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Appendix A Dimensionless equations6

The governing equations are made dimensionless by introducing characteristic scales for7

the physical variables (dimensionless variables are denoted with asterisk):8

(G, H) = ! (G∗, H∗); (D, E) = * (D∗, E∗); Z = �"2 Z
∗; � =

U*2^E

FB
2 �∗; C = f−1C∗;

(I, ℎ) = � (I∗, ℎ∗); (`, _) = f!2 (`∗, _∗); A = (f�)A∗; V = V∗; 5 = f 5 ∗. (A.1)

The characteristic scales include the length ! of the basin, the tidally and width-averaged wa-9

ter depth at the open boundary �, the width-averaged water level amplitude at the open bound-10

ary �"2 and the angular frequency f of the semidiurnal tide. The velocity scale follows from11

the continuity equation (2.1a) in the main text and reads* = f�"2!/�, while the friction scale12

and Coriolis scale follow from the momentum equation. Assuming an approximate balance be-13

tween erosion and deposition, the depth-integrated suspended sediment concentration is scaled14

with the ratio of the typical scale of the erosion term (U*2) and the proportionality constant of15

the deposition term (FB2/^E ).16

The dimensionless equations for the water motion read17

Z∗C∗ + ®∇∗ · [(1 − ℎ∗) ®D∗] = 0, (A.2a)

(1 − ℎ∗ + ℎ∗0)
[
®D∗C∗ + [∗

−2 ®∇∗Z∗ + ®5 ∗2
]
+ A∗ ®D∗ = ®0, (A.2b)

where the momentum equation has been multiplied with (1− ℎ∗ + ℎ∗0), i.e. the local tidally av-18

eraged water depth, adjusted with ℎ∗0 = ℎ0/�. As mentioned before, the parameter ℎ∗0 is intro-19

duced to ensure that the bottom friction term remains bounded if the water depth goes to zero.20

The parameter [∗ = (f!) /
√
6� in (A.2b) is, apart from a factor 2c, the ratio of the estuary21

length, !, and the frictionless tidal wavelength in a straight channel without tidal flats, !6 = 2c
√
6�/f.22

The vector ®5 ∗2 is defined as ®52
∗
= (− 5 ∗E∗, 5 ∗D∗)T, which can also be formulated as the dot prod-23

uct ®52
∗
= F · ®D∗ of the velocity vector ®D∗ = (D∗, E∗)T and the matrix F =

[
0 − 5
5 0

]
.24

The dimensionless concentration equation becomes25
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0∗
[
�∗C∗ − ®∇∗ ·

(
`∗ ®∇∗�∗ + `∗Λ∗V∗�∗ ®∇∗ℎ∗

)]
= | ®D∗ |2 − V∗�∗. (A.3)

Here 0∗ = f^E
FB

2 is the ratio of the time scale of the deposition process over the tidal time scale26

and Λ∗ = FB�

^E
is the sediment Peclet number. The dimensionless deposition parameter V∗ can27

be written in terms of dimensionless variables as28

V∗ =
[
1 − 4−Λ∗ (1−ℎ∗+ℎ∗0)

]−1
. (A.4)

Finally, the scaled bed evolution equation is given by29

ℎ∗g∗ = −
〈
| ®D∗ |2 − V∗�∗

〉
+ X−1_∗∇∗2ℎ∗

= −®∇∗ ·
〈
− X−1_∗ ®∇∗ℎ∗︸          ︷︷          ︸

®@∗bl

−0∗`∗ ®∇∗�∗︸        ︷︷        ︸
®@∗diff

−0∗`∗Λ∗V∗�∗ ®∇∗ℎ∗︸                   ︷︷                   ︸
®@∗topo

〉
,

= −®∇∗ · 〈 ®@∗〉 (A.5)

with g∗ = XC∗, where X = U*2/[f�dB (1 − ?)] is the ratio of the tidal period and the slow30

morphodynamic timescale.31

The dimensionless sediment transport ®@∗ consists of bedslope effects of bedload transport,32

as well as diffusive and topographically induced diffusive contributions to the suspended sedi-33

ment transport:34

®@∗ = ®@∗bl + ®@
∗
diff + ®@

∗
topo. (A.6)

The dimensionless boundary conditions read35

Z∗ = �∗"2
cos(C∗ − \"2 ) for (G∗, H∗) ∈ Γ>, (A.7a)〈

| ®D∗ |2 − V∗�∗
〉
= 0 for (G∗, H∗) ∈ Γ>, (A.7b)

ℎ∗ = 0 at Γ>, (A.7c)

(1 − ℎ∗) ®D∗ · ®= = 0 for (G∗, H∗) ∈ Γ2 , (A.7d)〈
X−1_∗ ®∇∗ℎ∗ + 0∗`∗ ( ®∇∗�∗ + Λ∗V∗�∗ ®∇∗ℎ∗)

〉
· ®= = 〈 ®@∗〉 · ®= = 0 for (G∗, H∗) ∈ Γ2 , (A.7e)

where �∗
"2

= �"2/�"2 . Note that �"2 and \"2 depend on the G∗ and H∗ coordinates at the36

open seaward boundary Γ>.37
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Appendix B Relative importance of advective processes38

B.1 Depth-averaged shallow water equations39

If the nonlinear terms, including the advective ones, were taken into account in the con-40

tinuity and momentum equations, the dimensionless equations (A.2a) and (A.2b) need to be mod-41

ified as follows:42

Z∗C∗ + ®∇∗ · [(1 − ℎ∗ + nZ∗) ®D∗] = 0, (B.1a)

(1 − ℎ∗ + nZ∗ + ℎ∗>)
[
®D∗C∗ + n ( ®D∗ · ®∇∗) ®D∗ + [∗

−2 ®∇∗Z∗ + ®5 ∗2
]
+ A∗ ®D∗ = 0, (B.1b)

in which the nonlinear terms are found to be scaled with the small parameter n = *
f!

=
�"2
�

43

(∼ 0.1, see Table 1 in the main text). This shows that the nonlinear terms are an order of mag-44

nitude smaller than the terms of O(1).45

B.2 Depth-integrated concentration equation46

If advective transport of suspended sediment were taken into account, the dimensionless47

equation (A.3) for the depth-integrated concentration needs to be modified as follows:48

0∗
[
�∗C∗ + ®∇∗ ·

(
n ®D∗�∗ − `∗ ®∇∗�∗ − `∗Λ∗V∗�∗ ®∇∗ℎ∗

)]
= | ®D∗ |2 − V∗�∗, (B.2)

in which the advective transport is scaled with the small parameter n , while the diffusive trans-49

port is scaled with the parameter `∗ = `

f!2 (∼ 0.003, see Table 1 in main text). Hence, advec-50

tive transport is (∼ 30 times) more important than diffusive transport in the time-dependent equa-51

tion for the instantaneous depth-integrated concentration.52

B.3 Tidally averaged total sediment transport53

If advective transport of suspended sediment concentration were taken into account, the54

dimensionless total sediment transport ®@∗ in eq. (A.6) gets an extra advective contribution:55

®@∗ = ®@∗bl + ®@
∗
diff + ®@

∗
topo + ®@∗adv , (B.3)

and the dimensionless bed evolution eq. (A.5) would read as follows:56

ℎ∗g∗ = −®∇∗ ·
〈
− X−1_∗ ®∇∗ℎ∗︸          ︷︷          ︸

®@∗bl

−0∗`∗ ®∇∗�∗︸        ︷︷        ︸
®@∗diff

−0∗`∗Λ∗V∗�∗ ®∇∗ℎ∗︸                   ︷︷                   ︸
®@∗topo

+ 0∗n ®D∗�∗︸       ︷︷       ︸
®@∗adv

〉
,

= −®∇∗ · 〈 ®@∗〉 (B.4)

For short tidal inlet systems considered in this paper, the length is much smaller than the57

frictionless tidal wavelength. In this case, the parameter [∗ = (f!) /
√
6� (∼ 0.2, see Table 158

in main text) is much smaller than one and the momentum equation (eq. A.2b) reduces in good59

approximation to ®∇∗Z∗ = ®0. This implies that at every moment in time, the free sea surface in60

the basin is spatially uniform and equal to the surface elevation imposed at the open boundary61
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(eq. A.7a), see De Vriend and Ribberink (1996); Schuttelaars and de Swart (1996); Ter Brake and62

Schuttelaars (2011). The basin is then said to be in a “pumping mode”.63

Similar to the scaling analysis presented by Schuttelaars and de Swart (1996); de Swart and64

Blaas (1998); Ter Brake and Schuttelaars (2010, 2011), it is further explained in this Appendix65

how the various contributions to the (tidally-averaged) total sediment transport scale.66

To this end, approximate solutions to the (dimensionless) equations governing the water67

motion and sediment transport in pumping mode are obtained, by expanding the velocity and depth-68

integrated concentration, as well as the deposition parameter, in the small parameter n :69

®D∗ = ®D∗0 + n ®D
∗
1 + · · · , (B.5a)

�∗ = �∗0 + n�
∗
1 + · · · , (B.5b)

V∗ = V∗0 + n V
∗
1 + · · · . (B.5c)

By inserting the expansions up to the first-order terms in the governing equations, sepa-70

rate expressions can be derived which govern the zeroth-order unknowns (®D∗0 and �
∗
0) and the first-71

order unknowns (®D∗1 and �
∗
1).72

Using the pumping mode assumption, the zeroth-order velocity follows from the continu-73

ity equation (A.2a) and the leading-order vorticity equation (see Ter Brake and Schuttelaars (2011)).74

Using the boundary conditions eqs. (A.7a) and (A.7d), it follows that the leading-order water mo-75

tion only consists of an "2 tidal constituent.76

The zeroth-order depth-integrated sediment concentration follows from:77

0∗
[ (
�∗0

)
C∗ − ®∇

∗ ·
(
`∗ ®∇∗�∗0 + `

∗Λ∗V∗0�
∗
0
®∇∗ℎ∗

)]
= | ®D∗0 |

2 − V∗0�
∗
0 . (B.6)

Since the leading-order solution �∗0 is only forced by | ®D∗0 |
2, it follows that it consists of a78

residual contribution and a contribution with a period twice that of the "2 tide. As a consequence,79

the tidally averaged advective transport
〈
®D∗0�

∗
0
〉
= 0.80

Similarly, expressions can be derived for the first-order velocity ®D∗1 and the depth-integrated81

concentration �∗1 . Careful analysis shows that the first-order velocity consists of a residual and82

an "4 component, while the first-order depth-integrated concentration has an "2 component.83

When inserting the expansions of ®D∗, �∗, and V∗ up to first order in the small parameter n84

into the bed evolution equation, the leading-order terms of the various contributions to the tidally-85

averaged total sediment transport read:86

–4–



manuscript submitted to JGR: Earth Surface

〈
®@∗bl

〉
= −X−1_∗ ®∇∗ℎ∗ , (B.7a)〈

®@∗diff
〉
= −0∗`∗ ®∇∗

〈
�∗0

〉
, (B.7b)〈

®@∗topo
〉
= −0∗`∗Λ∗V∗0

〈
�∗0

〉 ®∇∗ℎ∗, (B.7c)

〈
®@∗adv

〉
= 0∗n 〈®D∗�∗〉 = 0∗n


〈
®D∗0�

∗
0
〉︸  ︷︷  ︸

=0

+n
( 〈
®D∗0�

∗
1
〉
+

〈
®D∗1�

∗
0
〉 ) ,

= 0∗n2 (〈
®D∗0�

∗
1
〉
+

〈
®D∗1�

∗
0
〉)
. (B.7d)

For a short basin (pumping mode), the tidal averages of the correlations ®D∗0�
∗
1 and ®D∗1�

∗
0 scale87

with 0∗ (since the temporal parts of the concentrations contain 0∗), resulting in a tidally-averaged88

advective transport that is proportional to 0∗2n2 (Schuttelaars & de Swart, 1996; Ter Brake & Schut-89

telaars, 2010).90

From the foregoing expressions, the order of magnitude of the different contributions to91

the total sediment transport 〈 ®@∗〉 can be estimated, using the typical values for the tidal inlet sys-92

tems we consider (see Table 1 in the main text):93

•
〈
®@∗bl

〉
scales as X−1_∗ = f�d(1−?)

U*2
_

f!2 =
�

3
d(1−?)_

U�"2
2
f2!4

∼ 1 × 10−6,94

•
〈
®@∗diff

〉
scales as 0∗`∗ = f^E

F2
B

`

f!2 =
^E `

F2
B !

2 ∼ 2 × 10−4,95

• Since Λ∗ = FB�

^E
∼ 1.5 and ℎ∗> ∼ 0.4, it follows that V∗0 is in the range 1.1 to 2.2 for ℎ∗96

varying between 0 and 1. Consequently,
〈
®@∗topo

〉
scales as 0∗`∗Λ∗V∗0 ∼ (3 to 7) × 10−4,97

•
〈
®@∗adv

〉
scales as

(
f^E

F2
B

�"2
�

)2
∼ 4 × 10−5.98

Despite the fact that instantaneous advective transport dominates diffusive transport in the99

depth-integrated concentration equation (section B.2), the foregoing scaling analysis of the tidally100

averaged total sediment transport 〈 ®@∗〉 shows that the tidally averaged advective contribution
〈
®@∗adv

〉
101

is an order of magnitude smaller than the tidally averaged diffusive contributions, confirming that102

tidally averaged diffusive transport is dominant for short tidal inlet systems.103

This conclusion is also supported by results presented in van Leeuwen and de Swart (2001);104

Chapter 3 of van Leeuwen (2002); van Leeuwen and de Swart (2004). In these papers, it is shown105

that for the parameter values used in our paper, the tidally averaged sediment transport is dom-106

inated by diffusive transport, with advective transport resulting in a correction on the diffusive107

transport, see Figure 3.10 in van Leeuwen (2002), where it is shown that the divergence of the108

tidally advective transport is approximately a factor 10 smaller than that of the diffusive trans-109

port. A similar figure is found in van Leeuwen and de Swart (2001). In their 2004 paper, they110

show that the growth rates of the bed patterns, obtained with the idealised and the numerical (Delft3D)111

model show a very good correspondence (see Figs. 8 and 9 in van Leeuwen and de Swart (2004)),112

implying that the dynamics is well-captured by the idealised model and hence that also in the Delft3D113

model the bottom changes are dominated by convergences and divergences of tidally averaged114

diffusive transports.115
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B.4 Conclusions116

In this Appendix, the relative importance of advective processes has been investigated for117

the short tidal inlet systems considered in this work.118

Section B.1 demonstrated that the nonlinear terms, including the advective ones, can as a119

first approximation be neglected from the depth-averaged shallow water equations. Therefore,120

no nonlinear terms are accounted for in eq. (2.1a) and (2.1b) of the main text.121

Section B.3 has shown that the advective contribution to the tidally averaged suspended sed-122

iment transport is an order of magnitude smaller than the diffusive contributions. Since the main123

focus of this paper is on the identification of morphodynamic equilibria, and the latter only de-124

pend on the tidally averaged sediment transport, the advective transport term is not included in125

the depth-integrated suspended sediment concentration equation (2.3) in the main text, despite126

the fact that section B.2 has shown advective transport to dominate diffusive transport in the time-127

dependent concentration equation. Note that the tidally averaged depth-integrated concentrations128

shown in (Figures 5 and 10 of) the main text follow from an approximate balance between ero-129

sion and deposition, which implies that advection (neglected in eq. (2.3)) and diffusion (included130

in eq. (2.3)) only modify it.131

Since the advective contribution to the tidally averaged suspended sediment transport is dis-132

carded, there is no need for O(n1) velocities, ®D∗1, yielding an additional reason for not including133

the advective acceleration term in the momentum equation (2.1b).134
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Appendix C Linearised dimensionless equations in variational form135

The nonlinear system of equations is solved numerically using a fixed-point method (New-136

ton’s method), formulated at the partial differential equation (PDE) level. The asterisk notation137

has been omitted to simplify the notation. Given an initial guess for the solution of each of the138

variables j0 we seek a small perturbation Xj, such that j = j0 + Xj fulfills the nonlinear sys-139

tem of PDEs. Note that for the bed level ℎ0 is the intitial guess, while ℎ0 is a parameter to assure140

the friction term remains finite. Using equations (2.12) and (2.13) in the main text, the system141

of equations then becomes142

XZB1 + ®∇ ·
[
(1 − ℎ0) X ®D21 − Xℎ ®D 0

21

]
= −Z0

B1 − ®∇ ·
[
(1 − ℎ0) ®D 0

21
]
, (C.1a)

− XZ21 + ®∇ ·
[
(1 − ℎ0) X ®DB1 − Xℎ ®D 0

B1

]
= Z0

21 − ®∇ ·
[
(1 − ℎ0) ®D 0

B1
]
, (C.1b)

(1 − ℎ0 + ℎ0)
(
X ®DB1 + [−2 ®∇XZ21 + F · X ®D21

)
− Xℎ

(
®D 0
B1 + [

−2 ®∇Z0
21 + F · ®D 0

21

)
+ AX ®D21 = −(1 − ℎ0 + ℎ0)

(
®D 0
B1 + [

−2 ®∇Z0
21 + F · ®D 0

21

)
− A ®D 0

21, (C.1c)

(1 − ℎ0 + ℎ0)
(
−X ®D21 + [−2 ®∇XZB1 + F · X ®DB1

)
− Xℎ

(
−®D 0

21 + [
−2 ®∇Z0

B1 + F · ®D 0
B1

)
+ AX ®DB1 = −(1 − ℎ0 + ℎ0)

(
−®D 0

21 + [
−2 ®∇Z0

B1 + F · ®D 0
B1

)
− A ®D 0

B1, (C.1d)

− 0` ®∇ ·
[
®∇X 〈� 〉 + Λ

(
XV

〈
�0〉 ®∇ℎ0 + V0X 〈� 〉 ®∇ℎ0 + V0 〈

�0〉 ®∇Xℎ)]
− ®D 0

21 · X
®D21 − ®D 0

B1 · X
®DB1 + XV

〈
�0〉 + V0X 〈� 〉

= 0` ®∇ ·
(
®∇

〈
�0〉 + ΛV0 〈

�0〉 ®∇ℎ0
)
+ 1

2

(
| ®D 0
21 |

2 + | ®D 0
B1 |

2
)
− V0 〈

�0〉 , (C.1e)

− 0` ®∇ ·
[
®∇X 〈� 〉 + Λ

(
XV

〈
�0〉 ®∇ℎ0 + V0X 〈� 〉 ®∇ℎ0 + V0 〈

�0〉 ®∇Xℎ)] − _∇2Xℎ

= 0` ®∇ ·
(
®∇

〈
�0〉 + ΛV0 〈

�0〉 ®∇ℎ0
)
+ _∇2ℎ0, (C.1f)

with

V0 =
1

1 − 4−Λ(1−ℎ0+ℎ0)
, XV = Xℎ

Λ4−Λ(1−ℎ
0+ℎ0)(

1 − 4−Λ(1−ℎ0+ℎ0)
)2 . (C.2)

The dimensionless boundary conditions then become143

XZ21 = 0 at Γ> (C.3a)

XZB1 = 0 at Γ> (C.3b)

®D 0
21 · X

®D21 + ®D 0
B1 · X

®DB1 − XV
〈
�0〉 − V0X 〈� 〉 = 0 for (G, H) ∈ Γ>, (C.3c)

Xℎ = 0 at Γ>, (C.3d)[
(1 − ℎ0) X ®D21 − Xℎ ®D0

21

]
· ®= = 0 for (G, H) ∈ Γ2 , (C.3e)[

(1 − ℎ0) X ®DB1 − Xℎ ®D0
B1

]
· ®= = 0 for (G, H) ∈ Γ2 , (C.3f)[

0`Λ

(
XV

〈
�0〉 ®∇ℎ0 + V0X 〈� 〉 ®∇ℎ0 + V0 〈

�0〉 ®∇Xℎ)
+0` ®∇X 〈� 〉 + _ ®∇Xℎ

]
· ®= = 0 for (G, H) ∈ Γ2 . (C.3g)
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In order to apply the Finite Element Method, the equations have to be written in their weighted144

residual formulation, by multiplying them with a test function and integrating them over the do-145

main Ω. The following notation is introduced146

( 51, 52)Ω =
∫
Ω

51 52 dΩ. (C.4)

Applying the Gauss theorem and the boundary conditions (C.3), the weak formulation yields:147

(
XZB1 , FZ21

)
Ω
−

(
(1 − ℎ0) X ®D21 − Xℎ ®D 0

21,
®∇FZ21

)
Ω

=

(
−Z0

B1, F
Z21

)
Ω
+

(
(1 − ℎ0) ®D 0

21,
®∇FZ21

)
Ω
,

(C.5a)(
−XZ21 , FZB1

)
Ω
−

(
(1 − ℎ0) X ®DB1 − Xℎ ®D 0

B1,
®∇FZB1

)
Ω

=

(
Z0
21, F

ZB1
)
Ω
+

(
(1 − ℎ0) ®D 0

B1,
®∇FZB1

)
Ω
,

(C.5b)(
(1 − ℎ0 + ℎ0)

[
X ®DB1 + [−2 ®∇XZ21 + F · X ®D21

]
, F ®D21

)
Ω

−
(
Xℎ

[
®D 0
B1 + [

−2 ®∇Z0
21 + F · ®D 0

21

]
, F ®D21

)
Ω
+

(
AX ®D21 , F ®D21

)
Ω

= −
(
(1 − ℎ0 + ℎ0)

[
®D 0
B1 + [

−2 ®∇Z0
21 + F · ®D 0

21

]
, F ®D21

)
Ω
−

(
A ®D 0
21, F

®D21
)
Ω
,

(C.5c)(
(1 − ℎ0 + ℎ0)

[
−X ®D21 + [−2 ®∇XZB1 + F · X ®DB1

]
, F ®DB1

)
Ω

−
(
Xℎ

[
−®D 0

21 + [
−2 ®∇Z0

B1 + F · ®D 0
B1

]
, F ®DB1

)
Ω
+

(
AX ®DB1 , F ®DB1

)
Ω

= −
(
(1 − ℎ0 + ℎ0)

[
−®D 0

21 + [
−2 ®∇Z0

B1 + F · ®D 0
B1

]
, F ®DB1

)
Ω
−

(
A ®D 0
B1, F

®DB1
)
Ω
,

(C.5d)(
0` ®∇X 〈� 〉 + 0`Λ

[
XV

〈
�0〉 ®∇ℎ0 + V0X 〈� 〉 ®∇ℎ0 + V0 〈

�0〉 ®∇Xℎ] , ®∇F 〈� 〉)
Ω

+
(
_ ®∇Xℎ · ®=, F 〈� 〉

)
Γ2

−
(
®D 0
21 · X

®D21 + ®D 0
B1 · X

®DB1 − XV
〈
�0〉 − V0X 〈� 〉 , F 〈� 〉

)
Ω

= −
(
0` ®∇

〈
�0〉 + 0`ΛV0 〈

�0〉 ®∇ℎ0, ®∇F 〈� 〉
)
Ω
−

(
_ ®∇ℎ0 · ®=, F 〈� 〉

)
Γ2

+
(
1
2
| ®D 0
21 |

2 + 1
2
| ®D 0
B1 |

2 − V0 〈
�0〉 , F 〈� 〉)

Ω

,

(C.5e)(
0` ®∇X 〈� 〉 + 0`Λ

[
XV

〈
�0〉 ®∇ℎ0 + V0X 〈� 〉 ®∇ℎ0 + V0 〈

�0〉 ®∇Xℎ] + _ ®∇Xℎ , ®∇Fℎ)
Ω

= −
(
0` ®∇

〈
�0〉 + 0`ΛV0 〈

�0〉 ®∇ℎ0 + _ ®∇ℎ0, ®∇Fℎ
)
Ω
,

(C.5f)

with the Dirichlet boundary conditions

XZ21 = 0 at Γ> (C.6a)

XZB1 = 0 at Γ> (C.6b)

®D 0
21 · X

®D21 + ®D 0
B1 · X

®DB1 − XV
〈
�0〉 − V0X 〈� 〉 = 0 for (G, H) ∈ Γ> . (C.6c)
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Appendix D Analysis of the width-averaged morphodynamic equilibria for exponen-148

tially converging and diverging basins by analytical approximations149

To explain the findings with respect to the longitudinal structure of the 2DH morphody-150

namic equilibria of section 3.1 in the main text, the focus of this section is on morphodynamic151

equilibria in a 1DH-model formulation. We start with an analytical approximation for an equi-152

librium bed profile in a rectangular tidal basin. Afterwards, tidal basins with width variation are153

considered as well.154

In the width-averaged model, considering the boundary condition (2.7b), the bed evolu-155

tion equation (2.9) reduces to156

〈@G〉 = 0⇔
〈
−dB (1 − ?)_ℎG − `�G − `

FB

^E
V�ℎG

〉
= 0. (D.1)

where 〈@G〉 denotes the total tidally- and width-averaged sediment transport rate, i.e. the longi-157

tudinal component of 〈@〉. Assuming an approximate balance between erosion and deposition,158

it can be deduced from equation (2.3) that159

〈�〉 = U^E
F2
B

〈
D2〉
V
. (D.2)

Neglecting the bed load transport and using equation (2.4), the equation (D.1) can be rewritten160

as161

〈@G〉 =`U^E
F2
B

[( 〈
D2〉
V

)
G

+ FB
^E
V

〈
D2〉
V
ℎG

]
= 0 (D.3a)

⇔〈2D DG〉
V

−
〈
D2〉 VG

V2 +
FB

^E

〈
D2〉 ℎG = 0 (D.3b)

To a first approximation, neglecting friction and local inertia, the hydrodynamics can be described162

by a so-called pumping mode, where the momentum equation reduces to ZG = 0 throughout the163

channel (Schuttelaars & de Swart, 1996). Given the continuity equation (2.1a) and the bound-164

ary condition (2.2a), with \"2 = 0, the velocity in a rectangular basin can be approximated by165

D =

[
�"2f

G − !
� − ℎ

]
sin(fC) (D.4)

where the expression in between the square brackets is referred to as the spatial coefficient of the166

time-dependent velocity D hereafter. Thus167

〈2D DG〉 = �2
"2
f2 (G − !) (� − ℎ) + (G − !)2ℎG

(� − ℎ)3
= �2

"2
f2 (G − !) (� − ℎ) + (G − !)ℎG

(� − ℎ)3
, (D.5)

where we used that
〈
sin2 (fC)

〉
= 1

2 .168

Now two distinct cases are considered:169

• Diffusively dominated transport with a constant deposition parameter, i.e. the topograph-170

ically induced transport is neglected and V = 1.171

In this case, equation (D.2) simplifies to172

–9–



manuscript submitted to JGR: Earth Surface

〈2D DG〉 = 0. (D.6)

Using equation (D.5) and disregarding the landward boundary (G = !) where ℎ = �,173

the expression can be written as174

ℎG =
� − ℎ
! − G , (D.7)

which implies a linearly sloping bed profile ℎ = �
!
G, corresponding to the findings of175

Schuttelaars and de Swart (1996).176

• Combined transport with a depth-dependent deposition parameter.177

In this case, by plugging the deposition parameter formulation (2.4) in, the equation (D.3b)178

can be rewritten as179

〈2D DG〉 =
〈
D2〉 FB

^E
VℎG

[
4
− FB

^E
(�−ℎ+ℎ0) − 1

]
, (D.8a)

⇔〈2D DG〉 = −
〈
D2〉 FB

^E
ℎG . (D.8b)

Since it is assumed that ℎG > 0, the right hand side of equation (D.8b) will always be180

negative, which implies that 〈2D DG〉 < 0. Since the spatial coefficient of D in equation181

(D.4) is always negative, it follows that the spatial coefficient of DG has to be positive, i.e.182

the velocity magnitude decreases towards the landward end. As in the previous case, it183

can be deduced that184

ℎG <
� − ℎ
! − G =

ℎ(!) − ℎ(G)
! − G . (D.9)

The equality follows from the requirement that the water depth at the landward side van-185

ishes. This indicates that for any 0 ≤ G < !, the local derivative is smaller than the slope186

of the secant line between G and !. Using the mean value theorem, it follows that the deriva-187

tive will monotonically increase, which implies that the bed level has a convex shape. This188

agrees with the findings of Ter Brake and Schuttelaars (2011).189

For a tidal basin with an exponentially converging or diverging width, equation (D.4) changes190

to191

D =

[
�"2f!2

1 − 4
G−!
!2

� − ℎ

]
sin(fC), (D.10)

as was shown in Meerman et al. (2019). In the case of diffusively dominated transport with a con-192

stant deposition parameter V = 1, D is constant throughout the domain and thus193

ℎ ∼ � −
�"2f!2

D̂

(
1 − 4

G−!
!2

)
. (D.11)

with D̂ a certain velocity scale. This implies that for a converging tidal basin (!2 > 0) the first194

and second derivatives of the bed level are positive and the morphodynamic equilibrium is con-195

vex. For a diverging tidal basin (!2 < 0), on the other hand, the first derivative is positive, but196

the second derivative is negative, resulting in a concave equilibrium bed level.197

The behaviour in Fig. 3 can be interpreted as follows. The combination of the diffusive and198

the topographically induced sediment transport, together with a depth-dependent deposition pa-199
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rameter, favours a convex equilibrium bed profile. For an exponentially converging inlet, this con-200

vexity is enhanced, while for an exponentially diverging tidal basin, the convexity is reduced or201

even overcome for strongly diverging basins.202
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Appendix E Influence of the Coriolis force in a rectangular basin203

The influence of the Coriolis force is investigated for a rectangular tidal inlet system with204

a length and width of 15 km. By gradually increasing the Coriolis coefficient 5 from 0 to 1.0·205

10−4 rad s−1 , a series of 2DH morphodynamic equilibria is obtained. The equilibrium bed cor-206

responding to the largest value of the Coriolis parameter considered, is shown in Fig. E.1a. From207

this figure is follows that the water depth is not symmetric anymore, and that the equilibrium bed208

is not laterally uniform at the seaward boundary. Note however, that the width–averaged depth209

ℎ is 0m at this location, thus satisfying the prescribed boundary condition for ℎ. In Figs E.1b, E.1c,210

and E.1d the corresponding tidally–averaged concentration and the amplitudes of the longitudi-211

nal and transverse velocities are shown, respectively. To clearly visualize the symmetry break-212

ing effect due to the Coriolis force, cross-sectional profiles at different locations in the longitu-213

dinal direction are shown in Fig. E.1e. In this figure, solid lines denote the cross–channel bathyme-214

tries obtained when Coriolis effects are included. For comparison, the lateral bathymetries ob-215

tained when ignoring Coriolis effects are indicated by dashed lines. These dashed lines clearly216

show that for a rectangular tidal inlet system without Coriolis effects taken into account, the 2DH217

equilibrium bathymetry has no lateral variations. The inclusion of Coriolis effects results in an218

equilibrium morphology that has lateral variations and is not symmetric anymore around H =219

0. To quantify this, the relative position of the cross-sectional centroids H2/� is shown in Fig. E.1f220

as a function of the distance to the seaward boundary (horizontal axis) and the Coriolis param-221

eter 5 (vertical axis), with H2 defined in equation 3.5. The dashed line indicates locations where222

H2/� = 0. From this figure it follows that in the largest part of the domain, the bed is deeper223

near the left boundary than near the right boundary (negative H2/�), due to Coriolis effects. This224

asymmetry increases with increasing the Coriolis parameter 5 . Only close to the landward bound-225

ary, the water depth becomes larger near the right boundary, compared to the water depth near226

the left boundary.227
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(a) Equilibrium bathymetry (b) Tidally averaged concentration

(c) Longitudinal velcoity amplitude (d) Transverse velocity amplitude
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Figure E.1. (a) The 2DH equilibrium bed profile for simulation with the Coriolis effect, for a rectangu-
lar basin. (b) The equilibrium concentration profile. (c) The amplitude of the longitudinal velocity (d) The
amplitude of the transverse velocity (e) five cross sections of the equilibrium bed level at different distances
from the open boundary (f) The relative position of the cross-sectional centroids H2/� as a function of the
longitudinal position (horizontal axis) and the Coriolis parameter 5 .

Appendix F Asymmetric geometry with a laterally uniform bed228

In this appendix, the physical mechanisms resulting in morphodynamic equilibria associ-229

ated with an asymmetric tidal inlet system are explained. The asymmetry is caused by an asym-230

metric geometry (see section 3.2.2 of the main text), characterised by a width at the landward bound-231

ary �; = 20 km. The corresponding 2DH equilibrium bathymetry is shown in Fig. 7b of the232

main text. Following the approach discussed in section 4.2, the dynamics associated with a pre-233

scribed bathymetry that is laterally uniform is used to explain the resulting channel–shoal pat-234

–13–



manuscript submitted to JGR: Earth Surface

tern. The longitudinal depth variation of the laterally uniform bed is given by the profile obtained235

by width–averaging the 2DH equilibrium bathymetry.236

In Fig. F.2c the amplitude of the longitudinal velocity is shown. Compared to the symmet-237

ric case (Fig. 10c in the main text), the amplitude no longer decreases when moving toward the238

landward side. Again, the smallest longitudinal velocities are found near the sidewalls, where the239

width variations are most pronounced. The transverse velocity amplitudes (Fig. F.2d) are now240

highest near the left sidewall, where the basin is most strongly widening. These velocities are twice241

as large as the maximal longitudinal velocity amplitudes. The areas in the tidal inlet system with242

the highest velocity amplitude, found near the left boundary near km 11, have the highest sus-243

pended sediment concentrations (see Fig. F.2b).244

Since the prescribed bed profile is a solution of the width–averaged 2DH equilibrium bathymetry,245

the divergences and convergences of the longitudinal components of the topographically induced246

and the diffusive transports approximately balance each other (see Figs. F.2e and F.2f). The trans-247

port component resulting from lateral gradients in the depth–integrated concentration fields is248

not balanced at all, resulting in a residual transport of sediments away from the region with high249

concentration, towards locations with a much smaller suspended sediment concentration, found250

close to the central axis of the tidal inlet system. This results in a deepening near the sidewalls251

and accretion close to the central axis, resulting in the formation of a shoal. Since the suspended252

sediment concentration is asymmetric, this results in more deposition closer to the right bound-253

ary, and a smaller and more shallow channel close to the right boundary, compared to the chan-254

nel on the left (see Fig. 7b for the resulting channel–shoal pattern). By the presence of lateral gra-255

dients in the bathymetry, the lateral diffusive transport associated with these gradients (i.e., the256

lateral component of the topographically induced transport) will be non–zero and approximately257

balance the lateral sediment transport related to lateral gradients in the depth–integrated suspended258

sediment concentration.259
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Figure F.2. Two-dimensional results of a simulation with a fixed and laterally uniform bed, based on the
cross-sectionally averaged morphodynamic equilibrium. (a) the laterally unifrom prescribed bathymetry (b)
the tidally averaged suspended sediment concentration (c) the amplitude of the longitudinal velocity, (d) the
amplitude of the transverse velocity, (e) the longitudinal component of the topographically induced sediment
transport, (f) the longitudinal component of the diffusive sediment transport,(g) the lateral component of the
diffusive sediment transport.
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