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a b s t r a c t 

To what extent electrocorticography (ECoG) and electroencephalography (scalp EEG) differ in their capability 

to locate sources of deep brain activity is far from evident. Compared to EEG, the spatial resolution and signal- 

to-noise ratio of ECoG is superior but its spatial coverage is more restricted, as is arguably the volume of tissue 

activity effectively measured from. Moreover, scalp EEG studies are providing evidence of locating activity from 

deep sources such as the hippocampus using high-density setups during quiet wakefulness. To address this ques- 

tion, we recorded a multimodal dataset from 4 patients with refractory epilepsy during quiet wakefulness. This 

data comprises simultaneous scalp, subdural and depth EEG electrode recordings. The latter was located in the 

hippocampus or insula and provided us with our “ground truth ” for source localization of deep activity. We ap- 

plied independent component analysis (ICA) for the purpose of separating the independent sources in theta, alpha 

and beta frequency band activity. In all patients subdural- and scalp EEG components were observed which had 

a significant zero-lag correlation with one or more contacts of the depth electrodes. Subsequent dipole modeling 

of the correlating components revealed dipole locations that were significantly closer to the depth electrodes 

compared to the dipole location of non-correlating components. These findings support the idea that components 

found in both recording modalities originate from neural activity in close proximity to the depth electrodes. 

Sources localized with subdural electrodes were ~70% closer to the depth electrode than sources localized with 

EEG with an absolute improvement of around ~2cm. In our opinion, this is not a considerable improvement in 

source localization accuracy given that, for clinical purposes, ECoG electrodes were implanted in close proximity 

to the depth electrodes. Furthermore, the ECoG grid attenuates the scalp EEG, due to the electrically isolating 

silastic sheets in which the ECoG electrodes are embedded. Our results on dipole modeling show that the deep 

source localization accuracy of scalp EEG is comparable to that of ECoG. 

Significance Statement 

Deep and subcortical regions play an important role in brain function. However, as joint recordings at multiple 

spatial scales to study brain function in humans are still scarce, it is still unresolved to what extent ECoG and EEG 

differ in their capability to locate sources of deep brain activity. To the best of our knowledge, this is the first study 

presenting a dataset of simultaneously recorded EEG, ECoG and depth electrodes in the hippocampus or insula, 

with a focus on non-epileptiform activity (quiet wakefulness). Furthermore, we are the first study to provide 

experimental findings on the comparison of source localization of deep cortical structures between invasive and 

non-invasive brain activity measured from the cortical surface. 
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. Introduction 

How accurately source signals from deep and subcortical regions

an be localized using electrophysiological recordings from the hu-

an cortical surface is still under debate. The uncertainty partly stems

rom the fact that these structures have a distinct neuronal architec-

ure which may cause them to produce weaker signals in comparison
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o cerebral structures ( Andersen et al., 2020 , Attal and Schwartz, 2013 ;

a Silva and Lopes, 2011 ). Moreover, compared to cortical activity, the

arger distance to deep structures attenuates the recorded electrode ac-

ivity ( Krishnaswamy et al., 2017 ). Recordings from the cortical sur-

ace are predominantly done using non-invasive electrophysiological

ools such as magneto- and electroencephalography ((M)EEG). For cer-

ain clinical purposes, invasive cortical recordings are also done with
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Fig. 1. Schematic overview of the study. Deep and superficial are located at 

locations (1) and (2), respectively. The color bars indicate the measurement 

strength of the source activity when measured at the origin of the source (maxi- 

mum strength) and with ECoG or EEG electrodes. Light blue and dark blue rep- 

resent the measured strength for deep and superficial sources, respectively. The 

measurement of deep and superficial sources are attenuated at both subdural 

and scalp level but to a different extent. From a perspective of the scalp (EEG), 

attenuation is likely so strong that the SNR for deep and superficial sources do 

not differ as much as they do from a subdural perspective (ECoG). This could 

partially explain why source localization accuracy of deep sources with ECoG 

is comparable with that of EEG (see discussion). Note that only the level of at- 

tenuation is relevant, not the extent of the spread or location of the observed 

activity. 
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lectrocorticography (ECoG). ECoG has a considerable advantage over

M)EEG in locating proximal activity, as the recordings are not spatially

ltered or “blurred ” by the cranium. However, ECoG grids or strips typ-

cally only cover a restricted region of the cortical surface compared to

he whole scalp coverage of (M)EEG, which is expected to affect local-

zation accuracy of more distal sources. Therefore, to date, it is unclear

hether ECoG has an edge over (M)EEG when it comes to localizing

ource signals from deep and subcortical regions. 

In (M)EEG studies, high-density settings have successfully localized

ctivity directly recorded from the hippocampus, amygdala, thalamus

nd nucleus accumbens ( Pizzo et al., 2019 , Seeber et al., 2019 ). The im-

ortance of these two findings has been emphasized recently (da Silva

 da Silva and Lopes, 2019 )) as it challenges the assumption that activ-

ty from small and deep/subcortical structures does not have sufficient

ignal-to-noise ration to be reliably detected without the need for exces-

ive averaging ( Puce and S. Hämäläinen, 2017 ). When the ground truth

s available, as is the case with these studies, by virtue of depth elec-

rodes, source separation and localization techniques can be correctly

ssessed in their ability to gauge the activity of the mentioned deep

tructures. The studies by Pizzo et al. and Seeber et al. are not the first

nes advocating the detectability of subcortical structures in (M)EEG. In

act, there has since long been a steady flow of either theoretical or ex-

erimental studies to support this claim ( Cebolla et al., 2016 ; Cosandier-

imélé et al., 2012 ; Daly et al., 2019 ; Dumas et al., 2013 ; Gharib et al.,

995 ; Ruzich et al., 2019 ; Samuelsson et al., 2019 ; Scherg and Von

ramon, 1985 ; Schoffelen et al., 2008 ; Tzovara et al., 2019 ). Simul-

aneous (M)EEG and deep electrode recordings have shown to share

emarkably similar properties ( Dalal Sarang et al., 2009 , Dubarry et al.,

014 , Litvak et al., 2010 , Tonoyan et al., 2017 ), though these find-

ngs have been fairly limited to clinical settings ( Koessler et al., 2015 ;

amantani et al., 2016 ). Especially of interest to this study is EEG and

EG source modeling, which requires a much more complex model con-

iderably affected by the conductivity properties of the different tis-

ues of the head ( Puce and S. Hämäläinen, 2017 ). Advances in the last

ecades on the detectability and localization of subcortical and deep

tructures have gone hand in hand with improvements in spatial reso-

ution of EEG, now down to millimeter-scale when using high-density

ettings and in EEG source reconstruction techniques ( Grech et al., 2008 ,

arinazzo et al., 2019 ; Pascual-Marqui, 1999 ). 

Invasive measures of electrophysiological activity such as ECoG,

y contrast, are hailed for their superior spatial resolution, spectral

andwidth and signal-to-noise ratio (SNR) compared to scalp electrode

ecordings ( Ball et al., 2009 ). The spatial distribution of ECoG poten-

ials is complex ( Whitmer et al., 2010 ) and the presence of highly

ocalized components (e.g. high-gamma band during a visual task

 Wittevrongel et al., 2018 )) has led researchers to claim that ECoG is

 local signal ( Dubey X and Supratim Ray, 2019 ). This locality prin-

iple predicts that only sources directly underneath and well-covered

y the subdural grid can be reconstructed successfully. An advantage

f having a more restricted volume of sensitivity is that it reduces the

mount of surrounding background activity captured by the electrodes

 Cosandier-rimélé et al., 2012 ). Therefore, adding more subdural grids

or the purpose of source localization might even decrease SNR if the ex-

ra contacts are not close enough to the source. Some studies show the

ource localization accuracy of activity with ECoG decreases linearly

ith the distance from the electrodes ( Todaro et al., 2019 , Zhang et al.,

008 ). However, studies have applied signal separation techniques and

bserved that signals from subdural grids or strips may also detect activ-

ty from more distal sources ( Whitmer et al., 2010 ). It should be noted

hat, in contrast to (M)EEG, the used localization methods for ECoG

re typically based on activity from a single or a small group of ad-

acent cortical electrodes ( Huiskamp, 2002 ). More advanced methods

or source reconstruction, such as the dipole equivalent and distributed

ource models, are not systematically applied nor optimized for ECoG

ource localization purposes ( Pascarella et al., 2016 ), despite evidence

f increased model accuracy ( ( Dümpelmann et al., 2009 ); Oostenveld
nd ( Oostenveld and F. Oostendorp, 2002 ; Todaro et al., 2019 )) and sig-

ificant improvements in deep source identification ( Cho et al., 2011 ). 

To assess how in practice EEG and ECoG compare in terms of deep

ource localization requires simultaneous recordings of invasive, non-

nvasive cortical and deep activity. Fig. 1 gives a schematic overview

f such a study. Simultaneous invasive and non-invasive recordings

o isolate the contributions of the underlying neural activity to EEG

ave been primarily studied in nonhuman primates ( Musall et al., 2014 ;

nyder et al., 2018 ). But these results do not necessarily generalize to

uman data as the properties of the skull, shape and cancelation proper-

ies of the cortical and subcortical structures may differ substantially. In

uman studies, simultaneous recordings have been performed in clinical

ettings to determine the amplitude and extent of cortical activation that

etermines the presence of cortical spikes in scalp EEG ( Abraham and

jmone Marsan, 1958 . Cosandier-rimélé et al., 2012 . Ramantani et al.,

016 ). Outside of the clinical context, human studies have found a

igh correlation between ECoG and EEG for a given task ( Ball et al.,

008 . Haufe et al., 2018 ), although these studies did not consider si-

ultaneously recorded ECoG and EEG as it is not without obstacles

 Dubarry et al., 2014 ). Hence, a study comparing source localization of

oth modalities within the same subject would be of great significance

o the field ( Nunez Paul et al., 2019 ). 

To fill this gap, we recorded electrophysiological activity from 4

atients during quiescent wakefulness simultaneously from depth elec-

rodes implanted in the hippocampus or insula, subdural grids covering

he cortical surface closest to these depth electrodes and scalp EEG elec-

rodes. We recorded these patients during quiescent wakefulness as a

ocus on non-epileptiform electrophysiological activity in human stud-

es outside the context of task-related responses is still relatively scarce

 Frauscher et al., 2018 ). Source separation using ICA was performed

eparately on the scalp- and subdural electrodes. Several studies sup-

ort the notion that independent components of EEG correspond to an

quivalent dipole, i.e. a maximally independent component represents

 stationary source ( Delorme et al., 2012 ). Additionally, the use of ICA
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Fig. 2. Block diagram of the pipeline used to 

investigate source localization accuracy within 

and between modalities. 
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or intracranial data has been studied, where it was also shown that sev-

ral IC projections are consistent with sources from single brain regions

 Whitmer et al., 2010 ). Based on these studies, we assumed that the to-

ographic map of each subdural or scalp IC component corresponds to

 single dipole and performed dipole modeling to locate the generator

f each of these component topographies. The distance between the es-

imated generator and the depth electrodes was computed. In this way,

e were able to evaluate and compare the source reconstruction of the

calp- and subdural electrodes, given the same deep source activity as

dentified by the depth electrodes (see Fig. 1 ). 

. Materials and methods 

Fig. 2 shows an overview of the pipeline used in our study which

onsists of several steps. 

.1. Participants 

We recorded simultaneous depth electrode, ECoG and (scalp) EEG

rom 4 patients (2 females, average age 41.5 y std = 20 y, 2 left-handed)

ith drug-resistant focal epilepsy and undergoing pre-surgical clinical

ssessment. All patients had normal vision and normal levels of con-

ciousness. The study was conducted according to the current version

f the declaration of Helsinki, following ethical approval from Ghent

niversity Hospital’s Ethics Committee. All patients gave their written

nformed consent before participating in the study. 

.2. Data acquisition 

EEG was recorded from 27 active electrodes attached to the scalp

ccording to the 10-20 international system. In addition to the scalp
lectrodes, patients had been implanted with both depth and subdural

latinum electrodes embedded in silastic (Ad-Tech, USA) for invasive

ideo EEG monitoring at Ghent University Hospital. For the subdural

rids, contact diameter was 4 mm with an exposure of 2.3 mm diame-

er and a center-to-center distance of 10 mm; the depth electrodes had

 or 8 contacts per electrode with contact size of 2.4/1.1 mm (over-

ll length/diameter) and 4 mm center-to-center distance. All recordings

ere digitized at a sampling rate of 256 Hz (except for patient P3, where

t was 1024Hz) using an SD LTM 64 Express (Micromed, Italy) medi-

ally certified device. The number and location of the subdural grids

nd depth electrodes for each patient are listed in table S1 and figure S1

f the supplementary material section. The table also lists the patients’

emographics. 

.3. Experimental procedure 

For this study, we recorded each patient’s spontaneous activity with

yes open for 3 minutes while they fixated a cross-hair presented on an

CD screen at a distance of approximately 60 cm. Patients were sitting

pright in their hospital beds. 

.4. Localization of subdural and depth electrodes 

The pre-implantation MRI scan of the patient was used for cortical

econstruction and volumetric segmentation using the Freesurfer image

nalysis suite ( ( Dale Anders et al., 1999 ) version 6.0, see http://surfer.

mr.mgh.harvard.edu/ ). The Freesurfer output and MRI scan were then

oaded into Brainstorm ( Tadel et al., 2011 ), where the MRI was then

o-registered with the post-implantation CT scan using the SPM12 ex-

ension ( https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ ). The co-

rdinates of the implanted subdural and depth electrodes were obtained

http://surfer.nmr.mgh.harvard.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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y visual inspection and mapped onto the cortical surface to account for

ossible post-implantation tissue shifting. The results of the MRI seg-

entation were further used to create the head model for dipole mod-

ling (see the section on dipole modeling). 

.5. Pre-processing 

The raw ECoG, depth electrode and EEG recordings were first in-

pected for bad channels. In the case of subdural and depth recording,

ad channels were identified by a specialized epileptologist (co-author

M) who marked, in addition to the electrodes, also the time intervals

uring which the recordings exhibited frequent or continuous abnor-

al activity (interictal or ictal activity and abnormal slowing). These

lectrodes and time intervals were excluded from our study as well as

he corresponding time intervals from the EEG recordings. In principle,

e could investigate source reconstruction accuracy of the abnormal

ctivity too, but we decided to exclude it as we wanted the results to

e relevant for healthy subjects with normal brain activity. Addition-

lly, depth electrodes were checked for their anatomical location using

rainstorm and when electrode contacts were outside the deep struc-

ures (hippocampus for 3 patients, hippocampus and insula for 1 pa-

ient), they were discarded from further analysis. The noisy electrodes

n EEG were identified using the manual reject function in FieldTrip

 Oostenveld et al., 2011 ). The data was initially filtered using a band-

ass filter between 1-60 Hz and re-referenced offline using a common

verage reference (CAR) per acquisition modality. For the depth elec-

rode data, we additionally re-referenced our recordings to bipolar ones

o investigate the impact of depth electrode set-up on our results, as

ipolar recordings are assumed to be less sensitive to volume conduc-

ion, thus, allowing for a more precise spatial localization of transient

vents ( Pizzo et al., 2019 ). The bipolar setup consists of subtracting the

ecording of all pairs of non-rejected consecutive contacts within each

lectrode ( Dubarry et al., 2014 ). After that, the recordings were cut into

verlapping time windows (epochs), shifted by 2sec. This resulted in an

verage of 67, 59, 51 and 46 (std = 22.1, 24.8, 27.3 and 27.9) epochs for

indow lengths of 5, 10, 15 and 20 seconds, respectively. The whole

ipeline analysis is repeated for each window length. 

.6. CA and correlation 

Independent component analysis (ICA) was performed on the ECoG

nd EEG data for each patient separately, using the Icasso package

 Himberg et al., 2004 ) implemented in FieldTrip. Icasso finds more re-

iable components than those of a single run of an ICA algorithm by

erunning the FastICA algorithm several times ( “iterations ”) but with

lightly different initial conditions and visualizing the clustering struc-

ure of the obtained components per iteration in signal space (using a

ymmetric approach and accounting for Gaussian non-linearity). In our

ase, we ran the algorithm for 100 iterations. In each iteration, Fas-

ICA was performed on the artifact-free epochs in concatenated format.

e had sufficient data to perform the analysis since, after exclusion of

ad time intervals, we ended up with an average of 41,601 data points,

nd the number of electrodes ranged from 15-52 even in the worst case

he ratio of data points to electrodes was still at least 15 ( Delorme and

akeig, 2004 ). As the number of ICs is equal to the number of input

hannels, therefore, there were typically more ICs for ECoG than for

EG. 

After ICA analysis, the resulting ICs for both ECoG and EEG, in addi-

ion to the data from the depth electrodes, were bandpass filtered using

 two-pass Butterworth filter of order 4 in three frequency bands, theta

4-8 Hz), alpha (8-12 Hz), and beta (12-28 Hz). These were chosen as

hey have been shown to correspond to the most dominant frequencies

bserved in resting-state ECoG ( Groppe David et al., 2013 ). For each of

hese frequency bands, we obtained the power envelope of the signal

sing the Hilbert transform. The power envelope for the depth elec-

rode contacts was calculated in the same way. Next, we calculated the
earson correlation between each output component and all depth elec-

rode contacts for all epochs, resulting in a total of components × depth

lectrode contacts × epochs correlation values for each frequency band

nd patient. Aside from correlation analysis between the depth electrode

ontacts and independent components of the ECoG and EEG, a prelim-

nary correlation analysis was also performed between depth electrode

ontacts and the power envelope of the original time series of the ECoG

nd EEG in each of the abovementioned frequency bands (without per-

orming ICA). 

.7. Dipole modeling 

Several studies support the notion that independent components

f EEG correspond to an equivalent dipole ( Delorme et al., 2012 ).

herefore we will assume that the topographic map of subdural or

calp IC component corresponds to a single dipole (provided that the

oodness-of-fit is sufficiently high, see further) and perform dipole

odeling on all components using the dipole modeling function pro-

ided by the Brainstorm toolbox. In this function, the forward solu-

ion is estimated using a realistic three-layer head model (OpenMEEG

EM) were the source space was constrained to the whole MRI vol-

me with 15000 vertices and relative conductivities of 1, 0.0125, 1 for

he scalp, skull, and brain layers, respectively ( Gramfort et al., 2010 ).

ven though the Brainstorm toolbox allows for a mixed head model

hich includes deep and subcortical structures, we did not opt for this

ethod as dipole modeling is not available for a mixed head model

f ECoG data. Separate head models were created for the ECoG and

EG data, using the individual MRI anatomy of each patient (see sec-

ion on localization of subdural and depth electrodes). When perform-

ng dipole modeling using Brainstorm, a dipole scanning map is pro-

uced that represents the ability of the dipole to explain the record-

ngs. The noise covariance matrix was set as the identity matrix and

he median eigenvalue used for noise covariance regularization. The

ubsequent dipole scanning routine determines the final location and

rientation of the best fitting dipole (one dipole per IC). Of each ob-

ained dipole, a goodness of fit is returned indicating what percentage

f the total variance is explained by the model variance. Another output

s “performance ”, the square root of the chi-square summing over the

egrees of freedom. This value is similar to a z-scoring, therefore, any

erformance substantially larger than 5 may be thought of as signif-

cant ( https://neuroimage.usc.edu/brainstorm/Tutorials/TutDipScan ).

n our analysis, all dipoles with a performance below 100 were discarded

nd our statistical analysis performed for dipoles with a goodness of fit

f 75% or above, as sources with lower goodness of fit were considered

s inconclusive for single dipole fit ( Pizzo et al., 2019 ). Different thresh-

lds of goodness-of-fit for the dipoles were evaluated and reported in the

upplementary table S6. 

We performed dipole modeling and scanning for all resulting compo-

ents of both ECoG and EEG. We divided all resulting dipoles into two

roups; dipoles that correspond to an independent component, exhibit-

ng a significant correlation with a depth electrode contact and those

hat don’t. We will further refer to these as the correlating and non-

orrelating dipoles. 

.8. Statistical analysis 

Correlations were assessed for significance which is maximal at zero

ag using a surrogate dataset. The surrogate dataset was produced by

eeping the original order of the epochs in the first group (the epochs of

he depth electrode contacts) and a random permutation of the order of

he epochs in the second group (the epochs of the EEG or ECoG compo-

ents, Matlab’s randperm function). By doing this one time, we obtained

 surrogate dataset with the same size as the original dataset. Correla-

ion values were then calculated for both the surrogate and the original

ataset. A one-sided nonparametric permutation test with 1000 permu-

ations confirmed a significantly larger value for the real correlation

https://neuroimage.usc.edu/brainstorm/Tutorials/TutDipScan
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Fig. 3. Zero-lag correlation for each of the depth electrode contacts of patient 

P2 in theta band with ECoG (left column, left), and EEG (right column, right) 

sensors. Electrodes with significant correlation (FDR corrected) are marked in 

green. 

Table 1. 

Average correlation value of EEG/ECoG time series with depth electrode con- 

tacts across subjects per frequency band, for ECoG and EEG. P-values are ad- 

justed for multiple comparisons using FDR correction. 

Rho (p, FDR corrected) theta alpha beta 

ECoG 0.27 (p = 0.011) 0.16 (p = 0.015) 0.09 (p = 0.02) 

EEG 0.16 (p = 0.010) 0.12 (p = 0.020) 0.08 (p = 0.023) 

t  

p  

T  

p  

w

 

n  
alues compared to the surrogate ones. The cross-correlation between

omponents and depth electrode contacts that showed significant corre-

ation was further evaluated by testing whether cross-correlation values

ere maximum at zero-lag, as a maximum at a lag different from zero

ould probably indicate a phase-delayed connection rather than vol-

me conduction, therefore, these significant values were discarded from

urther analysis. An example of the cross-correlation function between

epth electrode contact and ECoG/EEG components for one patient can

e found in supplementary figure S2. Finally, p-values were corrected

or multiple comparisons using the false discovery rate (FDR) correction

or the number of components. 

To assess the accuracy of source localization, we estimated the dis-

ance between the independent components and the depth electrode

ontacts with which they were correlated. This is termed in the study

source localization accuracy, ” as our hypothesis is that independent

omponents correlating with a certain depth electrode contact are as-

ociated with a dipole located in close proximity to that contact. As a

ontrol, we also estimated the average Euclidean distance between the

on-correlating components and all depth electrode contacts of a given

atient. Given that we assume these non-correlating components to be

ssociated with dipoles, located in various places in the brain that are

ot likely to be closer to the depth electrode contacts than the corre-

ating components, a significant difference in localization accuracy for

orrelating and non-correlating dipoles would confirm our hypothesis.

or the statistical analysis in this case, we used MATLAB to perform a

inear mixed effect analysis of source localization accuracy ( Gelman and

ill, 2006 ). We did this for ECoG data and EEG data separately. As a

xed effect, we used correlation and as random effects, we took fre-

uency band, patients, modality, epoch length and depth electrode ref-

rencing montage: 

𝑠𝑜𝑢𝑟𝑐 𝑒 𝑙𝑜𝑐 𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 ∼ 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 + ( 1 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ) 
+ ( 1 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑏𝑎𝑛𝑑 ) + (1 |𝑒𝑝𝑜𝑐ℎ𝑙𝑒𝑛𝑔𝑡ℎ ) + ( 1 𝑚𝑜𝑛𝑡𝑎𝑔𝑒 ) (1) 

Finally, to compare the source localization accuracies of EEG and

CoG we used another linear mixed effect model to compare accuracy

nly between correlating dipoles of each modality. In this model, we

ook as fixed effect modality (EEG or ECoG) and as random effects

requency band, patient, epoch length and depth electrode referencing

ontage: 

𝑠𝑜𝑢𝑟𝑐 𝑒 𝑙𝑜𝑐 𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 ∼ 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 + ( 1 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ) 
+ ( 1 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑏𝑎𝑛𝑑 ) + ( 1 𝑒𝑝𝑜𝑐ℎ𝑙𝑒𝑛𝑔𝑡ℎ ) + ( 1 𝑚𝑜𝑛𝑡𝑎𝑔𝑒 ) (2) 

Furthermore, a similar pipeline analysis was performed similarly to

he one described above, where bandpass filtering into the different fre-

uency bands was omitted and data was filtered between 1-40 Hz. This

ipeline and corresponding results can be found in the supplementary

aterial, table S7 and the accompanying text (eq. S1 and eq S2). 

. Results 

.1. Activity from deep sources contribute to ECoG and EEG signals 

Our first goal was to verify whether activity from deep sources spread

o the cortical surface and scalp. Correlation analysis reveals a weak but

ignificant (rho average = 0.13 (std = 0.085), p average = 0.017 for all subjects

nd frequency bands, both ECoG and EEG) dependence between the

epth electrodes and several subdural and scalp contacts. The correla-

ion is significant and peaks at zero-lag, indicating that the relationship

s not due to active transmission in neural pathways. Fig. 3 shows the

ero-lag correlations for a single patient (patient P2) in the theta range,

or 15 second long epochs (rho = 0.18, p = 0.0039 adjusted for multiple

omparisons using FDR correction) when using a common average ref-

rence. Correlation values in the theta and alpha band are on average

wice as large as in the beta band, for both ECoG and EEG. Table 1 shows
he average correlation across subjects. Additionally, Table S2 in sup-

lementary material shows the correlation for each patient separately.

his table shows a higher correlation value for P4 compared to other

atients, which may have to do with the fact that P4 is the only patient

here ECoG contacts cover both hemispheres. 

As each EEG and ECoG electrode captures a mixture of signals origi-

ating from different sources, we applied ICA in an effort to single them
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Fig. 4. Correlation values for ECoG and EEG in different frequency bands for patient 2. Significant values are marked by “+ ” (p-values are FDR corrected for multiple 

comparisons). 
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ut (individual source contributions are further termed ‘components’).

e performed the ICA analysis as described in Materials and Methods

nd Fig. 2 . In order to investigate the effect of different references for

he depth electrodes, we analyzed our data using both the common av-

rage and bipolar re-referencing (see the section on pre-processing for a

iscussion). When using an average reference, a correlation analysis of

he obtained components with respect to the (non-decomposed) depth

lectrode signals reveals, for all patients, components that significantly

orrelate with an average of 1.8 and 2.8 depth electrode contacts for the

ecomposed scalp- and subdural EEG, respectively (for a bipolar refer-

nce montage, these values correspond to 1.3 and 1.9, respectively). By

ontrast, a single depth electrode contact usually correlated with an av-

rage of 2.2 and 6 independent components for scalp and subdural EEG,

espectively (bipolar: 2.2 and 5.8). A high number of subdural indepen-

ent components are associated with the same depth electrode contact.

his is similar to what was observed in previous studies ( Whitmer et al.,

010 ). There, ICA analysis of ECoG data revealed multiple components

hat could be clinically identified as exhibiting frontal intermittent delta

ctivity, therefore, the pathological brain signal could be represented by

ultiple independent components. In our case, it could be explained by

he fact that depth electrode contacts record signals that are a combina-

ion of surrounding activity. Furthermore, in our study on average 24%

f the scalp- and 39% of subdural components had a significant corre-

ation with a given depth electrode contact (bipolar: 25% and 37.6%).

ikewise, 48% and 76% of the total number of depth electrode contacts

ere significantly correlated with a given component (bipolar: 46.9%

nd 62.5%). A detailed list specific for each frequency band and epoch

ength is given in supplementary table S4 (and for the same analysis

hen using bipolar reference montage in table S5). Interesting to note

ere is that, there was no observed relationship between the number

f depth electrode contacts correlating with a single IC and the median

istance between depth electrode contacts and subdural electrodes in

he patients (see also Table 3 ). The above-mentioned results are pre-

ented on a single subject level as follows: Fig. 4 shows for patient P2

ignificant correlations between independent components of ECoG and
 l  
EG and depth electrode contact activity in the theta band when taking

poch lengths of 15 seconds. The figures for the other patients along

ith those for the bipolar reference can be found in supplementary ma-

erial figure S3. An average of the significant correlation values and their

ariance for each patient can also be found in supplementary table S3. 

.2. Sources are more accurately localized from subdural than from scalp 

lectrodes 

Each ICA component is believed to originate from an individual

ource in the brain ( Delorme et al., 2012 ), see materials and methods

ection dipole modeling for a discussion). To identify the location of

his source, each ICA component was subjected to a source localization

nalysis. After dipole fitting, dipoles with a goodness of fit above 75%

ere further analyzed in terms of source localization accuracy (as de-

ned in materials and methods). For a single subject, we represent the

esults as follows: Fig. 5 shows the position, topography and time course

f the independent component analysis for P2 in the theta band, for the

hree of the dipoles that had the best goodness of fit. Further informa-

ion on the correlation values and accuracy of source localization for

hese specific dipoles can be found in Table 2 . It should be noted that

e also looked into the quality of the IC map for the ECoG grid. Accord-

ng to Whitmer et al. (2010 ), IC maps can be classified as “focal ”, or

diffuse ” based on how the IC projects to the electrodes. A projection to

wo electrodes or less is considered to be “focal ”, whereas a projection to

ore than two contiguous electrodes is classified as “diffuse ”. Based on

his definition, dipole 1 and 2 for the ECoG correspond to diffuse maps,

s they both project to three contiguous electrodes, whereas dipole 3

rojects to 2 electrodes and is, therefore, a focal map. In addition to the

CoG and EEG data, the location of the depth electrodes and their time

ourse in the theta band for the same patient is shown in Fig. 6 . A simi-

ar analysis for the theta, alpha and beta frequency bands of all subjects

an be found in figure S4 of the supplementary material. 

The source localization accuracy on population-level, for all epoch

engths, frequency bands and types of reference was statistical analyzed
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Fig. 5. Location of the three dipoles with the 

best goodness of fit in the theta band for pa- 

tient 2, for d) ECoG and EEG in a) sagittal 

view, b) axial view, c) coronal view. d) topog- 

raphy of independent components, and e,f,g) 

1 second time course of independent compo- 

nents 1, 2 and 3 for respectively ECoG and 

scalp EEG (shown in blue), with correlating 

time courses of the depth electrode contacts 

(shown in dashed red). Units for amplitude and 

time axis are shown in e) on the left. 
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sing a linear mixed-effect model as described in Eqs. 1 and 2 . Visual in-

pection of residual plots of all statistical models did not reveal any obvi-

us deviation from normality. For within modality analysis of both ECoG

nd EEG, correlation affected source localization accuracy significantly

ith P = 2.898 × 10 − 7 (estimate 0.0354, CI = [0.0219 0.0489], coeffi-

ient of determination R 

2 = 0.14) for ECoG and P = 4.89 × 10 − 4 (estimate

.0273, CI = [0.012 0.0426], coefficient of determination R 

2 = 0.19) for

EG, which indicates an improvement in source localization of around

.54 and 2.73 cm for each modality. For the random effects, the linear

ixed effect model returns an estimated covariance and its 95% confi-

ence interval. The variation between random factors whose confidence

nterval did not include zero was not significant (see materials and meth-
ds, section on statistical analysis). This was the case for all random fac-

ors except for patients (estimate 0.0066, 0.0095, CI = [0.0034, 0.0127],

0.0091, 0.00099] for ECoG and EEG, respectively). Source localiza-

ion analysis between modalities for significantly correlating dipoles

howed a highly significant effect of reference type on modality (es-

imate 0.022, P < 10 − 12 , CI = [0.025681, 0.0184], coefficient of determi-

ation R 

2 = 0.29). This indicates an average source localization accuracy

or EEG of 7.1 cm and for ECoG a significantly lower one of 4.9 cm. The

ariation between random effects was not significant. Fig. 7 shows a

omparison of the source localization accuracy of ECoG and EEG. Resid-

al plots for these results are given in supplementary figure S5. Results

f the same statistical model for different values of dipole goodness of
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Table 2. 

Information complementary to figure 5 . Listed are, for each IC correlating with a depth electrode 

contact and per modality: a) cross-correlation at zero-lag and b) source localization accuracy (cm). 

ECoG EEG 

IC1: Contact 7: a) 0.4198 b) 6.08 

Contact 8: a) 0.4974 b) 6.42 

Contact 4: a) 0.3995 

b) 7.13 

Contact 7: a) 0.4379 

b) 7.58 

Contact 8: a) 0.4391 

b) 7.88 

IC2: Contact 6: a) 0.4201 b) 4.10 

Contact 7: a) 0.456 b) 4.19 

Contact 8: a) 0.471 b) 4.46 

Contact 6: a) 0.4191 

b) 6.97 

Contact 7: a) 0.4198 

b) 6.65 

Contact 8: a) 0.4274 

b) 6.32 

IC3: Contact 6: a) 0.4912 b) 4.17 Contact 2: a) 0.3763 

b) 4.7 

Contact 3: a) 0.4015 

b) 4.6 

Contact 4: a) 0.3946 

b) 4.04 

Contact 5: a) 0.3819 

b) 3.87 

Contact 6: a) 0.4188 

b) 3.54 

Contact 7: a) 0.4525 

b) 3.32 

Contact 8: a) 0.4517 

b) 3.1 

Fig. 6. Location and time series of depth electrode contacts for patient 2. Cor- 

responding dipoles correlating with these times series can be found in fig. 5 . 
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Fig. 7. Source localization accuracy (in meters) of ECoG and EEG, shown sep- 

arately per frequency band. Colors of data points refer to patients. 
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t are listed in supplementary table S6 (for the results of the broadband

nalysis, see supplementary table S7). 

Since the effect of depth electrode reference was not significant, re-

ults shown from now on will be discussed based on average reference

nly (for both average and bipolar reference montage results, see sup-

lementary material). 

An overview of the distances between depth electrodes and ECoG

nd EEG electrodes, a short summary can be found in Table 3 . As can be

een, the distance from depth electrodes to scalp electrodes is approxi-

ately twice the distance from depth electrodes to subdural grids. 
. Discussion 

.1. Simultaneous depth-ECoG-EEG recording allows for direct comparison 

f source localization accuracies 

Our study aimed to quantitatively compare the localization accu-

acy of subcortical and deep sources from cortical ECoG and scalp EEG

ecordings. An initial analysis showed a small but significant correlation

etween depth electrodes and both ECoG and EEG. The fact that neu-

al activity from depth electrode contacts could already be observed on

oth scalp and subdural electrodes before applying source separation

echniques is an interesting finding as it supports a fair comparison of

EG and ECoG recordings in the detectability and localization accuracy

f sources of neural activity. 
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Table 3. 

Median distances between electrodes of the three modalities, for each patient. 

Patient Distance between Depth and EEG electrode (cm) Distance between Depth and ECoG electrode (cm) 

Patient 1 Median = 10.5, sd = 2.18 Median = 5.2 sd = 1.4 

Patient 2 Median = 10.3, sd = 1.9 Median 4.2, sd = 2 
Patient 3 Median = 10, sd = 2 Median = 5, sd = 2.2 

Patient 4 Median = 10.8, sd = 2.8 Median = 3.4, sd = 0.7 
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The ECoG and EEG signals were then each decomposed using ICA to

solate spatially distinct sources that contributed to the recorded signal.

ur results showed that for both EEG and ECoG several independent

omponents correlated with the (non-decomposed) signals at individ-

al depth electrode contacts in the hippocampus or insula. The recon-

tructed sources based on these correlated components were located sig-

ificantly closer to the depth contacts than their non-correlated coun-

erparts. 

Furthermore, our comparison between modalities confirmed a sig-

ificant difference in source localization accuracy. When deep neural

ctivity is detectable by EEG or ECoG we could locate this activity with

n accuracy of 7.1 cm in EEG and 4.9 cm in ECoG. The poor perfor-

ance of EEG source localization was to be expected given that, in

ddition to the limitations of the source localization model mentioned

bove, a minimum of 100 electrodes is required for a sufficiently accu-

ate source localization ( Liu et al., 2017 ) while in our case we had 27

ctive electrodes. Our results showed that for the same condition ECoG

rids located in close proximity to the depth electrodes yielded an im-

roved accuracy in the range of ~2 cm. It is interesting to note that

hile ECoG source localization performed indeed significantly better

han EEG source localization on a population-level this was not signif-

cant on the scale of a single patient. Additionally, we believe that the

mprovement in source localization from EEG to ECoG of deep sources

s not large enough to justify a preference for invasive measurement

f ECoG over noninvasive EEG. Especially given that in simultaneous

EG/ECoG recording, there are several problems with source localiza-

ion in scalp EEG, such as: 

Due to the disruptive effect of the subdural grid on volume con-

uction, scalp activity was attenuated. Therefore, the minimum corti-

al extent needed to produce visible scalp activity can be overestimated

 Ellenrieder et al., 2014 , Lanfer et al., 2013 ). For example, a 4 × 8 grid

an produce attenuation of 2 to 3 times, which means that the minimum

ortical amplitude necessary to produce visible scalp activity is higher

han when the subdural grid is absent ( Ellenrieder et al., 2014 ). 

1. The placement of the subdural grid and depth electrode was cho-

en to provide optimal visibility of the epileptic source. Therefore, even

hough the spatial coverage was limited, the subdural electrodes were

laced quite close to the depth electrode. This is in contrast to the EEG

lectrodes, which were placed in a standard 10-20 international system

hereby their position was not affected by the position of the depth

lectrode. 

2. As previously stated, scalp electrodes were recorded from only 27

lectrodes. Studies have shown for source localization accuracies in the

ange of 10~20mm, a minimum of 100 electrodes is required ( Liu et al.,

017 ). This accuracy is likely even less for deep and subcortical sources.

3. Considering the unfavorable conditions of scalp electrodes men-

ioned above, we found an accuracy of 4.9cm for subdural grids vs.

.1cm for EEG to be somewhat surprising. However, previous studies

ave already shown using computer simulations that EEG-based source

ocalization in ideal conditions outperforms ECoG in cases where the

trip and grid electrodes are not sufficiently close to the source of inter-

st ( Dümpelmann et al., 2009 , Zhang et al., 2008 ). Our study showed

hat in deep structures, the distance between the deep source of neural

ctivity and the ECoG grid does not allow for a very high source local-

zation accuracy. It still remains to be seen how high-density EEG would

erform in such a setting, but a recent study using simultaneous depth

nd high-density scalp EEG, during a very similar experimental condi-
ion, reported an accuracy of ~2cm ( Seeber et al., 2019 ), emphasizing

he impact of having more scalp electrodes, something much less ex-

ensive and risky than increasing the number of subdural electrodes. To

he best of our knowledge, this was the first time these abovementioned

laims were tested and investigated using real experimental data from

uman subjects when including a ground truth from the deep structures

y means of depth electrodes. 

We also investigated the variance caused by the two different types

f referencing montage for the depth electrodes by including reference

ontage as a random factor in our statistical model. We found no effect

f the choice of referencing (the 95% confidence interval of this vari-

nce did not exclude zero). Independent component analysis showed

ery similar results for both montages, as can be observed in supple-

entary tables S4 and S5 (for a summary, see Results section). Bipolar

ontages are presumed to be advantageous when attempting to pick up

ocal activity as they help to cancel the more widespread activity. In our

ase, this cancellation effect did not differ from a common average mon-

age of all depth electrode measuring sites. The reason for this could be

xplained as follows. Both types of reference are predominantly record-

ng activity in the proximity of the depth electrode contact and the effect

f a far source that propagates in a similar way to all depth electrodes

ill be canceled by both reference types (see supplementary material

gure S6 for a simulation example). One should note that bipolar EEG

lso removes all signals common to the electrode pairs and that not all

ignals common to the electrode pairs come from the same reference.

ence, a given bipolar reference will completely miss dipoles with cer-

ain locations and tangential orientations ( Hu et al., 2010 ). Geselowitz

howed that if the model takes into account the positions of the sen-

ors, the choice of a particular reference electrode does not in any way

hange the relation between source and potential, except for an addi-

ive constant of no physical significance ( Geselowitz David, 1998 ). In

onclusion, we do not believe the type of reference of the depth elec-

rodes to have a substantial effect on the outcome of similar studies with

imultaneous recordings of different modalities. 

.2. Controversy on detecting deep and subcortical activity from scalp and 

ubdural EEG 

Several studies have stated that at least 6cm 

2 of synchronous cortical

ctivity is needed to generate a signal with a strong enough signal-to-

oise ratio to be observed on the scalp without averaging ( Nunez Paul

nd Srinivasan, 2006 , Tao et al., 2005 ), although this has been called

nto question ( Ramantani et al., 2016 ). While this statement suggests

hat unaveraged activity from smaller subcortical structures is not dis-

inguishable from cortical activity, these structures still contribute con-

iderably to scalp EEG and can be reliably localized under certain con-

itions. For example, in the case of brainstem evoked potentials, prior

nowledge of the location and behavior of deep brain activity is avail-

ble which causes subcortical activity of less than a microvolt to be de-

ected ( Picton and Terrence, 2010 ) and localized within the brainstem

 Scherg and Von Cramon, 1985 ). Additionally, the suggested minimum

rea does not take into account that higher neural densities could pro-

uce the same amplitude within a smaller patch of tissue. It remains to

e seen how the neural density of the human hippocampus compares

o that of the neocortex. In rodents certain hippocampal structures with

eural densities several times that of neocortical structures have been re-

orted ( Keller et al., 2018 ). Another concern might be that the distance
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etween the deep structures and the electrodes is weakening dipole con-

ribution beyond observability as the amplitude of the electrical dipole

ecays as a function of distance, although this rate is very small for

istances up to 10cm ( Arnulfo et al., 2015 , Scherg, 1990 ). Although

he hippocampus is considered a deep structure, it is relatively superfi-

ial compared to subcortical structures. Indeed, the median distance be-

ween our depth electrode contacts located in the hippocampus was only

.6cm for subdural grids and 11.9cm for scalp electrodes. Simulation

tudies suggest that source localization accuracy deteriorates beyond 6-

cm distance in ECoG ( Pascarella et al., 2016 ) and for EEG it deteriorates

radually, at a constant rate ( Whittingstall et al., 2003 ). Of course, while

EG is a complex signal, sensitive to both radial and tangential sources,

nd can more readily gauge potentials from deep sources in compari-

on to MEG, the signal-to-noise ratio of the activity attributed to these

ources could still be potentially very low ( Puce and S. Hämäläinen,

017 ). Specifically, in recordings of spontaneous activity, the signal-to-

oise ratio may be even poorer because of the overwhelming amount of

imultaneously occurring activity. Indeed, our results showed that when

ndependent component analysis was not used to increase the signal-to-

oise ratio, correlations were very small (see Fig. 2 ) though still signif-

cant. In summary, more studies are presenting experimental and the-

retical evidence suggesting the possibility to uniquely recover activ-

ty from both cortical and subcortical sources ( Andersen et al., 2020 ,

ttal et al., 2009 , Attal and Schwartz, 2013 , Krishnaswamy et al., 2017 ,

eeber et al., 2019 ). 

.3. Hippocampus at rest 

The hippocampus plays a prominent role in central nervous system

unctioning. It can evoke large-scale influences on cortical activity, as

t is a highly interconnected region, connected anatomically to a wide

ange of cortical regions ( Cole et al., 2010 ). The contribution of hip-

ocampal structures to scalp EEG and also MEG has recently become

ore accepted, as evidenced by deep structures such as the hippocam-

us for not being so “closed field ” as previously thought, and therefore a

ancellation of oppositely oriented dipole generators might not be as ex-

ensive ( Attal et al., 2009 , Attal and Schwartz, 2013 , Meyer et al., 2017 ,

uraan Maher et al., 2011 , Ruzich et al., 2019 ). Furthermore, exper-

ments in mammals revealed subcortical structures such as the amyg-

ala and thalamus to have a relatively high source density compared

o the neocortex which is why in theory a smaller activated volume

ould be needed to produce a detectable signal on the scalp. This is

lso true for some parts of the hippocampus such as the dentate gyrus,

lthough others have a lower current density ( Keller et al., 2018 ). During

est, brain-wide slow oscillations are a characteristic feature of both the

ammalian neocortex and the hippocampus occurring spontaneously

nd phase-locked to each other with a short delay ( Chan et al., 2017 ,

olansky et al., 2006 ). This suggests that, in low-frequency ranges, deep

rain regions such as the hippocampus could initiate brain-wide cortical

ctivity. Whether the hippocampal neural activity is picked up by subdu-

al and scalp electrodes with sufficient signal-to-noise ratio to be visible

s a question we have addressed in this study. In order to distinguish be-

ween the two likely types of activity propagation − physiological prop-

gation of action potentials through causal interactions (active spread)

nd electrical volume conduction through cortical structures (passive

pread) − timing is key. Therefore, for our investigation, it is crucial

o eliminate correlations that were maximum at a non-zero lag. Future

tudies could look deeper into the phase relations between these types

f activity propagation by using the imaginary part of phase-based con-

ectivity techniques. However, even when controlling for zero-lag, we

annot fully rule out the possibility that activity from brain regions lo-

ated outside the hippocampus is volume conducted at zero-lag to both

epth electrodes and ECoG or EEG electrodes ( Bénar and Badier, 2019 ).

his is addressed further down under the limitations of the study, point

II. 
.4. Detectability is more prominent for theta oscillations 

Theta-alpha oscillations are prominently observed in the hippocam-

us of all mammals studied to date ( Buzsáki, 2002 ). During quiet wake-

ulness, evidence exists for activity in the theta-delta range in the human

ippocampus ( Frauscher et al., 2018 ). Furthermore, it has recently been

uggested that low-frequency hippocampal activity plays a significant

ole in defining the interhemispheric cortical resting-state connectivity

nd mediates visual processing. Our results show components correlat-

ng with a depth contact in the theta range twice as strong as correlating

omponents in the alpha or beta range. This suggests the importance of

low-hippocampal activity in the formation of the electrophysiological

ignature of resting-state activity in the human brain ( Chan et al., 2017 ).

.5. Limitations of the study and suggestions for future research 

On a final note, we want to point out the following practical and

echnical limitations of the current study as well as suggestions for future

mprovement: 

While the topography of the scalp electrodes is in accordance with

he standard 10-20 international system and common to all patients,

he exact location and number of depth and subdural electrodes varies

mong patients (see supplementary material Table S1 and figure S1).

his undeniably explains part of the observed variability. 

The forward model currently provided in the Brainstorm toolbox

oes not account for surgery-induced effects, such as sutures of the skull

nd the impact of the non-conducting grid. Holes in the skull can have

 large impact on the scalp potential distribution and neglecting them

an lead to a systematic error in fitted source locations up to several

entimeters (Oostenveld and ( Oostenveld and F. Oostendorp, 2002 )).

olume conduction models ignore such effects ( Pascarella et al., 2016 )

lthough recently forward models have been developed for ECoG source

ocalization in primates that take into account the implantation of very

ow conductivity ECoG silicone strips ( Wang et al., 2019 ). However, in

his study, our objective was not to achieve the best source localization

ccuracy, but rather to compare source localization between ECoG and

EG given the currently available models. In this respect, future studies

re necessary to determine how much source localization with ECoG or

EG is affected by accounting for the above-mentioned issues. Further-

ore, it would be of interest to investigate the neural activity of resting-

tate by means of methods that can combine EEG and ECoG withing a

ingle head model. It still remains to be seen how such a model can

mprove the localization of deep brain structures, since previous simu-

ations have shown little improvement in localization accuracy in areas

eneath the non-conducting grid ( Todaro et al., 2018 ). 

In this study, we presumed independent components to have a sig-

ificant zero-lag correlation with neural generators in close proximity

o the depth electrode, though in theory, zero-lag correlation could be

 result of distant coupled oscillators ( Petkoski et al., 2018 ). We based

ur assertion on the observation that our independent components do

ot correlate with all depth contacts. If a neural generator would be

ocated further away from the depth electrodes, most probably a corre-

ation with the majority of the depth electrodes would be observed due

o volume conduction. As far as we can see from tables S4 and S5, in

ost cases this does not happen, both for average and bipolar referenc-

ng of the depth electrode. Table S4 shows that, even in the subdural

rids, the number of depth electrode contacts that correlate on aver-

ge with a specific independent component is around 3 contacts (2.1

or bipolar reference) and rarely exceeds 5 contacts. Only in patient P2

bipolar and average reference) and P4 (only average reference) did we

nd components that had a significant correlation with all depth elec-

rode contacts in a hemisphere (see Figs. 4 and S3 in supplementary

aterial). For patient P2, this was seen for one component in the theta

and (same for bipolar) in both ECoG and EEG. For patient P4, 2 out

f 16 subdural components in the theta and beta band were correlated

ith all depth electrode contacts (both hemispheres for the theta band,
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nly the right hemisphere for the beta band) and 4 out of 21 scalp com-

onents in the theta band showed significant correlation with all depth

lectrode contacts (2 of which were correlating with both hemispheres,

ne with left and one with the right hemisphere). Patient P4 also had the

mallest distance between subdural and depth electrodes, which could

xplain the high number of correlated depth electrode contacts. In any

ase, the fact that this is not a common observation and that there is

ndeed a significant decrease in distance between the estimated dipoles

nd their correlated depth electrode contacts, compared to the average

istance between the non-correlating dipoles and the average location

f all depth electrode contacts, convinced us that correlating compo-

ents are coming from neural generators in close proximity to the depth

lectrode contact. This presumption should be confirmed by studies for

hich there is prior knowledge of a neural generator located in deep or

ubcortical structures. 

In this study, our method for source localization was restricted to

ipole modeling. Future research is necessary to determine to what ex-

ent our results will be influenced when choosing alternative methods

uch as source distributed modeling ( Jatoi Munsif et al., 2014 ). 

Furthermore, recent studies have suggested the use of the Laplacian

e-reference montage for depth electrodes as opposed to the bipolar and

verage montages used in this study ( Li et al., 2019 ). 

. Conclusion 

The assertion that deep structures such as the hippocampus do not

roduce activity visible on the scalp, due to their assumed “closed field ”

ature, is increasingly being challenged. Using a ground truth in the hip-

ocampus and insula of 4 patients we showed that during quiet wakeful-

ess, the activity picked up by depth electrodes indeed correlates with

calp EEG activity decomposed using ICA analysis. We speculate that

hese correlations stem from neural generators in close proximity to the

epth electrodes for two reasons: I) an independent component was not

bserved by all depth electrodes and typically correlated with only a

ew of the depth electrode contacts, which hints at local activity and II)

he result of dipole fitting for the correlated components showed a sig-

ificant decrease in the distance between the dipole and depth electrode

ontact, compared to non-correlating components. 

Furthermore, by simultaneously recording not only ECoG and scalp

EG but also depth electrodes, we were in a unique position to com-

are source localization accuracy of deep sources using invasive and

on-invasive EEG. To the best of our knowledge, this is the first study

resenting experimental findings on the comparison of invasive and

on-invasive EEG source localization accuracy of deep cortical struc-

ures. Our results showed that, while source localization using inva-

ive EEG turned out to be indeed significantly more accurate than using

on-invasive EEG, we believe this improved accuracy is not satisfactory

iven that: I) scalp EEG is recorded with a low number of electrodes and

artially shielded by the non-conducting ECoG grid, and II) the location

f both ECoG electrodes and depth electrodes were chosen for optimal

isibility and proximity to the epileptic source and were therefore in

lose proximity to each other. 
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The datasets for this manuscript are not publicly available as it con-

ains sensitive information about the patients and therefore cannot be
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