
ORIGINAL ARTICLE

Leveraging the Bhattacharyya coefficient for uncertainty
quantification in deep neural networks

Pieter Van Molle1 • Tim Verbelen1 • Bert Vankeirsbilck1 • Jonas De Vylder2 • Bart Diricx2 •

Tom Kimpe2 • Pieter Simoens1 • Bart Dhoedt1

Received: 23 June 2020 / Accepted: 5 February 2021
� The Author(s) 2021

Abstract
Modern deep learning models achieve state-of-the-art results for many tasks in computer vision, such as image classifi-

cation and segmentation. However, its adoption into high-risk applications, e.g. automated medical diagnosis systems,

happens at a slow pace. One of the main reasons for this is that regular neural networks do not capture uncertainty. To

assess uncertainty in classification, several techniques have been proposed casting neural network approaches in a Bayesian

setting. Amongst these techniques, Monte Carlo dropout is by far the most popular. This particular technique estimates the

moments of the output distribution through sampling with different dropout masks. The output uncertainty of a neural

network is then approximated as the sample variance. In this paper, we highlight the limitations of such a variance-based

uncertainty metric and propose an novel approach. Our approach is based on the overlap between output distributions of

different classes. We show that our technique leads to a better approximation of the inter-class output confusion. We

illustrate the advantages of our method using benchmark datasets. In addition, we apply our metric to skin lesion

classification—a real-world use case—and show that this yields promising results.
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1 Introduction

In the field of computer vision, deep learning has time and

again set new state-of-the-art benchmarks for a variety of

tasks, such as large-scale image classification [17, 43, 45],

object localization [13, 14, 38], and semantic segmentation

[29, 39]. Quantifying and handling uncertainty in decision

taking is well known in other domains, for example using

fuzzy sets in user behaviour tracking [1] or database

retrieval [49]. In deep learning, however, uncertainty is

often disregarded. It is known that neural networks only

output a point estimate of the true underlying predictive

distribution. On top of this, the softmax output layer that is

typically used to get a probability score, is in general

‘‘over-confident’’ for one class [10]. Therefore, its output

must not be interpreted as model confidence.

In many real-world scenarios, the ability to capture

uncertainty is indispensable. Without this notion of

uncertainty, both the certain and uncertain inputs, as well

as special cases, would be treated equally. This behaviour

is undesired, especially in high-risk applications, such as
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computer-aided medical diagnosis systems. If such a sys-

tem had the capability to reason about uncertainty, it could

refer a patient to a trained professional when it encounters a

difficult case. Otherwise, the system could create a false

sense of security, having potentially lethal consequences.

Bayesian probability theory offers a sound mathematical

framework to design machine learning models with an

inherent and explicit notion of uncertainty. Instead of

resulting in a single per-class probability, such models are

able to estimate the moments of the output distribution for

every class, including mean and variance. Despite recent

advances in fitting deep learning in a Bayesian framework

[4, 15], Bayesian neural networks have not seen a high

adoption rate. This is largely due to difficulties in imple-

mentation and excessive training times, as well as higher

resource and memory requirements at inference time. As a

low-cost alternative, [10] prove that training a neural net-

work with dropout is equivalent to variational inference in

Bayesian neural networks. Obtaining an estimate of the

predictive log-likelihood distribution then boils down to

selecting Monte Carlo samples of the neural network out-

put using different dropout masks.

The most commonly used metric to quantify output

uncertainty is the variance of the output samples, i.e. the

predictive variance. However, we argue that this metric is

cumbersome to use. First, variance-based metrics yield

values that are typically very small in absolute value and

are therefore hard to interpret. Second, such metrics do not

take into account any overlap between the output distri-

butions for different classes: a significant overlap could

indicate a high level of doubt between these classes. In this

paper, we propose a novel uncertainty metric that has a

range bounded between 0 (very little uncertainty) and 1

(high uncertainty), and is therefore easy to interpret. In

addition, our metric encompasses the distributional overlap

between the output classes. We compare our metric to the

predictive variance using benchmark datasets. Addition-

ally, we apply our metric to the real-world use case of skin

lesion classification. Of all cancers, skin cancer is the most

diagnosed in the USA. However, when discovered early,

the survival rate for skin cancer exceeds 98% [2]. Since

early detection happens visually, this is an excellent case

for deep learning. In controlled settings, neural networks

achieve similar classification performance to a team of

trained dermatologists [6, 8, 32, 33]. However, as previ-

ously mentioned, especially in the field of medicine where

decisions entail life or death, additional measurements of

safety are required before deep learning can be applied in

general practices.

Our contributions are the following. First, we highlight

the limitations of variance-based uncertainty metrics

through a motivating three-way classification problem. We

continue by presenting a novel uncertainty metric, that is

based on the overlap between output distributions, rather

than their variance. We compare both metrics using

benchmark datasets, namely MNIST, CIFAR-10 and Ima-

geNet. Finally, we apply the proposed metric to the real-

world use case of skin lesion classification.

The remainder of this paper is structured as follows. In

Sect. 2, we start by giving background information

regarding Bayesian neural networks and uncertainty met-

rics. Next, we highlight issues with existing metrics for

output uncertainty and describe our proposed metric in

Sect. 3. In Sect. 4, we give an overview of the algorithmic

complexity of each step in calculating uncertainty using

our metric. We compare our metric with the predictive

variance in an empirical setting, evaluating output uncer-

tainty for a series of benchmark datasets in Sect. 5. We

continue this section by introducing suboptimal training

conditions and evaluate their effect on the output uncer-

tainty. We apply our metric to the problem of skin lesion

classification in Sect. 6. In Sect. 7, we discuss related

work. Section 8 recapitulates the main findings of our

research.

2 Background

2.1 Bayesian neural networks and variational
inference

Consider a neural network as a probabilistic model

p(y|x, w). For an input x 2 Rd, the network calculates a

probability for each of the K possible outputs y 2 Y, using
the weights w. For classification problems, Y is the set of

classes, and p(y|x, w) is a categorical distribution. Given a

dataset D ¼ fxi; yigni¼1, the optimal weights wH for the

network can be learned by maximum likelihood estimation

(MLE):

wH ¼ argmaxw log pðDjwÞ ð1Þ

¼ argmaxw

Xn

i¼1

log pðyijxi;wÞ: ð2Þ

In a Bayesian neural network [31, 35], the weights of a

neural network are no longer fixed values, but rather ran-

domly drawn from a prior distribution p(w). Instead of

updating the weights directly during training, the parame-

ters of the weight distributions are updated, by observing

data D. As such, the posterior distribution pðwjDÞ is cal-

culated. Using Bayes theorem, this gives

pðwjDÞ ¼ pðDjwÞpðwÞ
pðDÞ ð3Þ
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¼ pðDjwÞpðwÞR
pðDjwÞpðwÞdw : ð4Þ

Given the posterior, a predictive distribution on the output

classes y� can be calculated for an unseen input x� as

pðy�jx�;DÞ ¼
Z

pðy�jx�;wÞpðwjDÞdw: ð5Þ

Unfortunately, the posterior cannot be calculated analyti-

cally, due to the intractable integral in the denominator.

Variational inference [20] sidesteps this issue, by approx-

imating the true posterior pðwjDÞ with a variational dis-

tribution qhðwÞ, parameterized by h, such that it is most

similar to pðwjDÞ. This is done by minimizing the Kull-

back–Leibler (KL) divergence between the true posterior

distribution pðwjDÞ and the variational distribution qhðwÞ.
Therefore, the optimal parameters hH for the variational

distribution are defined as

hH ¼ argminh KL½qhðwÞjjpðwjDÞ� ð6Þ

¼ argminh KL½qhðwÞjjpðwÞ� � Eq½log pðDjwÞ� þ log pðDÞ;
ð7Þ

where

KL½qhðwÞjjpðwÞ� ¼
Z

qhðwÞ log
qhðwÞ
pðwÞ dw: ð8Þ

The resulting cost function is widely known as the varia-

tional free energy or the negative evidence lower bound

(ELBO):

FðD; hÞ ¼ KL½qhðwÞjjpðwÞ� � Eq½log pðDjwÞ�: ð9Þ

2.2 Monte Carlo dropout

Dropout [44] is a regularization technique, commonly used

to reduce overfitting in neural networks. With dropout the

units in a neural network are randomly set to 0 with a

probability d. By dropping a different set of units at each

training step, dropout training can be seen as the equivalent

of training a large ensemble of neural networks. At test

time, no units are dropped. They are rather multiplied by

1� d. The expected output magnitude at training time is

thereby ensured to be the same as the output magnitude at

test time.

[10] relates dropout training to variational inference by

approximating pðwjDÞ with a variational distribution

qhðwÞ. As such, arriving from Eq. (5), the predictive output

distribution given an unseen input x� is approximated as:

pðy�jx�;DÞ �
Z

pðy�jx�;wÞqhðwÞdw: ð10Þ

Gal and Ghahramani further show that sampling weights

from q(w) are mathematically equivalent to applying

dropout on the neural network weights. Therefore, the

integral in Eq. (10) can further be approximated by taking

Monte Carlo samples with different dropout masks:

Z
pðy�jx�;wÞqhðwÞdw � 1

T

XT

t¼1

pðy�jx�; ŵtÞ ð11Þ

in which ŵt � qhðwÞ. To summarize, calculating the pre-

dictive output distribution for a given input boils down to

performing T stochastic forward passes through the net-

work at inference time. At each forward pass, a different

dropout mask is applied on the network weights. The

outputs of every forward pass are then averaged to arrive at

the final predictive distribution.

2.3 Bayes by backprop

The KL divergence in Eq. (9) also contains an

intractable integral. We therefore apply a variance reduc-

tion technique known as random numbers. By sampling

weights ŵt from the variational distribution qhðwÞ we then

arrive at the following approximation:

FðD; hÞ � 1

T

XT

i¼1

log qhðŵtÞ � log pðŵtÞ � log pðD j ŵtÞ

ð12Þ

where ŵt denotes the Monte Carlo weight sample drawn

from qhðwÞ. The result is a tractable cost function that can

be optimized w.r.t. the variational parameters h.

2.4 Uncertainty

While there can be many sources of uncertainty, in the

context of modelling it is convenient to categorize the

uncertainty type as either aleatoric or epistemic [7]. The

first type, aleatoric uncertainty, captures the random noise

intrinsic to the observations. This type of uncertainty

cannot be reduced by collecting additional data. The sec-

ond type, epistemic uncertainty, accounts for the uncer-

tainty in the model parameters. Gathering more data can

improve upon the epistemic uncertainty.

In a Bayesian neural network, both types of uncertainty

can be calculated. For an unseen input x�, the output dis-

tribution over the classes y� is given by Eq. (5). Using

variational inference, this distribution is approximated by

replacing the true posterior pðwjDÞ with the variational

distribution qhðwÞ as explained in Sect. 2.1:
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pðy�jx�;DÞ �
Z

pðy�jx�;wÞqhðwÞdw ¼ EqhðwÞ½pðy�jx�;DÞ�:

ð13Þ

An unbiased estimator of the output distribution is then

constructed by sampling weights ŵt from qhðwÞ:

EqhðwÞ½pðy�jx�;DÞ� � 1

T

XT

t¼1

pðy�jx�; ŵtÞ: ð14Þ

Based on the estimator in Eq. (14), the uncertainty on a

specific output class y�k (k 2 f1; 2; . . .;Kg) can be calcu-

lated using the definition of variance [42] as

VarqhðwÞ½pðy�k jx�;DÞ� ¼ EqhðwÞ½pðy�k jx�;DÞ2�
� EqhðwÞ½pðy�k jx�;DÞ�2:

ð15Þ

This is the variance on the sampled output probabilities for

output class k. The overall output uncertainty is then

averaged across all individual variance measurements for

the K output classes [21]. We call this quantity the pre-

dictive variance.

3 A metric for output uncertainty

Consider the following intuitive example. A Bayesian

neural network is trained on a three-way classification

problem (K ¼ 3). For 2 different data examples, Fig. 1

(top) shows the distribution of the Monte Carlo samples for

each of the three output classes. While both examples

would be classified as ‘‘green’’, it is important to notice the

difference in uncertainty between these examples. In the

first example, on the left, there is almost no overlap

between the top-2 classes, respectively, ‘‘green’’ and ‘‘or-

ange’’. Hence, we would argue that, for this example, the

‘‘green’’ class is, in fact, the correct class. In the second

example, on the right, we see the opposite. The distribu-

tions for the top-2 classes are highly overlapping. Conse-

quently, we cannot say for sure that the assigned ‘‘green’’

class is correct.

Contrary to this intuition, a variance-based metric such

as in Eq. (15), would assign a high uncertainty to the first

example and a low uncertainty to the second example.

Therefore, we aim for a different approach to quantify the

output uncertainty.

A naive approach would be to look at the difference

between the class output probabilities, i.e. the softmax

output. A metric based on these differences assigns an

uncertainty value that is inversely proportional to the dif-

ference between the class probabilities. This has the

advantage that it is applicable to all neural network

architectures, including traditional networks with deter-

ministic outputs. However, different network weights can

result in very different network outputs. Figure 1 (bottom)

shows two sampled softmax outputs for each of the

examples above. We see that, especially for the example on

the left, the class probabilities can be very close, as well as

far apart. This is unwanted behaviour for a robust uncer-

tainty metric. We therefore propose a metric that is based

on the overlap between the Monte Carlo distributions for

each class.

In a first step, we draw inspiration for the estimator in

Eq. (14) to calculate sample distributions for each of the K

classes. More specifically, we draw T output samples for

each class which together constitute the sample distribu-

tion. We identify these distributions as d1; . . .; dK , where dk
represents the sample distribution with the k’th highest

mean. Next, we estimate the overlap between the distri-

bution with the highest mean and all others, using the

normalized Bhattacharyya coefficient [3]. This is done by

constructing a histogram h1 from d1, and a histogram hk

Fig. 1 Top: two examples of

the predictive output

distribution for each class in a

three-way classification

problem. Bottom: for each

example, two softmax outputs

are sampled from the respective

predictive distributions
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from dk, where k[ 1, both with n bins. The normalized

Bhattacharyya coefficient is then given by:

BCðh1; hkÞ ¼
1

T

Xn

‘¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
h1‘hk‘

p
ð16Þ

in which h1‘ and hk‘ are the number of samples in the ‘-th

bin of, respectively, histograms h1 and hk. The result is a

value between 0 and 1, where a 0 indicates no overlap

between the histograms, while a 1 indicates a perfect

overlap (i.e. the histograms are identical). Finally, we use

these values to define the output uncertainty as

Uoutput ¼ max
k[ 1

BCðh1; hkÞ; ð17Þ

where a high value indicates a high uncertainty, and a low

value indicates a low uncertainty. In practice, we find that

only considering the overlap between the output distribu-

tions for the top-2 classes yields a tight lower bound for the

uncertainty quantity:

Uoutput � BCðh1; h2Þ; ð18Þ

as we show in our experimental section. We refer to

BCðh1; h2Þ as the BC uncertainty. An example of how to

calculate the BC uncertainty, given a dropout neural net-

work, is shown in Fig. 2.

The BC uncertainty has two hyperparameters, namely

the number of output samples T that are drawn for a given

class (i.e. the number of times an input image is passed

through the neural network), and the number of bins n used

when constructing the histograms. These hyperparameters

are not independent: the T output samples for a given class

are divided over the n bins. Values for T and n should be

chosen with this in mind. Enough samples T should be

drawn, so that the sample distributions properly approxi-

mate the true distributions over the output classes. The

probability scores outputted by the softmax function are

continuous values in the interval of [0, 1]. This interval

will be divided into n equally large subintervals when

constructing the histograms. Therefore, the range for the

BC uncertainty directly relates to n. In case n ¼ 1, all BC

uncertainties will be equal to 1, since there is perfect

overlap between the two histograms. As n grows bigger, in

the limit, limn!1 BCðh1; h2Þ ¼ 0. In this case, assuming no

output samples are exactly the same, the subintervals are

too small for there to be any overlap. In our experiments,

we have chosen the value of 100 for both T and n.

We provide an illustrative example, highlighting the

strength of our approach. Figure 3 shows an image of a

measuring cup that is wrongly classified. Next to this

image, the figure shows the corresponding output his-

tograms of the four classes with the highest sample vari-

ance. Empirically, we see that each of these histograms still

have a small variance, indicating that the overall predictive

variance will be low as well, close to zero. But ideally, a

wrong classification comes with a high uncertainty. On the

other hand, because of the high overlap between the top-2

classes—which are highlighted in bold—the BC uncer-

tainty for this image is 0.88, which is significantly higher

than the predictive variance. Indeed, when inspecting the

image and the labels, the confusion makes sense.

The given example shows the advantage of our approach

over variance-based methods. While the sample variance

may be low, there could very well still be a high class

overlap. In this case, the BC uncertainty is better suited.

When the resulting Monte Carlo distributions have a high

variance, as well as a high overlap, both metrics will result

in a high uncertainty. In a similar fashion, when there is a

low sample variance, and little to no overlap, both metrics

will result in a low uncertainty.

Fig. 2 An overview of how to calculate the BC uncertainty for a

given example, for the case of a neural network trained with dropout.

The example is passed T times through the network. At each pass, a

different dropout mask is sampled from the dropout distribution,

resulting in T softmax outputs. From these outputs, we construct a

histogram for the top-2 classes, having the highest and second to

highest mean. Using these histograms, we calculate the BC

uncertainty
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4 Algorithmic complexity

In this section, we reiterate on the steps required to cal-

culate the BC uncertainty for a given classification output,

listing all the corresponding algorithmic complexities. Note

that we do not take the complexity of the forward pass of a

neural network into account.

Given a classification problem with K output classes,

forwarding T duplicates of an input image through a

stochastic neural network will result in K sample distri-

butions (one for each class), each containing T probability

scores. Calculating the mean for each distribution has a

complexity of OðK � TÞ. Next, we identify the top-2 dis-

tributions, having the highest and second to highest mean,

with a complexity of OðKÞ. Using these two (continuous)

distributions, we construct two discrete histograms, by

dividing the T probability scores in each distribution over n

bins. This process also has a complexity of OðTÞ. Finally,
we use the Bhattacharyya coefficient to calculate the

overlap between both histograms, by comparing the num-

ber of samples in corresponding bins, with a complexity of

OðnÞ. This results in a total complexity of OðK � T þ nÞ. It
is important to note that this complexity pales in compar-

ison with the algorithmic complexity of the forward pass of

a neural network.

5 Experiments

We evaluate our proposed uncertainty metric, based on the

Bhattacharyya coefficient, using different benchmark

datasets. For each of these datasets, we train a deep dropout

neural network until convergence. During evaluation, we

leave dropout enabled, using the same dropout rate as

during training. It is important to note that our goal is not to

reach state-of-the-art classification performance on these

datasets. We rather aim to train a sufficiently powerful

model, enabling us to empirically validate the output

uncertainty.

MNIST The MNIST database of handwritten digits [26]

consists of 60,000 train samples and 10,000 test samples.

Each sample is comprised of a 28 by 28 pixels greyscale

image of a single handwritten digit, along with its class

label (0 through 9).

The network architecture for this dataset consists of two

convolutional layers with 3� 3 kernels, having, respec-

tively, 16 and 32 filters, followed by two fully connected

layers with, respectively, 128 and 10 units. All hidden

layers have rectified linear unit (ReLU) activations1. We

apply dropout with a probability of 0.6 after all activations.

CIFAR-10 The CIFAR-10 dataset [23] consists of

50,000 train samples and 10,000 test samples. These

samples contain a 32 by 32 pixels colour image and are

evenly distributed among ten output classes.

For the CIFAR-10 dataset, we train a deep neural net-

work architecture consisting of six convolutional layers

with 3� 3 kernels (32, 32, 64, 64, 128 and 128 filters),

followed by three fully connected layers (128, 64 and 10

units). Again, all hidden layers have in contrast to the

MNIST activations. In contrast to the MNIST architecture,

only the fully connected hidden layers are followed by

dropout, also with a probability of 0.6.

ImageNet The train set used for the ImageNet Large

Scale Visual Recognition Challenge 2012 [40] includes

over one million high-resolution images, spread among

1,000 classes. The accompanying test set contains 50,000

images. Both the test set and the train set have a uniform

class distribution.

For the experiments using the ImageNet dataset, we use

a pre-trained Inception v1 model [45], where we set the

dropout rate to 0.6.

We report the test set accuracy our networks achieve for

each of the datasets in Table 1.

Fig. 3 Left: an image of a

measuring cup (from the

ImageNet test set). Right: the
output histograms for the image

on the left, for the 4 classes with

the highest sample variance. A

bold label indicates that this

class is also in the top-2 classes

with the highest mean

1 More recent activation functions, such as the scaled polynomial

constant unit activation function (SPOCU) [22], could potentially

result in a higher classification accuracy. However, for the application

of uncertainty quantification, we found that ReLU activation function

achieves similar results.
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5.1 Approximating output uncertainty

In a first experiment, we test whether the approximation of

the output uncertainty using only the top-2 classes is jus-

tified. We calculate the overlap between the sample his-

tograms for the top-1 class output, and all other outputs,

using the Bhattacharyya coefficient defined in Eq. (16), for

both the MNIST test set and the CIFAR-10 test set. We

limit ourselves to these datasets due to computational

constraints. Coefficients are calculated by forwarding each

test example 100 times through the network (T ¼ 100). We

show a violin plot of the difference Uoutput � BCðh1; h2Þ for
both datasets. We limit ourselves to the cases for which

Uoutput [BCðh1; h2Þ, i.e. there exists a class k[ 2 that

yields a larger Bhattacharyya coefficient compared to class

1. We find that this is only the case for less than 10% of the

test sets. For both datasets we see the largest mass close to

0, with a mean of 0.016 for MNIST and a mean of 0.019

for CIFAR-10. As a result, in most cases Uoutput is only

marginally larger than BCðh1; h2Þ. We can therefore state

that BCðh1; h2Þ, i.e. the BC uncertainty, is a justified

approximation for the output uncertainty, greatly reducing

the number of operations required for calculation. We will

therefore use the BC uncertainty in the remainder of our

experiments. As an illustration, below the violin plot, we

show two examples where Uoutput [BCðh1; h2Þ for each

dataset, accompanied by h1 (green), h2 (orange) and hmax

(blue) as given by

hmax ¼ argmaxhkBCðh1; hkÞ: ð19Þ

For all examples, we see indeed a large overlap between h2
and hmax, resulting in a negligible difference between

Uoutput and BCðh1; h2Þ (Fig. 4).

5.2 Uncertainty vs. accuracy

We generate a prediction for each example in the test set,

by forwarding the example 100 times through the network

(T ¼ 100). Additionally, using the obtained sample distri-

bution, we calculate both the predictive variance and the

BC uncertainty. Figure 5 shows the histogram of the

classification accuracy as a function of the predictive

variance (top), and the BC uncertainty (bottom), for each of

the datasets. We expect the overall accuracy to be higher,

when the network has a lower uncertainty, i.e. the network

is confident in its prediction. We see, indeed, that this holds

for both metrics. However, we argue that this relation is

more pronounced for the BC uncertainty, especially for

ImageNet. In addition, for the predictive variance, the

histogram boundaries differ for every dataset, rendering the

predictive variance incomparable across datasets. Com-

bined with the overall small absolute magnitudes, this

makes the predictive variance hard to interpret.

5.3 Uncertainty vs. task difficulty

As is indicated in the previous subsection, the range of the

predictive variance is different for each dataset. This has

the consequence that absolute numbers cannot be applied

to estimate task difficulty.

Figure 6 shows the distribution of the predictive vari-

ance (top) and the BC uncertainty (bottom) for the three

datasets. As shown in Table 1, classifying MNIST digits is

easier than classifying CIFAR-10 images, while ImageNet

is the hardest to classify. This increase in difficulty is only

partly reflected by the predictive variance, where we see

both the mean and the spread of the CIFAR-10 uncertainty

distribution increase, compared to MNIST. The distribution

for the ImageNet dataset, however, has an average uncer-

tainty close to 0, as well as a very small spread. This can be

explained by the number of classes considered in each

dataset. ImageNet contains 1000 classes compared to 10

classes for MNIST and CIFAR-10, i.e. two orders of

magnitude larger. This means that for a given input

example a large number of class probabilities will be close

to zero, resulting in small individual class variances.

Averaging all class variances indeed results in an overall

small predictive variance.

On the other hand, the BC uncertainty has the advantage

that it only looks at the overlap between the top-2 classes.

It is therefore invariant to the number of classes. Besides

this, the BC uncertainty is bounded between 0 and 1. These

properties allow us to apply BC uncertainty to estimate the

task difficulty in absolute terms. This is clearly illustrated

in Fig. 6 in which we see that, indeed, the overall BC

uncertainty increases as the task gets more difficult.

5.4 Uncertainty vs. prediction

In the previous subsections we have highlighted the ben-

efits of the BC uncertainty in comparison with the pre-

dictive variance. Subsequently, we further evaluate the

robustness of our proposed technique.

To begin, we apply the Bhattacharyya coefficient to

gain insight into the decision process of a neural network.

Figure 7 gives four example images, randomly sampled

Table 1 Test set accuracy for

the different datasets
Dataset Accuracy

MNIST 0.98

CIFAR-10 0.81

ImageNet 0.71

Predictions are made by taking

100 stochastic forward passes

and averaging the result.
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Fig. 4 Top: Violin plots for the

difference between Uoutput and

BCðh1; h2Þ, both for MNIST and

CIFAR-10. The whiskers

specify the minimum and

maximum values. For both

datasets, the largest mass lies

close to 0. Bottom: MNIST and

CIFAR-10 examples where

Uoutput is greater than

BCðh1; h2Þ, for the case of high

uncertainty (left), as well as the

case of low uncertainty (right),

with their corresponding output

histograms (green: h1, orange:
h2, blue: hmax). For all

examples, there is a great

overlap between hmax and h2,
resulting in comparable

Bhattacharyya coefficients

Fig. 5 Test set accuracy as a function of the output uncertainty. For

the top row, grouping is done by means of the predictive variance. For

the bottom row, BC uncertainty is applied. The labels on the X-axis

specify the range of the respective uncertainty metric for each group.

For the predictive variance, histogram boundaries were chosen based

on the minimum and maximum values. The percentage inside each

bar indicates the fraction of the test set contained in the respective

group. This is also reflected by the colour of the bar. The darker the

bar, the more test set images its respective group contains
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from the three datasets, for each of the following specific

criteria. The first set of images at the top are images that

are correctly classified and have a BC uncertainty equal to

0. These images all share similar traits: the target is centred

in the image, with little to no distraction. Such images can

be considered as ‘‘easy to classify’’. The second set of

images, in the centre, are images that have a high BC

uncertainty. We consider both correctly and incorrectly

classified images. In comparison with the previous set,

images in this set have a higher degree of noise. In some

cases, such as the ‘‘3’’ that is mistaken for a ‘‘8’’, the image

indeed closely resembles the predicted class. Therefore,

images like these are considered ‘‘more difficult to clas-

sify’’. In a real-world setting, images matching this crite-

rion would require additional evaluation. Lastly, at the

bottom, we show a set of images that are wrongly classi-

fied, but have a BC uncertainty that is also 0. Images like

these are the most troublesome, since they have a high

chance of going unnoticed, while they should, in fact,

require further assessment. We highlight two specific cases

among these images. In the first case, the target closely

resembles the predicted class. Examples are the ‘‘3’’, that is

classified as a ‘‘8’’, and the ‘‘airplane’’, that is mistaken for

a ‘‘bird’’. This case is the most common. For some

exceptions, it is actually the ground truth label which is

wrong, as is the case for the ‘‘gong’’.

5.5 Suboptimal training conditions

The datasets used in these experiments, MNIST, CIFAR-10

and ImageNet, have a number of properties in common.

Not only do they all contain a large amount of images, they

are also (almost) perfectly balanced. Unfortunately, in a

real-world setting, this is hardly ever the case. Most real-

istic datasets are usually small in size and/or suffer from

class imbalance. We therefore evaluate the performance of

the BC uncertainty metric under such conditions.

To simulate a small train set size, we use only a fraction

of the full train set to train a dropout neural network. We do

this for MNIST and CIFAR-10. The considered fractions

are 0.01, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 of the original train

set. In a similar fashion we introduce an artificial class

imbalance in the train set. This time, instead of down-

sampling all classes, we take only a fraction of the avail-

able images for a specific class. In addition we include a

fraction of 0.0, specifying the edge case of unseen data. We

do this for the digit ‘‘3’’, and the class ‘‘cat’’, for MNIST

and CIFAR-10, respectively. We repeat this experiment

using a Bayesian neural network in Appendix A.

Results are presented in Fig. 8. This figure shows the

evolution of the BC uncertainty, either as a function of the

train set fraction (top) or as a function of the under-sampled

class fraction (bottom). In the latter case, only predictions

and uncertainties for the specific class are included. For

each scenario, the distribution of the BC uncertainty is

shown separately for correct and incorrect classifications.

The classification accuracy for each scenario is written

above the respective distributions. We treat both cases

individually.

Train set size As expected, the accuracy increases as the

train set size increases. Regarding the BC uncertainty, we

make the distinction between the correctly and incorrectly

classified images. The distribution for the correctly clas-

sified images starts out with a high mean, and a large

spread. Both of these decrease significantly as the train set

size increases. In contrast, the mean uncertainty for the

incorrectly classified images slightly decreases, initially,

after which it seems to stabilize. We also observe that for

all train set sizes the mean BC uncertainty for the correct

cases is always lower than the mean BC uncertainty for the

Fig. 6 Distribution of the output

uncertainty, for the MNIST,

CIFAR-10 and ImageNet test

set. Top: predictive variance.

Bottom: BC uncertainty.

Whiskers represent the 5% and

95% interval. The transparent

dots are uncertainty values

outside of this interval
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incorrect cases. As the train set size increases, this obser-

vation becomes more pronounced.

When insufficient training data are available, a neural

network fails to learn a mapping from images to their

respective class labels. This results in a classification

accuracy close to random guessing. This is the case when

attempting to train a CIFAR-10 classifier using only 1% or

5% of the train set. In these cases, the corresponding BC

uncertainties are very high (close to 1.0), highlighting the

low confidence of the network.

Simulated class imbalance Similar observations can be

made with respect to a simulated class imbalance, although

only when the under-sampled class is sufficiently present in

the train set (starting from 5% for MNIST, and from 40%

from CIFAR-10). When too little examples of a under-

sampled class are present, the neural network maps these

Fig. 7 Example images from the MNIST, CIFAR-10 and ImageNet

datasets, sampled according to the following criteria. Top: correctly
classified images, with a low BC uncertainty. Centre: images with a

high BC uncertainty. Bottom: wrongly classified images that are

assigned a low BC uncertainty
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examples to an other, most similar class. This highlights

the importance of constructing a train set in which each

class is properly represented. This indicates that further

research is required when applying the BC uncertainty as

an outlier detector.

6 Use case: skin lesion classification

We apply our BC metric to a real-world problem: skin

lesion classification. For this, we use the HAM10000

dataset of common pigmented skin lesions [47]. This

dataset is relatively small in size, containing only 10,015

Fig. 8 Distribution of the BC

uncertainty for different training

scenarios, both for MNIST and

CIFAR-10. Per dataset, either

only a fraction of the full train

set is used (top), or only a

fraction of the available

examples for a single class are

included for training (bottom).

For each scenario, the

distribution for the correct

classifications is shown in the

left (green) box plot, and the

distribution for the

misclassifications is shown in

the right (red) box plot. The

whiskers represent the 5% and

95% interval. The transparent

dots are uncertainty values

outside of this interval. The

classification accuracy is given

by the number above each box

plot pair
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dermoscopic images of skin lesions. The dataset is also

heavily imbalanced, a common problem among medical

datasets [5, 12, 46]. About 67% of all images belong to

‘‘nevi’’ class, while only 1% of images are instances of

‘‘dermatofibroma’’. Overall, seven types of skin lesions are

present in this dataset.

We randomly split the full dataset into a train set, con-

taining 9,013 images (approximately 90% of all images),

and a validation and test set, both containing 501 images

(approximately 5%). We use the train and validation set to

train a deep neural network architecture and to find optimal

hyperparameters. Given the limited amount of available

training data, we opt for transfer learning. We use a

ResNet50 network [17] which was pre-trained on Ima-

geNet as the basis for our classifier. We replace the final

layer with a custom head that we train for skin lesion

classification. The head is constructed of two fully con-

nected hidden layers, respectively, having 512 and 64 units,

followed by a fully connected output layer with 7 units.

Both hidden layers have ReLU activations. In order to cast

this network as a Bayesian neural network, we apply

dropout after every hidden layer, with a probability of 0.6.

We obtain predictions as well as BC uncertainties for

the hold-out test set by forwarding each of the test images

T ¼ 100 times through the network. This way, we achieve

a classification accuracy of 0.82, matching the performance

of a similar network architecture that is evaluated without

dropout. We want to stress again that it is not our intention

to achieve the overall best state-of-the-art performance on

this dataset, but that we rather use the trained neural net-

works to evaluate uncertainty metrics.

6.1 Uncertainty vs. accuracy

First, we validate the BC uncertainty metric on the skin

lesion classification use case by repeating the experiment

from Sect. 5.2. We calculate the BC uncertainty for each

image in the test set. In Fig. 9, we plot the histogram of the

classification accuracy as a function of the BC uncertainty.

About 72% of the images are classified with an uncertainty

lower than 0.2. Within this group, most images (ca. 55% of

the entire test set) have a very low uncertainty (BC = 0.0),

with a resulting accuracy of 0.97. Furthermore, we see

again that the accuracy is inversely proportional to the BC

uncertainty. A lower BC uncertainty yields a higher

accuracy, and vice versa.

6.2 The (un)certain cases

We inspect some of the classified images. In Fig. 10, we

show four images with their respective sample histograms

for each class. The top-2 histograms, used to calculate the

BC uncertainty, are coloured green and orange, respec-

tively. In the examples in the first two rows, we notice that

there is a large overlap between the top-2 histograms,

resulting in a high BC uncertainty. The bottom two images

have a BC uncertainty equal to 0.0. These are clear

examples of nevi, which are, overall, fairly easy to classify.

6.3 The (un)certain classes

Finally, Fig. 11 (top) shows the BC uncertainty distribu-

tions on a per-class basis. The mean and spread are espe-

cially low for the ‘‘nevus’’ class. As mentioned before, on

average, most of the nevi are easily classified by a trained

professional. Additionally, the nevi are the most abundant

type of skin lesion in the dataset. This shows that the

classifier is most confident on the class of which it

encountered the most examples during training.

Besides a ground truth label for each image, the

HAM10000 dataset also contains additional meta-data

regarding the confirm type of the diagnosis. All skin lesions

were diagnosed in one of four ways. These are, in

ascending order of rigorousness: ‘‘single image expert

consensus’’, ‘‘serial imaging showing no change’’, ‘‘con-

focal microscopy with consensus dermoscopy’’, and

‘‘histopathology’’; the latter type indicates that the lesion

had to be surgically removed due to the assessed risk.

Images that were labelled in a more rigorous way are

overall more difficult cases, especially when the final

diagnosis is benign. Therefore, a nevus that has the confirm

type ‘‘histopathology’’ is usually more ambiguous, or dif-

ficult to classify, than a nevus confirmed by ‘‘single image

consensus’’. Figure 11 (bottom) shows the distribution of

the BC uncertainty for the images of nevi, for each of the

diagnosis confirm types. We see that, indeed, the distri-

bution for the ‘‘histopathology’’ confirm type has a large

spread, in comparison with the other confirm types.Fig. 9 The accuracy when binning the test set images according to

their BC uncertainty. The labels on the X-axis specify the range. The

amount of images (as a fraction) for each group is specified inside the

bar. This is also reflected by the colour of the bar. The darker the

colour, the higher the amount of images in the respective group
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7 Related work

Bayesian neural networks The last decade saw a resur-

gence of Bayesian methods for neural networks. It started

with [15] who introduced Monte Carlo variational infer-

ence (MCVI), a practical and scalable variational inference

scheme for neural networks [4] expanded on this work by

introducing Bayes by Backprop, an efficient

backpropagation-compatible algorithm for learning a

probability distribution over the weights of a neural net-

work. They applied their algorithm to successfully train a

Bayesian feed-forward neural network on the MNIST

dataset [42] further extended this approach and presented

how Bayes by Backprop can be applied to convolutional

neural networks (CNNs). Their Bayesian CNNs attain

similar performance to their frequentist counterparts on the

Fig. 10 Examples of skin lesions, and their corresponding output

histograms, as well as the BC uncertainty. The two images at the top

have a high uncertainty, while those at the bottom have a low

uncertainty. The histograms with the highest and second to highest

mean are coloured green and orange, respectively

Fig. 11 Top: distribution of the

BC uncertainty for each of the

seven classes in the test set.

Notably, the most present class

(nevus, NV) has the lowest

overall uncertainty. Bottom:

distribution of the BC

uncertainty for the ‘‘nevus’’

class, as a function of the

diagnosis confirm type. The

whiskers represent the 5% and

95% interval. The transparent

dots are values outside of this

interval
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MNIST dataset, as well as the CIFAR-10 and CIFAR-100

datasets. Around the same time, [37] proposed a similar

approach [30] introduced a variational distribution that, in

contrast to [4], does not treat each of the weights of the

neural network independently. Instead, they used a matrix

variate Gaussian distribution [16], treating the weight

matrix as a whole.

Alternatively, [10] provided proof that dropout training

can be interpreted as an approximation of variational

inference. In follow-up work, the authors evaluated their

technique on both the MNIST dataset and the CIFAR-10

dataset [9]. Because of its ease in implementation, this

method has seen a widespread use.

Quantifying uncertainty Variance-based uncertainty

quantification using dropout networks is applied to both

detection tasks [28, 36, 50] and segmentation tasks

[21, 24, 34, 41, 48]. While this metric is most common,

alternatives to quantify uncertainty exist, such as the pre-

dictive entropy or mutual information [11, 18]. These

metrics are, however, unconstrained to a certain interval,

making it more challenging to interpret the uncertainty

values.

Although we have only described our BC uncertainty

metric in relation to MCVI (or the approximation through

MC dropout), it is applicable to all approaches, regardless

of how the output distribution is obtained. A popular, albeit

resource-intensive, alternative is ensembling [25]. Here,

multiple duplicates of a deep neural network are initialized

with different random weights and are trained on (a subset

of the) train set. At test time, an example is forwarded

through all duplicates, and the result is averaged.

In addition, [27] do not use an (approximate) Bayesian

neural network to quantify uncertainty. Rather, the authors

compare the probability density of a test example in the

feature space of the neural network to the class-conditional

distributions derived from the train set. This approach,

however, focuses on aleatoric uncertainty and not on the

combination with epistemic uncertainty. Furthermore, the

focus of this approach lies on classification models trained

using a softmax loss. It is unclear to what extent the

assumptions, and by extension the method, are valid for

other losses or other AI applications.

In a similar fashion, [19] present the trust score as a

simple and effective way to define whether or not one

should trust the output of a classifier. In a first step, an

empirically dense subset of examples (the a-high-density
set) is constructed for each of the possible output classes

during training. The trust score for a test example is then

given as the ratio of the distance from that example to the

a-high-density set of the nearest class that differs from the

predicted class, to the distance from the test example to the

a-high-density set of the predicted class.

Although both of the above approaches impose no

requirements on the classifier, they come with the added

cost of an additional step, both at training time and at

inference time. In contrast, our method only requires

dropout in the network architecture.

8 Conclusion

In this work, we presented a novel metric for quantifying

output uncertainty in stochastic neural networks, based on

the Bhattacharyya coefficient, aptly named BC uncertainty.

Unlike previously studied metrics—which are based on the

total output variance—our metric uses the Bhattacharyya

coefficient to estimate the inter-class uncertainty in the

prediction of a classification neural network. We provided

an intuitive example as to why this is preferable. Addi-

tionally, the BC uncertainty is bounded between 0 and 1.

This makes the metric easier to interpret and allows us to

compare the output uncertainty across datasets.

We empirically validated our metric using benchmark

datasets. These are MNIST, CIFAR-10 and ImageNet. We

illustrated that, indeed, the model achieves a much higher

classification accuracy when the uncertainty is low. In

addition, we saw that the uncertainty increases along with

the task difficulty when quantified using the Bhattacharyya

coefficient. This is not always the case for variance-based

metrics. We took a closer look at some examples, randomly

sampled according to their corresponding BC uncertainty.

Here, we confirmed that images with a low uncertainty are

overall easier to classify than those with a high uncertainty.

In a final experiment, we introduced suboptimal training

conditions and evaluated their influence on the uncertainty.

We demonstrated that the model outputs a high uncertainty

when it is trained with insufficient data. However, it is

important to note that this is not the case when a single

class is missing completely. Therefore, further research is

required to apply our metric as an anomaly detector.

We used our metric in the real-world use case of skin

lesion classification with the HAM10000 dataset. We

explained that this dataset is heavily imbalanced, which

will have implications on the uncertainty for certain under-

represented classes. For example, we showed that the

model shows low uncertainty for the class it encountered

most during training. We also illustrated that the model has

a high classification accuracy for lesions with a low asso-

ciated uncertainty.

Although the results are positive, our experiments, in

particular those regarding skin lesion classification, were

conducted without the input from dermatology experts.

Therefore, further research is required into the application

of deep learning and uncertainty in general practices.
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A Additional experiments

We repeat the experiments in Sect. 5.5 using a Bayesian

neural network. Due to computational limitations, we

restrict ourselves to the MNIST dataset.

The Bayesian neural network is implemented following

[42]. The network architecture is similar to the architecture

used in Sect. 5.5, consisting of two convolutional layers

with 3� 3 kernels. These have 16 and 32 filters, respec-

tively. The convolutional layers are followed by a fully

connected hidden layer with 128 units and a fully con-

nected output layer with 10 units. The hidden layers have

Softplus activations. This function is a smooth approxi-

mation of the ReLU activation function that has the ana-

lytically important advantage that it never becomes zero

[42]. We train the network using Bayes by Backprop [4].

When optimal training conditions apply (using the entire

train set), the network reaches a classification accuracy of

0.96 on the test set. This is similar to the 0.98 accuracy

achieved by the dropout neural network. Now we introduce

suboptimal training conditions in two ways. First, we

reduce the train set size by taking only a fraction (0.01,

0.05, 0.1, 0.2, 0.4, 0.8 and 1.0) of the available data. Sec-

ond, we introduce a simulated class imbalance by down-

sampling a single class (the digit ‘‘3’’). For this class, we

include only a fraction of the available examples. Addi-

tionally, we use a fraction of 0.0 to evaluate the edge case

of unseen data.

Figure 12 shows the evolution of the BC uncertainty

under different training scenarios for the case of limited

training data (top) and for the case of imbalanced training

data (bottom). Per scenario, the distribution for the BC

uncertainty is given, both for the correct and incorrect

classifications. The classification accuracy is shown above

these distributions. The results for the Bayesian neural

network are comparable to those for the dropout neural

network (given in Fig. 8).

Limited train set size When the train set is too small (up

until a fraction of 0.2), the network fails to discover pat-

terns in the data, resulting in a low classification accuracy.

These scenarios come with a high BC uncertainty. Once

enough training data become available (fraction 0.2 and

above), the accuracy starts to rise. For the correct classi-

fications, the distribution starts with a high spread that is

quickly diminished once more data become available. On

the other hand, the distribution for the misclassifications

has a mean that is always higher than the distributional

mean for the correct classifications. It only slightly

decreases and maintains a large spread.

Simulated class imbalance The neural network needs

sufficient training data in order to distinguish the digit ‘‘3’’.

When there are not enough examples (fractions 0.0, 0.01

and 0.05), the network tries to map examples for this digit

onto another digit.

Fig. 12 Distribution of the BC

uncertainty for a Bayesian

neural network trained on the

MNIST dataset under different

training scenarios. Either only a

fraction of the full train set is

used (top), or only a fraction of

the available examples for the

digit ‘‘3’’ is included for training

(bottom). For each scenario, the

distribution for the correct

classifications is shown in the

left (green) box plot, and the

distribution for the incorrect

classifications is shown in the

right (red) box plot. The

whiskers represent the 5% and

95% interval. The transparent

dots are uncertainty values

outside of this interval. The

classification accuracy is given

by the number above each box

plot pair
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