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Abstract: In the time series classification domain, shapelets are subsequences that are discriminative
of a certain class. It has been shown that classifiers are able to achieve state-of-the-art results by
taking the distances from the input time series to different discriminative shapelets as the input.
Additionally, these shapelets can be visualized and thus possess an interpretable characteristic,
making them appealing in critical domains, where longitudinal data are ubiquitous. In this study,
a new paradigm for shapelet discovery is proposed, which is based on evolutionary computation.
The advantages of the proposed approach are that: (i) it is gradient-free, which could allow escaping
from local optima more easily and supports non-differentiable objectives; (ii) no brute-force search
is required, making the algorithm scalable; (iii) the total amount of shapelets and the length of
each of these shapelets are evolved jointly with the shapelets themselves, alleviating the need to
specify this beforehand; (iv) entire sets are evaluated at once as opposed to single shapelets, which
results in smaller final sets with fewer similar shapelets that result in similar predictive performances;
and (v) the discovered shapelets do not need to be a subsequence of the input time series. We present
the results of the experiments, which validate the enumerated advantages.

Keywords: genetic algorithms; time series classification; time series analysis; explainable artificial
intelligence (xAI); data mining

1. Introduction
1.1. Background

Due to the rise of the Internet-of-Things (IoT), a mass adoption of sensors in all
domains, including critical domains such as health care, can be noted. These sensors
produce data of a longitudinal form, i.e., time series. Time series differ from classical
tabular data, since a temporal dependency is present where each value in the time series
correlates with its neighboring values. One important task that emerges from this type
of data is the classification of time series in their entirety. A model able to solve such
a task can be applied in a wide variety of applications, such as distinguishing between
normal brain activity and epileptic activity [1], determining different types of physical
activity [2], or profiling electronic appliance usage in smart homes [3]. Often, the largest
discriminative power can be found in smaller subsequences of these time series, called
shapelets. Shapelets semantically represent intelligence on how to discriminate between
the different targets of a time series dataset [4]. We can use a set of shapelets and the
corresponding distances from each of these shapelets to each of the input time series as
features for a classifier. It has been shown that such an approach outperforms a nearest
neighbor search based on dynamic time warping distance on almost every dataset, which
has been deemed to be the state-of-the-art for a long time [5]. Moreover, shapelets possess
an interpretable characteristic since they can easily be visualized and retraced back to the
input signal, making them very interesting for decision support applications in critical
domains, such as the medical domain. In these critical domains, it is of vital importance
that a corresponding explanation can be provided alongside a prediction, since the wrong
decision can have a significant negative impact.

Sensors 2021, 21, 1059. https://doi.org/10.3390/s21041059 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9531-0623
https://orcid.org/0000-0003-2529-5477
https://orcid.org/0000-0003-4824-1199
https://doi.org/10.3390/s21041059
https://doi.org/10.3390/s21041059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041059
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1059?type=check_update&version=2


Sensors 2021, 21, 1059 2 of 20

1.2. Related Work

Shapelet discovery was initially proposed by Ye and Keogh [6]. Unfortunately, the
initial algorithm quickly becomes intractable, even for smaller datasets, because of its large
computational complexity O(N2M4), with N the number of time series and M the length
of the smallest time series in the dataset). This complexity was improved two years later,
when Mueen et al. [7] proposed an extension to this algorithm that makes use of caching
for faster distance computation and a better upper bound for candidate pruning. These
improvements reduce the complexity to O(N2M3), but have a larger memory footprint.
Rakthanmanon et al. [8] proposed an approximative algorithm, called Fast Shapelets (fs),
that finds a suboptimal shapelet in O(NM2) by first transforming the time series in the
original set to Symbolic Aggregate approXimation (SAX) representations [9]. Although no
guarantee can be made that the discovered shapelet is the one that maximizes a pre-defined
metric, they showed that they are able to achieve very similar classification performances,
empirically on 32 datasets.

All the aforementioned techniques search for a single shapelet that optimizes a certain
metric, such as information gain. Often, one shapelet is not enough to achieve good
predictive performances, especially for multi-class classification problems. Therefore,
the shapelet discovery is applied in a recursive fashion in order to construct a decision
tree. Lines et al. [10] proposed Shapelet Transform (st), which performs only a single pass
through the time series dataset and maintains an ordered list of shapelet candidates, ranked
by a metric, and then finally takes the top-k from this list in order to construct features.
While the algorithm only performs a single pass, the computational complexity still remains
O(N2M4), which makes the technique intractable for larger datasets. Extensions to this
technique have been proposed in the subsequent years, which drastically improved the
performance of the technique [11,12]. Lines et al. [10] compared their technique to 36
other algorithms for time series classification on 85 datasets [13], which showed that their
technique is one of the top-performing algorithms for time series classification and the
best-performing shapelet extraction technique in terms of predictive performance.

Grabocka et al. [4] proposed a technique where shapelets are learned through gradient
descent, in which the linear separability of the classes after transformation to the distance
space is optimized, called Learning Time Series Shapelets (lts). The technique is competi-
tive with st, while not requiring a brute-force search, making it tractable for larger datasets.
Unfortunately, lts requires the user to specify the number of shapelets and the length
of each of these shapelets, which can result in a rather time-intensive hyper-parameter
tuning process in order to achieve a good predictive performance. Three extensions of
lts, which improve the computational runtime of the algorithm, have been proposed
in the subsequent years. Unfortunately, in order to achieve these speedups, predictive
performance had to be sacrificed. A first extension is called Scalable Discovery (sd) [14].
It is the fastest of the three extensions, improving the runtime by two to three orders of
magnitude, but at the cost of having a worse predictive performance than lts on almost
every tested dataset. Second, in 2015, Ultra-Fast Shapelets (ufs) [15] was proposed. It is a
better compromise of runtime and predictive performance, as it is an order of magnitude
slower than sd, but sacrifices less of its predictive performance. The final and most recent
extension is called the Fused LAsso Generalized eigenvector method (flag) [16]. It is the
most notable of the three extensions as it has runtimes competitive with sd, while being
only slightly worse than lts in terms of predictive performance.

Several enhancements to shapelet discovery have recently been investigated as well.
Wang et al. [17] investigated adversarial regularization in order to enhance the interpretabil-
ity of the discovered shapelets. Guillemé et al. [18] investigated the added value of the
location information of the discovered shapelets on top of distance-based information.

Most of the prior work regarding shapelet discovery was performed using univariate
data. However, many real-world datasets are multi-variate. Extending shapelet discovery
algorithm to deal with multi-variate data has therefore been gaining increasing interest
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in the time series analysis domain. Most of the existing works extend the gradient-based
framework of lts [19,20] or perform a brute-force search with sampling [21].

1.3. Our Contribution

This paper is the first to investigate the feasibility of an evolutionary algorithm in
order to discover a set of shapelets from a collection of labeled time series. The aim of the
proposed algorithm, GENetic DIscovery of Shapelets (gendis), is to achieve state-of-the-
art predictive performances similar to the best-performing algorithm, st, with a smaller
number of shapelets, while having a low computational complexity similar to lts.

gendis tries to retain as many of the positive properties from lts as possible such as
its scalable computational complexity, the fact that entire sets of shapelets are discovered
as opposed to single shapelets, and that it can discover shapelets outside the original
dataset. We demonstrate the added value of these two final properties through intuitive
experiments in Sections 3.2 and 3.3, respectively. Moreover, gendis has some benefits over
lts. First, genetic algorithms are gradient-free, allowing for any objective function and
an easier escape from local optima. Second, the total amount of shapelets and the length
of each of these shapelets do not need to be defined prior to the discovery, alleviating the
need to tune these, which could be computationally expensive and may require domain
knowledge. Finally, we show by a thorough comparison, in Section 3.5, that gendis
empirically outperforms lts in terms of predictive performance.

2. Materials and Methods

We first explain some general concepts from the time series analysis and shapelet
discovery domain, on which we will then build further to elaborate our proposed algo-
rithm, gendis.

2.1. Time Series Matrix and Label Vector

The input to a shapelet discovery algorithm is a collection of N time series. For the
ease of notation, we assume that the time series are synchronized and have a fixed length
of M, resulting in an input matrix T ∈ RN×M. It is important to note that gendis could
perfectly work with variable length time series as well. In that case, M would be equal to
the minimal time series length in the collection. Since shapelet discovery is a supervised
approach, we also require a label vector y of length N, with each element yi ∈ {1, . . . , C}
with C the number of classes and yi corresponding to the label of the i-th time series in T .

2.2. Shapelets and Shapelet Sets

Shapelets are small time series that semantically represent intelligence on how to
discriminate between the different targets of a time series dataset. In other words, they
are very similar to subsequences from time series of certain (groups of) classes, while
being dissimilar to subsequences of time series of other classes. The output of a shapelet
discovery algorithm is a collection of K shapelets, S = {s1, . . . , sK}, called a shapelet set.
In gendis, K and the length of each shapelet do not need to be defined beforehand, and
each shapelet can have a variable length, smaller than M. These K shapelets can then be
used to extract features for the time series, as we will explain subsequently.

2.3. Distance Matrix Calculation

Given an input matrix T and a shapelet set S, we can construct a pairwise distance
matrix D ∈ RN×K:

dist(S, T) = D (1)

The distance matrix, D, is constructed by calculating the distance between each (t, s)
pair, where t ∈ T is an input time series and s ∈ S a shapelet from the candidate shapelet
set. This matrix can then be fed to a machine learning classifier. Often, K << M, such that
we effectively reduce the dimension of our data. In order to calculate the distance from a
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shapelet s in S to a time series t from T, we slide the shapelet across the time series and
take the minimum distance:

dist(s, t) = min
1 ≤ i ≤ |t|−|s|

d(s, t[i : i + |s| − 1]) (2)

with d(.) a distance metric, such as the Euclidean distance, and t[i : i + |s| − 1] a slice from
t starting at index i and having the same length as s.

2.4. Shapelet Set Discovery

A conceptual overview of a shapelet discovery algorithm is depicted in Figure 1. The
discovery algorithm tries to find a set of shapelets, S, that produces a distance matrix, D,
that minimizes the loss function, L, of the machine learning technique to which it is fed,
h(.), given the ground truth, y.

min
S
L(h(dist(T , S)), y) (3)

Once shapelets are found, these can be used to transform the time series into features
that correspond to distances from each of the time series to the shapelets in the set. These
features can then be fed to a classifier. It should be noted that both the shapelet discovery
and the classification component can be trained jointly end-to-end. However, in gendis,
these components are decoupled.

Training timeseries

Testing timeseries

Shapelets

Train distances

Shapelet Discovery

Test distances

Classifier

fit

evaluate

fit

transform

transform

Figure 1. A schematic overview of shapelet discovery.

2.5. Genetic Discovery of Interpretable Shapelets

In this paper, we propose a genetic algorithm that evolves a set of variable-length
shapelets, S, in O(NM2), which produces a distance matrix D, based on a collection of
time series T that results in optimal predictive performance when provided to a machine
learning classifier. The intuition behind the approach is similar to lts, which we mentioned
in Section 1.2, but the advantage is that both the size of S (K) and the length of each shapelet
s ∈ S are evolved jointly, alleviating the need to specify the number of shapelets and the
length of each shapelet prior to the extraction. Moreover, the technique is gradient-free,
which allows for non-differentiable objectives and escaping local optima more easily.

2.5.1. Conceptual Overview

The building blocks of a genetic algorithm consist of at least a crossover, mutation,
and selection operator [22]. Additionally, we seed, or initialize, the algorithm with specific
candidates instead of completely random candidates [23] and apply elitism [24] to make
sure the fittest candidate set is never discarded from the population or never experiences
mutations that detriment its fitness.

A conceptual overview of gendis is provided in Figure 2. Initially, a population is
constructed through initialization operators. Afterwards, the individuals in the population
are evolved iteratively to increase their quality. An iteration, or generation, of the algorithm
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first consists of calculating the fitness values for new individuals. When all fitness values
are known, tournament selection is applied to select pairs of individuals or candidates.
These pairs then undergo a crossover to generate new offspring, which are added to the
population. Then, each of the individuals in the population undergoes mutations with a
certain probability. Finally, the fittest individuals are selected from the population, and this
process repeats until convergence or until the stop criteria are met. Each of these operations
are elaborated upon in the following subsections.

Training timeseries

Random

K-Means

candidates

population
Initialization

fitness

Tournament 

selection

crossover

candidate
pairs

population'

offsprings

mutation

candidates offsprings

fittest
individuals

population''

Figure 2. A conceptual overview of GENetic DIscovery of Shapelets (gendis).

2.5.2. Initialization

In order to seed the algorithm with initial candidate sets, we generate P candidate
sets S

′
containing K shapelets, with K a random integer picked uniformly from [2, W], W a

hyper-parameter of the algorithm, and P the population size. K is randomly chosen for
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each individual, and the default value of W is set to be
√

M. These two boundaries are
chosen to be low in order to start with smaller candidate sets and grow them incrementally.
This is beneficial for both the size of the final shapelet set, as well as the runtime of each
generation. For each candidate set we initialize, we randomly pick one of the following
two strategies with equal probability:

Initialization 1. Apply K-means on a set of random subseries of a fixed random length sampled
from T . The K resulting centroids form a candidate set.

Initialization 2. Generate K candidates of random lengths (∈ {4, . . . , max_len}) by sampling
them from T .

max_len is a hyper-parameter that limits the length of the discovered shapelets, in
order to combat overfitting. While Initialization 1 results in strong initial individuals,
Initialization 2 is included in order to increase the population diversity and to decrease the
time required to initialize the entire population.

2.5.3. Fitness

One of the most important components of a genetic algorithm is its fitness function.
In order to determine the fitness of a candidate set S

′
, we first construct D

′
, which is the

distance matrix obtained by calculating the distances between S
′

and T. The goal of our
genetic algorithm is to find an S

′
that produces a D

′
that results in the most optimal predic-

tive performance when provided to a classifier. We measure the predictive performance
directly by means of an error function defined on the predictions of a logistic regression
model and the provided label vector y. When two candidate shapelet sets produce the
same error, the set with the lowest complexity is deemed to be the fittest. The complexity
of a shapelet set is expressed as the sum of shapelet lengths (∑s∈S |s|).

The fitness calculation is the bottleneck of the algorithm. Calculating the distance of
a shapelet with length L to a time series of length M requires (M− L + 1)× L pointwise
comparisons. Thus, in the worst case, O(M2) operations need to be performed per time
series, resulting in a computational complexity of O(NM2). We apply these distance
calculations to each individual representing a collection of shapelets from our population, in
each generation. Therefore, the complexity of the entire algorithm is equal toO(GPKNM2),
with G the total number of generations, P the population size, and K the (maximum)
number of shapelets in the bag each individual of the population represents.

2.5.4. Crossover

We define three different crossover operations, which take two candidate shapelet
sets, S

′
and S

′′
, as the input and produce two new sets, S∗ and S∗∗:

Crossover 1. Apply one- or two-point crossover on two shapelet sets (each with a probability of
50%). In other words, we create two new shapelet sets that are composed of shapelets from both S

′

and S
′′

. An example of this operation is provided in Figure 3.

Crossover 2. Iterate over each shapelet s in S
′
, and apply one- or two-point crossover (again with

a probability of 50%) with another randomly chosen shapelet from S
′′

to create S∗. Apply the same,
vice versa, to obtain S∗∗. This differs from the first crossover operation as the one- or two-point
crossover is performed on individual shapelets as opposed to entire sets. An example of this operation
can be seen in Figure 4.

Crossover 3. Iterate over each shapelet s in S
′
, and merge it with another randomly chosen shapelet

from S
′′

. The merging of two shapelets can be done by calculating the mean (or barycenter) of the two
time series. When two shapelets being merged have varying lengths, we merge the shorter shapelet
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with a random part of the longer shapelet. A schematic overview of this strategy, on shapelets having
the same length, is depicted in Figure 5.

It is possible that all or no techniques are applied on a pair of individuals. Each
technique has a probability equal to the configured crossover probability (pcrossover) of
being applied.

Figure 3. An example of a one-point crossover operation on two shapelet sets.

S' S*
Figure 4. An example of one- and two-point crossover applied on individual shapelets.
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S*

Figure 5. An example of the shapelet merging crossover operation.

2.5.5. Mutations

The mutation operators are a vital part of the genetic algorithm, as they ensure
population diversity and allow escaping from local optima in the search space. They take a
candidate set S

′
as the input and produce a new, modified S∗. In our approach, we define

three simple mutation operators:

Mutation 1. Take a random s ∈ S
′
, and randomly remove a variable amount of data points from

the beginning or ending of the time series.

Mutation 2. Remove a random s ∈ S
′
.

Mutation 3. Create a new candidate using Initialization 2, and add it to S
′
.

Again, all techniques can be applied on a single individual, each having a probability
equal to the configured mutation probability (pmutation).

2.5.6. Selection, Elitism, and Early Stopping

After each generation, a fixed number of candidate sets is chosen based on their fitness
for the next generation. Many different techniques exist to select these candidate sets.
We chose to apply tournament selection with small tournament sizes. In this strategy,
a number of candidate sets is sampled uniformly from the entire population to form
a tournament. Afterwards, one candidate set is sampled from the tournament, where
the probability of being sampled is determined by its fitness. Smaller tournament sizes
ensure better population diversity as the probability of the fittest individual being included
in the tournament decreases. Using this strategy, it is however possible that the fittest
candidate set from the population is never chosen to compete in a tournament. Therefore,
we apply elitism and guarantee that the fittest candidate set is always transferred to the
next generation’s population. Finally, since it can be hard to determine the ideal number of
generations that a genetic algorithm should run, we implemented early stopping where
the algorithm preemptively stops as soon as no candidate set with a better fitness has been
found for a certain number of iterations (patience).
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2.5.7. List of All Hyper-Parameters

We now present an overview of all hyper-parameters included in gendis, along with
their corresponding explanation and default values.

• Maximum shapelets per candidate (W): the maximum number of shapelets in a newly
generated individual during initialization (default:

√
M).

• Population size (P): the total number of candidates that are evaluated and evolved in
every iteration (default: 100).

• Maximum number of generations (G): the maximum number of iterations the algo-
rithm runs (default: 100).

• Early stopping patience (patience): the algorithm preemptively stops evolving when
no better individual has been found for patience iterations (default: 10).

• Mutation probability (pmutation): the probability that a mutation operator gets applied
to an individual in each iteration (default: 0.1).

• Crossover probability (pcrossover): the probability that a crossover operator is applied
on a pair of individuals in each iteration (default: 0.4).

• Maximum shapelet length (max_len): the maximum length of the shapelets in each
shapelet set (individual) (default: M).

• The operations used during the initialization, crossover, and mutation phases are
configurable as well (default: all mentioned operations).

3. Results and Discussion

In the following subsections, we present the setup of different experiments and the
corresponding results in order to highlight the advantages of gendis.

3.1. Efficiency of Genetic Operators

In this section, we assess the efficiency of the introduced genetic operators by evaluat-
ing the fitness as a function of the number of generations using different sets of operators.
It should be noted that our implementation easily allows configuring the number and type
of operators used for each of the different steps in the genetic algorithm, allowing the user
to tune these according to the dataset.

3.1.1. Datasets

We picked six datasets, with varying characteristics, to evaluate the fitness of different
configurations. The chosen datasets and their corresponding properties are summarized in
Table 1.

Table 1. The chosen datasets, having varying characteristics, for the evaluation of the genetic
operators’ efficiency. #Cls = number of Classes, TS_len = length of Time Series, #Train = number of
Training time series, #Test = number of Testing time series.

Dataset #Cls TS_len #Train #Test

ItalyPowerDemand 2 24 67 1029
SonyAIBORobotSurface2 2 65 27 953

FaceAll 14 131 560 1690
Wine 2 234 57 54

PhalangesOutlinesCorrect 2 80 1800 858
Herring 2 512 64 64

3.1.2. Initialization Operators

We first compare the fitness of GENDIS using three different sets of
initialization operators:

• Initializing the individuals with K-means (Initialization 1)
• Randomly initializing the shapelet sets (Initialization 2)
• Using both initialization operations
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Each configuration was tested using a small population (25 individuals), in order to re-
duce the required computational time, for 75 generations, as the impact of the initialization
is highest in the earlier generations. All mutation and crossover operators were used. We
show the average fitness of all individuals in the population in Figure 6. From these results,
we can conclude that the two initialization operators are competitive with each other, as
one operator will outperform the other on several datasets and vice versa on the others.

Figure 6. The fitness as a function of the number of generations, for six datasets, using three different configurations of
initialization operations.

3.1.3. Crossover Operators

We now compare the average fitness of all individuals in the population, as a function
of the number of generations, when configuring GENDIS to use four different sets of
crossover operators:

• Using solely point crossovers on the shapelet sets (Crossover 1)
• Using solely point crossovers on individual shapelets (Crossover 2)
• Using solely merge crossovers (Crossover 3)
• Using all three crossover operations

Each run had a population of 25 individuals and ran for 200 generations. All mutation
and initialization operators were used. As the average fitness is rather similar in the earlier
generations, we truncated the first 50 measurements to better highlight the differences.
The results are presented in Figure 7. As can be seen, it is again difficult to single out an
operation that significantly outperforms the others.
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Figure 7. The fitness as a function of the number of generations, for six datasets, using four different configurations of
crossover operations.

3.1.4. Mutation Operators

The same experiment was performed to assess the efficiency of the mutation operators.
Four different configurations were used:

• Masking a random part of a shapelet (Mutation 1)
• Removing a random shapelet from the set (Mutation 2)
• Adding a shapelet, randomly sampled from the data, to the set (Mutation 3)
• Using all three mutation operations

The average fitness of the individuals, as a function of the number of generations,
is depicted in Figure 8. It is clear that the addition of shapelets (Mutation 3) is the most
significant operator. Without it, the fitness quickly converges to a sub-optimal value. The
removal and masking of shapelets does not seem to increase the average fitness often, but
they are important operators in order to keep the the number of shapelets and the length
of the shapelets small.
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Figure 8. The fitness as a function of the number of generations, for six datasets, using four different configurations of
mutation operations.

3.2. Evaluating Sets of Candidates Versus Single Candidates

A key factor of gendis is that it evaluates entire sets of shapelets (a dependency
between the shapelets is introduced), as opposed to evaluating single candidates inde-
pendently and taking the top-k. The disadvantage of the latter approach is that similar
shapelets will achieve similar values given a certain metric. When entire sets are evaluated,
we can optimize both the quality metric for candidate sets, as the size of each of these
sets. This results in smaller sets with fewer similar shapelets. Moreover, interactions
between shapelets can be explicitly taken into account. To demonstrate these advantages,
we compare gendis to st, which evaluates candidate shapelets individually as opposed
to shapelet sets, on an artificial three-class dataset, depicted in Figure 9. The constructed
dataset contains a large number of very similar time series of Class 0, while having a
smaller number of more dissimilar time series of Classes 1 and 2. The distribution of
time series across the three classes in both the training and test dataset is thus skewed,
with the number of samples in Classes 0, 1, 2 being equal to 25, 5, 5, respectively. This
imbalance causes the independent approach to focus solely on extracting shapelets that
can discriminate Class 0 from the other two, since the information gain will be highest for
these individual shapelets. Clearly, this is not ideal as subsequences taken from the time
series of Class 0 possess little to no discriminative power for the other two classes, as the
distances to the time series from these two classes will be nearly equal.

We extracted two shapelets with both techniques, which allowed us to visualize
the different test samples in a two-dimensional transformed distance space, as shown in
Figure 10. Each axis of this space represents the distances to a certain shapelet. For the
independent approach, we can clearly see that the distances of the samples for all three
classes to both shapelets are clustered near the origin of the space, making it very hard
for a classifier to draw a separation boundary. On the other hand, a very clear separation
can be seen for the samples of the three classes when using the shapelets discovered by
gendis, a dependent approach. The low discriminative power of the independent approach
is confirmed by fitting a logistic regression model with a tuned regularization type and
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strength on the obtained distances. The classifier fitted on the distances extracted by the
independent approach is only able to achieve an accuracy of 0.8286 ( 29

35 ) on the rather
straight-forward dataset. The accuracy score of gendis, a dependent approach, equals 1.0.

Figure 9. The generated training and test set for the artificial classification problem.

Figure 10. The obtained feature representations using a dependent and independent approach.

3.3. Discovering Shapelets Outside the Data

Another advantage of gendis is that the discovery of shapelets is not limited to be a
subseries from T . Due to the nature of the evolutionary process, the discovered shapelets
can have a distance greater than zero to all time series in the dataset. More formally:
∃s ∈ S. ∀t ∈ T. dist(s, t) > 0. While this can be somewhat detrimental concerning inter-
pretability, it can be necessary to get an excellent predictive performance. We demonstrate
this through a very simple, artificial example. Assume we have a two-class classification
problem and are provided two time series per class, as illustrated in Figure 11a. The
extracted shapelet, and the distances to each time series, by a brute-force approach and
a slightly modified version of gendis can be found in Figure 11b. The modification we
made to gendis is that we specifically search for only one shapelet instead of an entire set
of shapelets. We can see that the exhaustive search approach is not able to find a subseries
in any of these four time series that separates both classes, while the shapelet extracted by
gendis ensures perfect separation.

It is important to note here that discovering shapelets outside the data sacrifices
interpretability for an increase in the predictive performance of the shapelets. As the
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operators that are used during the genetic algorithm are completely configurable for
gendis, one can use only the first crossover operation (one- or two-point crossover on
shapelet sets) to ensure all shapelets come from within the data.

(a) The generated dataset. (b) The discovered shapelets.
Figure 11. A two-class problem with two time series per class and the extracted shapelets with
corresponding distances on an ordered line by a brute-force approach versus gendis.

3.4. Stability

In order to evaluate the stability of our algorithm, we compare the extracted shapelets
of two different runs on the ItalyPowerDemand dataset. We set the algorithm to evolve
a large population (100 individuals) for a large number of generations (500) in order to
ensure convergence. Moreover, we limited the maximum number of extracted shapelets
to 10, in order to keep the visualization clear. We then calculated the similarity of the
discovered shapelets between the two runs, using dynamic time warping [25]. A heat map
of the distances is depicted in Figure 12. While the discovered shapelets are not exactly the
same, we can often find pairs that contain the same semantic intelligence, such as a saw
pattern or straight lines.

Figure 12. A pairwise distance matrix between discovered shapelet sets of two different runs.
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3.5. Comparing gendis to fs, st, and lts

In this section, we compare our algorithm gendis to the results from Bagnall et al. [13],
which are hosted online (www.timeseriesclassification.com). In that study, thirty-one
different algorithms, including three shapelet discovery techniques, were compared on
85 datasets. The 85 datasets stem from different data sources and different domains,
including electrocardiogram data from the medical domain and sensor data from the
IoT domain. The three included shapelet techniques are Shapelet Transform (st) [10],
Learning Time Series Shapelets (lts) [4], and Fast Shapelets (fs) [8]. A discussion of all
three techniques can be found in Section 1.2.

For 84 of the 85 datasets, we conducted twelve measurements by concatenating the
provided training and testing data and re-partitioning in a stratified manner, as done in the
original study. Only the “Phoneme” dataset could not be included due to problems with
downloading the data while executing this experiment. On every dataset, we used the
same hyper-parameter configuration for gendis: a population size of 100, a maximum of
100 iterations, early stopping after 10 iterations, and crossover and mutation probabilities
of 0.4 and 0.1, respectively. The only parameter that was tuned for every dataset separately
was the maximum length for each shapelet, to combat overfitting. To tune this, we picked
the length l ∈ [M

4 , M
2 , 3M

4 , M], which resulted in the best logarithmic (or entropy) loss using
three-fold cross-validation on the training set. The distance matrix obtained through the
extracted shapelets of gendis was then fed to a heterogeneous ensemble consisting of a
rotation forest, random forest, support vector machine with a linear kernel, support vector
with a quadratic kernel, and k-nearest neighbor classifier [26]. This ensemble matches
the one used by the best-performing algorithm, st, closely. This is in contrast with fs,
which produces a decision tree, and lts, which learns a separating hyperplane (similar
to logistic regression) jointly with the shapelets. This setup is also depicted schematically
in Figure 13. Trivially, the ensemble will empirically outperform each of the individual
classifiers [27], but it does take a longer time to fit and somewhat takes the focus away
from the quality of the extracted shapelets. Nevertheless, it is necessary to use an en-
semble in order to allow for a fair comparison with st, as that was unfortunately used
by Bagnall et al. [13] to generate their results. To give more insights into the quality of
the extracted shapelets, we also report the accuracies using a Logistic Regression classi-
fier. We tuned the type of regularization (ridge vs. lasso) and the regularization strength
(C ∈ {0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}) using the training set. We recommend that
future research compare their results to those obtained with the logistic regression classifier.

test

train

+ data

test'

train'

Stratified split GENDIS

K-Nearest

Neighbors

Linear SVM

Quadratic SVM

Rotation Forest

Random Forest

Weighted ensemble

Tune length

Figure 13. The evaluation setup used to compare gendis to other shapelet techniques.

The mean accuracy over the twelve measurements of gendis in comparison to the
mean of the hundred original measurements of the three other algorithms, retrieved
from the online repository, can be found in Tables 2 and 3. While a smaller number of
measurements is conducted within this study, it should be noted that the measurements
from Bagnall et al. [13] took over six months to generate. Moreover, accuracy is often not
the most ideal metric to measure the predictive performance. Although it is one of the
most intuitive metrics, it has several disadvantages such as skewness when the data are
imbalanced. Nevertheless, the accuracy metric is the only one allowing for comparison

www.time seriesclassification.com


Sensors 2021, 21, 1059 16 of 20

to related work, as that metric was used in those studies. Moreover, the datasets used are
merely benchmark datasets, and the goal is solely to compare the quality of the shapelets
extracted by gendis to those of st. We recommend to use different performance metrics,
which should be tailored to the specific use case. An example is using the area under the
receiver operating characteristic curve (AUC) in combination with precision and recall for
medical datasets.

Table 2. A comparison between gendis and three other shapelet techniques on 85 datasets. ST, Shapelet Transform; LTS,
Learning Time Series Shapelets; FS, Fast Shapelets; #Cls = number of Classes; TS_len = length of Time Series; #Train =
number of Training time series; #Test = number of Testing time series; #Shapes = number of extracted shapelets by GENDIS.

Dataset #Cls TS_len #Train #Test GENDIS ST LTS FS #ShapesEns LR

Adiac 37 176 390 391 66.2 69.8 76.8 42.9 55.5 39
ArrowHead 3 251 36 175 79.4 82.0 85.1 84.1 67.5 39

Beef 5 470 30 30 51.5 58.8 73.6 69.8 50.2 41
BeetleFly 2 512 20 20 90.6 87.5 87.5 86.2 79.6 42

BirdChicken 2 512 20 20 90.0 90.5 92.7 86.4 86.2 45
CBF 3 128 30 900 99.1 97.6 98.6 97.7 92.4 43
Car 4 577 60 60 82.5 83.0 90.2 85.6 73.6 48

ChlorineConcentration 3 166 467 3840 60.9 57.5 68.2 58.6 56.6 30
CinCECGTorso 4 1639 40 1380 92.1 91.5 91.8 85.5 74.1 57

Coffee 2 286 28 28 98.9 98.6 99.5 99.5 91.7 44
Computers 2 720 250 250 75.4 72.7 78.5 65.4 50.0 38

CricketX 12 300 390 390 73.1 66.6 77.7 74.4 47.9 41
CricketY 12 300 390 390 69.8 64.3 76.2 72.6 50.9 41
CricketZ 12 300 390 390 72.6 65.9 79.8 75.4 46.6 40

DiatomSizeReduction 4 345 16 306 97.4 96.5 91.1 92.7 87.3 45
DistalPhalanxOutlineAgeGroup 3 80 400 139 84.4 83.2 81.9 81.0 74.5 32
DistalPhalanxOutlineCorrect 2 80 600 276 82.4 81.5 82.9 82.2 78.0 32

DistalPhalanxTW 6 80 400 139 76.7 76.0 69.0 65.9 62.3 33
ECG200 2 96 100 100 86.3 86.5 84.0 87.1 80.6 30
ECG5000 5 140 500 4500 94.0 93.8 94.3 94.0 92.2 34

ECGFiveDays 2 136 23 861 99.9 100.0 95.5 98.5 98.6 33
Earthquakes 2 512 322 139 78.4 73.7 73.7 74.2 74.7 44

ElectricDevices 7 96 8926 7711 83.7 77.6 89.5 70.9 26.2 31
FaceAll 14 131 560 1690 94.5 92.6 96.8 92.6 77.2 38

FaceFour 4 350 24 88 93.2 94.1 79.4 95.7 86.9 41
FacesUCR 14 131 200 2050 90.1 89.0 90.9 93.9 70.1 39
FiftyWords 50 270 450 455 72.9 71.8 71.3 69.4 51.2 39

Fish 7 463 175 175 87.0 90.5 97.4 94.0 74.2 50
FordA 2 500 3601 1320 90.8 90.7 96.5 89.5 78.5 37
FordB 2 500 3636 810 89.5 89.8 91.5 89.0 78.3 38

GunPoint 2 150 50 150 96.9 95.7 99.9 98.3 93.0 39
Ham 2 431 109 105 72.9 77.2 80.8 83.2 67.7 37

HandOutlines 2 2709 1000 370 89.7 91.0 92.4 83.7 84.1 41
Haptics 5 1092 155 308 45.2 43.9 51.2 47.8 35.6 55
Herring 2 512 64 64 59.6 61.8 65.3 62.8 55.8 42

InlineSkate 7 1882 100 550 43.8 39.3 39.3 29.9 25.7 58
InsectWingbeatSound 11 256 220 1980 57.3 57.5 61.7 55.0 48.8 36
ItalyPowerDemand 2 24 67 1029 95.6 96.0 95.3 95.2 90.9 31

LargeKitchenAppliances 3 720 375 375 91.0 90.4 93.3 76.5 41.9 33
Lightning2 2 637 60 61 80.9 79.1 65.9 75.9 48.0 39
Lightning7 7 319 70 73 78.2 76.3 72.4 76.5 10.1 39

Mallat 8 1024 55 2345 98.2 97.3 97.2 95.1 89.3 58
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Table 3. A comparison between gendis and three other shapelet techniques on 85 datasets. ST, Shapelet Transform;
LTS,Learning Time Series Shapelets; FS, Fast Shapelets; #Cls = number of Classes; TS_len = length of Time Series; #Train =
number of Training time series; #Test = number of Testing time series; #Shapes = number of extracted shapelets by GENDIS.

Dataset #Cls TS_len #Train #Test GENDIS ST LTS FS #ShapesEns LR

Meat 3 448 60 60 98.7 98.8 96.6 81.4 92.4 48
MedicalImages 10 99 381 760 72.4 68.6 69.1 70.4 60.9 37

MiddlePhalanxOutlineAgeGroup 3 80 400 154 74.4 73.2 69.4 67.9 61.3 30
MiddlePhalanxOutlineCorrect 2 80 600 291 80.7 79.6 81.5 82.2 71.6 30

MiddlePhalanxTW 6 80 399 154 62.2 63.1 57.9 54.0 51.9 37
MoteStrain 2 84 20 1252 86.3 86.6 88.2 87.6 79.3 36

NonInvasiveFatalECGThorax1 42 750 1800 1965 84.7 89.4 94.7 60.0 71.0 41
NonInvasiveFatalECGThorax2 42 750 1800 1965 87.1 92.3 95.4 73.9 75.8 37

OSULeaf 6 427 200 242 76.2 75.8 93.4 77.1 67.9 45
OliveOil 4 570 30 30 86.1 88.8 88.1 17.2 76.5 53

PhalangesOutlinesCorrect 2 80 1800 858 80.8 78.7 79.4 78.3 73.0 30
Plane 7 144 105 105 99.2 99.3 100.0 99.5 97.0 34

ProximalPhalanxOutlineAgeGroup 3 80 400 205 84.1 83.9 84.1 83.2 79.7 32
ProximalPhalanxOutlineCorrect 2 80 600 291 86.2 85.7 88.1 79.3 79.7 30

ProximalPhalanxTW 6 80 400 205 81.7 80.2 80.3 79.4 71.6 31
RefrigerationDevices 3 720 375 375 68.6 62.4 76.1 64.2 57.4 34

ScreenType 3 720 375 375 52.8 52.8 67.6 44.5 36.5 37
ShapeletSim 2 500 20 180 100.0 100.0 93.4 93.3 100.0 34

ShapesAll 60 512 600 600 79.6 79.3 85.4 76.0 59.8 44
SmallKitchenAppliances 3 720 375 375 74.3 74.2 80.2 66.3 33.3 37
SonyAIBORobotSurface1 2 70 20 601 96.0 95.6 88.8 90.6 91.8 34
SonyAIBORobotSurface2 2 65 27 953 88.6 87.0 92.4 90.0 84.9 34

StarLightCurves 3 1024 1000 8236 95.9 95.3 97.7 88.8 90.8 30
Strawberry 2 235 613 370 95.2 95.1 96.8 92.5 91.7 34

SwedishLeaf 15 128 500 625 88.7 87.7 93.9 89.9 75.8 37
Symbols 6 398 25 995 93.4 92.5 86.2 91.9 90.8 43

SyntheticControl 6 60 300 300 98.8 98.7 98.7 99.5 92.0 39
ToeSegmentation1 2 277 40 228 92.0 90.7 95.4 93.4 90.4 40
ToeSegmentation2 2 343 36 130 93.1 90.6 94.7 94.3 87.3 36

Trace 4 275 100 100 100.0 99.9 100.0 99.6 99.8 25
TwoLeadECG 2 82 23 1139 95.8 96.6 98.4 99.4 92.0 36
TwoPatterns 4 128 1000 4000 95.8 93.1 95.2 99.4 69.6 33

UWaveGestureLibraryAll 8 945 896 3582 94.9 94.8 94.2 68.0 76.6 44
UWaveGestureLibraryX 8 315 896 3582 80.2 77.9 80.6 80.4 69.4 42
UWaveGestureLibraryY 8 315 896 3582 71.5 69.5 73.7 71.8 59.1 40
UWaveGestureLibraryZ 8 315 896 3582 74.4 72.2 74.7 73.7 63.8 42

Wafer 2 152 1000 6164 99.4 99.3 100.0 99.6 98.1 24
Wine 2 234 57 54 86.5 86.4 92.6 52.4 79.4 39

WordSynonyms 25 270 267 638 68.4 62.8 58.2 58.1 46.1 42
Worms 5 900 181 77 65.6 59.9 71.9 64.2 62.2 47

WormsTwoClass 2 900 181 77 74.1 69.1 77.9 73.6 70.6 50
Yoga 2 426 300 3000 83.3 80.2 82.3 83.3 72.1 40

For each dataset, we also performed an unpaired Student t-test with a cutoff value of
0.05 to detect statistically significant differences. When the performance of an algorithm
for a certain dataset is statistically better than all others, it is indicated in bold. From these
results, we can conclude that fs is inferior to the three other techniques, while st most
often achieves the best performance, but at a very high computational complexity.

The average number of shapelets extracted by gendis is reported in the final column.
The number of shapelets extracted by st in the original study equals 10×N. Thus, the total
number of shapelets used to transform the original time series to distances is at least an
order of magnitude less when using gendis. In order to compare the algorithms across all
datasets, a Friedman ranking test [28] was applied with a Holm post-hoc correction [29,30].
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We present the average rank of each algorithm using a critical difference diagram, with
cliques formed using the results of the Friedman test with a Holm post-hoc correction at a
significance cutoff level of 0.1 in Figure 14. The higher the cutoff level, the less probable
it is to form cliques. For gendis, both the results obtained with the ensemble and with
the logistic regression classifier are used. From this, we can conclude that there is no sta-
tistical difference between st and gendis, while both are statistically better than fs and lts.

Figure 14. A critical difference diagram of the four evaluated shapelet discovery algorithms with a
significance level of 0.1.

4. Conclusions and Future Work

In this study, an innovative technique, called gendis, was proposed to extract a
collection of smaller subsequences, i.e., shapelets, from a time series dataset that are very
informative in classifying each of the time series into categories. gendis searches for this
set of shapelets through evolutionary computation, a paradigm mostly unexplored within
the domain of time series classification, which offers several benefits:

• evolutionary algorithms are gradient-free, allowing for an easy configuration of the
optimization objective, which does not need to be differentiable

• only the maximum length of all shapelets has to be tuned, as opposed to the number
of shapelets and the length of each shapelet, due to the fact that gendis evaluates
entire sets of shapelets

• easy control over the runtime of the algorithm
• the possibility of discovering shapelets that do not need to be a subsequence of the

input time series

Moreover, the proposed technique has a computational complexity that is multiple
orders of magnitude smaller (O(GPKNM2) vs. O(N2M4)) than the current state-of-the-
art, st, while outperforming it in terms of predictive performance, with much smaller
shapelet sets.

We demonstrate these benefits through intuitive experiments where it was shown that
techniques that evaluate single candidates can perform subpar on imbalanced datasets
and how sometimes the necessity arises to extract shapelets that are not subsequences of
input time series to achieve good separation. In addition, we compare the efficiency of the
different genetic operators on six different datasets and assess the algorithm’s stability by
comparing the output of two different runs on the same dataset. Moreover, we conduct an
extensive comparison on a large amount of datasets to show that gendis is competitive to
the current state-of-the-art while having a much lower computational complexity.

Several interesting directions can be identified for further research. First, optimizations
in order to decrease the required runtime for gendis can be implemented, which would
allow gendis to evolve larger populations in a similar amount of time. One significant
optimization is to express the calculation of distances, one of the bottlenecks of gendis,
algebraically in order to leverage GPU technologies. Second, further research on each of the
operators within gendis can be performed. While we clearly demonstrated the feasibility
of a genetic algorithm to achieve state-of-the-art performances with the operators discussed
in this work, the amount of available research within the domain of time series analysis is
growing rapidly. New insights from this domain can continuously be integrated within
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gendis. As an example, new time series clustering algorithms could be integrated as
initialization operators of the genetic algorithm. Finally, it could be very valuable to extend
gendis to work with multivariate data and to discover multivariate shapelets. This would
require a different representation of the individuals in the population and custom genetic
operators.
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