
1.  Introduction
Fluid transport through rock fractures underlies many natural processes, such as fault rupture (Faulkner 
et al., 2010), while also influencing hydrocarbon production (Austad et al., 2012; Godec et al., 2013), ge-
othermal heat extraction (Martínez et al., 2014), temporary energy storage (e.g., H2) (Kabuth et al., 2017; 
McCartney et al., 2016), and long-term nuclear and anthropogenic waste storage (e.g., CO2) (Z.-Q. Huang 

Abstract  Heterogeneous fracture aperture distribution, dictated by surface roughness, mechanical 
rock and fracture properties, and effective stress, limits the predictive capabilities of many reservoir-scale 
models that commonly assume smooth fracture walls. Numerous experimental studies have probed key 
hydromechanical responses in single fractures; however, many are constrained by difficulties associated 
with sample preparation and quantitative roughness characterization. Here, we systematically examine 
the effect of roughness on fluid flow properties by 3D printing seven self-affine fractures, each with 
controlled roughness distributions akin to those observed in nature. Photogrammetric microscopy was 
employed to validate the 3D topology of each printed fracture surface, enabling quantification using 
traditional roughness metrics, namely the Joint Roughness Coefficient (JRC). Core-flooding experiments 
performed on each fracture across eight incremental confining pressure increases (11–25 bar), shows 
smoother fractures (JRC < 5.5) exhibit minor permeability variation, whilst rougher fractures (JRC > 7) 
show as much as a 219% permeability increase. Micro-computed tomography imaging of the roughest 
fracture under varying effective stresses (5–13.8 bar), coupled with inspection into the degree of similarity 
between fracture closure behavior in 3D-printed and natural rock fractures, highlight the capabilities of 
3D-printed materials to act as useful analogs to natural rocks. Comparison of experimental data to existing 
empirical aperture-permeability models demonstrates that fracture contact area is a better permeability 
predictor than roughness when the mechanical aperture is below ∼20 μm. Such findings are relevant 
for models incorporating the effects of heterogeneous aperture structures and applied stress to predict 
fracture flow in the deep subsurface.

Plain Language Summary  Stark permeability contrasts between fractures and surrounding 
rock make them a critical feature governing heat and mass transport in the Earth's subsurface, while also 
playing an integral role in many natural processes and subsurface engineering applications. A fractures 
aperture (void space) determines its fluid transport capabilities, making this crucial information needed to 
inform numerical models seeking to predict flow rates across many scales (centimeters to kilometers). For 
simplicity, common fracture representations equate the effective (hydraulic) and geometric (mechanical) 
apertures (i.e., perfectly smooth walls). In nature, all rock fractures display rough walls to various degrees, 
limiting the predictive capabilities of smooth-walled models. Here, we performed fluid flow experiments 
on 3D-printed fractures with controlled surface roughness to investigate the effect on fluid transport. We 
find that roughness enables the persistence of void space, which enhances fluid flow. High-resolution 
imaging shows that below ∼20 µm, the influence of fracture contact area on permeability is greater than 
roughness. Such findings are relevant for fracture flow models attempting to incorporate the effect of 
heterogeneous apertures and applied stress on fluid flow properties in fractures, which is important in the 
deep subsurface where applied stresses force fluid to navigate discrete contact points between opposing 
fracture walls.
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et al., 2015; Pruess, 2008). Fluid flow in single fractures is dictated by aperture distribution, which is under-
pinned by the geometrical and chemical heterogeneity of the wall rock, and the coupling of flow and effec-
tive stress, σ′ (C. A. Barton et al., 1995; Berkowitz, 2002; Y. W. Tsang & Witherspoon, 1981). An improved 
understanding of single-fracture scale hydromechanics, and resulting implications on fracture network- 
and reservoir-scale transport capabilities, is required for continued and future comprehension of fractured 
media (Phillips et al., 2020).

Natural fracture surfaces exhibit deviations from planarity in the form of asperities, termed roughness (Ad-
ler et al., 2012; Grasselli et al., 2002; Y. Li & Huang, 2015), which has varying impacts on flow depending 
on the scale of consideration (i.e., first-order waviness and second-order unevenness) (cf. Dou et al., 2019; 
M. Wang, Chen, et al., 2016; Zou et al., 2015). Discrete roughness promotes heterogeneous apertures and 
complex flow properties (Brown & Scholz, 1985a; Pyrak-Nolte et al., 1988; C. F. Tsang & Neretnieks, 1998), 
commonly motivating a perfectly smooth parallel plate idealization (e.g., Thompson & Brown, 1991; Unger 
& Mase, 1993), described by the cubic law, CL (Snow, 1969; Witherspoon et al., 1980):


 

3
Δ

12
waQ P� (1)

where Q (m3 s−1) is the volumetric flow rate, w (m) is the fracture width, a (m) is the aperture, η (Pa s) is the 
fluid viscosity, and ΔP (Pa) is the fluid pressure gradient.

Reservoir-scale models predominantly assume smooth-walls when representing fractures discretely to ob-
tain bulk flow properties (Latham et al., 2013; Long et al., 1982; Luo et al., 2016). Numerical (e.g., Ai-Yaarubi 
et al., 2005; Boutt et al., 2006; Brush & Thomson, 2003; Crandall, Ahmadi, & Smith, 2010; Ge, 1997; Glover 
et al., 1997; Karimzade et al., 2019; Konzuk & Kueper, 2004; Liu et al., 2020; Oron & Berkowitz, 1998; Yeo 
et al., 1998; Zimmerman & Yeo, 2000; Zimmerman et al., 2004) and experimental studies (e.g., Brace, 1980; 
Brown, 1987; Z. Chen et al., 2017; Durham & Bonner, 1994; Nicholl et al., 1999; Piggott & Elsworth, 1990; 
Plouraboue et al., 2000; Pyrak-Nolte et al., 1987; Qian et al., 2005, 2011; Raven & Gale, 1985; Rong et al., 2020; 
Tan et al., 2020; Y. W. Tsang & Tsang, 1990) demonstrate the sensitivity of flow to aperture and roughness, 
highlighting the CL's shortcomings in predicting single-fracture permeability, kf. Constricted advective flow 
is resolved by assigning a (effective) hydraulic aperture, eh, which always appears smaller than the mechan-
ical aperture, em, representing the geometric mean between opposing surfaces (Esaki et al., 1999; Hakami 
& Larsson, 1996; Klimczak et al., 2010). Our limited understanding of this reduced aperture hinders model 
predictions (Vogler et al., 2018; Zimmerman & Bodvarsson, 1996).

Stress-induced aperture decrease further complicates flow properties by increasing fracture contact area, 
Rc, which enhances flow tortuosity and preferential flows (Briggs et al., 2017; Brown et al., 1998; de Dreuzy 
et al., 2012; Y. W. Tsang & Tsang, 1989; Watanabe et al., 2009; F. Xiong et al., 2018; Zou & Cvetkovic, 2020). 
Such behavior is commonly described by fracture normal stiffness, kn, a geometry-dependent mechanical 
property describing the ratio of change in σ′ versus aperture, which has been widely used to characterize 
stress-dependent closure (Bandis et al., 1983; Goodman et al., 1968; Hopkins, 2000; Hopkins et al., 1990; 
Petrovitch et al., 2013; Pyrak-Nolte & Morris, 2000; Pyrak-Nolte & Nolte, 2016; L. Wang & Cardenas, 2016). 
These studies highlight the importance of Rc and resulting spatial aperture distribution in governing kf. 
Other studies identifying the need for practical kn characterization, with limited data over a small stress 
range, proposed a stiffness characteristic, χ = dkn/dσ′, where the curve of kn versus σ′ is linear with slope χ, 
completely describing stress-dependent closure (Evans et al., 1992; Zangerl et al., 2008).

In the subsurface, roughness and Rc are typically unknown, meaning resolving their impact on flow is pri-
marily reliant on laboratory-scale studies to guide simulations and conceptual models. However, as fracture 
properties are heterogeneous and anisotropic (Bisdom et al., 2016; Laubach et al., 2018), investigating their 
impact on flow within a specific rock volume, repeatedly and consistently, is inherently challenging. There-
fore, despite advancements in our understanding of single-fracture flow, previous experimental efforts are 
constrained, in part, by difficulties associated with experimental repeatability, sample preparation (e.g., 
fragmentation during coring) and quantitative roughness characterization (e.g., sample size vs. resolution). 
A more robust framework that provides an improved basis of the primary fracture properties governing kf 
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is desirable, which, in turn, can be used to refine numerical models and provide alternative pathways of 
(back-)calculating subsurface kf.

One avenue to address such challenges is three-dimensional printing (3DP), a rapid prototyping meth-
od capable of producing complex 3D objects from computer-aided-design (CAD) geometries (Piovesan 
et al., 2019). This rapidly evolving technique, coupled with digital rock physics, render this an increasingly 
popular method to investigate properties akin to natural rocks (e.g., Gomez et al., 2018; Hasiuk et al., 2018; 
Ishutov et al., 2015; Ishutov et al., 2017; Ju et al., 2014; Sharafisafa et al., 2018; Suzuki et al., 2017; Yazdi 
et al., 2016; Zhu et al., 2018). 3DP can therefore alleviate some uncertainties associated with natural rocks, 
facilitating systematic investigation into the control of micro/macroscopic heterogeneities on flow proper-
ties, thereby bridging the gap between laboratory tests and numerical simulations.

Recent 3DP studies investigated shear response (and asperity degradation) (Ishibashi et  al.,  2020) and 
non-Darcian flow regimes (Yin et  al.,  2020) in polymeric rough fractures. Attempts to more accurately 
replicate natural fracture material properties produced 3DP fracture replicas that were later molded into 
concrete (Q. Jiang, Feng, Gong, et al., 2016; Ni et al., 2018) or natural minerals (Fang et al., 2018). However, 
replicating fractures using higher strength materials is resolution-limited. Additional studies investigated 
other 3DP materials to further elucidate the geomechanical comparability to natural rocks (e.g., Barbosa 
et al., 2020; Fereshtenejad & Song, 2016; C. Jiang & Zhao, 2015; Q. Jiang, Feng, Song, et al., 2016; Kong 
et al., 2018; Vogler et al., 2017), indicating that absolute elastic properties (Young's modulus, Poisson's ratio 
and unconfined compressive strength [UCS]) vary from those found in the majority of natural rocks (e.g., 
UCS 30–90 MPa). Despite this, Zhou and Zhu (2018) identified a polymeric resin printed via stereolithogra-
phy (SLA) as the most suitable material for mimicking rock mechanical behavior. This method, therefore, 
presents unique opportunities to generate high-resolution roughness while also enabling investigation into 
aperture structure heterogeneity under geological conditions, such as σ′, which is key for subsurface flow 
predictions in rough fractures undergoing fluid pressure changes.

Here, we 3DP seven synthetic fractures with varying roughness distributions using an SLA-printed poly-
meric material. We verified the roughness and performed single-phase (steady-state) fluid flow experiments 
on each fracture to systematically investigate the effect of roughness on kf with increasing σ′. X-ray mi-
cro-computed tomography (μ-CT) imaging was then performed on the roughest fracture during loading to 
visualize aperture evolution in a non-destructive manner.

2.  Materials and Methods
2.1.  Sample Generation and Preparation

A range of roughness distributions were fabricated by systematically varying the digital fractal dimension, 
Df (−) (between 1.2 and 2.4), in seven sets of numerically designed fractures to produce seven self-affine 
Fracture Realizations (FR#1–FR#7, Figure 1a) with varying small-scale (second-order) roughness distribu-
tions. These synthetic surfaces were generated using Synfrac, which enabled the fabrication of two oppos-
ing rough fracture surfaces through accounting for complex matching properties and anisotropies within 
the defining properties of a fracture surface (cf. Brown, 1995; Isakov et al., 2001; Ogilvie et al., 2003). This 
(fractal) generation method (cf. Text S5 in the supporting information [SI]) has been shown to approximate 
natural rock fracture surfaces (e.g., Brown & Scholz, 1985b; Candela et al., 2012; Renard et al., 2013). To 
complement and investigate the efficacy of using 3DP fractures as natural rock fracture proxies, three Test 
Fractures (TF#1–TF#3) were also produced. A summary of the respective samples, and corresponding ex-
periments performed, are detailed in Table S1 and Text S4.

2.2.  3DP Procedure

Following numerical generation, fracture sets were imported as equal size XYZ Cartesian point clouds into 
the 3D CAD software, Rhinoceros6®. Each surface was converted into a closed (watertight) polysurface to 
satisfy 3DP criteria. Each sample comprised two half-cylinders (Figures 1b and 1c; example of one fracture 
surface), acting as opposing fracture walls (top and bottom surfaces), that when assembled produced a 
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single fracture measuring 18 mm in length and 6 mm diameter. Details on the opposing fracture surface 
alignment protocol are provided in Text S5 and Figure S7.

A repeatability test, using two digitally identical fractures (TF#2, TF#3), was performed to investigate the 
reproducibility of top and bottom surfaces using identical build and print specifications. Through 2D am-
plitude roughness analysis (Gadelmawla et al., 2002; Stout, 2000), this test was deemed satisfactory, yielding 
differences as low as 1.6% between each fracture (cf. Text S4).

All fractures were printed with a Formlabs®2 3D printer, using a clear photopolymer Acrylonitrile Butadi-
ene Styrene (ABS) resin (cf. Table S2 for material properties) (Formlabs, 2019). Printing was accomplished 
using SLA methods, where an ultraviolet laser cured each resin layer to produce the desired 3D part. Of the 
3DP methods reported below, this yielded the highest resolution whilst being readily affordable and avail-
able. Other methods were investigated, namely Accura® XtremeTM tough-resin, printed using a ProJet® 7000 
printer. Surface roughness comparisons between Accura® XtremeTM and ABS were performed, with the for-
mer yielding lower resolution and was therefore not selected. The reported resolution of the chosen printer 
was 25 μm in the x-direction, 50 μm in the y-direction, and 100 μm in the z-direction, operating with a laser 
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Figure 1.  Workflow to 3D print fractures with different surface roughness distributions. (a) Primary suite of 
numerically generated synthetic fracture surfaces, increasing in roughness from FR#1 (smoothest) to FR#7 (roughest). 
(b) Enlarged view of FR#7, highlighting the region (dashed rectangle) selected for final fracture assembly shown in 
(c). (c) 3D view of the final part, comprising the half-cylinder and fracture (cf. Figure S1b for photograph). Note that 
the workflow depicted in (b and c) was repeated for each fracture surface, with details of this provided in Text S1, 
accompanied by all top and bottom fracture surfaces (Figure S2).
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spot size of 140 μm. This resolution was higher than that of the final digital fracture surfaces (cf. Text S1), 
suggesting microscopic roughness distributions could be fully resolved during printing.

2.3.  Surface Roughness Characterization

We characterized the roughness of each fracture surface using digital optical microscopy to verify that the 
printed samples were representative of their model counterparts and to enable robust comparison between 
fractures. An automated image processing workflow, written in PythonTM, was designed to alleviate user 
interpretation bias, making use of scikit-image algorithms (van der Walt et al., 2014). The following broadly 
describes the experimental setup and metrics used to quantify surface roughness. Detailed information 
on the experimental workflow and functionality of the data processing code is provided in Text S2 and S3.

2.3.1.  Digital Optical Microscopy

A Keyence® VHXTM-6000 digital optical microscope (Keyence,  2017) was used to investigate (microme-
ter-scale) roughness distributions of each 3DP fracture surface in a non-destructive manner (Figure S3). 
This surface-imaging tool utilized photogrammetry to obtain 3D spatial information (x-, y-, and z-co-ordi-
nates) of each surface. The maximum image size was 20,000 × 20,000 pixels, resulting in a resolution of 
∼1–2.5 μm per pixel at 100x magnification. This method calculated the surface height over a 2D grid by 
compiling multiple partially overlapping images at different exposures and focal planes.

2.3.2.  Surface Roughness Analysis

We quantified the roughness of each fracture surface using widely adopted 1D dimensionless metrics for 
quantifying natural fracture surface roughness, namely the Joint Roughness Coefficient, JRC (−), (cf. N. 
Barton & Choubey, 1977; C. A. Barton et al., 1985) and the root mean square of the first derivative of the 
fracture surface profile, Z2 (−), (cf. Tse & Cruden, 1979). Experimental studies on roughness have discussed 
empirical relations between JRC and Z2 (cf. Y. Li & Zhang, 2015; Yu & Vayssade, 1991). Here, for a 1D profile 
comprising equally spaced points, we used the relation by Y. Li and Zhang (2015):

 1.6833
298.718·JRC Z� (2)

where Z2 is expressed discretely as (Myers, 1962):
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where xi and Zi denote surface profile co-ordinates, and Nt the number of sampling points along the fracture 
length. The JRC, ranging between 0 (perfectly smooth) and 20 (high roughness) (N. Barton & Choubey, 1977), 
can be used to compare mechanical and hydraulic fracture properties with regard to surface roughness vari-
ations and is a direct input parameter for kf models (Olsson & Barton, 2001). We calculated these metrics by 
analyzing each row and column of pixels in the 2D fracture height matrix as separate 1D-roughness profiles, 
which yielded Z2 measures in x- and y-directions and enabled determination of mean Z2 and JRC's in both 
horizontal directions.

The similarity between the 3DP fractures and their digital counterparts were investigated using the Hurst 
coefficient, H (−) (cf. Text S4), a measure of self-affinity (Adler et al., 2012). All printed surfaces were within 
a 10% range of the digital models (cf. Figure S6).

2.4.  Experimental Fluid Flow Setup

2.4.1.  Single-Phase Flow Procedure

Single-phase permeability measurements were conducted on FR#1–FR#7 using a custom-built, Hassler-type 
PEEK flow cell (Figure 2a). Samples were placed in a Viton® sleeve (Figure 2b) before applying an isotropic 
confining pressure, Pc (bar), with water as the confining fluid. A Vindum Engineering VP-12K piston pump 
continuously injected (0.01 mL/min; ±0.01% of set point) deionized water into the sample inlet, while Pc 
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was incrementally increased eight times for each sample (from 11 to 25 bar). Maintaining a constant flow 
rate while modifying Pc resulted in alterations in the mean pore pressure, Pp (bar), which enabled permea-
bility investigation across a range of σ′ (σ′ = Pc–Pp, ∼12.5 bar).

For consistency, and to enable direct comparison between samples, a repeatable and consistent proce-
dure was adopted. Once mounted in the flow cell, 11 bar of Pc was applied to the sample for 30 min to 
ensure sleeve integrity. A downstream pore-fluid pressure of 5 bar was introduced, followed by 5 bar of 
pore-fluid pressure on the upstream. Fluid was continuously injected (0.01 mL/min) at room temperature 
(20 °C ± 0.5 °C). Once the pressure drop, ΔP, over the sample stabilized (i.e., steady-state), two on-board 
pressure transducers (error ± 12 kPa) (Figure 2a) recorded ΔP at each Pc step with a sampling frequency 
of 15 s for 30 min, yielding 120 data points from which average upstream and downstream pressures were 
calculated. For the full Pc range, the materials sensitivity to creep was tested, and kf was deemed to be within 
an acceptable range after ∼20 min. Therefore, samples were pre-loaded for 30 min prior to ΔP recording 
began to avoid the influence of plastic deformation (TF#1; Text S4).

2.4.2.  Fracture Permeability and Hydraulic Aperture Quantification

The sample permeability, ks (m2), was calculated for each Pc step using Darcy's law (Darcy, 1856):


 

Δ
s LQk

A P
� (4)
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Figure 2.  Experimental apparatus. (a) Schematic experimental flow setup. (b) Enlarged view of the region highlighted 
in (a), showing isotropic confinement. (c) Enlarged view of the sample shown in (b), denoting which subsection was 
imaged with μ-CT (cf. Section 2.5). μ-CT, micro-computed tomography.
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where L (m) and A (m2) are the sample length and cross-sectional area, respectively. Injection rates and 
σ′ ranges were selected to only investigate laminar (Darcian) flow, applicable to the majority of geological 
flows (Council, 1996), so a Reynolds number, Re (−), <1. We calculated Re via (Zimmerman et al., 2004):





QRe
w� (5)

where ρ (kg m3) is the fluid density. All Re were within the laminar flow regime (Re < 3.1 × 10−2), validating 
the use of Equation 4 (Konzuk & Kueper, 2004).

eh (m) was quantified through analysis of Q and ΔP, which exhibited a linear relationship for all samples 
(Brown, 1987; Z. Chen et al., 2000; Matsuki et al., 2006):

 
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This enabled kf (m2) to be calculated as (Watanabe et al., 2008; Witherspoon et al., 1980):


2

12
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2.5.  Laboratory-Based μ-CT

We performed μ-CT imaging on the roughest fracture to visualize aperture evolution with increasing σ′. For 
this, we printed a replica of FR#7 (FR#7_2; Table S1). The experimental setup, and parameters investigated, 
are detailed in the following.

2.5.1.  Experiment Description

Laboratory-based μ-CT was used to image single-phase fluid flow through FR#7_2. This allowed for non-
destructive (micrometer-scale) aperture visualisation through capturing the X-ray attenuation contrast be-
tween the 3DP sample and fracture (Heindel, 2011; Ketcham et al., 2010).

Contrasting the (nonimaged) fluid flow experiments performed on FR#1 – FR#7, a tagged brine solution 
(5 wt. % potassium iodide) was used as the permeating fluid to enhance contrast between the fracture and 
ABS material. Scans were undertaken using a gantry-based environmental μ-CT (EMCT) system (Bultreys 
et al., 2016), which enabled the sample, flow cell, wires, and tubing to remain static while the X-ray source 
and detector rotated 360° freely (Figure 2a). Four scans at different σ′'s (cf. Table 1) were executed to inves-
tigate aperture evolution during fracture closure, −Δem (μm). The process for mounting the sample in the 
flow cell, applying Pc and backpressure, and continuously injecting fluid into the fracture was the same as 
described in Section 2.4.1. A flow rate of 0.073 mL/min was favored as aperture was more easily resolved 
than when operating at a lower flow rate of 0.01 mL/min.

2.5.2.  Mechanical Aperture Quantification

Acquired μ-CT radiographs were reconstructed using Octopus Reconstruction (Vlassenbroeck et al., 2007), 
while AvizoTM (Thermo Fischer Scientific) was used to analyze reconstructed image slices in 3D. For each 
experiment, multiple scans recorded at different locations along the samples vertical axis were stitched to-
gether to obtain a total image size of 6 × 6 × 8 mm, corresponding approximately to the sample center (Fig-
ure 2c). For image denoising, a non-local means edge-preserving filter was applied to the reconstructed vol-
umes (Buades et al., 2005, 2008). The fracture was then distinguished from the surrounding material (ABS 
sample and Viton® sleeve) through watershed segmentation in AvizoTM (Schlüter et al., 2014). Following 

segmentation, direct volume renderings of em at each σ′ were generated, and fracture volumes, vol
fk  (mm3), 

were computed. em for each σ′ was then estimated using a Euclidean distance transform, producing an XYZ 
scalar field with floating-point values from which local thicknesses were extracted to plot em distribution 
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maps and frequencies. The mean em was calculated by dividing the total vol
fk  of measured apertures by the 

cross-sectional area, enabling consideration of both open and closed segments in the final calculation.

2.5.3.  Aperture Field Evolution

The degree of −Δem and asperity interaction for each σ′ was determined through calculation of the contact 
area, Rc (%), between opposing fracture walls using a 2D projection of em as:

 c
c

t

AR
A� (8)

where Ac (m2) is the contact between fracture faces and At (m2) is the total fracture surface area. This ap-
proach meant that regions unoccupied by brine were segmented as Rc, which included all potential em's 
below the CT-scan resolution. The contribution of surface roughness to the evolving aperture field was in-
vestigated using the standard deviation, 

me  (μm), and mean of the aperture field, which enabled calculation 
of the relative roughness, 

me /em (−), (Kling et al., 2017; Matsuki et al., 1999; Renshaw, 1995; Xie et al., 2015).

3.  Results
3.1.  Fracture Surface Roughness

Surface roughness is characterized in x- and y-directions for opposing top and bottom surfaces for samples 
FR#1–FR#7 to quantify discrete roughness variations (Figure 3). JRC's range between ∼2.5 (FR#1) and ∼7 
(FR#7) (Figure 3b). Z2 (Figure 3c) is empirically related to JRC (Equation 2); investigation into the top-x, 
bottom-x, top-y, and bottom-y-directions yield R2 values of 0.99, 0.98, 0.98, and 0.99, respectively.

3.2.  Fracture Permeability and Hydraulic Aperture

Figure 4a presents fracture permeability, kf, evolution for FR#1–FR#7 with incrementally increasing con-
fining pressure, Pc, and thus effective stress, σ′. The resulting σ′'s are directly related to each samples in-
trinsic permeability, illustrated most clearly by FR#7. kf for all samples decreases exponentially with σ′. 
FR#1–FR#6 (Figure 4b) display smaller kf variation than seen in FR#7 (Figure 4a). FR#6 displays noticeably 
higher kf (6.9 × 10−13–1.8 × 10−13 m2) in comparison to FR#5. FR#7 spans the widest range of σ′ (∼12.5 bar), 
corresponding to significantly higher kf (2.2 × 10−12 m2 at σ′ = 5.8 bar; 5.3 × 10−13 m2 at σ′ = 18.3 bar) 
than observed in FR#1–FR#6. As FR#7 displays a substantially greater kf increase from FR#6, kf (and eh) 
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Experiment setting Scan no. 1 Scan no. 2 Scan no. 3 Scan no. 4

Confining pressure (Pc) (bar) 11 16 21 24

Effective stress (σ′) (bar) 5 9.2 12.8 13.8

Voxel size (μm) 5.76

Exposure time (ms) 160

Tube power (W) 8

Tube voltage (kV) 70

Amount of projections per full rotation (−) 2,201

Acquisition time (min) 30

Scans per series (−) 1

No. of averages (−) 5

Abbreviation: μ-CT, micro-computed tomography.

Table 1 
Scan Settings and Test Parameters for Each μ-CT Experiment Performed on Sample FR#7_2
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measurements were conducted on the duplicate of RF#7 (FR#7_2) dur-
ing μ-CT aperture analysis (cf. Figure S8). Despite a higher flow rate, kf 
response is consistent with that measured in the first instance.

Figure 4c illustrates the relationship between joint roughness coefficient, 
JRC, kf, and σ′. Fractures with JRC's between ∼2.5 and 5.5 (FR#1–FR#5) 
show small kf variation for each Pc increase. JRC's > 6 (FR#6–FR#7) show 
significant kf increases. For the first Pc step (11 bar), FR#1 to FR#5 shows 
only a 14% kf increase. FR#6 (JRC = ∼6) shows a 40.8% kf increase com-
pared to FR#5 for the first Pc step, representing a larger percentage in-
crease than that observed for the entire range of FR#1 to FR#5. FR#7 
shows a 219% kf increase from FR#6 for the first Pc step. The fracture 
with the highest JRC (∼7, FR#7) corresponds to the highest kf. kf contrast 
between samples is consistently greater at lower Pc, exemplified by the de-
creasing horizontal distance between points with each Pc step (Figure 4c). 
For example, kf for FR#6 and FR#7 decreases from 219% to 194% from the 
first to last Pc step, respectively.

We investigated the area available for advective flow by calculating hy-
draulic aperture, eh, evolution with σ′. Aligning with kf trends, decreasing 
eh with increasing σ′ is observed for all samples (Figure 4d). The mini-
mum and maximum eh values calculated are 1.41 μm (FR#1 at 10. 5 bar σ′)  
and 5.18 μm (FR#7 at 5.8 bar σ′), respectively. Similar to kf, eh for FR#7 
shows consistently higher values than FR#1–FR#6. Even at the highest σ′ 
imposed on FR#7 (18.3 bar), the corresponding eh (2.52 μm) is larger than 
that of all other samples across the full range of σ′'s, barring the first Pc 
step for FR#6 (2.87 μm at σ′ = 4.8 bar).

3.3.  (μ-CT) Imaged Mechanical Aperture

Figure 5 shows FR#7_2's mechanical aperture, em, during four stepwise 
Pc (and resulting σ′) increases (Table 1). Decreasing em is observed from 
5 to 13.8 bar σ′. This is best shown visually by em maps (Figures 5a–5d), 
where decreasing thickness of larger aperture regions is accompanied by 
decreased connectivity of previously connected apertures (given the fi-
nite resolution of the images).

The mean (resolved) em ranges from 23.8 (5 bar σ′) to 11.7 μm (13.8 bar σ′), representing a 50.8% decrease 
over 8.8 bar σ′. This corresponds to a 36.5% increase in contact area, Rc (Figure 5e), and a 78.4% increase in 
relative roughness, 

me /em (Figure 5f). This results in a decreased area for advective flow, illustrated by a de-
creasing eh (5.78–3.35 μm) (Figure 5g) and a 50.9% decrease in fracture volume, vol

fk  (Figure 5h). At 13.8 bar 
σ′, the percentage of Rc and open (fluid-filled) aperture converge (48.2%). Aligning with these aperture 
changes, a 66.4% kf decrease is observed from 5 to 13.8 bar σ′, corresponding to a linear (R2 = 0.98) decrease 
between em (12.1 μm decrease) and eh (2.43 μm decrease) (Figure 5i). The (CL) eh is up to 123.7% (at 9.2 bar 
σ′) smaller than the measured (μ-CT) em.

Figure 6 illustrates em distribution with increasing σ′ in the form of histograms (Figure 6a) and boxplots 
(Figure 6b). Increasing σ′ prompts em decrease, demonstrated by a higher frequency of smaller apertures 
(Figure 6a), and decreases in standard deviation and whisker lengths (Figure 6b). Notably, all σ′ steps dis-
play characteristic tailing toward larger em values, shown by a slight tendency toward positively (right) 
skewed distributions (Figure 6a).
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Figure 3.  Fracture surface roughness in x- and y-directions for FR#1–
FR#7. (a) Top and bottom 3D-printed fracture surfaces (from FR#7) 
denoting the direction of macroscopic flow and accompanying color map 
(z-dimension). Black contours represent the 1 mm height contour of that 
surface, with for reference in white the 1-mm contour of the opposing side 
of the fracture surface. Note that digital models of each fracture surface 
(FR#1–FR#7) are provided in Figure S2. X- and y-directions illustrate the 
sampling direction used in (b and c). (b) Mean joint roughness coefficient 
(JRC). (c) Mean Z2.
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4.  Discussion
4.1.  3DP Rock Proxies

4.1.1.  Nature of 3DP Materials

We note that the chosen materials elastic properties (Table  S2) differ 
from those observed in the majority of natural rocks. Accompanying uni-
form strength limitations, 3DP quality and consistency can be affected 
by expansion or shrinkage depending upon environmental surroundings, 
and irregularities or warped edges resulting from incorrect post-process-
ing or improper build platform orientation (Bacher et al., 2015; Head & 
Vanorio,  2016; Ishutov et  al.,  2018). It is important to recognize these 
inherent limitations when drawing comparisons to natural rocks. How-
ever, through extensive analysis of available 3DP materials, Zhou and 
Zhu (2018) identified an SLA-based polymeric resin that best mimicked 
natural rock mechanical behavior, which has comparable elastic proper-
ties to the SLA-printed material used here. In the following, we discuss 
the applicability of using 3DP fractures as natural rock fracture proxies.

4.1.2.  Applicability to Natural Fracture Roughness

Measured H values (Figure S6) compare favorably to those observed in 
natural faults and fractures (H = 0.47–0.84 ± 0.05) (e.g., Babadagli & De-
veli, 2003; Candela et al., 2009; Schmittbuhl et al., 1993). The JRC rela-
tion implemented (Equation 2) is relevant for the scale of samples (and 
roughness) analyzed here (mm-cm scale) and yields representative JRC's 
for similar microscope derived datasets (Hale et al., 2019). Lithologically, 
the JRC's investigated (∼2.5–7) are representative of previously measured 
mudrocks (e.g., N. Barton & Choubey,  1977), fine-grained sandstones 
(e.g., Skurtveit et al., 2020) and granites (e.g., Tatone & Grasselli, 2010). 
It is therefore conceivable that learnings from this JRC range could be 
applied to scenarios where fractures play a predominant role, for exam-
ple, caprock integrity for geological storage (e.g., mudrock) (Busch & 
Kampman, 2018), geothermal energy extraction (e.g., granite) (Martínez 
et al., 2014), or induced seismicity and unconventional gas extraction/en-
hanced oil recovery (e.g., mudrock and sandstone, respectively) (Davies 
et al., 2013; Grigoli et al., 2017).

4.1.3.  Applicability to Natural Fracture Aperture

Using μ-CT data from FR#7_2, the maximum fracture aperture, max
me  

(μm), can be related to its length, following (Schlische et al., 1996; Vermi-
lye & Scholz, 1995):

max · n
me L� (9)

where α represents a constant pertaining to the rock's mechanical proper-
ties, and n is a scaling exponent reported as being ∼0.5 for opening mode 
fractures (Schultz et  al.,  2008). Applying this relationship yields max

me  
values compatible with our experimental data (within ∼5% depending 
on mechanical properties). It is therefore reasonable that fracture prop-
erties obtained from these μ-CT images, such as Rc and aperture (and 
their impact on flow), can be upscaled into larger domains (cf. Ishibashi 
et al., 2015). It should, however, be acknowledged that em thresholds un-
covered originate from a single rough fracture.
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Figure 4.  Measured fluid flow properties. (a) Fracture permeability (kf) 
of FR#1–FR#7 at eight incremental confining pressure (Pc) (and resulting 
effective stress (σ′)) increases. (b) Enlarged view of kf for FR#1–FR#6 
(boxed region in (a)). Error bars show ±1 standard deviation. (c) kf, and (d) 
Hydraulic aperture (eh) in relation to initially measured joint roughness 
coefficient (JRC), for each data point shown in (a). JRC's represent the 
mean values in the direction of macroscopic flow (cf. Figure 3a). The 
first (lowest) and last (highest) Pc step are indicated by dashed and solid 
black lines, respectively. Note that all permeability values are reported in 
Table S3.
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4.1.4.  Applicability to Natural Fracture Stiffness

Understanding fracture behavior during normal closure, particularly fracture stiffness, kn (Pa.m) (i.e., 
kn = Δσ′/Δem) (Jaeger et al., 2009), is key for knowledge transfer between synthetic and natural fractures. 
Among proposed empirical deformability models (e.g., Bandis et  al.,  1983; Goodman et  al.,  1968), the 
semi-logarithmic relation utilizes the stiffness characteristic, χ = dkn/dσ′ (mm−1), to predict −Δem resulting 
from Δσ′ in natural rock fractures (Evans et al., 1992):


  

 
    



 ref

1Δ lnme� (10)

where  
ref is an arbitrary reference value (i.e., −Δem = 0).

Applying Equation 10 to our stress-dependent em values (Figure 7a) indicates that despite material proper-
ty differences, χ for FR#7_2 falls within a range consistent with natural rock fractures (75.6 mm−1) (Zangerl 
et al., 2008), highlighted by strong conformance to Equation 10 (Figure 7b, R2 = 0.9). We, therefore, suggest that 
for the σ′ range investigated here, stress-dependent fracture behavior observed in FR#7_2 is a reasonable ap-
proximation of natural fracture −Δem behavior. With this, we compare stress-dependent permeability response 
with widely used empirical models for natural fractures in Section 4.4.
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Figure 5.  Fracture aperture evolution for FR#7_2. μ-CT maps of mechanical aperture (em) for four effective stress 
(σ′) increases (a) 5, (b) 9.2, (c) 12.8, and (d) 13.8 bar. (e) Contact area (Rc), (f) Relative roughness ( 

me /em), (g) Hydraulic 
aperture (eh), (h) Fracture pore volume  vol

fk , and (i) em versus eh for each σ′ increase shown in (a–d).  
The corresponding experimental parameters are detailed in Table 1. Note that all measured properties are provided in 
Table S4. μ-CT, micro-computed tomography.
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4.2.  Effect of Fracture Surface Roughness on Permeability

In this study, fractures with higher roughness exhibit higher kf (Figure 4). 
Conspicuously, higher roughness corresponds to larger eh's (Figures 4c 
and 4d), increasing the area available for advective flow. In the literature, 
kf has been reported to decrease with roughness on account of higher en-
ergy dissipation caused by protruding asperities (e.g., Brown, 1987; Cran-
dall, Bromhal, & Karpyn, 2010; Moreno et al., 1988; Qian et al., 2011; Y. 
W. Tsang, 1984; J. B. Walsh & Brace, 1984; J. S. Y. Wang et al., 1988; Zam-
brano et  al.,  2019). Contrasting this, fractures with a given amount of 
surface mismatch (e.g., shear) indicate kf increases with roughness due 
to the creation of larger voids which enhance flow (Fang et al., 2018; N. 
Huang et  al.,  2018; Zambrano et  al.,  2019). From our results, we con-
clude that higher kf is the result of increasingly larger apertures (FR#1, 
maximum eh = 2.28 μm; FR#7, maximum eh = 5.18 μm), as opposed to 
concluding that higher roughness directly corresponds to higher kf.

Fractures with JRC's < 5.5 (FR#1–FR#5) display comparably smaller kf 
changes across the full Pc range than JRC's > 6 (FR#6 and FR#7; Figure 4). 
JRC exerts a greater influence on kf at lower σ′, illustrated by the largest kf 
variations corresponding to the lowest σ′ (Figures 4a and 4b). This is evi-
dent even in fractures with similar kf response (FR#1–FR#5), with a 13% 
difference at 11 bar Pc, compared to 5.7% at 25 bar Pc. Such behavior high-
lights the importance of roughness on kf at lower σ′ (when eh is > 2 μm), 
consistent with previously reported flow behavior (Y. Chen et al., 2019).

Near linear relationships (R2 = 0.79–0.98) between JRC and kf are seen in 
FR#1–FR#5, with this trend becoming exponential when JRC > 6 (FR#6–
FR#7; Figure 4). Considering laminar flow, as investigated here, numeri-
cal approaches suggest a variety of JRC–kf correlations, from near-linear 
decreases (e.g., Crandall, Bromhal, & Karpyn, 2010; Yin et al., 2019) to 
near-linear increases (e.g., Rasouli & Hosseinian,  2011), depending on 
aperture size and asperity arrangement. We find linear JRC–kf relations 
to be valid only in smoother fractures (JRC < 5.5), suggesting that flow 
properties not captured in these models may exist. For the roughness dis-
tributions investigated here, a transition to a more connected aperture 
geometry may occur between JRC = 6–7, leading to this nonlinear kf re-
sponse. Additionally, fracture wall roughness has been shown to strongly 
influence the severity of flow channeling (e.g., Méheust & Schmittbu-
hl,  2001), which could suggest that this roughness (and eh) increase, 
and resulting aperture structure alteration, enhances the propensity for 
strong flow-enhancing channels to arise. However, such a finding pri-
marily supports the notion that JRC alone is incapable of predicting kf, 
and requires more detailed investigation into aperture structure (Rezaei 
Niya & Selvadurai, 2019).

4.3.  Fracture Aperture

In the following, we discuss measured fracture properties obtained via concurrent fluid flow–μ-CT analysis of 
FR#7_2, with specific focus on the interplay between roughness, Rc, and aperture, and their contribution to kf.

4.3.1.  Aperture Field Evolution With Effective Stress

em (maximum, median and mean) decreases with σ′ (Figure 6), consistent with aforementioned laborato-
ry-based studies. Such findings are intuitive, considering opposing fracture walls subjected to increasing σ′ 
will inevitably reduce void space. Fracture voids exhibit crack-like morphology, contrasting the more oval or 
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Figure 6.  FR#7_2 aperture distributions. (a) Mechanical aperture (em) 
frequency distributions for each effective stress (σ′) increase shown 
in Figure 5. (b) Boxplots for each σ′ increase, with the central black 
line representing the median, and the box and whiskers denoting the 
interquartile, and the 5th to 95th percentile ranges, respectively.
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triangular pore-morphology seen in porous media (Council, 1996). This 
characteristic geometry, coupled with the fact that these samples are un-
consolidated, means that fractures display high stress sensitivity.

em distributions narrow with increasing σ′, illustrated by positive skew-
ness (Figure  6a), consistent with previously measured rough fracture 
aperture distributions (Gentier et al., 1997; Pruess & Tsang, 1990; Shar-
ifzadeh et al., 2008; Tatone & Grasselli, 2012; Y. W. Tsang & Tsang, 1990). 
−Δem with σ′ has also been shown to be heterogeneous, with skewness 
increasing in prevalence (i.e., longer tail) (Javanmard et al., 2021; Kang 
et  al.,  2016; Muralidharan et  al.,  2004; Unger & Mase,  1993; R. Walsh 
et al., 2008), aligning with distributions seen here, albeit subtly. The low-
er cut-offs observed for each σ′ are likely controlled by voxel size.

4.3.2.  Evolving Aperture Structure and Its Effect on Flow 
Properties

For the σ′ range investigated, Rc varies from 35.3% to 48.2%, which falls 
within the range reported in previous studies for natural rock fractures 
(∼15%–60%) (Ishibashi et  al.,  2015; Montemagno & Pyrak-Nolte,  1999; 
Pyrak-Nolte et  al.,  1987; Skurtveit et  al.,  2020; Y. W. Tsang & Wither-
spoon, 1981; Watanabe et al., 2008). Increasing −Δem results in increased 
Rc, which weakens the CL's (Equation 1) validity, and leads to the dispar-
ity observed between em and eh. The (CL) eh is consistently smaller than 
the (μ-CT) em (Figure 5i), aligning with studies suggesting these apertures 
cannot be equated (Olsson & Barton, 2001; Vogler et al., 2016). eh reduc-

tion (42%) is smaller than that of em (50.8%) from 5 to 13.8 bar σ′ due to larger apertures being forced to 
close, while, the void configuration between stressed asperities enables preferential flow channels to exist 
(Kang et al., 2016; Nemoto et al., 2009), yielding comparably smaller eh changes.

Although Rc increases with σ′, consistent with previous studies (B. Li et al., 2008), the measure of tortu-
osity given by eh/em increases from 0.24 (5 bar σ′) to 0.28 (9.2 bar σ′), with lower values indicating higher 
tortuosity (Ishibashi et al., 2018; Matsuki et al., 2006). This suggests that overall (from 5 to 13.8 bar σ′), 
increasing Rc does not correspond to increasing tortuosity, however, at lower σ′ (from 5 to 9.2 bar σ′), tortu-
osity increases, supporting the notion that increased Rc yields higher tortuosity (Muralidharan et al., 2004; 
Y. W. Tsang, 1984; von Planta et al., 2019). This could suggest that the preferential flow channels, which 
facilitate the majority of the flow and require higher stresses to close (Pyrak-Nolte & Nolte, 2016; Rasmuson 
& Neretnieks, 1986), are not significantly impacted by this Rc increase. However, increasing tortuosity is 
observed from 5 (0.1) to 13.8 (0.07) bar σ′ when consideration of max

me  (eh/ max
me ) is given. It is also the case that 

despite a certain correlation between Rc and tortuosity, this relationship alone cannot adequately capture 
aperture heterogeneity (in relation to tortuosity), as Rc only accounts for a portion of the fracture surface 
(Rong et al., 2020). Tortuosity is therefore also dependent on the evolution of overall surface and resulting 
aperture structure roughness, which is observed to increase ( 

me /em = 0.37 to 0.66) with σ′, with em decreas-
ing more rapidly than 

me , consistent with previous studies (Javanmard et al., 2021). Although it is evident 
that tortuosity plays a significant role in FR#7_2's kf decrease, and, by proxy, the kf response of FR#1–FR#6, 
identifying which tortuosity-contributing parameter primarily influences kf is key.

4.4.  Stress-Dependent Fracture Permeability

kf is governed by aperture, 
me /em, and Rc; all of which are stress-dependent (Zimmerman & Bodvarsson, 1996). 

In the following, we compare widely adopted empirical models to experimental data obtained from FR#7_2 
(Figure 8, gray line with symbols) to determine the relative contributions of each on stress-dependent kf.

Applying Rc data (Figure 5e) to account for tortuosity (1–2Rc) coupled with 
me /em, via (Zimmerman & Bod-

varsson, 1996) (Figure 8, dashed red line):
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Figure 7.  Fracture aperture evolution with effective stress. (a) Fitting 
of the semi-logarithmic closure law (Equation 10) to stress-induced 
(σ′) fracture normal closure (−Δem) data shown in Figure 5. (b) Linear 
regression analysis of the logarithm (ln) of σ′, highlighting the conformity 
between experimental data and model prediction.
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yields reasonable kf estimations at lower σ′ (within 42% at 9.2 bar σ′), but large underestimations at higher  
σ′. The inadequacy of 

me /em alone as a kf predictor is affirmed by the relation of X. Xiong et  al.  (2011)  
(Figure 8, solid purple line):
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Similar overestimations are observed for other empirical models utilizing 
me /em (e.g., N. Barton & de Quad-

ros, 1997; Brown, 1987; Kling et al., 2017; Matsuki et al., 1999; Renshaw, 1995; Zimmerman et al., 1991). 
Other studies have incorporated 

me /em coupled with the concept of a no-flow fraction, as it has been shown 
that flow is not only diminished at specific contacting asperities (i.e., Rc alone), but also in the surrounding 
void area (B. Li et al., 2008; Yeo, 2001). kf estimation from this method (Javanmard et al., 2021) (Figure 8, 
dashed yellow line):
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yields reasonable kf estimation at the highest σ′ (within 39%). Nevertheless, insufficient kf predictions given 
by these relations imply surface roughness should be considered to better predict experimental kf, particu-
larly at lower σ′.

Modifying the CL (Equation 1) to account for the degree to which surface roughness causes deviations from 
the parallel-plate model can be captured via a friction factor, ƒ (−) (Zambrano et al., 2019):


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Figure 8.  Aperture-permeability relationship for FR#7_2. (a) Empirical model predictions of stress-dependent fracture 
permeability (kf) evolution for natural rock fractures, accompanied by experimental mechanical aperture (em) data from 
this study. em error bars represent ±1 standard deviation. kf error bars are too small to be legible.
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where Sz is the difference between the highest peak and lowest pit of the physical surface roughness. Using 
ƒ computed at initial loading (Table S5), Equation 1 reformulates, giving a modified cubic law (MCL) (With-
erspoon et al., 1980):
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� (15)

Applying Equation 15 (Figure 8, blue dashed line) to our experimental data results in lower kf due to higher 
friction. Increasing σ′ amplifies the impact of roughness (and tortuosity) and yields larger ƒ values, con-
sistent with studies in rough fractures (e.g., Huo & Benson, 2015; Zhang & Nemcik, 2013). This roughness 
amplification is mirrored by the linear trend (R2 = 0.97) of 

me /em (5 bar σ′ = 0.37, 13.8 bar σ′ = 0.66). Con-
sidering a scenario where kf decrease is entirely attributable to aperture closure, Equation 15 would reduce 
to Equation 1 and match experimental data, which is not the case.

Relating eh and em using the measured JRC, via (C. A. Barton et al., 1985) (Figure 8, solid pink line):


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provides a reasonable fit to experimental data for the first two σ′'s (within 55% at 5 bar σ′), however, de-
creases in effectiveness with σ′, suggesting roughness plays a more significant role in governing kf at lower 
σ′ (larger em).

To exclusively identify the contribution of Rc to kf, we implement Rc coupled with the assumption of circular 
contact areas, following the conceptual expression (J. B. Walsh, 1981):
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This model (Figure 8, dotted black line) fails to predict kf by ∼one order of magnitude, due to a combination 
of simplified Rc and decreased applicability of this relationship when Rc > 25% (Zimmerman et al., 1992). 
Modifying Equation 17 to represent more realistic cases is achieved through assigning elliptical contact 
regions, via (Zimmerman et al., 1992):
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where β [−] is related to the aspect ratio of the ellipse, b [−], given by:
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and where b is estimated from fitting to experimental data (b = 0.17). This relation (Figure 8, solid green 
line) predicts consistently lower kf than the J. B. Walsh (1981) model as β increases monotonically through 
ellipse elongation (cf. Zimmerman et al., 1992). Both models, reliant on Rc values obtained at this CT-scan-
ning resolution, are incapable of fully replicating experimental kf.

Of the empirical relations applied, tortuosity (Equation 11) and surface roughness (Equation 16) are the 
best kf predictors at lower σ′ (em = >∼20 μm, 

me /em = <∼0.42). With increasing σ′ (em = <∼20 μm, 
me /

em = >∼0.42), both the no-flow fraction (Equation 13) and Rc (Equation 18) relationships increase in pre-
dictivity with −Δem, with the Zimmerman et al. (1992) model within 4% of experimental kf at 13.8 bar σ′. 
Unsatisfactory predictions from the MCL, C. A. Barton et al. (1985) and J. B. Walsh (1981) relations attest 
that for smaller aperture fractures (em = <∼20 μm, 

me /em = >∼0.42), both surface roughness and simplified 
Rc are inadequate for predicting stress-dependent kf.
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4.5.  Implications for the Natural Rock Fracture Domain

4.5.1.  3D Printing Advancements

Again, we note that natural fractures may display larger magnitudes of heterogeneity, particularly in terms 
of material properties. Therefore, despite possessing roughness, Rc, and aperture distributions analogous 
to natural fractures, the heterogeneous nature of natural fractures means that these 3DP fractures are not 
perfect analogs and different hydromechanical responses cannot be discounted. However, provided proper 
acknowledgment and understanding of the current limitations are afforded (Section 4.1.1); we demonstrate 
that 3DP fractures using this material produces reasonable approximations of natural fractures for the σ′'s 
investigated here (Sections 4.1.2–4.1.4). 3DP offers the control to investigate complex geometries repeatedly, 
as demonstrated here (as low as 1.6% difference in roughness), a utility that is simply unattainable in natural 
rocks. This systematic parametrization of fracture geometry (and its impact on flow) is the nexus between 
laboratory studies and numerical models, while also furthering the discussion on the applicability of 3DP 
materials as natural fracture proxies.

4.5.2.  Stress-Permeability Relationships

Natural rock kf can be impacted by asperity destruction and gouge formation during loading and/or shear-
ing (Ishibashi et al., 2018; Yeo et al., 1998). Such deformation processes have been observed in polymeric 
fractures during shearing despite comparably higher asperity ductility (Ishibashi et al., 2020). Here, sam-
ples are not sheared (cf. Text S7) or subjected to cyclic loading (which has also been shown to impact kf [G. 
Wang, Mitchell, et  al.,  2016]). Visual inspection of all fractures post-experiment indicate no discernible 
surface damage, which suggests that said mechanisms do not influence stress-permeability relationships 
for the σ′'s, material and timeframes investigated here. Future experiments wishing to subject polymeric 
3DP fractures to higher (normal or shear) stresses for prolonged periods should consider the influence of 
these mechanisms, which may differ in terms of pervasiveness and severity compared to natural rocks with 
varying mechanical properties.

4.5.3.  Extending Roughness Analysis to Natural Systems

In default of subsurface observations, extending laboratory-scale roughness studies and subsequent effects 
on flow relies on empirical relations. For example, it has been demonstrated that the scale-independency of 
Rc provides unique opportunities to predict aperture distributions from the laboratory to the field-scale (cf. 
Ishibashi et al., 2015). Despite the challenges associated with measuring reliable aperture structures, for ex-
ample, from outcropping barren fractures altered by exhumation and weathering, direct (2D μm–cm-scale) 
aperture measurements from outcrop and core can be acquired via scanline sampling techniques (e.g., Casi-
ni et al., 2011; Lepillier et al., 2020; Watkins et al., 2015) and vein measurements (e.g., Gale et al., 2014; Ukar 
et al., 2019). Rc estimation from these methods, coupled with aforementioned empirical relations, provides 
a promising approach for predicting kf in the absence of direct measurements (i.e., flow tests). Additionally 
and conversely, the presence of flow tests could provide opportunities to verify such predictions.

5.  Conclusions
In this systematic study, fluid flow experiments were performed to ascertain permeability contrasts be-
tween seven 3D-printed fractures with different surface roughness distributions akin to natural fractures. 
Stress-dependent aperture evolution in the roughest fracture was investigated using laboratory-based μ-CT. 
From this study, we conclude that:

1.	 �Polymeric 3D-printed fractures provide the opportunity to systematically scrutinize rough fracture prop-
erties, which can be used to improve our understanding of natural subsurface fracture flow

2.	 �The fractures with higher roughness have larger hydraulic apertures, corresponding to increasing frac-
ture permeability with JRC. This is coupled with exponentially decreasing fracture permeability with 
increasing effective stress

3.	 �At the lowest effective stresses, the fractures with lower JRC's (∼2.5–∼5.5) display relatively small frac-
ture permeability (14% increase) and hydraulic aperture (7% increase) variations. However, a JRC of ∼6 
compared to ∼5.5 shows a fracture permeability increase of up to 41%, larger than that observed between 
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all previous fractures (JRC = ∼2.5 to ∼5.5) combined. A fracture with a JRC of ∼7 shows an increase 
of up to 219% in fracture permeability compared to a fracture with a JRC of ∼6. For the experimental 
method documented in this study, and for this specific sample set, we find that when JRC > 6 fracture 
permeability is not linearly related but rather exponentially. The validity of this behavior in relation to 
other 3D-printed or natural fractures requires further research but nonetheless provides unique insight 
into our understanding of fluid flow in rough fractures

4.	 �μ-CT imaging of the roughest fracture shows that the cubic law hydraulic aperture is consistently small-
er than the (μ-CT) mechanical aperture. With increasing effective stress (5–13.8 bar), fracture contact 
area increases (35%–48%), which yields a relatively rougher (from 0.37 to 0.66) fracture aperture distri-
bution that becomes increasingly skewed as a result

5.	 �We considered the impact of relative roughness, initial surface roughness, tortuosity, no-flow fraction, 
and contact area on fracture permeability predictivity via application of previously published empiri-
cal aperture-permeability relations to our μ-CT experimental data. Our experimental findings indicate 
that knowledge of contact area is more beneficial to predict fracture permeability than initial surface 
roughness at higher effective stress, which is, consequently, relevant to most natural subsurface fracture 
systems, which are synonymous with high effective stresses
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