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Simple Summary: Squamous cell cancer of the head and neck is a common malignancy with poor
prognosis. Despite the success of PD-L1 expression, the landscape of diagnostic, prognostic, and
predictive biomarkers has delivered limited contributions to the clinic in the last decade. The
dissection of the immunological landscape through investigation of the immune infiltrate, blood-
based biomarkers, and genetic profiling has shown substantial scientific potential but all are yet to
be validated. Further exploration is warranted though implementation of biomarkers. This should
ideally be performed through prospective studies using standardized methods with harmonization
of technical requirements. This review serves as a comprehensive overview for state-of-the-art
knowledge and biomarkers in squamous cell cancer of the head and neck (SCCHN) that may prove
their worth in future clinical practice.

Abstract: The era of immune checkpoint inhibitors has altered the therapeutic landscape in squamous
cell cancer of the head and neck (SCCHN). Our knowledge about the tumor microenvironment has
fueled the research in SCCHN, leading to several well-known and less-known prognostic and predic-
tive biomarkers. The clinical staging, p16/HPV status, and PD-L1 expression are currently the main
tools for assessing the patients’ diagnosis and prognosis. However, several novel biomarkers have
been thoroughly investigated, some reaching actual significant clinical contributions. The untangling
of the immune infiltrate with the subtyping of tissue-associated tumor infiltrating lymphocytes,
tumor-associated macrophages, and circulating blood-based biomarkers are an interesting avenue to
be further explored and prospectively assessed. Although PD-L1 expression remains the most impor-
tant response predictor for immune checkpoint inhibitors, several flaws impede proper assessment
such as technical issues, different scoring protocol, and intra-, inter,- and temporal heterogeneity. In
addition, the construction of an immune-related gene panel has been proposed as a prognostic and
predictive stratification but lacks consensus. Recently, the role of microbioma have also been explored
regarding its systemic and antitumor immunity. This review gives a comprehensive overview of
the aforementioned topics in SCCHN. To this end, the integration of these clinically advantageous
biomarkers via construction of an immunogram or nomogram could be an invaluable tool for SCCHN
in future prospects.

Keywords: squamous cell cancer of the head and neck; immunology; immune checkpoint inhibitors;
biomarkers; tumor microenvironment; human papilloma virus; immune infiltrate; genetics; microbiome
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1. Introduction

Squamous cell carcinoma of the Head and Neck (SCCHN) globally affects more
than 750,000 new cases (estimated 4 percent of the global cancer incidence) and 360,000
deaths annually [1,2]. In Europe (EU-27), approximately 70,000 new cases and around
40,000 deaths have been registered in 2020 [3–5]. The majority of patients (50–60%) presents
with loco-regional advanced stage III–IV disease. Major risk factors that induce carcinogen-
esis in the head and neck region are excessive alcohol and tobacco abuse, and account for
over 80% of all diagnosed SCCHN [6,7]. Human Papillomavirus (HPV) status also plays an
important role in the development of SCCHN, and HPV positivity is observed in around
20% of all SCCHN cases, of which nearly 70% is situated in oropharyngeal squamous
cell carcinoma (OPSCC). Several studies have correlated HPV + cancer, especially in the
oropharyngeal region, to improved therapy response and increased 5-year overall survival
(OS; 83% versus 37% HPV+ versus HPV− cancer) [8,9]. Patients who are diagnosed with
recurrent or metastasized (R/M) SCCHN have a poor prognosis with only a handful of
systemic therapeutic options, mostly platin-based chemotherapies [10,11].

Unmistakable evidence has been gathered in recent years regarding the pivotal role of
the immune system in cancer development and progression, which is commonly referred
to as the tumor microenvironment or TME. General concordance exists that a deficient
immune-surveillance is largely induced by neoplastic cells. Plausible theories are the lack
of proper antigen recognition and/or presentation, enhanced production of immunosup-
pressive mediators, e.g., cytokines, and an overall reorganization of the cellular constituents
to sustain tumoral formation [12–14]. Immunotherapy based on immune checkpoint inhi-
bition (ICI) made its entry in SCCHN and has recently been implemented as a first and/or
second line treatment in R/M SCCHN, as proven effective in recent trials in SCCHN with
overall response rate (ORR) reaching up to 18.2% [12,15–17]. ICI responsive patients do
have a longer duration of response and a better safety profile compared to patients who
receive standard treatment [18]. Therefore, the implementation of ICI has been consid-
ered a successful step in the treatment of SCCHN. However, the low response to ICI can
partially be explained due to the heterogenous nature of SCCHN in regards to its genetic,
molecular, and immunological profile. The precise mechanisms that induce immune escape
remain undefined.

It is without question that TME has established a dominant role in the oncological
treatment landscape [19–21]. As ICI have been integrated in daily oncological practice, the
necessity for further diagnostic and therapeutic stratification is of vital importance [7]. To
address this issue, several attempts have been made to dissect the immunological signa-
ture of SCCHN via the exploration and identification of feasible, robust biomarkers. The
common definition states as a biomarker being a measurable characteristic of normal bio-
logical processes, pathological processes, or responses to certain exposures or therapeutic
interventions [22]. For cancer research, biomarkers can be grossly divided into (1) diag-
nostic markers, aiding in the (early) detection and diagnosis of the disease, (2) prognostic
markers, delivering information about the patients’ health outcome, and (3) predictive
markers, informing about the response probability of a certain therapeutic intervention.
Before a biomarker assay can undergo the steps of discovery, verification, and clinical
validation, an extensive collection of high-quality patient samples or biospecimen should
be assembled. Various types of biospecimen exist, though they are mostly comprised
of tissue samples (fresh, frozen, or Formalin Fixed Paraffin Embedded [FFPE]), blood
and blood derivates (whole blood, plasma, serum, peripheral blood mononuclear cells
(PBMC) . . . ), biofluids (urine, synovial, and cerebrospinal fluid . . . ) and other derivatives,
molecules, or non-specified formats (DNA, RNA, proteins, stained tissue slides, swabs,
etc.). These biospecimen are to be collected from patients retrospectively or prospectively.
An ideal biomarker should be feasible, robust, cost-effective, and of significant clinical
value. The application and interpretation should be widely available. In case of prognostic
and predictive biomarkers, especially in cancer research, these should be defined on the
basis of clinically valid surrogate endpoints such as response rate or survival rates [22–25].
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In this review, we will comprehensively elaborate on some general aspects of the
TME while discussing several crucial diagnostic, prognostic, and/or predictive biological
markers that have been extensively explored in SCCHN. Finally, some suggestions and
future perspectives will be presented that may inspire researchers and clinicians to integrate
the immunological profile in the diagnostic and therapeutic landscape of SCCHN.

2. General Concepts of Tumor Immunology

The tumor microenvironment or TME is a complex, dynamic environment that is
shaped during cancer progression and may dictate tumor survival and growth by a con-
tinuous, bidirectional interaction between tumor and host cells. The eventual goal is to
sustain paracrine and juxtacrine (contact-depending signaling) growth factor, nutrient- and
oxygen supply, and the neutralization of an anti-neoplastic immune response, assuring
tumor survival and progression. It is commonly built of neoplastic cells, supportive tissue
(extracellular matrix) and cells (fibroblasts), and an immune infiltrate consisting of a grand
variety of immune cells, such as neutrophils, natural killer (NK) cells, tumor associated
macrophages (TAMs) myeloid derived stem cells (MDSC), dendritic cells, and several
subsets of lymphocytes such as CD4+ T helper cells, CD8+ cytotoxic T cells, and regula-
tory CD4+Fox(forkhead box)P3+ Tcells (Treg). The immunosuppressive cell recruitment
is accompanied by increased secretion of immunosuppressive cytokines (tumor necrosis
factor alfa (TNFα), tumor growth factor beta (TGFβ), interleukin (IL)-10, interferon gamma
(IFNγ), etc.), enzymes (arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), reac-
tive oxygen species (ROS), etc.) and upregulated expression of several surface molecules
that enhance immunosuppression [26]. On this matter, expression of immune checkpoint
molecules (e.g., programmed death ligand 1 and 2 (PD-L1/PD-L2), cytoxic T-lymphocyte
associated protein 4 (CTLA-4), indoleamine 2,3-dioxygenase (IDO), T cell immunoglobulin
and mucin domain-containing protein 3 (TIM-3), Killer-cell immunoglobulin-like receptors
(KIR), T cell immunoreceptor with Ig and ITIM domains (TIGIT)) on tumor cells, antigen
presenting cells (APCs), and several immune cells have led to additional proof that tumors
up-regulate an immunosuppressive environment as they function as negative regulators
of the T cell immune function [12]. An important finding was discovery of the positive-
feedback loop between Treg cells and TAMs which is essential to maintain or promote
immunosuppression within the TME (Figure 1) [27].

Furthermore, the PD-1/PD-L1 axis is an essential mechanism for maintaining periph-
eral tolerance and restraining over-activity of self-reactive immune cells from causing harm
by inducing T cell anergy, exhaustion, and apoptosis. Alternatively, blockade of the CTLA-
4/B7 axis via CTLA-4 antibodies (Abs) has been correlated with expansion of the T cell
antigen-recognition repertoire, restraining the over-activity of the immune system by induc-
ing T cell anergy and/or apoptosis, thus maintaining self-tolerance [7,12,17,28–31]. CTLA-4
and PD-1 may be both expressed by CD4+/FoxP3− T helper cells, (CD4+/FoxP3+ regula-
tory Tcells (Tregs)) and CD8+ cytotoxic T cells, while PD-1 is also present on macrophages,
B-cells, NK cells, myeloid derived stem cells (MDSCs), and other APCs. Subsequently,
tumor cells may overexpress the immune checkpoint-associated ligands or components
(PD-L1 and B7-1 or B7-2), thus avoiding potential anti-tumor immune responses (Figure 1).
Therefore, inhibition of these proteins could lead to the recovery of the immune system,
enabling the cytotoxic properties of f.i. NK cells and lymphocytes, as seen with the current
ICI immunotherapeutic Abs, while increasing the risk for presence of T cell clones with
potentially auto-reactive characteristics [15,16,32–34].



Cancers 2021, 13, 1714 4 of 24

Cancers 2021, 13, x  4 of 25 
 

 

thors the last few decades [26,31,35,36]. As the processes of immune-editing leads to po-
tential selection of tumor cells, some may become less immunogenic. This is mostly 
achieved via acquisition of mutations and/or loss of expression in the antigen processing 
machinery or human leukocyte antigen (HLA) encoding genes, reducing antigen expres-
sion through major histocompatibility complex (MHC) molecules, hence resisting T cell 
recognition and elimination [7,26]. Indeed, data from the cancer genome atlas (TCGA) has 
indicated that these mutations have been observed on large scale in SCCHN. Furthermore, 
it seems this process does not only occur during tumor progression, but can also be rei-
nitiated while under treatment with (ICI-based) immunotherapy, thus inducing potential 
resistance to these agents [36]. It is without question that the TME is a complex matter of 
which our current knowledge remains insufficient. Understandably, current clinical trials 
now have their focus on combinational strategies for targeting multiple elements of the 
TME, but with a main focus on implementation of ICI. Nonetheless, extensive knowledge 
regarding the TME in SCCHN can only be beneficial in our search for raising the chances 
of gaining an anti-tumor response with immunomodulating agents [37]. 

 
Figure 1. A simplified overview of interactions between tumor cells and TME-associated immune cells. CD4+(FoxP3−) and 
CD8+ T cells are designed for tumor cell elimination, though their function can be altered by recruitment of pro-tumor-
igenic (M2) TAMs and FoxP3+ Treg, who interact in a positive feedback-loop. TNFα = Tumor necrosis factor alfa. TGFβ = 
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Figure 1. A simplified overview of interactions between tumor cells and TME-associated immune cells. CD4+(FoxP3−) and
CD8+ T cells are designed for tumor cell elimination, though their function can be altered by recruitment of pro-tumorigenic
(M2) TAMs and FoxP3+ Treg, who interact in a positive feedback-loop. TNFα = Tumor necrosis factor alfa. TGFβ = Tumor
growth factor Beta; IL = Interleukin; IFNγ = Interferon gamma; Arg1 = Arginase 1; iNOS = inducible nitric oxide synthase;
ROS = reactive oxygen species, PD-1 = programmed death 1, PD-L1 = programmed death ligand 1, CTLA-4 = cytoxic
T-lymphocyte associated protein 4, MHC = major histocompatibility complex, TCR = T cell receptor.

As mentioned earlier, a continuous bidirectional interaction between immune cells
and neoplastic cells takes place: during progression of carcinogenesis, cancer cells resist
elimination via the immune editing process. This concept in tumor biology is based on the
principles of immunosurveillance, which has been profoundly described by several authors
the last few decades [26,31,35,36]. As the processes of immune-editing leads to potential
selection of tumor cells, some may become less immunogenic. This is mostly achieved via
acquisition of mutations and/or loss of expression in the antigen processing machinery
or human leukocyte antigen (HLA) encoding genes, reducing antigen expression through
major histocompatibility complex (MHC) molecules, hence resisting T cell recognition and
elimination [7,26]. Indeed, data from the cancer genome atlas (TCGA) has indicated that
these mutations have been observed on large scale in SCCHN. Furthermore, it seems this
process does not only occur during tumor progression, but can also be reinitiated while
under treatment with (ICI-based) immunotherapy, thus inducing potential resistance to
these agents [36]. It is without question that the TME is a complex matter of which our
current knowledge remains insufficient. Understandably, current clinical trials now have
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their focus on combinational strategies for targeting multiple elements of the TME, but
with a main focus on implementation of ICI. Nonetheless, extensive knowledge regarding
the TME in SCCHN can only be beneficial in our search for raising the chances of gaining
an anti-tumor response with immunomodulating agents [37].

3. The TME in SCCHN

SCCHN is a heterogeneous disease with a variety of genetic alterations and is generally
associated with an immunosuppressive environment. Overall, the latter is known to restrict
survival in cancer patients which could partially explain the relatively poor survival statis-
tics of SCCHN. OPSCC has the most favorable prognosis of SCCHN subsites, which may
be attributed to its typical inflammatory environment and high immune infiltration [20].
Literature grossly divides the TME of SCCHN in two immunogenic phenotypes. Firstly,
the inflamed, virus-driven phenotype, which is characterized by high immune-infiltration,
increased radio-and chemotherapy sensitivity, and prolonged survival. In fact, according to
Mandal et al. [28], these subtypes have one of the highest rates of immune cell infiltration
in solid cancers, of which the highest Treg and (CD56dim) NK cell infiltration [38]. Next, the
alcohol/tobacco-induced, immunosuppressive TME has overall low immune-infiltration
and lower survival rate. It seems that this subgroup of patients have a suppressed CD8
mediated anti-cancer response, objectified by a lower IFNγ-signaling and reduced concen-
tration of immune effectors granzyme and perforin [39]. Furthermore, this is complicated
by the “mutational smoking signature,” originating from Alexandrov et al. [40], which
may exert immunomodulatory changes to both phenotypes. This has also been described
in non-small cell lung cancer, as patients with smoking signatures seem to induce pro-
inflammatory effects on the TME and benefit from a higher response rate to ICI [39,41].
This topic will not be discussed in further detail as this is beyond the scope of this review.

Nevertheless, a diagnostic and prognostic assessment in SCCHN should not be re-
stricted to the tumor’s clinical stage, differentiation grade, or P16/HPV status [7,42–44].
In the following sections, several relevant topics connected to the immunological phe-
notype in SCCHN are described that may provide valuable diagnostic, predictive, and
prognostic information.

This manuscript will be unable to cover all multi-omic biomarkers within SCCHN, but
gives an overview of several state-of-the-art biological factors that have been extensively
explored, assessed, or (nearly) implemented in clinical practice. Several of these are or
could be valuable for clinicians when utilizing immunotherapeutic agents. We will cover
several tissue-based and genetic biomarkers and explore the role of circulating blood cells
while also giving brief consideration to the oral microbiome in SCCHN.

3.1. Tissue-Based Biomarkers
3.1.1. HPV/P16 Status

It has been sufficiently demonstrated that patients presenting with HPV+ OPSCC show
improved response to treatment and have a better disease-specific as well as disease-free
survival (DFS). High-risk HPV is associated with malignancy, mostly in the cervix, vulva,
vagina, penis, anus, rectum, and oropharynx (including the base of tongue and tonsil) [35].
The WHO currently identifies 12 high-risk cancer-causing HPV strains (types 16, 18, 31,
33, 35, 39, 45, 51, 52, 56, 58, and 59). HPV 16 has been acknowledged as the causative
strain for development of OPSCC [45,46]. HPV types 31, 33, 45, 52, and 58, combined, are
linked to approximately 10% of all HPV+ cancers. An indicator that is typically associated
with HPV infection in OPSCC is the immunohistochemical overexpression of the P16
protein (CDKN2A). This tumor suppressive protein directly and indirectly regulates RB
(Retinoblastoma protein) and P53 function, two crucial elements involved in normal cell
homeostasis that can be affected by HPV-related oncoproteins E6 and E7, which promote
degradation of RB and P53 [47]. Detection of HPV is achieved through polymerase chain
reaction, in situ hybridization, or immunohistochemical techniques using P16 overexpres-
sion. The latter serves as a surrogate marker for SCCHN, especially OPSCC with sensitivity
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and specificity reaching up to 94 and 83%, respectively [45,48,49]. In non-oropharyngheal
SCCHN, however, the HPV-positivity rate is lower and P16 positivity is correlated to lower
specificity. In addition, it seems that oral squamous cell cancer (OSCC) does frequently
over-express P16, but is only rarely HPV-driven [50,51]. Consequently, this may lead to
discordant results when P16+/HPV− are incorporated as truly HPV-driven SCCHN in
survival analyses [50].

P16/HPV positivity has a considerable effect on the TME of SCCHN, as HPV positivity
may be correlated with expression of foreign virus-related antigens, thus inducing a higher
inflammatory response compared to P16/HPV negative SCCHN. Indeed, P16 and/or
HPV positivity in OPSCC is correlated with better response to radio- and chemotherapy, a
more favorable OS and lower likelihood of relapse in comparison to OPSCC with negative
P16 and/or HPV status. Nonetheless, the relationship between P16/HPV status and
lymphocyte infiltration remains controversial, as patients with high lymphocyte infiltration
have better OS and DFS (especially in OPSCC), but this was considered independent of
HPV status [8,47,52,53]. However, a higher viral load in HPV+ OPSCC is correlated with
increased immune infiltration, implicating that a HPV+ status does attribute to but is not
solely responsible for an induced higher local tumor inflammation [46]. Furthermore, a
research paper from Lechner et al. [54] prospectively investigated primary tumoral tissue
and blood (PMBC) of treatment naïve SCCHN patients (n = 34) and control patients (n = 15),
observing no significant alterations in tissue-related T cell subsets when comparing HPV+

and HPV− SCCHN
It is indisputable that HPV+ SCCHN has a better prognosis than HPV− strains. This

may be explained by the presence of an intact (non-mutated) P53 gene in HPV+ SCCHN,
rendering them more vulnerable to therapies than HPV− SCCHN, which are known for
their higher mutational burden [55–57]. As mentioned earlier, the recent implementation of
ICI have increased the OS of therapy responding patients with R/M SCCHN significantly.
Several ICI-based clinical trials have investigated if the overall response rate (ORR) is
altered regarding P16 and/or HPV status. The phase Ib KEYNOTE 012 trial (n = 60) and
phase II KEYNOTE 055 trial (n = 171) treated R/M SCCHN patients with the ICI pem-
brolizumab and noted a 22% and 32% ORR in HPV+ SCCHN compared to 16% and 14% in
HPV− SCCHN, respectively [58,59]. In a multicentre phase I/II study from Segal et al. [60],
62 R/M SCCHN patients were treated with the ICI durvalumab, of which 40.2% were
HPV+. Remarkably, these patients had worse ORR than HPV− SCCHN (0% versus 8%),
though cohort size was rather limited (n = 50). Regarding survival, the CHECKMATE
141 was a phase III trial that enrolled 361 patients with platinum-resistant R/M SCCHN
who were treated with the ICI nivolumab or with the investigator’s choice at a 2:1 ratio.
In the nivolumab-treated cohort, patients with P16+ tumors had significantly higher OS
than P16− tumors (9.1 versus 7.5 months) [60]. Future prospective trials should further
investigate the relationship between HPV/P16 status and PD-L1 expression, and if HPV
status affects ORR or prognosis in ICI-treated SCCHN patients (cfr. 3.1.5) [61].

Nevertheless, HPV status and/or its surrogate marker, P16, remain of indisputable
value during the diagnostic process of SCCHN. However, the relationship between HPV-
status and the TME of SCCHN remains somewhat vague. Although HPV+ SCCHN seems
to be significantly higher infiltrated by tumor infiltrating lymphocytes (TILs) than HPV−

SCCHN, no significant differences in TIL subsets have been observed. Further investigation
is nonetheless required in correlating P16/HPV status to the TME [53].

3.1.2. Tumor Immune Infiltration: Subtyping and Quantification
Tumor Infiltrating Lymphocytes (TILs)

TILs have been thoroughly investigated and acknowledged as a key part of the
immune infiltrate and include NK cells, γδ T cells, NKT cells, CD4+ T cells, CD8+ T cells,
and B cells. There is global consensus that mainly TILs are deregulated regarding number
and functionality in SCCHN. The identification and quantification of several subsets of
TILs in the TME has been thoroughly examined in SCCHN. The most investigated and
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clinically relevant subsets are CD3+, CD4+, and CD8+ T cells, visualized on tumoral tissue
sections using immunohistochemistry (IHC) (Figure 2).
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Figure 2. Stained squamous cell cancer of the head and neck (SCCHN) sections. (A,B) comparison of
low versus high stromal tumor infiltrating lymphocyte (TIL) presence, stained with haematoxilin-
eosin; (C,D) comparison of low versus high stromal CD3+ T cells, stained with CD3 primary antibody
clone F7.2.38 (Dako, Glostrup, Denmark); and (E,F) comparison of low versus high PD-L1 expressing
tumor and/or immune cells, stained with the PD-L1 clone 22C3 (Agilent-Dako, United States). A + C
and B + D represent sections from the same patients.

CD3 is a pan-T cell marker functioning as a co-receptor for the T cell receptor, which
is required for T cell activation. CD3+ infiltration can be deducted as a general marker for
T cell infiltration, and several reports have correlated it with beneficial clinical outcome in
SCCHN in comparison to low CD3+ infiltrated tumors by IHC-based staining and semi-
quantification (Figure 2C,D) [62–64]. This again was contradicted by Lechner et al. [54] as
no OS difference was found in high CD3+ infiltrated SCCHN tissue, not in the primary
tumor nor in metastatic lesions.

The CD4 glycoprotein is a surface immunoglobulin (IgD) expressed on T helper strains
while functioning as a co-receptor for the MHC class II complex. The prognostic value of
CD4+ T cells remains questionable. A well-known subpopulation are CD4+ FoxP3+ T cells
or Tregs which are associated with hosting an immunosuppressive environment, promotion
of tumor survival and progression [65]. However, several retrospective studies evaluated
the infiltration rate of CD4+ FoxP3+ on mainly OPSCC. FFPE tissue slides were stained by
IHC and analyzed by conventional pathological quantification or digital image analysis.
All articles concurred Treg cell density did not affect clinical outcome in OPSCC [66–68].

The cytotoxic T cells are a subpopulation of T cells that act as suppressors of tumor
growth. By means of IFNγ production, expression of MHC class I tumor-related antigens
is upregulated, allowing swift recognition and elimination by production of cytotoxic
granzymes and perforin. These T cells are typically identified by expression of the CD8
membrane glycoprotein [69]. To this end, several articles reported increased infiltration
of CD8+ lymphocytes by IHC retrospectively performed on tissue slides revealed a signif-
icantly better prognosis in SCCHN [52,63,66,67,70–72]. Studies from our research group
revealed an increased CD8 expression in the immune infiltrate to be an independent prog-
nostic variable in OPSCC, while CD3, and CD4-FoxP3 expression were not correlated to
survival. Furthermore, these results were independent of P16/HPV-status [73]. Finally, a
systematic review and meta-analysis from De Ruiter et al. [74] confirmed elevated CD3+

and CD8+ infiltration can be correlated with better prognosis in SCCHN, independent of
HPV status.
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Current findings regarding the prognostic value of TILs in SCCHN seem to be discor-
dant. The factors that might enhance these differences have been elaborated in a previous
review provided by our research group and are briefly summarized here, namely (1)
biological heterogeneity: HPV status, topical heterogeneity; (2) technical factors: type
of tissue specimen (biopsy/resection/metastasis) or employed antibody for IHC; and
(3) the lacking of a standardized method of scoring TILs, the latter being a recurrent
pitfall that impedes TILs from being implemented as additional diagnostic or prognos-
tic markers. Several attempts have been made to develop standardized methods for
TIL assessment. For instance, the Immunoscore is a method for (semi-) quantification
of CD3+ and CD8+ infiltrating T cells introduced in renal cell carcinoma and colorec-
tal cancer but has not been utilized in SCCHN as a potential diagnostic or prognostic
biomarker [54,75–78]. Recently, the international immunology biomarker working group
(IBWG) has designed a guideline-based protocol to assess (stromal and intratumoral) TILs
on single slide haematoxilin-eosin (HE) stained sections in several types of solid carcinoma,
including SCCHN (Figure 2A,B) [79–81]. Our research group has investigated current
methodology in OPSCC in a retrospective fashion, showing a high amount of stromal TILs
was an independent prognostic factor as patients with a high amount of stromal TILs has
better OS compared to patients with low or absent stromal TILs, independent of P16 status
(unpublished data).

In conclusion, TILs remain an important aspect in the TME and should not be neglected
when assessing SCCHN as they may conceal interesting prognostic information. Several
TIL subsets have been thoroughly investigated by different research groups, and although
TIL subtyping and quantification show promising potential as biomarkers, there is a lack
of prospective trials to validate these findings.

Tumor-Associated Macrophages (TAMs)

Another strain of infiltrating immune cells are macrophages. These are recruited from
the bone marrow as peripheral monocytes or originate from TME-attracted MDSC and
polarize into two different macrophage phenotypes, M1 and M2 TAMs, depending on
the received stimuli from the TME. M1 macrophages, which will primarily develop in
presence of IFNγ, are acknowledged as potent effector cells for eliminating tumor cells by
production of several pro-inflammatory cytokines and activating Th1 cells, thus inhibiting
tumor progression [53,82,83]. More specifically, they induce activation of CD8+ cytotoxic
cells and differentiation of naïve CD4+ T cells into Th1 effector cells [53]. Activated M1
macrophages can be distinguished by general expression of surface proteins HLA-DR and
CD80/86, but numerous others have also been described (CD64, CD16, CD120b, TLR2,
and SLAMF7 etc.) The activated M2 macrophages on the other hand are considered to
be predominantly tumor associated, as they are characterized by the ability to produce
anti-inflammatory cytokines (e.g., IL-10, TGFβ, etc.) and pro-angiogenic factors (e.g., VEGF,
TNFα, etc.). They enhance differentiation of Tregs, thus promoting tumor growth and
sustaining local immunosuppression (cfr. Figure 1). They are mostly distinguished by
surface expression of proteins CD163, CD204, and CD206 (Macrophage Mannose Receptor
or MMR), but are accompanied by several other receptors (stabilin-1, CD1a, CD1b, CD23,
CD93, CD226) [84–89]. TAMs may indeed induce carcinogenesis and disease progression
as they affect angiogenesis, tissue invasion, and metastasis [85]. Both TAM phenotypes
carry the general surface markers CD68, which has been, together with the M2-specific
CD163, commonly used for TAM quantification in various solid cancers (breast, colorec-
tal, non-small cell lung, prostate, and ovarian cancer) [84,89]. It seems that high TAM
infiltration based on these markers has been correlated to aggressive tumor behavior and
increased therapy resistance in breast, ovarian, and prostate cancer [84]. However, differ-
entiating macrophages into anti-tumorigenic M1 and anti-tumorigenic M2 seems to be
oversimplified in some cases. Several authors observed the ratio between anti-tumorigenic
versus pro-tumorigenic or M1/M2 index TAMs acts as an independent prognostic factor
in several malignancies f.i.lung and ovarian cancer [84]. The employed markers used for
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TAM identification varies as per indication [89,90]. Oral squamous cell cancer (OSCC)
in particular shows increased TAM infiltration (CD68+, CD11c+ or CD163+), which was
indeed correlated to poor prognostic factors such as increased lympho-vascular invasion
and lymph node metastasis [91–93]. Furthermore, Weber et al. [94] retrospectively observed
that transforming leukoplakic regions (n = 50) had a higher amount of infiltrating TAMs
with a significant shift to M2 polarization, based on the M2/M1 ratio via the C163/CD11c
index, in comparison to non-transforming leukoplakic regions (n = 53; p < 0.001). Similar
results were discovered in a population of small OSCC (pT1/pT2, n = 34), in which tumoral
samples with lymph node metastasis (N+) showed a higher TAM infiltration and M2/M1
index (based on the IHC staining of CD68, CD11c, CD163, and CD206) than samples from
N0 OSCC (p = 0.05) [95]. A similar tendency was observed in OSCC and IHC expression of
CD206: patients with high infiltration of CD206+ cells had more locally advanced disease
and lymph node metastasis prognosis [96]. This indicates that the M2 polarization may
contribute to malignant transformation and disease progression [94–97].

A recently published meta-analysis investigated the overall association of TAM to
SCCHN based solely on the markers CD68 and CD163, concluding that increased stromal
CD168+ detection of M2 TAMs was correlated with worse OS. However, the included
studies took no account of HPV status in these SCCHN samples [52,90]. Interestingly,
recent research from Faustino et al. [97] revealed TAM infiltration (through CD68 and
CD163 expression) in OSCC (n = 123) did not affect survival, based on disease-specific
survival, but was positively correlated to elevated PD-L1 expression (>10%; clone 22C3, cfr
Section 3.1.3, confirming its potential immunosuppressive capacities in SCCHN [98].

TAM assessment could have potential value as a prognostic marker in addition to
the well-known TIL evaluation. We observed the TAM assessment in SCCHN is mainly
based on IHC expression on FFPE-tissue material while using a restricted set of monoclonal
staining antibodies (mostly CD68 and CD163). To make a clear distinction between M1 and
M2 TAMs, other markers should be incorporated in future studies.

Other Immune Cells

Several other immune cells have been investigated in SCCHN regarding their prognos-
tic and predictive value. These comprise of neutrophils and NK cells (innate immune cells),
dendritic cells and MDSC (myeloid cells), and the B cells as lymphocyte subset. Literature
regarding these topic remains restricted and is therefore currently of lesser importance as a
potential clinical attribute. For a deeper understanding regarding the role of these immune
cell subsets, we refer to a recent review from Wondergem et al. [52].

- Neutrophils and NK cells are innate effector cells recruited as first line of defense
in case of tissue damage. Although they have been well-described in blood as a
marker for inflammation, few data exist regarding their anti-tumor function. Generally,
tumor-associated neutrophils or TANs are subdivided in anti-tumorigenic (N1) or
pro-tumorigenic (N2) [99]. Two papers viewed high infiltration of polymorphonuclear
cells in SCCHN being generally associated with advanced disease, cancer progression,
and lower OS [100,101]. NK-cells are lymphocytes that engage in both the innate
immunity as an effector cell, and as a regulator of the adaptive immunity due to
their IFNγ secretion [102]. Karpathiou et al. [103] investigated NK-infiltration in
152 SCCHN tissue slides using the CD57 protein surface marker. High CD57+ cell
density in SCCHN was correlated to a lower rate of metastasis and better survival
by means of OS and DFS. These CD57+ cells were mostly present in OPSCC subsites.
Additionally, based on the NK-related transcriptome from the TCGA database, it
seems CD56dim marked NK cells are a major part of the immune infiltrate in SCCHN,
and has been correlated to increased OS [28]. Reports regarding NK infiltration in
SCCHN seems limited; thus, this topic requires further investigation.

- Dendritic cells (DC) are myeloid cells functioning as antigen-presenting cells for
inducing T-cell activation. General discordance exists about the prognostic role of DC
within the immune landscape of SCCHN. Some papers linked higher DC infiltration
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with positive HPV-status, though this needs to be further elaborated [104]. MDSCs
function as suppressors of the native and adaptive immune system. One study
depicted MDSC’s are more prevalent in SCCHN-tissue samples than healthy oral
tissue via an IHC-based human MDSC marker, MPO [100]. In addition, the number of
MPO-stained MDSC also linearly increased according to pathological stage [105]. The
value of these myeloid cells, next to TAMs, needs to be further elucidated in SCCHN.

- Although B-lymphocytes are key-players in humoral immunity through immunoglobin
production, its role in tumor progression is ill-defined. B cells can participate in anti-
tumor immunity by enhancing cytotoxic T-cell responses or anti-neoplastic cytokine
production, while also being capable of inducing cancer immune evasion [106]. This
translates in discrepant findings in literature regarding its prognostic role, for which
we refer reader to Wondergem et al. [52]. To this end, we concur that these immune
cells are understudied in all types of solid carcinoma.

3.1.3. PD-L1 Status

As stated earlier, the targeting of immune checkpoints, in particular the PD-1/PD-L1
axis, has been a landmark event in the therapeutic field of SCCHN. Anti-PD-1/PD-L1
agents in monotherapy have been implemented as standard first- and second-line treatment
in patients with R/M SCCHN [18,53]. Generally, expression of PD-L1 can be observed on
tumor cells as well as immune cells, though several studies point out that PD-L1 expression
is caused in two different ways. Firstly, PD-L1 expression is temporarily elevated due
to T cell induced inflammation. SCCHN is characterized by its high infiltration of TILs,
including cytotoxic CD8+, which is considered an important prognostic factor [107]. IFNγ

secretion from mainly CD8 T cells induces an increased anti-tumor response by stimulating
antigen expression and chemokine production (Figure 1), though also induces increased
expression of the transmembrane protein PD-L1 as a self-protective mechanism to avoid
excessive damage from the inflammation. This generates a pro-carcinogenic environment,
as chronic expression of PD-L1 can induce T cell anergy, sustain survival of the transformed
cells, thus functioning as a regulator in the dynamic, bidirectional relationship between
tumor and TILs [16,73,108]. In this matter, intratumoral CD8+ T cells were seemingly
inversely associated with PD-L1 expression in OSCC from one retrospective study [109],
while Sanchez-Cantelli et al. [110] noticed an increased infiltration of CD8+ TILs in HPV−

SCCHN with high PD-L1 expression. This finding was associated with better prognosis in
terms of disease specific survival (DSS). Then again, these findings were contradicted by
other research groups, in which no relationship was found between CD8+ T cell infiltration
and PD-L1 expression, both studies again performed in retrospective fashion [54,111].

The assessment of PD-L1 expression on a tumor specimen by immunohistochemistry
has been acknowledged as a prognostic and predictive biomarker for tailoring use of PD-
1/PD-L1 targeting agents in solid cancers, including SCCHN [77]. When treated with ICI,
R/M SCCHN patients with elevated PD-L1 expression have higher ORR and increased post-
therapy survival compared to low PD-L1 expressing patients [27,58,59,108,112,113]. Still,
there are some well-known caveats to be considered when employing PD-L1 expression
as a response predictor for ICI that also apply in SCCHN. First, PD-L2 expression is not
covered using this PD-L1 assay although PD-L2 has similar function as PD-L1; it interacts
with PD-1, induces T cell inactivation and cytokine release, though this is mainly restricted
to APC (macrophages, dendritic cells, bone marrow derived mast cells, and peritoneal B
cells). Subsequently, high PD-L2 expression is associated with promotion of metastasis and
poor prognosis (DFS, DSS) in various solid cancers [114–116]. Second, patients with PD-L1
overexpression do not necessarily respond to ICI, while patients with limited or even
absent PD-L1 expression did respond to ICI [117]. Third, evaluation of PD-L1 expression
has been technically challenging due to the implementation of different (trial-validated)
PD-L1 assays depending on the pharmacy-developed ICI agent, while also employing
different types of platforms used for the immunohistochemical staining. In addition, the
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PD-L1 evaluation method for every immunostaining antibody has their own threshold and
cut-off value for defining PD-L1 positivity (Table 1).

Fourth, a significant degree of intratumoral heterogeneity exists in regard to tumor cell
staining: PD-L1 positive cells tend to be located at the periphery of the tumor adjacent to
the peritumoral stroma. Immune cell staining has been noted to be similarly heterogeneous:
immune cell staining seems primarily localized to the peritumoral stroma with few TILs in
most cases. This pattern of cuffing of tumor by a PD-L1 positive immune cell infiltrate has
been noted to be particularly characteristic of HPV-driven oropharyngeal carcinoma [118].
This may be a possible explanation for the underscoring of aspirate cell blocks and core
biopsies relative to resected specimens and excisional biopsies is a failure to sample the
peritumoral stroma in small biopsies reported in several articles [119–121]. Lastly, PD-L1 ex-
pression is subjected to temporal heterogeneity: immune and tumor cells are continuously
shifting shape and functionality during cancer development and progression. An assess-
ment of PD-L1 expression is only one specific time-frame and insufficiently apprehends
the dynamic evolution TME of the tumor, making PD-L1 expression a time-dependent
biomarker [122].

Table 1. Different antibodies and platforms for ICI tested in SCCHN.

ICI Agent Complement
PD-L1 Ab Ab Host Species Platform Detection System Diagnostic Cut-Off

Pembrolizumab [59,112] 22C3 murine Dako autostainer
Link 48

EnVision FLEX
visualization system TC or IC ≥1% (CPS)

Nivolumab [18] 28-8 rabbit Dako Autostainer
Link 48

OptiView DAB IHC
Detection Kit TC >1%, TC >5%

Atezolizumab [123] SP142 rabbit Ventana Benchmark
Ultra

OptiView DAB IHC
Detection Kit

TC: ≥ 5%,
IC: ≥ 5%

Durvalumab [60] SP263 rabbit Ventana Benchmark
Ultra

OptiView DAB IHC
Detection Kit/

OptiView
Amplification Kit

TC: ≥ 25%

Avelumab [124] 73-10 rabbit Dako autostainer
Link 48

OptiView DAB IHC
Detection Kit N/A

Ab = antibody; CPS = combined positive score; IC = immune cells; ICI = immune checkpoint inhibition; IHC = immunohistochemistry;
N/A = not applicable; SCCHN = squamous cell carcinoma of the head and neck; TC = tumor cells.

Altogether, the scoring and interpretation of PD-L1 expression has been made com-
plex. It is without question that PD-L1 expression is an interesting player in the field
to assess the TME and tailoring use of ICI, but this biomarker lacks robustness, and its
assessment is complicated due to several technical issues. As mentioned earlier, there
remains controversy regarding the potential prevalence of discrepancies in PD-L1 scoring
due to interspecimen and temporal heterogeneity (biopsy, resection, or lymph node or
organ metastasis). To our knowledge, intratumoral heterogeneity has only been assessed
in SCCHN by two studies: both evaluated PD-L1 expression by means of the Combined
Positivity Score (CPS) in biopsy material versus the matching resection material. Results
showed significant discordance in material with absent PD-L1 expression, confirming the
risk of underscoring in biopsy specimen [121,125]. Two studies investigated PD-L1 expres-
sion on primary SCCHN versus associated (non-recurrent) lymph nodes and found a clear
correlation in expression pattern [125,126]. Nonetheless, literature remains scanty in this
domain: further specimen-subsite analysis is required and aforementioned results should
be validated by additional studies. Exploring the association between PD-L1 expression,
HPV-status, and other TME-associated biomarkers (TILs and TAMs) should be elucidated.

3.2. Genetic Biomarkers
3.2.1. Micro-Satellite Instability (MSI)

The DNA mismatch repair (MMR) system is an indicator for genomic (in)stability
as DNA repair gene products. It makes use of different enzymatic protein complexes
(MutS, MuH, and MutL) to bind at damaged DNA, repairing base pair mismatches or in-
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sertion/deletion loops. Afflicted genetic damage (through transmitted germline mutations
or epigenetic changes) to this DNA MMR system or loss of function may eventually lead to
formation of MSI. Indeed, several types of solid carcinoma, mostly subsets of colorectal can-
cer, have been associated with MSI via dysfunctional expression of several MMR proteins
(formed as proteins complexes such as MSH2-6, MSH2-3, PMS1-MLH1, MLH1-3) [127].
Subsequently, MSI-high tumors may be correlated with a higher tumor mutational burden
(TMB), and thus, an increased production of neo-antigens, leading to higher T cell reactivity.
From this perspective, MSI-high tumors may have better ORR towards treatment with ICI.
In SCCHN, MSI has not been implemented in routine testing [128]. The prevalence of MSI
positivity in SCCHN has been estimated at 1%–26% [129–132]. The prognostic value of MSI
in SCCHN remains unclear due to low sample-size and few studies, thus lacking statistical
power. Initially, it seemed that MSI positivity in SCCHN was correlated with a higher
probability of local recurrence in tissue specimen with negative resection margins [133]. A
recent study investigated the role of MMR deficiency as a response predictor for anti PD-1
agents in twelve different solid carcinoma, though SCCHN was not included. Nonetheless,
a radiological ORR was observed in 53% of patients, of which almost half of them reaching
a complete response [134]. An interesting report described a patient with metastasized
SCCHN, low PD-L1 expression, and high MSI, who was submitted to a PD-L1 inhibitor.
This patient experienced a durable and complete response [135]. The role of MSI as a
potential biomarker for tailoring ICI use in SCCHN has not been thoroughly investigated
as a predictor of ICI-responsiveness. Current reports indicate that incidence of MSI is fairly
low in SCCHN, which reduces its potential implementation as a routine diagnostic test in
SCCHN. Nevertheless, its role should be elaborated in future clinical research.

3.2.2. Genetic Screening

• Type of material

Genetic-based prognostication and classification have been a major part in the unrav-
elling of the immune contexture of SCCHN. Classically, tissue specimen are utilized for
DNA/RNA extraction and genetic analysis using next-generation sequencing techniques
(NGS) to identify the mutational landscape. Nonetheless, (repetitive) tissue biopsies are
an invasive and costly procedure, which has increased the popularity for applying collec-
tion of liquid biopsies. The introduction of cell-free (cf) DNA and circulating tumor (ct)
DNA testing have been welcomed as innovative techniques of genetically profiling solid
carcinoma. Furthermore, electronic platforms such as the TCGA database and cBioPortal
displays the patterns of gene expression and clinical data from several clinical trials in
(solid) malignancies. This allows universal access to genetic information, and thus can func-
tion as useful tools in the development of a genetic prognosticator for (future) prospective
trials [136,137].

• Tumor mutational burden (TMB)

The TMB can be utilized to quantify the neoantigen load via the number of (non-
synonymous) mutations present in a specific tumor (mut/mB) [20,127,138]. TMB can
be acquired through whole-exome or whole-genome DNA sequencing (mostly done on
tumoral tissue material). In non-squamous cell lung cancer, patients with higher TMB
were correlated to significant clinical benefit when treated with ICI [139,140]. SCCHN is
considered one of the (tobacco-related) solid malignancies with the highest TMB, around 5-
10mut/MB [20]. Several clinical trials confirmed that presence of high TMB was correlated
to better prognosis when treated with ICI [137,138,141,142]. However, this was mostly in
case of virus-negative (HPV−/EBV−) SCCHN, which have higher TMB due to prevalence
of secondary risk factors (smoking/alcohol consumption). Furthermore, TMB seems to be
independent of PD-L1 expression and gene expression profiles in the tumor, confirming that
the TME is a very dynamic but complex entity [142]. There is high interest in integrating
TMB as a prognostic or predictive biomarker in patients with SCCHN, especially before
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initiating treatment with immunomodulating agents (f.i. ICI), but this should be further
investigated in future prospective trials.

• Gene signatures

In SCCHN, several genes have been correlated to carcinogenesis and the generation
and modulation of anti-tumor immune response. As mentioned earlier, SCCHN is genet-
ically heterogeneous, which has complicated the search for an evident immune-related
gene signature. Multiple studies investigated different sets of immune genes signatures to
predict prognosis in the population while also tailoring the use of immunotherapy through
assigning different immune-gene based subgroups to various immunotherapy based strate-
gies [7,140,143–156]. Results from these studies have generated an immune-related gene
panel or signature based on 10 to 27 different genes (cfr. Table 2), which were mostly DNA
and/or RNA based (mRNA, lncRNA, miRNA). An extensive elaboration for each acquired
gene signature falls beyond the scope of this paper. Nonetheless, these genetic signatures
might be insightful in regard to their predictive and prognostic value, especially when
considering treatment with ICI.

Table 2. Overview of some potential gene signatures in SCCHN.

Study Reference Associated Genes

[7] AJUBA (−), CASP8 (−), CD56 (+), CD8 (+), CDKN2A (−), EGFR (−), FAT1 (−), FGFR2 (+), HRAS
(−), LAG3 (+), NOTCH1 (−/+), PIK3CA (−/+), TP53 (+), TP63 (−/+), TRAF3 (+)

[140] CCL5, CD27, CD274, CD276, CD8a, CMKLR1, CXCL9, CXCR6, HLA-DOA, HLA-DRB1, HLA-E,
IDO1, LAG3, NKG7, PDCD1GL2, PSMB10, STAT1, TIGIT

[143]
AVPR2, BTC, CCL22, CCR6, CHGB, DKK1, HBEGF, HRG, ICOS, IL20RA, INHBB, KLRK1, LCNL1,

MASP1, OLR1, PDGFA, PTX3, RBP4, RFXAP, ROBO1, RORB, SH3BP2, TMSB4Y, TNFRSF4,
TNFRSF18, TNFRSF25, ULBP1

[147] BATF, CCL11, CCR4, CCR7, CD27, CD79B, CMA1, CNR2, CTLA4, CTSG, GZMM, IL16, IL19, MASP1,
PGLYRP4, SAA1, TNFAIP3, TREML1

[149]
AJUBA (−), CASP8 (−), CCND1 (−), CDKN2A (−), EGFR (−/+), FAT1 (−), FGFR1 (−), FGFR3 (+),
HLA-A (−/+), HRAS (−), KMT2D (−), MYC (−), NOTCH1 (−/+), NSD1 (−), PIK3CA (−/+), TP53

(−), TP63 (−/+), TRAF3 (+)

[150] CDKN2A (−), CUL3 (−), FGFR3 (+), FLG (−/+), MLL2 (−/+), MLL3 (+), NOTCH1 (−/+), NOTCH2
(−), NSD1 (−), PIK3CA (−/+), TP53 (−), UBR5 (−)

[151]
AJUBA (−), B2M (+), CCND1 (−), CDK4 (−), CDK6 (−), CDKN2A (−), CUL3 (−), E2F1 (+), FAT1

(−), FGFR2 (+), FGFR3 (+), HLA (+), HRAS (−), KEAP1 (−), KRAS, NF1, NF1 (+), NFE2L2 (−),
NOTCH1 (−/+), NRAS, PIK3CA (−/+), RB1 (−), TP53 (−), TP63 (−/+), TRAF3 (+)

[152] GZMA (+), GZMB (+), IDO1 (+), IFNG (+), LAG3 (+), PRF1 (+)

[153] CYLD (+), EP300 (+), FGFR3 (+), KMT2D (+), NFE2L2 (+), PEG3 (+), PIK3CA (+), RB1 (+), STAT3
(+), TSC2 (+)

[154] ADGRV1 (−), CCND1, CDKN2A (−), CDKN2B (−), EGFR (−), FAT1 (−), FAT2 (−), FAT4 (−),
KMT2C (−/+), KMT2D (−), NFE2L2 (−), NOTCH1 (−), PIK3CA (−/+), RELN (−), TP53 (−)

[155] AKNA, ARHGAP9, CCR7, CORO1A, GIMAP4, GIMAP7, IL10RA, ITGAL, ITK, P2RY8, PPP1R16B,
PRKCB, SASH3, SP140, TBC1D10C, TRAF3IP3

All genes are ordered alphabetically per study. (−) = common mutation in HPV negative tumors; (−/+) = common mutation irrespective
of HPV status; (+) = common mutation in HPV positive tumors; SCCHN = squamous cell carcinoma of the head and neck.

Again, before clinical implementation of the gene signature could take place, unifor-
mity should exist regarding the in-and exclusion of relevant genes and the type of material
used for genetic screening (primary tumor versus metastasis, tissue versus liquid biopsy).
Integration of a gene signature should go hand in hand with an extensive examination
of the abovementioned TME-associated biomarkers. In this regard, SCCHN may be sub-
divided based on their immunogenic properties into low, moderate, or highly inflamed
phenotypes [12]. An interesting approach would be the construction of immune-related
nomogram or immunogram in SCCHN providing important prognostic and predictive
with the potential of tailoring use of immunotherapeutic agents [148].
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3.3. Circulating Blood Cells

As systemic inflammatory responses may be reflected using blood parameters, some
of them may be beneficial as predictive and prognostic biomarkers for minimal invasive
and clinical monitoring of patients. Several peripheral blood parameters have been in-
vestigated and explored: absolute lymphocyte count (ALC), absolute neutrophil count
(ANC), absolute eosinophil count (AEC), absolute monocyte count (AMC), or neutrophil
to lymphocyte ratio (NLR) being the most noteworthy parameters. However, literature
describes various discrepancies of these parameters between studies, thus its clinical value
is yet to be portrayed [156–162]. Interest has therefore shifted to the characterization of
immune and non-immune-inflamed phenotypes using flow cytometric analysis (FCA).
This is a common and widely available technical approach to quantify and identify immune
cell profiles using cell surface-expressed markers in blood and blood derivates [163]. As
mentioned in Section 3.1.2, SCCHN is known to have an immunosuppressive environment
with lower absolute T cell counts, in particular CD4+ and CD8+ T cells, and dysfunc-
tional CD8+ effector cells. On the other hand, immunosuppressive Tregs and MDSCs are
elevated [162,164,165].

Indeed, unravelling the immune-profile in SCCHN of circulatory blood cells is promis-
ing and may go hand in hand with abovementioned (tissue-based) parameters. For instance,
identifying and quantifying the repertoire of different T cell subsets by FCA, of which CD4+

and CD8+ T cells are the main players on the pitch, could be accompanied by an IHC-based
TIL subtyping in tumoral tissue. Below, we describe some currently known dysregulations
in blood and blood-derivates observed via FCA detected surface markers in SCCHN.

As mentioned earlier, an important subset of CD4+ T cells in solid carcinoma are Tregs.
These are grossly divided into three main groups according to the surface marker-based
phenotype and their function: (1) immunosuppressive resting (CD45RA+ FoxP3low) Tregs;
(2) activating (CD45RA− FoxP3high) Tregs; and (3) non-immunosuppressive (CD45RA−

FoxP3low) T cells [166].
Effector CD8+ T cells on the other hand, should be divided into naïve T cells, central

memory T cells, effector memory T cells, and effector T cells, the latter being responsible
for cancer cell elimination after antigen stimulation [165].

A prospective study analyzed base-line T-cell populations by FCA on peripheral blood
of 85 oropharyngeal and laryngeal cancer patients compared to healthy controls. A shift
was noted from naïve CD8+ T cells into effector memory T cells, while the total amount of
effector T cells and effector memory T cells was elevated in HPV+ in comparison to HPV−

OPSCC [167].
A preliminary prospective study from Boucek et al. [168] compared the Treg frequency

(determined as CD4+CD25+ Tcells) in the blood of SCCHN patients (n = 112) at the time of
diagnosis compared to healthy donors. A general increase in Tregs in the SCCHN group
was observed. Furthermore, a significantly higher level of circulatory Tregs was associated
with recurrent disease for SCCHN.

Lechner et al. [54] observed Tregs (identified as CD4+/FoxP3+ CD127low) in blood
(PBMC’s) to be elevated in the SCCHN group compared to healthy donors. These results
were equally confirmed on paired tissue samples. Subsequently, a decrease in circulat-
ing CD4+ naïve T cells (CD4+/CD45RO−/CD27+) and an increase of memory T cells
(CD4+/CD45RO+) were observed in comparison to control groups. Of notice, CD45RO+ is
a glycoprotein that represents the prevalence of tumor-infiltrating memory T lymphocytes,
and thus the activation status of T cells in general [169].

Attention has also been brought to the migratory capacity of circulating CD4+ and
CD8+ T cells by Andrade et al. [170]. Based on the expression of surface proteins CD18,
CD54, and CD62L, significant alterations were noted on CD4+ T cells and particularly,
CD8+ T cells. These migratory lymphocytes could be an essential component for the
local and/or systemic inflammatory response during carcinogenesis, but this needs to be
further elaborated. Furthermore, a reduced number of circulating CD38+/CD8+ T cells
was observed in patients with highly advanced/metastatic SCCHN, CD38 being a both
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sensitive and specific marker for immune activation in various diseases. Again, its clinical
role needs to be defined in future research [170].

Circulating NK cells only provide little data regarding their role in SCCHN. It seems
the total amount of (CD16/56+) NK cells is substantially lower compared to control groups.
Low amounts of invariant NK Tcells were correlated to poor outcome in SCCHN [168,171].
Essentially, aforementioned authors concur the phenotypic analysis of circulating lympho-
cytes could be interesting for assessing the immunological status, monitoring the clinical
course, or as prognostic and predictive tools for patients with SCCHN.

As mentioned in Section 3.1, MDSC are immature immune cells known for negatively
regulating immune responses in pathological conditions, including carcinogenesis. MDSCs
comprise of different subsets expressing various myeloid markers such as CD11b, CD33,
CD14, CD15, and CD16, while lacking the expression of HLA-DR. These surface markers
are crucial for identification by FCA. Several reports indicate CD14+ HLA-DR− cells induce
immunosuppression by inhibiting T cell proliferation through augmented expression of
immune checkpoint molecules, increased release of cytokines (TGFβ, IFN-γ) and enzymes
(ROS, NOS, Arg1) [41,172]. Of course, these mechanisms differ according to the type of
solid carcinoma. In SCCHN, (CD14+ HLA-DR-) MDSCs obtain their immunosuppressive
effects through upregulated expression of PD-L1 and an increased release of TGFβ [173].
Regarding clinical significance, it seems the amount of circulating MDSCs quantified by
FCA is substantially lower in peripheral blood samples of SCCHN and concentrations are
correlated to the tumoral burden in SCCHN, which is in concordance with abovementioned
tissue-related results [174–176]. Hereby, MDSCs may indeed be of biological importance
during tumor progression.

Lastly, the detection of immune checkpoint molecules on circulating T cells via FCA
has also been introduced. Immune checkpoints (f.i. PD-1) expressed on T cells have low
sensitivity using immunohistochemical detection on tumoral tissue, hence the recommen-
dation of combining both techniques in the future for adequately assessing the PD-L1 status
of SCCHN [54,177]. In summary, aforementioned data about circulating blood cells and
their expressed surface proteins seem worthwhile for contemporary evaluation, providing
further insight in tumor biology and the immunological profile of SCCHN.

3.4. Oral Microbiota

Microbiota have an indisputable role in the development and maturation of the host
immune system. Mounting evidence has correlated its dysregulation to several health is-
sues, the most common being systemic auto-immune, inflammatory bowel, cardiovascular,
and metabolic diseases [178,179]. In addition, the immunomodulatory role of gut micro-
biota has been extensively described in malignancies, it being associated with immune
dysregulation, disease progression, and as a regulator of immunomodulotary therapeutics
such as ICI [180–182]. As of today, no data have linked squamous cell cancer in the head
and neck to gut microbiota. However, exciting evidence has been presented concerning
oral microbiota. The earliest paper found significant discrepancies in oral bacteria composi-
tions between healthy and OSCC subjects, the latter being colonized species and strains
that induce chronic inflammation, hence potentially inducing carcinogenesis and cancer
progression. Furthermore, smoking and excessive alcohol abuse, two major risk factors for
SCCHN, seem to reduce bacterial heterogeneity [183]. To this end, Shin et al. [184] observed
an increased colonization of Lactobacilli while Haemopilus, Neisseria, Gemellaceae, or Aggregat-
ibacter were downregulated. Recently, it was shown that enrichment of the Fusobacterium, F.
nucleatum in SCCHN patients showed lower tumor stage, lower rate of recurrence, and
lymph node metastasis. Generally, a shift seems to occur (in SCCHN compared to healthy
tissue) in which Streptococci seem to be replaced by Fusobacterial strains [184]. Although
the clinical significance of microbiota in regard to therapeutics within SCCHN needs to
be further elaborated, a respectable attempt has been made by Ferris et al. [185]. As a
sub-investigation of the CHECKMATE 141-trial, the saliva of 82 ICI-treated R/M SCCHN
patients were assessed for distinctions in bacterial colonization by profiling using high-
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throughput 16S ribosomal RNA sequencing, and compared to healthy controls. Although
no prognostic nor predictive correlation could be made (partially explained due to the
limited sample size and low ORR), these are welcoming attempts that should incite further
investigation [20,185].

4. General Conclusions and Future Perspectives

As ICI have found their way in the standardized practice of oncology medicine, there
is a necessity of obtaining a better understanding regarding the TME to further personalize
ICI treatment. We know that there is an indisputable correlation between the TME and
the recognition and elimination of neoplastic cells. Further deciphering of the TME may
thrive discovery of potential diagnostic, prognostic biomarkers or additional targets for
enhancing the effectiveness of ICI, as ICI-resistant clones have also been observed in cancer
patients [146]. In SCCHN region, there is no denying that the TME is of major importance
regarding prognosis and response prediction to ICI. Until today, only p16/HPV status and
PD-L1 expression have been integrated in routine clinical practice as clinicians and scientists
agree that these biomarkers harbor important prognostic value [108]. Identification and
quantification of the immune infiltrate, in particular TIL subsets, have been thoroughly
investigated these last decades in SCCHN. However, due to its great inconsistencies
regarding predictive and prognostic information, no consensus has been reached for
designing a universal methodology in TIL scoring, nor integrating TILs in the diagnostic
landscape of SCCHN. Although some potential may lie in the evaluation of TAMs in the
TME, there is still a lack of solid scientific evidence in SCCHN; thus, further exploration
is warranted. As ICI have been integrated in the therapeutic landscape of cancer, the
clinical value of PD-L1 expression in SCCHN has been skyrocketing. However, next to the
well-known technical issues (different methodologies, immunostainers, and platforms),
temporal, and intra- and intertumoral heterogeneity do further complicate the assessment.
Currently, PD-L1 expression lacks specificity and robustness to be employed as a sole
predictor of ICI-response in SCCHN. We are in desperate need of additional biomarkers to
adequately profile the TME in SCCHN and tailor the use of immune checkpoint inhibitors.

When considering genetic-based biomarkers, TMB and MSI may be valuable predic-
tors of response to immunomodulating agents, but fall short due to the low prevalence in
this population. Gene signatures hold more potential for a personalized strategy, though
current studies lack uniformity on which SCCHN-and/or immune-related genes should be
targeted for screening. The same accounts for circulating blood biomarkers, holding prog-
nostic or predictive information but lacks uniformity in methodology and, consequently, in
results. Lastly, as the microbiome has recently emerged as a popular mediating factor of
immunology and cancer, the oral microbiota and its link to SCCHN could be another path
worth exploring for additional biomarkers.

In general, SCCHN prognosis prediction should not only be based on the clinical
staging system (TNM or AJCC), differentiation grade, and HPV and PD-L1 status. Ide-
ally, future studies should partially integrate above described biomarkers to construct a
unanimous TME-based classification that includes the assessment of tissue-infiltrating
and circulating immune cells and gene signatures. An interesting approach would be
the construction of an immunogram as suggested by Blank et al. [148], assigning SCCHN
into different immunoprofiles based on their immunogenic properties. SCCHN remains a
complex and heterogeneous cancer. Several biomarkers have already been investigated,
demonstrating their worth in SCCHN, but are prone to flaws due to retrospective study
designs, lack in uniformity of assessment, no standardization, and discordancy in pub-
lished results. Therefore, improving our understanding of the TME and the dynamic
tumor-immune cell interactions will be crucial to explore, identify, develop, and ultimately
integrate new prognostic and predictive biomarkers into clinical care.
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