
ClooGVHDL and JCCI

Harald Devos, Wim Meeus, Dirk Stroobandt

Harald.Devos@UGent.be

ELIS-PARIS – Ghent University – Belgium

http://www.elis.ugent.be/

Abstract

CLooGVHDL and JCCI offer an extendible C-to-VHDL
framework to develop high-level synthesis techniques for
data-intensive applications on heterogeneous memory
systems.

1. Introduction
Multimedia applications are an example of applications that
are not only computation-intensive but also data-intensive,
which means a large amount of memory is needed. To
implement data-intensive applications on FPGAs (Field
Programmable Gate Arrays) off-chip memory is needed,
which is slower (bandwidth and latency) than on-chip
memory and is a potential bottleneck. A memory hierarchy
should be constructed to decrease the number of off-chip
transactions by reusing data stored in on-chip buffers.
Therefore, the different accesses to a data element should be
close together in time, i.e. exhibit a good temporal locality.
Loop transformations are a means to improve the data
locality by changing the execution order of computations
and data accesses. This technique is commonly used for
software optimizations, in particular optimization of the
cache behavior. Current high-level synthesis environments
for hardware design lack support to implement
data-intensive applications on heterogeneous memory
systems. They focus rather on parallelism than on locality.
Loop transformations not only influence the data transfers
but also the control complexity of an implementation. The
impact on the hardware performance can typically only be
quantified after refinement to a synthesizable level. This
hinders an exploration of the loop transformation space.
Therefore, it would be beneficial to integrate loop
transformations in high-level synthesis tools.

2. Tool Flow
First, the input C code is translated1 into an abstract syntax
tree (AST) and split into statement definitions and a
polyhedral representation of the iteration domains and
control structure (Fig. 2). In this polyhedral model a
sequence of loop transformations can easily be applied.
Only after the last transformation, the polyhedral
representation is transformed back into code. With the
CLooG (Chunky Loop Generator) code generator [1], C
code can be generated. We have written CLooGVHDL,
which adds a VHDL generation back-end to CLooG. It
generates a loop controller circuit composed of

1
The input file (.c, .macro) parsers were generated with ANTLR

v3[5].

communicating automata that drive the hardware
implementation of the statements (Fig. 1). Different
trade-offs between area and clock speed can be investigated
(Fig. 3) [4].

As a test case many variants of an inverse discrete wavelet
transform have been generated (e.g., Fig. 4). The results
outperform those of the commercial high-level synthesis
tool Impulse C and are competitive to those of the Celoxica
Handel-C compiler [2,4]. In a first version of our tool,
application-specific scripts were needed to translate the
software description of the data path (statements) into
hardware. We now have JCCI, which reads in C code,
creates an intermediate representation of data and control
flow and generates synthesizable VHDL for the data path.
This tool will serve as a framework to develop optimization
and exploration techniques.

Figure 1: Architecture of the generated hardware

CLooGVHDL

.vhd.vhd

JCCI

transformations
loop

code generation

.cloog

scheduling

statements
flow
loop/control

AST

.c .macro

Loop
control

Statements
Data path + Control

Figure 2: ClooGVHDL and JCCI tool flow

Figure 3: Speed/area exploration of a small loop

controller example (LE = logic elements)

3. Extendibility with User-defined Macros
A restriction of many high-level synthesis tools is that they
can deal well with the macros and corresponding hardware
constructs they offer in their built-in library, but the
inclusion of user made blocks has to be specified as
communication with an external block. Such a block then
has to fit a certain interface, possibly by adding a block that
translates one interface into the other, or the communication
should be described at a lower level. The former may create
a hardware overhead while the latter uses the high-level
input language at a level where there is little benefit over
traditional hardware description languages.
With JCCI, the user can easily add its own macros which
are dealt with on equal terms with the built-in macros, e.g.,
in the scheduling phase. The macro description input files
may offer multiple implementations for a single C macro.
By this, it is possible to easily swap between different
implementation options without changing the C source
code. For example replacing a single-cycle memory access
interface by a hand-shake protocol. Thanks to the generic
description of the protocols in the macro input files the
scheduler will be able to pipeline the first kind of memory
accesses.

4. Building a Memory System
To exploit the data locality created by loop transformations
a memory hierarchy is needed. If data stored in on-chip
memories is reused the number of off-chip accesses is
reduced. Buffer memories may also hide the off-chip
memory latency. In processor based systems a cache or
scratch-pad memory performs this task. On FPGAs the
freedom to build memory systems is much larger and the
memory system should be targeted towards the application
(Fig. 4).
In [3] we have shown how an application-specific memory
system can easily be constructed step-by-step with
ClooGVHDL and scripts, which were adapted for the
application to translate the used macro constructs. The
extendibility of JCCI with user-defined macros now offers a
more systematic, generic and reusable approach for such a
design flow.

Statements
Control
+ Data Path

Prefetch
Loop
Control

Main
Mem

Prefetch/Store
Requests

Clock Domain Boundary

Control

Data

B2

B1

B3

line buffers

line buffers F
IF

O
s

Requests

clk1

9x18

4x18

4x1872

128

72

4x18

1x18

72

clk2

I/O

I/O

Figure 4: Line-based Inverse Discrete Wavelet Transform
(IDWT) with memories after system integration [3]

5. Conclusion
This paper presented the CloogVHDL and JCCI tool flow,
which will serve as a framework to develop optimization
and exploration techniques for high-level synthesis with a
focus on memory systems. The extendibility with
user-defined macros makes it easy to adapt a system to
different IO interfaces.

6. References
[1] C. Bastoul, “Code Generation in the Polyhedral Model
Is Easier Than You Think”, Proceedings of the 13th
International Conference on Parallel Architectures and
Compilation Techniques, 2004, pp. 7-16
[2] H. Devos, K. Beyls, M. Christiaens, J. Van
Campenhout, E.H. D'Hollander, D. Stroobandt, “Finding
and Applying Loop Transformations for Generating
Optimized FPGA Implementations”, Transactions on High
Performance Embedded Architectures and Compilers, Vol.
1(1), LNCS 4050, 2007, pp. 159-178.
[3] H. Devos, J. Van Campenhout, I. Verbauwhede, D.
Stroobandt, “Constructing Application-specific Memory
Hierarchies on FPGAs”, Transactions on
High-Performance Embedded Architectures and Compilers,
Vol. 3.
[4] H. Devos, “Loop Transformations for the Optimized
Generation of Reconfigurable Hardware”, PhD thesis,
Ghent University, February 2008.
[5] T. Parr, “ANTLR”, http://www.antlr.org/

Acknowledgement
This research is supported by the I.W.T. Grant 060068.
Ghent University is a member of the HiPEAC Network of
Excellence.

