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Abstract: Synbiotics aim to improve gastrointestinal health by combining pre- and probiotics. This
study evaluated combinations of Bifidobacterium animalis subsp. lactis BB-12 with seven fructans:
oligofructoses (OF1-OF2; low degree of polymerization (DP)), inulins (IN1-IN2-IN3; high DP) and
OF/IN mixtures (OF/IN1-OF/IN2). During monoculture incubations, all fructans were fermented
by BB-12 as followed from increased BB-12 numbers and increased acetate and lactate concentra-
tions, with most pronounced fermentation for low DP fructans (OF1-OF2). Further, short-term
colonic incubations for three human donors revealed that also in presence of a complex microbiota,
all fructans (particularly OF1) consistently selectively enhanced the growth of BB-12. While each
fructan as such already increased Bifidobacteriaceae numbers with 0.94–1.26 log(cells/mL), BB-12
co-supplementation additionally increased Bifidobacteriaceae with 0.17–0.46 log(cells/mL). Further,
when co-supplemented with fructans, BB-12 decreased Enterobacteriaceae numbers (significant except
for IN1-IN3). At metabolic level, all fructans decreased pH due to increased acetate and lactate
production, while OF/IN2-IN1-IN2-IN3 also stimulated propionate and butyrate production. BB-12
co-supplementation further increased propionate and butyrate for OF/IN2-IN3 and IN1-IN2, respec-
tively. Overall, combinations of BB-12 with fructans are promising synbiotic concepts, likely due to
intracellular consumption of low DP-fructans by BB-12 (either present in starting product or released
upon fermentation by indigenous microbes), thereby enhancing effects of the co-administered fructan.

Keywords: prebiotic; synbiotic; microbiota; colon; intestine; oligofructose; inulin; Bifidobacteria;
Faecalibacterium; Blautia

1. Introduction

During the past decade, pre-, pro- and synbiotics have been extensively studied with
the aim to improve gastrointestinal health. While prebiotics are defined as non-digestible
substrates that are selectively utilized by the colonic microbiota, thereby beneficially af-
fecting hosts’ health [1], probiotics are defined as live microorganisms conferring a health
benefit on the host when administered in adequate amounts [2]. A synbiotic formulation
combines both concepts aiming to provide complementary or even synergistic effects in
comparison with administration of the individual components [3]. Numerous clinical
benefits have been associated with synbiotic supplementation, including reduction of
intestinal complaints in patients with gastrointestinal disorders [4,5], alleviation of atopic
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dermatitis [6], reduced colon cancer risk [7], improvement of serum lipid levels and sup-
porting weight loss in obese individuals [8,9]. A crucial remark regarding synbiotics is that
when a prebiotic substrate would be combined with a randomly selected probiotic, this
prebiotic would not necessarily support the growth of the added probiotic [10]. Therefore,
it is of importance that the prebiotic supports growth of the co-administered probiotic, thus
resulting in more predictable and beneficial outcomes of the prebiotic [10,11].

Fructan-type carbohydrates have been widely as prebiotic component in synbiotic
formulations [12]. They occur naturally in many plant-based foods, such as chicory,
asparagus and leek, and consist of β-(2,1)-linked fructose molecules with a terminal glucose
moiety. Fructans are classified by their degree of polymerization (DP), with molecules with
a DP ranging from 2 to 10 being classified as oligofructose (OF), while long-chain fuctans are
termed inulin (IN) which is characterized by a DP ≥ 10 up to a DP of 60 [13]. Fructan-type
carbohydrates escape digestion in the upper gastrointestinal tract and reach the colon where
they are fermented by the indigenous microbiota, including health-related Bifidobacterium
sp. [14]. A commercially available probiotic belonging to the Bifidobacteriaceae family
that is extensively used in functional foods and dietary supplements is Bifidobacterium
animalis subsp. lactis BB-12. Several health benefits have been attributed to BB-12 intake,
including hypocholesterolemic effects [15], improvement of bowel function [16], protection
against diarrhea [17] and immunomodulation [18]. As BB-12 is able to ferment fructan-
type carbohydrates [19], it has a potential to be combined with fructans as a synbiotic
combination. Previously, Mueller et al. demonstrated in BB-12 monocultures that fructan
structure affects its fermentation by BB-12 [20]. Therefore, the effectiveness of a fructan-
based synbiotic with BB-12 might highly depend on the structure of the selected fructan.

Next, when assessing the potential of a prebiotic to support growth of a probiotic, it
is important to consider that the human colon is colonized by a dense microbial commu-
nity that has as its key function the fermentation of both host and diet-derived carbohy-
drates [21]. The human colon microbiota thus has a large potential to ferment prebiotics
such as fructans. When evaluating the potential fermentation of a prebiotic by a probiotic
strain, it is thus important to not only address this research question in monocultures of
the probiotic but also to assess this in presence of a (simulated) colon microbiota. Further-
more, given the existence of interindividual differences in microbiome composition among
human individuals, mainly caused by genetic background and diet [22], interactions be-
tween the probiotic and the indigenous microbiota can differ among donors as for instance
demonstrated by the interindividual differences in microbiome modulation upon fructan
treatment [23–25]. Furthermore, also colonization of probiotics such as BB-12 could depend
on interindividual differences as shown by Matto et al. [26].

The present study aimed to identify which fructan-type carbohydrates supported
growth of the probiotic strain BB-12 most optimally, both in BB-12 monocultures as well
as during short-term colonic incubations in presence of a mixed microbiota derived from
multiple healthy human donors. The study was conducted in three stages (Figure 1).
First, potential fermentation of seven different fructan-type carbohydrates by BB-12 was
investigated in monoculture incubations with focus on growth of BB-12 (as detected
via qPCR) and its resulting metabolic activity (experiment 1). Then, a screening of six
human donors was performed with the aim to select three appropriate donors for the final
experiment. This screening involved in vitro incubations to: (i) confirm intrinsic capacity
of BB-12 to grow in presence of sterile fecal suspension of a given donor, as well as (ii)
to assess the diversity of the overall metabolic activity of the fecal microbiota of each
donor (experiment 2) Finally, short-term colonic incubations were performed to assess the
synbiotic potential of the fructan-type carbohydrates combined with BB-12 in presence of
the complex microbiota derived from three selected human donors (experiment 3). During
this final experiment, microbial composition was assessed using a novel technique, i.e.,
quantitative 16S-targeted Illumina sequencing allowing to obtain quantitative insights in
microbiome modulation at high phylogenetic resolution [27].
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Denmark) was supplied by PepsiCo, Inc. (Moscow, Russia). Seven fructan fibers were ob-
tained from their respective suppliers as explained in Table 1. 

Figure 1. Schematic representation of the in vitro approach to investigate the synbiotic potential of fructan-type car-
bohydrates and BB-12. First, potential fermentation of seven fructan-type carbohydrates by BB-12 was investigated in
monoculture incubations (experiment 1). In experiment 2, a donor screening was performed for six human faecal donor
samples. In experiment 3, short-term colonic incubations were performed to characterize the synbiotic potential of the
fructan-type carbohydrates combined with BB-12 and complex microbiota of three selected human donors. Samples were
collected to evaluate the effect of the test products on microbial metbaolic activity (pH, gas production, SCFA, lactate and
bCFA) and community composition (Bifidobacteria qPCR and quantitative 16S-targeted Illumina sequencing). BB-12 = Bifi-
dobacterium animalis subsp. lactis; OF = oligofructose; IN = inulin; SCFA = short-chain fatty acids; bCFA = branched-chain
fatty acids; qPCR = quantiative polymerase-chain reaction.

2. Materials and Methods
2.1. Chemicals and Test Product

All chemicals were obtained from Sigma-Aldrich (Overijse, Belgium) unless stated
otherwise. Bifidobacterium animalis subsp. lactis BB-12 strain (Chr. Hansen, Hoersholm,
Denmark) was supplied by PepsiCo, Inc. (Moscow, Russia). Seven fructan fibers were
obtained from their respective suppliers as explained in Table 1.
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Table 1. Overview of the seven fructans tested, including the product code used in the study, the
commercial name of the product, the supplier, the purity of the fructan fibers (%), the simple sugar
content (%) and the average degree of polymerization (DP). OF = oligofructose; IN = inulin.

Code Commercial
Name Supplier Purity Fructan Sugars 1 DP

OF1 Frutalose® OFP Sensus, The Netherlands 89 8 4

OF2 Orafti®P95 Beneo, Belgium 93.2–97.5 2.5–6.8 4–5

OF/IN1 Fibrulose® F97 Cosucra, Belgium 97 ± 2 3 ± 2 5.5

OF/IN2 Orafti® Synergy1 Beneo, Belgium 92 ± 2 8 ± 2 14.5

IN1 Fibruline® Instant Cosucra, Belgium >90 <10 9

IN2 Orafti® GR Beneo, Belgium >90 <10 10

IN3 Frutafit® IQ Sensus, The Netherlands >90 <10 8–13
1 including fructose, glucose and sucrose.

2.2. Strain Preservation and Quality Control

The provided probiotic strain was grown in liquid culture medium (reinforced clostridial
medium—RCM) under anaerobic conditions for 24 h at 37 ◦C. A subculture was made on a
selective and differentiating solid growth medium ((transgalactosylated oligosaccharide
agar, containing 12.5 mg/L mupirocin) and the strain was grown for a period of 96 h
at 37 ◦C. A second subculture was made by picking up a colony and growing in RCM
under anaerobic conditions for 24 h at 37 ◦C. The obtained culture was aliquoted and
cryopreserved at −80 ◦C by mixing equal volumes of the culture and a pre-reduced 40%
glycerol suspension. A sample of the preserved bacterial culture was subjected to DNA
extraction (performed according to Boon et al. [28] with minor modifications as reported
by Duysburgh et al. [29]) and send out to LGC Genomics GmbH (Berlin, Germany) for
16S rRNA gene sequencing using the primers and PCR conditions as described by Kok
et al. [30]. The obtained sequence was searched against a curated 16S rRNA gene dataset
of the ribosomal database project (RDP), using the Seqmatch tool, to confirm strain identity.
Further, the cryopreserved strain was grown in a standardized fashion under optimal con-
ditions (RCM medium inoculated at 1%, 37 ◦C, anaerobic conditions) prior to inoculation
in each experiment. The optimal incubation period for growth of the preserved strain was
determined at 16 h.

2.3. Fermentation of Fructans by BB-12 in Monoculture during Short-Term Colonic Incubations
(Experiment 1)

To evaluate the synbiotic potential of combining the BB-12 test strain with each of
the seven fructans, first, a short-term colonic experiment was performed in the absence
of indigenous colon microbiota. Briefly, each of the seven fructans were dissolved in
water, filtered through a 0.22 µm filter and dosed aseptically to reactors containing sterile
carbohydrate-depleted nutritional medium (5.2 g/L K2HPO4, 16.3 g/L KH2PO4, 2.0 g/L
NaHCO3 (Chem-lab NV, Zedelgem, Belgium), 2.0 g/L yeast extract, 2.0 g/L peptone
(Oxoid, Aalst, Belgium), 1.0 g/L mucin (Carl Roth, Karlsruhe, Germany), 0.5 g/L L-
cysteine and 2.0 mL/L Tween 80; pH = 6.5) in order to reach a concentration of 5 g/L of
each fructan at the start of the incubation. A dose corresponding with 109 CFU of the BB-12
strain was co-administered, reaching a concentration 1.5 × 107 CFU/mL at start of the
incubation. A sterile anaerobic fecal suspension was prepared from a freshly collected
fecal sample of a healthy human donor as described by Moens et al. [31] and inoculated
at 10% (v/v) into the reactors to provide the BB-12 strain with necessary co-factors to
perform substrate breakdown. A blank incubation was included, where BB-12 strain was
administered without co-supplementation of fructans. All reactors were anaerobically
incubated at 37 ◦C for 48 h under continuous mixing (90 rpm). All experiments were
performed in biological triplicate.
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2.4. Donor Screening (Experiment 2)

A donor screening was performed using two types of short-term colonic incubations:
(1) incubations inoculated with sterile anaerobic faecal suspension of each donor in the
presence of the BB-12 strain, and (2) incubations inoculated with non-sterile anaerobic faecal
suspension of each donor in the absence of the BB-12 strain. At the start of the short-term
colonic incubations, a carbohydrate-depleted nutritional medium (similar as used during
experiment 1) and starch (2 g/L) were added to each of the reactors. A dose corresponding
with 109 CFU of the BB-12 strain was added to the sterile reactors only (test condition (1)).
Sterile and non-sterile anaerobic faecal slurries were prepared from freshly collected faeces
of six healthy human donors and inoculated at 10% (v/v) into the respective reactors of
test condition (1) and (2). Informed consent was retrieved for each of the donors to use
the fecal samples for the study according to the ethical approval with Belgian registered
number B670201836585. Each incubation was performed in single repetition and incubated
for a period of 48 h at 37 ◦C, under shaking (90 rpm) and anaerobic conditions.

2.5. Fermentation of Fructans by BB-12 and Complex Microbiota during Short-Term Colonic
Incubations (Experiment 3)

At the start of the short-term colonic incubations, each of the fructans were dosed
to a carbohydrate-depleted nutritional medium (similar as used during experiment 1)
to obtain a final concentration of 5 g/L for each fructan. The BB-12 strain and complex
microbiota were dosed to the reactors. Complex microbiota were obtained from the three
selected healthy adult donors from experiment 2 and added to the reactors as an anaerobic
faecal suspension corresponding to 10% (v/v). A dose corresponding with 109 CFU of
the BB-12 strain was co-administered, resulting in a concentration 1.5 × 107 CFU/mL at
start of the incubation. Two types of controls were included, i.e., incubations without the
addition of the BB-12 strain and fructans, and control incubations where the BB-12 strain
was administered without co-supplementation of fructans. All reactors were anaerobically
incubated at 37 ◦C for a period of 48 h under continuous mixing (90 rpm) and performed
in biological triplicate.

2.6. Analysis of Microbial Metabolic Activity

Samples were collected after 0 h, 6 h, 24 h and 48 h of incubation from each reactor
in experiment 1, 2 and 3 for determination of microbial metabolic activity. Measurement
of gas production was conducted using a pressure meter (Hand-held pressure indicator
CPH6200; Wika, Echt, The Netherlands), while pH values were assessed with a Senseline
pH meter F410 (ProSense, Oosterhout, The Netherlands). Short-chain fatty acid (SCFA)
concentrations, including acetate, propionate, butyrate and branched SCFA (bCFA; sum
of isobutyrate, isovalerate and isocaproate), were determined using the method of De
Weirdt et al. [32]. Analysis of lactate levels was performed using a commercially available
enzymatic assay kit (R-Biopharm, Darmstadt, Germany) according to manufacturer’s
instructions.

2.7. Analysis of Microbial Community Composition

During experiment 1 and 2, samples were collected after 0 h and 48 h of incuba-
tion from each reactor for determination of bifidobacterial growth through quantitative
polymerase chain reaction (qPCR), while during experiment 3 samples collected after 48
h of incubation were subjected to quantitative 16S-targeted Illumina sequencing. DNA
was isolated from pelleted bacterial cells originating from 1 mL sample as described by
Boon et al. [28] with minor modifications [29].

qPCR analysis for Bifidobacterium spp. was performed on a QuantStudio 5 Real-Time
PCR system (Applied Biosystems, Foster City, CA, USA). Each sample was analyzed in
technical triplicate and outliers with more than 1 CT difference were removed from the
dataset. The qPCR assay for Bifidobacterium spp. was performed as previously reported in
Rinttilä et al. [33].
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Microbial community profiling during experiment 3 was performed using quantitative
16S-targeted Illumina sequencing analysis (LGC Genomics GmbH) as described by Van
den Abbeele et al. [34]. Briefly, results obtained from the Illumina Miseq platform with
v3 chemistry were presented as proportional values versus the total amount of sequences
within each sample, after which data was combined with total bacterial cell count to obtain
quantitative abundances of the different taxonomic entities (phylum, family and OTU
level) inside the reactors. Assessment of the total bacterial population was done by flow
cytometric analysis on a BD FACSverse (BDBiosciences, Erembodegem, Belgium), followed
by analyzation of absolute cell counts using the FlowJo software, version 10.5.2.

2.8. Data and Statistical Analysis

For data within donors the average ± SD was reported, while for data averaged over
the three donors the average ± SEM was calculated. With respect to microbial metabolic
markers as well as qPCR data, regular 2-sided t-tests were applied for comparisons within
a given donor, while paired 2-sided t-tests were applied for comparisons over the donors.
In order to correct for multiplicity, the Benjamini-Hochberg false discovery rate (FDR) was
applied (with FDR = 0.10) [35]. For statistical analysis of the quantitative 16S-targeted
Illumina sequencing data, a value below the limit of quantification (LOQ) was equaled to
the LOQ. Then, upon log-transformation of the absolute values (to make data normally
distributed), regular 2-sided t-tests were applied for comparisons within a given donor,
while paired 2-sided t-test were applied for comparisons over the three donors. Again,
the Benjamini-Hochberg false discovery rate (FDR) was applied (with FDR = 0.10). All
calculations were carried out via Excel, while figures were prepared in the GraphPad Prism
v8.4.2 software.

As a remark, to establish an overall LOQ for quantitative 16S-targeted Illumina
sequencing data, first, 1 read was divided by the total amount of reads in each sample,
followed by multiplication with the bacterial cell count detected via flow cytometry. This
allowed to obtain a LOQ for each sample individually. Then, the minimal LOQ was
calculated within each triplicate to identify the lowest value that could possibly be detected
for a given condition. Then, over conditions (run in triplicate), the maximal value was
determined which provided the overall LOQ for the entire dataset. The overall LOQ
corresponded to 5.90 log(cells/mL). Finally, the average within triplicates was calculated
and when being below the overall LOQ, the value was reported as below LOQ, even if it
was above the LOQ of the individual sample.

3. Results
3.1. Fermentation of Fructan-Type Carbohydrates by BB-12 in Monoculture (Experiment 1)

Potential fermentation of seven fructan-type carbohydrates by BB-12 was investigated
in monoculture incubations with focus on endpoints related to microbial metabolic activity
and growth of BB-12. During a first series of experiments, in which no sterile fecal sus-
pension was co-administered, BB-12 did not ferment any of the fructans (data not shown).
While still no growth was observed in the blank that included sterile fecal suspension
(indicating absence of fermentation of the nutrients in the background medium by BB-12),
each of the seven fructan-type carbohydrates was fermented by BB-12 (in presence of sterile
fecal suspension), as observed by the significant reduction of pH, stimulation of acetate
and lactate levels and increased numbers of BB-12 (Figure 2).

Fermentation by BB-12 differed between the fructan-type carbohydrates based on their
degree of polymerization. Strongest metabolic effects were observed upon supplementation
of oligofructoses (OF1 and OF2), resulting in final levels of approximately 30 mM acetate
and 4.5 mM lactate, mainly by enhanced production during the 6–24 h time interval. In
contrast, supplementation of the three long-chain inulins (IN1, IN2 and IN3) resulted in
similar, though less pronounced, effects, with an approximate increase of 7 mM acetate
and 0.5 mM lactate after 48 h of incubation. Treatment with OF/IN1 and OF/IN2 exerted
intermediate effects. Furthermore, propionate, butyrate, bCFA and gas were not produced
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in the synbiotic incubations (data not shown), which is in line with the inability of BB-12 to
produce gas and these metabolites, thus confirming sterility of the faecal suspensions.
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Figure 2. Metabolic activity of BB-12 upon dosing fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and
high degree of polymerization (IN1, IN2 and IN3) versus a blank incubation in monocultures. Bars represents the average
changes (±SD) in pH (A), acetate ((B); mM) and lactate ((C); mM) levels between 0 and 6 h (light grey), 6 h and 24 h (dark
grey) and 24 h and 48 h (stripes) as well as changes in Bifidobacterium levels ((D); expressed as the ratio of their absolute
abundance as measured via qPCR at the end versus the beginning of the incubation (48 h/0 h)) (n = 3). Conditions that
have no letter in common are statistically significantly different from one another (p < 0.05). BB-12 = Bifidobacterium animalis
subsp. lactis; SD = standard deviation; OF = oligofructose; IN = inulin.

In consistency with aforementioned metabolic data, growth of the BB-12 strain was
observed for all fructan-type carbohydrates. Strongest stimulatory effects (approximately
factor 150 increase versus start of the incubation) were observed for the oligofructoses (OF1
and OF2), while mildest stimulatory effects were observed with the long-chain inulins
(IN1, IN2 and IN3). Finally, OF/IN1 and OF/IN2 resulted in intermediate enrichments.

3.2. Donor Screening (Experiment 2)

The donor screening of six donors consisted of two types of colonic incubations with
starch as main carbon source, i.e., (1) incubations with sterile fecal suspension of a given
donor in presence of BB-12 to confirm engraftment of BB-12 in background suspension
derived from a certain donor, and (2) incubations with non-sterile fecal suspension of each
donor in absence of BB-12 to investigate the metabolic activity of the fecal microbiota de-
rived from each donor as such. To focus on consistent observations, the averages over the six
donors are presented in Figure 3, while individual data are reported in Figures S1 and S2.
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Figure 3. Metabolic activity of BB-12 in presence of sterile fecal suspension of six donors (‘BB-12′) and of the fecal microbiota
of the six same donors as such (‘FS’) upon dosing starch as carbon source. Bars represents the average changes (±SEM)
in pH (A), gas production (B), acetate ((C); mM), lactate ((D); mM), propionate ((E); mM), butyrate ((F); mM) and bCFA
((G); mM) levels between 0 and 6 h (light grey), 6 h and 24 h (dark grey) and 24 h and 48 h (stripes) as well as changes in
Bifidobacterium levels ((H); expressed as the ratio of their absolute abundance as measured via qPCR at the end versus the
beginning of the incubation (48 h/0 h)) (n = 6). BB-12 = Bifidobacterium animalis subsp. lactis; SEM = standard error of means.

First, BB-12 grew in the fecal background of all donors tested as shown by a reduction
in pH and increase of acetate, lactate and Bifidobacterium spp. levels after 48 h of incubation
(Figure 3). As was observed during experiment 1, propionate, butyrate and bCFA were
not produced in the probiotic incubations, confirming sterility of the fecal suspensions.
Supplementation of BB-12 generated the highest acetate concentrations for donors D and E,
while the lowest acetate levels were observed for donor B (Figure S1). This was in line with
the observations of bifidobacterial growth: while BB-12 was enriched for all donors, the
strongest and mildest increases were observed for donors D/E and donor B, respectively.
Overall, acetate was mainly produced during the 6–24 h timeframe upon supplementing
BB-12. Further, BB-12 produced similar, yet low lactate quantities for all donors in the
incubations with sterile fecal suspension.

Next, the metabolic profiles of the fecal microbiota of all six donors revealed consis-
tently reduced pH together with increased gas production and enhanced production of
acetate, lactate, propionate, butyrate and bCFA (Figure 3). Upon its initial production,
lactate was subsequently consumed. While some minor interindividual differences were
observed, all donors revealed similar metabolic responses (Figure S2). Furthermore, enrich-
ment of the Bifidobacterium population was observed for all donors during the colonic
experiments, with strongest effects observed for donors C and F, while lowest enrichment
was observed for donor E.

Altogether, these data indicate that all donors could be selected for the final experi-
ments. In the end, three representative donors with sufficient interindividual differences
were selected, i.e., donors C (highest butyrate production), donor D (highest acetate pro-
duction) and donor E (lowest bCFA production).

3.3. Fermentation of Fructan-Type Carbohydrates by BB-12 and Complex Microbiota
(Experiment 3)

To characterize the synbiotic potential of the fructan-type carbohydrates in combi-
nation with BB-12 in presence of a complex microbiota, short-term colonic incubations
were performed using the fecal inocula of the three selected donors. Upon performing
16 S-targeted Illumina sequencing coupled with flowcytometry on the samples collected
after 48 h of incubation to obtain absolute numbers, an OTU5 related to Bifidobacterium
animalis, i.e., species to which BB-12 belongs to, was detected in all reactors to which BB-12
was dosed (72 independent reactors), while not being detected in any of the reactors to
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which BB-12 was not dosed (again 72 independent reactors; data not shown). Therefore,
although 16S-targeted Illumina sequencing cannot be considered as a species or strain-
specific detection method in general, detection of OTU5 was considered to reflect the
abundance of BB-12 for this very specific experimental setup. This allowed to conclude that
upon its administration to the complex microbiota, mild enrichment of BB-12 (as reflected
by OTU5) was observed in the probiotic incubations (blank) of donors C (Figure 4A), D
(Figure 4B) and F (Figure 4C). The selective growth of BB-12 was strongly boosted upon
its co-administration with each of the seven fructan-type carbohydrates, as seen by the
significant enrichment compared to the blank incubations for all fructans and for all donors
tested. When averaged over the three donors (Figure 4D), the strongest growth of BB-12
was observed for OF1, followed by OF2 and OF/IN1, OF/IN2, while the mildest growth of
BB-12 was observed for IN1.
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Figure 4. Selective growth of OTU5 (related to Bifidobacterium animalis and upon data analysis reflecting the levels of BB-12)
in presence of a complex microbiota upon dosing BB-12 and fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2)
and high degree of polymerization (IN1, IN2 and IN3) versus a blank incubation. Bars represent the average absolute levels
(cells/mL) of OTU5 after 48 h of colonic incubation for donors C (A), D (B) and F (C) together with the averages over the
three donors (D) (n = 3 for each donor). Results are expressed as average ± SD for the individual donors and average ±
SEM for the average over the donors. Conditions that have no letter in common are statistically significantly different from
one another (p < 0.05). OTU = operational taxonomic unit; BB-12 = Bifidobacterium animalis subsp. lactis; OF = oligofructose;
IN = inulin; SD = standard deviation; SEM = standard error of means.

While addition of BB-12 as such did not alter the pH, acetate, lactate, butyrate or bCFA
levels compared to the blank (Table 2), minor, yet significant increases in gas and propionate
production were observed, mainly due to increases for donor C (Table S1). In contrast,
marked and significant metabolic changes were observed upon dosing the fructan-type
carbohydrates, including reduction of pH values, increased gas production, stimulation of
acetate and lactate levels and decreased bCFA production (Table 2). Similar effects were
observed upon supplementation of OF1, OF2 and OF/IN1, which were characterized by
a more pronounced increase of lactate levels. Treatment with OF/IN2, IN1, IN2 and IN3
on the other hand significantly increased propionate and butyrate levels, coinciding with
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stronger increases in gas production. Some additional changes were observed when BB-12
was co-administered with fructans. Dosing BB-12 together with OF2 further enhanced
acetate levels, while BB-12 treatment together with OF2, OF/IN2 and IN3 further stimulated
propionate production. Finally, BB-12 enhanced butyrate levels upon co-administration
with OF/IN1, IN1 and IN2.

Table 2. Changes in metabolic activity upon dosing BB-12 and/or seven fructans with short (OF1, OF2), intermediate
(OF/IN1, OF/IN2) and high degree of polymerization (IN1, IN2 and IN3) to the complex microbiota of three human donors
(C, D and F). The values represent average differences over the three donors versus the respective reference (for fructans,
the reference was the untreated blank, while for conditions with BB-12 addition this was the respective condition where
BB-12 was not dosed). The data represent the average changes between 0–48 h (except for the intermediate metabolite
lactate where it is the maximal value measured throughout the incubation). Significant changes are indicated in bold (n = 9;
3 values for each of the 3 donors).

Endpoint
Blank OF1 OF2 OF/IN1 OF/IN2 IN1 IN2 IN3

BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12

pH 0.00 −0.93 0.07 −0.97 0.02 −0.86 0.01 −0.78 0.05 −0.68 −0.03 −0.80 0.00 −0.77 0.01
Gas (kPa) 2.4 28.1 2.9 21.5 4.6 30.6 3.3 48.9 −1.3 45.9 1.0 45.0 0.7 43.8 2.2

Acetate (mM) 0.6 20.4 −0.2 20.1 4.3 22.5 1.0 23.6 −0.3 24.6 −2.8 26.3 −4.2 24.5 1.0
Lactate (mM) 0.1 15.1 −0.9 15.1 −1.2 14.1 −1.2 7.8 0.3 7.6 0.5 8.1 0.2 9.2 −0.2

Propionate (mM) 0.4 0.2 0.4 0.6 0.9 1.0 0.1 4.3 1.2 5.5 −0.1 4.4 0.3 3.4 1.2
Butyrate (mM) 0.1 2.4 0.6 0.2 0.3 1.9 1.1 5.5 1.4 5.9 1.4 4.2 1.9 5.6 −0.1

bCFA (mM) 0.1 −2.8 0.0 −2.8 0.0 −2.8 0.1 −2.7 0.0 −2.7 0.1 −2.8 0.1 −2.7 0.1

Finally, quantitative 16S-targeted Illumina sequencing was performed to obtain in-
sights in microbial composition changes upon treatment with BB-12 and/or the different
fructans. Data are presented at phylum (Table 3 for average of the donors and Table S2
shows the data per individual donor) and family level (Table 4 for average of the donors
and Tables S3–S5 for the data at per individual donor), while also the 20 most abundant
OTUs are reported (Table 5 for average of the donors and Tables S6–S8 for the data per
individual donor).

Table 3. Changes of microbial abundances at phylum level (log(cells/mL)) as detected via quantitative 16S-targeted Illumina
sequencing at the end of the colonic incubation (48 h) upon dosing BB-12 and/or seven fructans with short (OF1, OF2),
intermediate (OF/IN1, OF/IN2) and high degree of polymerization (IN1, IN2 and IN3) to the complex microbiota of three
human donors (C, D and F). The values represent average differences versus the respective reference (for fructans, the
reference was the untreated blank, while for conditions with BB-12 addition this was the respective condition where BB-12
was not dosed) at the end of the colonic incubation over the three donors. Significant changes are indicated in bold (n = 9;
3 values for each of the 3 donors).

Phylum
Blank OF1 OF2 OF/IN1 OF/IN2 IN1 IN2 IN3

BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12

Actinobacteria 0.19 0.63 0.30 0.67 0.17 0.64 0.22 0.64 0.26 0.63 0.22 0.58 0.30 0.65 0.27
Bacteroidetes −0.01 −0.54 0.02 −0.52 0.09 −0.45 0.03 −0.09 0.15 0.09 0.02 −0.05 0.02 −0.17 0.13

Firmicutes 0.01 0.10 −0.03 0.19 −0.11 0.01 −0.05 0.20 0.12 0.23 0.06 0.15 0.06 0.11 0.04
Proteobacteria 0.00 −0.04 −0.09 −0.07 −0.14 0.04 −0.08 0.08 −0.08 0.05 −0.03 0.04 −0.05 0.07 −0.04

Verrucomicrobia 0.14 −0.10 −0.02 0.02 0.06 0.04 −0.06 −0.05 0.17 0.05 0.03 0.02 0.16 0.09 0.08
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Table 4. Changes of microbial abundances at family level (log(cells/mL)) as detected via quantitative 16S−targeted Illumina sequencing at the end of the colonic incubation (48 h) upon
dosing BB-12 and/or seven fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization (IN1, IN2 and IN3) to the complex microbiota of three
human donors (C, D and F). The values represent average differences versus the respective reference (for fructans, the reference was the untreated blank, while for conditions with BB-12
addition this was the respective condition where BB-12 was not dosed) at the end of the colonic incubation over the three donors. Significant changes are indicated in bold (n = 9; 3 values
for each of the 3 donors).

Phylum Family
Blank OF1 OF2 OF/IN1 OF/IN2 IN1 IN2 IN3

BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12

Actinobacteria

Bifidobacteriaceae 0.54 1.20 0.29 1.26 0.17 1.05 0.35 1.06 0.38 0.99 0.41 0.94 0.46 0.97 0.46

Coriobacteriaceae −0.10 0.14 0.32 0.16 0.20 0.30 0.09 0.15 0.08 −0.01 0.25 −0.02 0.27 0.16 0.21

Eggerthellaceae −0.02 0.12 0.28 0.08 0.16 0.39 0.05 0.46 0.01 0.42 0.04 0.41 0.08 0.51 0.06

Bacteroidetes

Bacteroidaceae −0.03 −0.82 0.01 −0.82 0.09 −0.58 0.04 −0.13 0.16 0.14 0.03 0.01 0.00 −0.15 0.11

Marinifilaceae 0.10 −0.18 0.03 −0.33 0.24 −0.05 −0.09 −0.13 0.13 −0.23 −0.06 −0.09 0.16 −0.06 0.02

Muribaculaceae 0.09 0.10 −0.05 0.19 −0.04 0.00 0.04 0.08 −0.23 −0.05 −0.04 0.06 0.12 0.08 0.01

Prevotellaceae −0.02 −0.06 0.07 0.28 0.08 −0.08 −0.01 0.03 −0.10 −0.18 0.00 0.12 −0.03 −0.24 0.18

Rikenellaceae −0.07 0.18 0.01 0.21 0.01 0.15 0.00 0.03 0.11 0.03 0.09 0.07 0.07 0.09 0.11

Tannerellaceae −0.03 −1.16 0.01 −1.21 0.05 −0.94 −0.06 −0.90 0.23 −0.93 0.08 −0.88 0.14 −0.84 0.07

Firmicutes

Enterococcaceae 0.06 1.00 −0.14 0.63 0.33 0.52 0.07 0.34 −0.14 0.26 −0.01 0.22 0.03 0.17 0.07

Erysipelotrichaceae −0.04 −0.19 −0.10 −0.20 −0.06 −0.19 −0.08 −0.26 0.34 −0.02 0.17 −0.15 0.34 −0.26 0.49

Lachnospiraceae 0.01 −0.25 −0.07 −0.18 −0.15 −0.25 0.02 0.19 0.03 0.24 −0.08 0.17 −0.01 0.12 0.08

Lactobacillaceae 0.00 2.13 0.12 1.92 0.53 1.71 0.03 0.25 −0.12 0.08 −0.04 0.57 −0.34 0.85 −0.52

Ruminococcaceae 0.01 −0.29 −0.05 −0.35 0.04 −0.36 −0.03 0.11 0.10 0.09 0.16 0.00 0.06 −0.14 0.02

Streptococcaceae 0.13 1.38 −0.05 1.28 0.29 1.28 −0.09 1.11 0.36 1.07 0.07 1.00 0.33 0.97 0.29

Veillonellaceae 0.08 0.08 0.05 0.25 −0.04 0.38 −0.03 0.70 0.02 0.62 0.18 0.67 0.09 0.60 0.05

Proteobacteria

Burkholderiaceae 0.07 0.39 −0.01 0.35 −0.07 0.43 −0.02 0.58 0.01 0.51 0.02 0.49 0.09 0.48 0.14

Desulfovibrionaceae 0.02 −0.29 0.01 −0.15 −0.11 −0.08 0.11 −0.10 −0.07 −0.21 0.20 −0.18 0.04 −0.08 −0.15

Enterobacteriaceae −0.02 −0.20 −0.24 −0.21 −0.26 −0.07 −0.31 −0.21 −0.21 −0.21 −0.11 −0.16 −0.21 −0.14 −0.19

Verrucomicrobia Akkermansiaceae 0.14 −0.10 −0.02 0.02 0.06 0.04 −0.06 −0.05 0.17 0.05 0.03 0.02 0.16 0.09 0.08
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Table 5. Changes of microbial abundances at OTU level (log(cells/mL)) as detected via quantitative 16S-targeted Illumina sequencing at the end of the colonic incubation (48 h) upon
dosing BB-12 and/or seven fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization (IN1, IN2 and IN3) to the complex microbiota of three
human donors (C, D and F). The values represent average differences versus the respective reference (for fructans, the reference was the untreated blank, while for conditions with BB-12
addition this was the respective condition where BB-12 was not dosed) at the end of the colonic incubation over the three donors. For optimal visualization, increases due to treatment are
highlighted with grey shading, with significant changes being indicated in bold (n = 9; 3 values for each of the 3 donors).

Phylum Family OTU# Related Species
Blank OF1 OF2 OF/IN1 OF/IN2 IN1 IN2 IN3

BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12 - BB-12

Actinobacteria

Bifidobacteriaceae
2 B. adolescentis −0.07 1.15 −0.24 1.18 −0.26 0.99 −0.13 1.08 −0.18 1.01 −0.09 0.96 −0.08 0.98 −0.08

5 B. animalis 2.19 0.00 2.99 0.00 2.82 0.00 2.85 0.00 2.81 0.00 2.64 0.00 2.72 0.00 2.73

21 B. longum −0.07 0.98 −0.32 1.06 −0.31 0.76 −0.32 0.51 −0.16 0.43 −0.08 0.48 −0.14 0.48 −0.19

Coriobacteriaceae 20 Collinsella aerofaciens −0.10 0.14 0.32 0.16 0.20 0.29 0.10 0.15 0.07 −0.02 0.26 −0.03 0.28 0.16 0.21

Eggerthellaceae
4 Senegalimassilia sp. 0.01 −0.01 0.15 0.01 0.03 0.07 0.13 0.34 −0.07 0.24 0.01 0.24 0.04 0.29 0.03

7 Ellagibacter
isourolithinifaciens 0.04 0.71 0.23 0.72 0.22 0.96 0.00 0.78 0.06 0.89 −0.05 1.01 −0.11 0.91 0.13

Bacteroidetes
Bacteroidaceae

9 Bacteroides caccae −0.02 −0.40 0.04 −0.48 0.15 −0.27 0.12 0.81 0.09 1.00 −0.01 0.75 0.01 0.46 0.20

6 Bacteroides dorei −0.05 −0.95 0.07 −1.02 0.17 −0.60 0.03 −0.60 0.16 −0.53 −0.01 −0.46 0.07 −0.46 0.08

11 B.uniformis −0.03 −0.72 0.01 −0.71 0.02 −0.71 0.09 0.07 −0.04 0.12 −0.03 −0.11 −0.01 −0.17 −0.05

Rikenellaceae 13 Alistipes onderdonkii −0.08 0.63 0.21 1.10 −0.14 0.71 −0.21 0.16 0.06 0.13 0.04 0.22 −0.05 0.28 −0.04

Firmicutes

Lactobacillaceae 19 Lactobacillus fermentum 0.00 1.94 0.10 1.76 0.56 1.59 0.00 0.18 −0.08 0.02 −0.02 0.47 −0.28 0.81 −0.51

Lachnospiraceae

10 Blautia faecis 0.11 −0.31 0.00 −0.28 −0.03 −0.05 −0.20 0.45 0.05 0.68 −0.15 0.55 −0.12 0.57 −0.07

23 butyrate−producing SR1/5 0.01 0.02 0.01 0.08 −0.03 0.20 −0.13 0.22 0.04 0.25 −0.01 0.30 0.00 0.23 −0.04

16 Dorea longicatena −0.14 −0.26 0.05 −0.41 0.08 −0.30 0.05 −0.23 0.14 −0.16 −0.03 −0.30 0.08 −0.23 0.01

17 Clostridium
bolteae/clostridioforme −0.06 −0.52 0.09 −0.81 −0.02 −0.09 0.05 0.28 0.00 0.21 0.06 0.24 −0.03 0.26 0.01

Ruminococcaceae
12 Faecalibacterium

prausnitzii 0.06 −0.45 0.04 −0.43 −0.03 −0.43 0.02 −0.23 0.31 −0.10 0.14 −0.31 0.06 −0.45 0.22

8 Faecalibacterium
prausnitzii 0.01 0.25 −0.24 0.29 −0.06 0.29 −0.02 1.28 0.05 1.23 0.24 1.09 0.25 0.82 −0.04

Veillonellaceae 18 Dialister succinatiphilus 0.06 0.21 0.05 0.33 −0.07 0.48 −0.06 0.62 0.02 0.57 0.11 0.62 0.01 0.61 0.00

Proteobacteria
Burkholderiaceae 3 Sutterella wadsworthensis 0.06 0.47 −0.13 0.32 0.05 0.47 0.05 1.07 −0.02 1.03 −0.02 0.99 0.01 0.77 0.29

Enterobacteriaceae 1 Escherichia coli −0.02 −0.20 −0.24 −0.21 −0.26 −0.07 −0.31 −0.21 −0.21 −0.21 −0.11 −0.16 −0.21 −0.14 −0.19
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All fructans consistently increased Actinobacteria numbers, with an additional stimu-
latory effect being observed upon co-administration of BB-12. At family level, increased
Actinobacteria numbers were mainly attributed to significant stimulation of Bifidobacteri-
aceae. At the lowest phylogentic level, it was observed that all fructans boosted the growth
of Bifidobacteriaceae OTU2 (related to Bifidobacterium adolescentis) and OTU21 (related to
Bifidobacterium longum), while administration of BB-12 specifically enhanced engraftment
of Bifidobacterium animalis OTU5. Upon the increase of BB-12, Bifidobacteriaceae OTU2 and
OTU21 tended to decrease, suggesting competition with BB-12. All fructans also signifi-
cantly increased levels of Eggerthellaceae OTU7 (related to Ellagibacter isourolithinifaciens)
within the Actinobacteria phylum.

Further, treatment with OF1, OF2 and OF/IN1 significantly reduced Bacteroidetes
numbers, which was attributed to reduction of Bacteroidaceae levels. Co-supplementation
of BB-12 with OF/IN2 on the other hand significantly stimulated Bacteroidaceae numbers.
At OTU level, Bacteroidaceae OTU9 (related to Bacteroides caccae) increased upon supplemen-
tation of the longer fructans (OF/IN2, IN1, IN2 and IN3), while specifically decreasing for
the shorter fructans (OF1, OF2 and OF/IN1). Additionally, Bacteroidaceae OTU11 (related
to Bacteroides uniformis) specifically decreased upon treatment with OF1, OF2 and OF/IN1,
while Bacteroidaceae OTU6 (related to Bacteroides dorei) strongly decreased for all fructans.
Furthermore, all fructan-type carbohydrates decreased Tannerellaceae numbers significantly,
while combination of OF/IN2 and IN2 with BB-12 again allowed stimulated this group.

With respect to Firmicutes numbers, enhanced levels were observed upon treatment
with OF2, OF/IN2 and IN1, while co-administration of OF/IN2 with BB-12 even fur-
ther increased Firmicutes numbers. Overall, all fructans increased Enterococcaceae (except
IN3), Streptococcaceae and Lactobacillaceae (except OF/IN2 and IN1) levels. Streptococcaceae
abundance even increased further upon supplementation of BB-12 in combination with
OF2, OF/IN2 and IN2. Lactobacillaceae levels were most strongly increased for the shorter
fructans (OF1, OF2 and OF/IN1), which was attributed to stimulation of Lactobacillaceae
OTU9 (related to Lactobacillus fermentum). On the other hand, especially longer fruc-
tans (OF/IN2, IN1, IN2 and IN3) significantly increased levels of the butyrate-producing
Lachnospiraceae OTU10 (related to Blautia faecis) and Ruminococcaceae OTU8 (related to
Faecalibacterium prausnitzii).

Finally, no overall changes were observed in Proteobacteria and Verrucomicrobia upon
treatment with the different test products. However, BB-12 decreased Enterobacteriaceae
levels when co-administered with the fructan-type carbohydrates (except for IN1 and IN3),
which was attributed to reduced levels of Enterobacteriaceae OTU1 (related to Escherichia coli).

4. Discussion

This study evaluated combinations of Bifidobacterium animalis subsp. lactis BB-12 with
seven fructans ranging from oligofructose (OF1-OF2; low degree of polymerization (DP)),
mixtures of oligofructose/inulin (OF/IN1-OF/IN2) up to inulin (IN1-IN2-IN3; high DP),
using a combination of monoculture incubations and short-term colonic incubations incor-
porating a simulation of the complex human colon microbiota. The conducted experiments
not only revealed a marked modulation of microbial activity and composition upon fructan
administration but it also pointed out several additional effects due to co-administration
of BB-12.

First, monoculture experiments revealed that the fermentation of fructans by BB-12
was substrate-dependent, with BB-12 most strongly fermenting fructans with low DP
(OF1 and OF2). This followed from the strong growth of BB-12 and strong increase in ac-
etate/lactate levels for OF1 and OF2. Other studies have indeed already demonstrated that
fructan fermentation by BB-12 depends on the molecular structure of the fructan [20,36,37],
with enhanced growth of BB-12 for fructans with low DP [20,38,39]. Furthermore, inability
of BB-12 to metabolize long-chain inulins, has been observed before as well [37,38,40].
Overall, these monoculture-derived data confirmed the potential of developing synbiotic
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combinations between BB-12 and the tested fructan-type carbohydrates, where specifically
selected fructans would support the growth of BB-12.

A peculiar finding was that, in presence of a complex microbiota, fructan admin-
istration boosted the growth of BB-12 for all fructans tested across all three donors (as
measured via abundance of OTU5 that was exclusively detected when BB-12 was dosed).
While being most pronounced for OF1, this effect was also observed for fructans with
high DP that were hardly fermented by BB-12 in monoculture, suggesting that BB-12 has
high potential to compete with the human colon microbiota when fructans are present,
independently of the molecular structure of the fructan. As a potential explanation, when
focusing on the degradation of raftiline, Mueller et al. [20] observed preferential fermen-
tation of shorter fructan fractions. Such fermentation pattern has previously been linked
with intracellular fructan fermentation [41,42]. By importing short oligofructose fractions,
BB-12 could thus have a competitive advantage as opposed to other lactic acid bacteria
that ferment fructans via extracellular mechanisms by which they have to import fructose
that could meanwhile already have been fermented by other gut microbes [43]. While
during monoculture experiments, such oligosaccharides were already present in some
test products as such (OF1-OF2 and to a lesser extent OF/IN1-OF/IN2), in presence of a
mixed microbiota, members of the indigenous microbiota could release oligosaccharides
from long fructans (IN1-IN2-IN3), which BB-12 could then ferment intracellularly. This
could explain the observed competitiveness of BB-12 to grow within the complex colon
microbiota in presence of fructans. As a side remark, the fitness of BB-12 also followed
from the donor screening (experiment 2), where BB-12 was capable to grow on starch in
presence of sterile fecal suspensions of all six donors tested as followed from increased
Bifidobacterium numbers and a reduction in pH due to increased acetate/lactate levels.

Prior to elaborating on the effects of synbiotic administration on the microbial activity
and composition, it has to be noted that treatment with the fructan-type carbohydrates
as such already exerted strong effects. This involved a markedly decreased pH due to
increased production of acetate and lactate, while proteolytic fermentation was lowered.
At community level, the increased production of acidic end-metabolites was associated
with a strong bifidogenic effect, mainly attributed to stimulation of Bifidobacteriaceae OTUs
related to Bifidobacterium adolescentis and Bifidobacterium longum. Strong bifidogenic effects
have indeed been linked with consumption of fructan-type carbohydrates in both in vitro
and in vivo studies (as reviewed by Kolida et al. [44]). Bifidobacterium species are well-
documented primary substrate degraders, able to produce high amounts of acetate and
lactate [45,46]. Several health-promoting properties have been associated with bifidobacte-
ria, including the protection against pathogenic infection in the gastrointestinal tract [47].
Furthermore, both Bifidobacterium longum and Bifidobacterium adolescentis strains have been
correlated with immunomodulatory responses, including reduction of inflammation and
supporting intestinal epithelial barrier integrity [48–50]. Next to strong stimulation of
Bifidobacteriaceae numbers, fermentation of fructan-type carbohydrates resulted in stimula-
tion of the lactate-producing Enterococcaceae, Streptococcaceae and Lactobacillaceae families.
Lactobacillaceae levels were most strongly increased for the fructans categorized by a low
DP (OF1, OF2 and OF/IN1), resulting in a more pronounced stimulation of lactate levels
compared to the fructans with a higher DP. Fermentation of the fructan-type carbohydrates
characterized by a high DP on the other hand more strongly stimulated propionate and
butyrate levels, indicating a product-dependent microbial response. Indeed, Rossi et al. [51]
have shown a different SCFA profile upon supplementing oligofructose and inulin in vitro.
While the major end-metabolites upon fermentation of oligofructose were acetate and
lactate, fermentation of long-chain inulin resulted in high concentrations of butyrate. In
the present study, increased butyrate levels were mainly attributed to the enhancement
of OTUs related to the Blautia faecis and Faecalibacterium prausnitzii. Blautia species have
been shown to exert a key role in fermentation of carbohydrates [52] and are therefore
often associated with a healthy gut microbiome. Furthermore, anti-inflammatory effects
have been attributed to the Blautia genus [53]. Similarly, Faecalibacterium prausnitzii is a
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potent butyrate-producing bacterium with well-documented anti-inflammatory proper-
ties [54]. Like Blautia, this bacterial species has been reported to be reduced in the gut
microbiome of patients suffering from intestinal disorders, including colorectal cancer [55].
Overall, the strong bifidogenic effect as well as stimulation of other health-related bacterial
species stresses the potent prebiotic potential of fructans, with differences in metabolic
response related with the molecular structure of fructans, stressing the importance of
proper selection.

While co-administration of BB-12 with the different fructan-type carbohydrates re-
sulted in similar metabolic effects compared to fructan supplementation, some additional
changes (e.g., increased acetate, propionate and butyrate levels) were observed for specific
synbiotic combinations, indicating that BB-12 was involved in the fermentation process.
Furthermore, when co-administered with fructans, BB-12 decreased Enterobacteriaceae num-
bers, a family known to contain several opportunistic pathogenic species [56], a decrease
that reached statistical significance for most fructans tested. Overall, the observed metabolic
changes and the successful engraftment of the probiotic strain in presence of the prebiotic
fructan-type carbohydrates confirm the synergistic effect of co-administration of BB-12.

As a remark, during a first series of non-reported experiments, in which no back-
ground sterile fecal suspension was co-administered, none of the fructans were fermented
by BB-12. However, when the test was repeated in presence of sterile fecal suspension, each
of the fructan-type carbohydrates were fermented by the BB-12 strain in a product-specific
fashion, indicating that essential co-factors were likely present in the sterile fecal suspen-
sions enabling metabolic activity of BB-12. Overall, this demonstrated the importance
of supplementing essential co-factors when investigating fermentation of substrates in
monocultures.

In conclusion, the combination of in vitro gut models with a novel technique for
quantitative determination of microbiome composition allowed to reveal the synbiotic
potential of fructan-type carbohydrates combined with BB-12. While a strong effect on
microbial activity and composition was demonstrated for fructan administration as such,
co-administration of BB-12 resulted in additional effects including more profound bifi-
dogenic effects, additional production of health-related metabolites and suppression of
opportunistic pathogenic organisms, altogether stressing the potential of synbiotics consist-
ing of fructans with BB-12. While fructans with low DP seem most promising as BB-12 can
ferment them optimally in monoculture, also fructans with higher DP boosted the selective
growth of BB-12 in presence of a mixed microbiota, which was likely due to the release of
oligosaccharides from inulin. As a final remark, in vivo, synbiotic supplements are gener-
ally administered over the course of several days or weeks. Future research could therefore
focus on the effects of repeated administration of the synbiotic formulations to further
elucidate the potential synergistic and stimulatory effects on BB-12 selective growth, health-
related microbial metabolite production and changes in intestinal microbiome composition.
Furthermore, inclusion of the study of host-microbiome interactions could provide further
insight in the potential immune modulation of the synbiotic formulations related with
health benefits [57].

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
417/11/2/598/s1, Figure S1: Metabolic activity of BB-12 in monoculture in presence of sterile fecal
suspension of six donors (A, B, C, D, E and F) upon dosing starch as carbon source, Figure S2:
Metabolic activity of fecal microbiota of the six same donors as such (A, B, C, D, E and F) upon dosing
starch as carbon source, Table S1: Changes in metabolic activity upon dosing BB-12 and/or seven
fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization
(IN1, IN2 and IN3) to the complex microbiota of three human donors (C, D and F), Table S2: Changes
of microbial abundances at phylum level (log(cells/mL)) as detected via quantitative 16S-targeted
Illumina sequencing at the end of the colonic incubation (48 h) upon dosing BB-12 and/or seven
fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization
(IN1, IN2 and IN3) to the complex microbiota of three human donors (C, D and F), Table S3: Changes
of microbial abundances at family level (log(cells/mL)) as detected via quantitative 16S-targeted
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Illumina sequencing at the end of the colonic incubation (48 h) upon dosing BB-12 and/or seven
fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization
(IN1, IN2 and IN3) to the complex microbiota of donor C, Table S4: Changes of microbial abundances
at family level (log(cells/mL)) as detected via quantitative 16S-targeted Illumina sequencing at the
end of the colonic incubation (48 h) upon dosing BB-12 and/or seven fructans with short (OF1,
OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization (IN1, IN2 and IN3) to
the complex microbiota of donor D, Table S5: Changes of microbial abundances at family level
(log(cells/mL)) as detected via quantitative 16S-targeted Illumina sequencing at the end of the colonic
incubation (48 h) upon dosing BB-12 and/or seven fructans with short (OF1, OF2), intermediate
(OF/IN1, OF/IN2) and high degree of polymerization (IN1, IN2 and IN3) to the complex microbiota
of donor F, Table S6: Changes of microbial abundances at OTU level (log(cells/mL)) as detected via
quantitative 16S-targeted Illumina sequencing at the end of the colonic incubation (48 h) upon dosing
BB-12 and/or seven fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and high degree
of polymerization (IN1, IN2 and IN3) to the complex microbiota of donor C, Table S7: Changes
of microbial abundances at family level (log(cells/mL)) as detected via quantitative 16S-targeted
Illumina sequencing at the end of the colonic incubation (48 h) upon dosing BB-12 and/or seven
fructans with short (OF1, OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization
(IN1, IN2 and IN3) to the complex microbiota of donor D, Changes of microbial abundances at
family level (log(cells/mL)) as detected via quantitative 16S-targeted Illumina sequencing at the
end of the colonic incubation (48 h) upon dosing BB-12 and/or seven fructans with short (OF1,
OF2), intermediate (OF/IN1, OF/IN2) and high degree of polymerization (IN1, IN2 and IN3) to the
complex microbiota of donor F.

Author Contributions: Conceptualization, P.V.d.A., M.M., T.B., S.G., Y.B.; methodology, P.V.d.A.;
formal analysis, J.G.; investigation, J.G., A.D.B.; data curation, P.V.d.A., J.G., C.D., A.D.B.; writing—
original draft preparation, C.D., P.V.d.A.; writing—review and editing, P.V.d.A., C.D., T.B., S.G., Y.B.;
supervision, P.V.d.A., M.M.; project administration, M.M.; funding acquisition, S.G., Y.B., T.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Restrictions apply to the availability of these data.

Acknowledgments: The studies described in this manuscript were performed at the request of and
were funded by PepsiCo.

Conflicts of Interest: TB, SG, and YB are employees of PepsiCo. The views expressed in this report
are those of the authors and do not necessarily represent position or policy of PepsiCo, Inc.

References
1. Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani,

P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus
statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [CrossRef] [PubMed]

2. Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert
consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and
appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [CrossRef] [PubMed]

3. Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne,
N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition
and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020. [CrossRef] [PubMed]
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39. Akalin, A.S.; Erişir, D. Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in
low-fat probiotic ice cream. J. Food Sci. 2008, 73, M184–M188. [CrossRef]

40. Bedani, R.; Rossi, E.A.; Isay Saad, S.M. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis
Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food
Microbiol. 2013, 34, 382–389. [CrossRef]

41. Falony, G.; Lazidou, K.; Verschaeren, A.; Weckx, S.; Maes, D.; De Vuyst, L. In vitro kinetic analysis of fermentation of prebiotic
inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl. Environ. Microbiol. 2009, 75, 454–461.
[CrossRef]

42. Van der Meulen, R.; Makras, L.; Verbrugghe, K.; Adriany, T.; De Vuyst, L. In vitro kinetic analysis of oligofructose consumption by
Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Appl. Environ. Microbiol. 2006, 72, 1006–1012.
[CrossRef] [PubMed]

43. Moens, F.; Verce, M.; De Vuyst, L. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli,
bifidobacteria and colon bacteria in the presence of inulin-type fructans. Int. J. Food Microbiol. 2017, 241, 225–236. [CrossRef]
[PubMed]

44. Kolida, S.; Gibson, G.R. Prebiotic capacity of inulin-type fructans. J. Nutr. 2007, 137, 2503s–2506s. [CrossRef] [PubMed]
45. Belenguer, A.; Duncan, S.H.; Calder, A.G.; Holtrop, G.; Louis, P.; Lobley, G.E.; Flint, H.J. Two Routes of Metabolic Cross-Feeding

between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut. Appl. Environ. Microbiol. 2006, 72,
3593–3599. [CrossRef]

46. De Vuyst, L.; Moens, F.; Selak, M.; Rivière, A.; Leroy, F. Summer Meeting 2013: Growth and physiology of bifidobacteria. J. Appl.
Microbiol. 2014, 116, 477–491. [CrossRef]

47. Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al.
Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–547. [CrossRef]

48. Srutkova, D.; Schwarzer, M.; Hudcovic, T.; Zakostelska, Z.; Drab, V.; Spanova, A.; Rittich, B.; Kozakova, H.; Schabussova, I.
Bifidobacterium longum CCM 7952 Promotes Epithelial Barrier Function and Prevents Acute DSS-Induced Colitis in Strictly
Strain-Specific Manner. PLoS ONE 2015, 10, e0134050. [CrossRef]

49. Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.H.; Walsh, S.V.; O’Neil, D.A.; Macfarlane, G.T. Synbiotic therapy (Bifidobac-
terium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled
pilot trial. Gut 2005, 54, 242–249. [CrossRef]

50. Yu, R.; Zuo, F.; Ma, H.; Chen, S. Exopolysaccharide-Producing Bifidobacterium adolescentis Strains with Similar Adhesion
Property Induce Differential Regulation of Inflammatory Immune Response in Treg/Th17 Axis of DSS-Colitis Mice. Nutrients
2019, 11, 782. [CrossRef]

51. Rossi, M.; Corradini, C.; Amaretti, A.; Nicolini, M.; Pompei, A.; Zanoni, S.; Matteuzzi, D. Fermentation of fructooligosaccharides
and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 2005, 71, 6150–6158.
[CrossRef]

52. Sheridan, P.O.; Martin, J.C.; Lawley, T.D.; Browne, H.P.; Harris, H.M.B.; Bernalier-Donadille, A.; Duncan, S.H.; O’Toole, P.W.;
Scott, K.P.; Flint, H.J. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing
human colonic Firmicutes. Microb Genom 2016, 2, e000043. [CrossRef] [PubMed]

http://doi.org/10.1128/AEM.62.10.3668-3672.1996
http://doi.org/10.3920/BM2019.0064
http://doi.org/10.1111/j.1574-6941.2010.00974.x
http://www.ncbi.nlm.nih.gov/pubmed/20946352
http://doi.org/10.1111/j.1365-2672.2004.02409.x
http://www.ncbi.nlm.nih.gov/pubmed/15546407
http://doi.org/10.3390/nu12071917
http://www.ncbi.nlm.nih.gov/pubmed/32610452
http://doi.org/10.4097/kja.d.18.00242
http://www.ncbi.nlm.nih.gov/pubmed/30157585
http://doi.org/10.3923/jm.2014.129.141
http://doi.org/10.1016/j.ijfoodmicro.2016.11.011
http://www.ncbi.nlm.nih.gov/pubmed/27866040
http://doi.org/10.1111/j.1365-2672.2006.02832.x
http://doi.org/10.1111/j.1750-3841.2008.00728.x
http://doi.org/10.1016/j.fm.2013.01.012
http://doi.org/10.1128/AEM.01488-08
http://doi.org/10.1128/AEM.72.2.1006-1012.2006
http://www.ncbi.nlm.nih.gov/pubmed/16461642
http://doi.org/10.1016/j.ijfoodmicro.2016.10.019
http://www.ncbi.nlm.nih.gov/pubmed/27810444
http://doi.org/10.1093/jn/137.11.2503S
http://www.ncbi.nlm.nih.gov/pubmed/17951493
http://doi.org/10.1128/AEM.72.5.3593-3599.2006
http://doi.org/10.1111/jam.12415
http://doi.org/10.1038/nature09646
http://doi.org/10.1371/journal.pone.0134050
http://doi.org/10.1136/gut.2004.044834
http://doi.org/10.3390/nu11040782
http://doi.org/10.1128/AEM.71.10.6150-6158.2005
http://doi.org/10.1099/mgen.0.000043
http://www.ncbi.nlm.nih.gov/pubmed/28348841


Appl. Sci. 2021, 11, 598 19 of 19

53. Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut
Lachnospiraceae. Microorganisms 2020, 8, 573. [CrossRef] [PubMed]

54. Qiu, X.; Zhang, M.; Yang, X.; Hong, N.; Yu, C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory
cytokines in treating TNBS-induced colitis. J. Crohn’s Colitis 2013, 7, e558–e568. [CrossRef] [PubMed]

55. Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with
Colorectal Cancer. PLoS ONE 2012, 7, e39743. [CrossRef] [PubMed]

56. Kang, E.; Crouse, A.; Chevallier, L.; Pontier, S.M.; Alzahrani, A.; Silué, N.; Campbell-Valois, F.X.; Montagutelli, X.; Gruenheid, S.;
Malo, D. Enterobacteria and host resistance to infection. Mamm. Genome 2018, 29, 558–576. [CrossRef]

57. Daguet, D.; Pinheiro, I.; Verhelst, A.; Possemiers, S.; Marzorati, M. Arabinogalactan and fructooligosaccharides improve the gut
barrier function in distinct areas of the colon in the Simulator of the Human Intestinal Microbial Ecosystem. J. Funct. Foods 2016,
20, 369–379. [CrossRef]

http://doi.org/10.3390/microorganisms8040573
http://www.ncbi.nlm.nih.gov/pubmed/32326636
http://doi.org/10.1016/j.crohns.2013.04.002
http://www.ncbi.nlm.nih.gov/pubmed/23643066
http://doi.org/10.1371/journal.pone.0039743
http://www.ncbi.nlm.nih.gov/pubmed/22761885
http://doi.org/10.1007/s00335-018-9749-4
http://doi.org/10.1016/j.jff.2015.11.005

	Introduction 
	Materials and Methods 
	Chemicals and Test Product 
	Strain Preservation and Quality Control 
	Fermentation of Fructans by BB-12 in Monoculture during Short-Term Colonic Incubations (Experiment 1) 
	Donor Screening (Experiment 2) 
	Fermentation of Fructans by BB-12 and Complex Microbiota during Short-Term Colonic Incubations (Experiment 3) 
	Analysis of Microbial Metabolic Activity 
	Analysis of Microbial Community Composition 
	Data and Statistical Analysis 

	Results 
	Fermentation of Fructan-Type Carbohydrates by BB-12 in Monoculture (Experiment 1) 
	Donor Screening (Experiment 2) 
	Fermentation of Fructan-Type Carbohydrates by BB-12 and Complex Microbiota (Experiment 3) 

	Discussion 
	References

