolutie 

bood de mogelijkheid om de betrokken moleculen in de cellen en bacteriën te lokaliseren en 
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te bestuderen. In hoofdstuk 3 hebben we geprobeerd de Raman en de 

fluorescentiemicroscopie te combineren. Een dergelijke combinatie werd gebruikt om de 

beweging van bovine lactoferrine in de rectale epitheelcel van het kalf in aanwezigheid van 

EHEC te bestuderen. De moleculaire samenstelling van bovine lactoferrine was bekend, maar 

informatie over de Ramans moleculaire vingerafdruk in de cel ontbrak. De 

fluorescentiemicroscopie werd een levensvatbare aanvulling op de Raman, waardoor we de 

Ramans moleculaire vingerafdruk van cellulaire bovine lactoferrine konden identificeren. Er 

werd vastgesteld dat bovine lactoferrine zich kon verplaatsen naar de kern van de rectale 

epitheelcellen van het kalf. Bovendien werd er vastgesteld dat de aanwezigheid van EHEC de 

opname van bovine lactoferrine en de daaropvolgende translocatie verhoogde. 

In hoofdstuk 4 werd de moleculaire structuur van de geleidende vezels in de kabelbacterie 

onderzocht. Hier stond het probleem in contrast met hetgeen dat in het eerste deel van het 

hoofdstuk werd besproken. De lokalisatie van de vezels in de bacterie was al gevonden, maar 

hun moleculaire samenstelling was onbekend. De analyse van de vezelspectra suggereerde de 

aanwezigheid van metaalionen. Dit werd bevestigd door latere analyse met STEM-EDX en 

Nano-SIMS. Dit werk toonde de essentie aan van aanvullende instrumenten om de informatie 

die werd verkregen uit de analyse van het Raman spectrum te bevestigen. 

Het onderzoek in hoofdstuk 3 en hoofdstuk 4 toonde aan dat analyse en lokalisatie van 

moleculen in cellen en bacteriën een uitdaging vormen als de concentratie van het betrokken 

molecuul laag is en het niet over een duidelijke moleculaire vingerafdruk beschikt. Een 

dergelijk probleem kan met behulp van SERS worden verholpen. In hoofdstuk 5 ontwikkelen 

en karakteriseren we de calciumcarbonaat gebaseerde deeltjes met een dubbele 

functionaliteit: medicijndragers, gecontroleerden door een magnetisch veld, en SERS-

biosensoren. 

Dergelijke SERS-biosensoren bleken in staat te zijn om de lage concentratie aan analyt in een 

oplossing te detecteren, dat met behulp van een 100 keer zwakker laservermogen dan deze 

nodig is om dezelfde concentratie te detecteren met conventionele Raman. Echter, het hoge 

absorptievermogen van de deeltjes maakte de kwantificering van de analytconcentratie met 

SERS tot een uitdaging. Vervolgens werden calciumcarbonaatdeeltjes gebruikt om 

alginaatdragers met een SERS-functionaliteit te creëren. Deze functionaliteit biedt de 

mogelijkheid om lichtgeïnduceerde medicijnafgifte te controleren. De bekomen 
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medicijndrager werd in vivo getest in de C. elegans. De SERS werd gebruikt voor het induceren 

van de loslating van het geneesmiddel en de precieze lokalisering van de schelpen in de C. 

elegans. Vanwege de SERS-functionaliteit, was de ultrasnelle detectie van de schelpen in vivo 

met Raman mogelijk met slechts 1 mW aan laservermogen. De gepresenteerde 

detectiemethode was gebaseerd op het meten van de SERS-achtergrond en niet op de 

signaalintensiteit van een bepaalde Raman-piek. 

Vervolgens werd een 4Pi Raman microscoop ontwikkeld. Een dergelijk systeem heeft een 

betere axiale resolutie en een verbeterd Raman signaal in vergelijking met de standaard 

Raman. Het is aangetoond dat onder bepaalde omstandigheden de 4Pi Raman microscoop 

een resolutie van 6 nm kan bereiken. 

Hoofdstuk 6 beschrijft de Raman 4Pi opstelling en laat zien hoe het systeem met behulp van 

polystyreen nanodeeltjes kan worden gekarakteriseerd. Vervolgens werd de 4Pi Raman 

microscoop in combinatie met atoomkrachtmicroscopie (AFM) toegepast op de Buffalo Green 

Monkey (BGM) cellen, geïnfecteerd met C. psittaci, ter bestudering. Het complementair 

gebruik van 4Pi Raman en AFM bleek een praktische aanpak voor de analyse van de C. psittaci 

– infectie te zijn. De combinatie van deze twee technieken leverde ons informatie op die niet 

toegankelijk zou zijn, indien de technieken elk afzonderlijk zouden worden toegepast. De 

toepassing van Raman 4Pi stelde ons in staat om de aanwezigheid van dicht opeengeplakte 

lipiden in de C. psittaci inclusiemembraan te identificeren. Deze lipiden hadden een 

moleculaire vingerafdruk vergelijkbaar met deze van de intercellulaire lipidedruppels, maar 

met een lagere verhouding tussen verzadigde en onverzadigde lipiden. De hoge-resolutie 

beeldvorming van C. psittaci geïnfecteerde cellen met AFM onthulde de aanwezigheid van 

onregelmatige gevormde holtes op het oppervlak van de celmembraan. Bovendien, liet de 

axiale beeldvorming van C. psittaci geïnfecteerde cellen ons toe de bronnen van de 

interferentie te identificeren, die de datapunten op de 4Pi Raman moleculaire beeld 

beïnvloeden. Dergelijke informatie zal essentieel zijn voor de ontwikkeling van het Raman 4Pi 

deconvolutiealgoritme, dat nodig zal zijn om het volledig potentieel van de 

resolutieverbetering in de 4Pi-modus te vrijwaren. 
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