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Abstract: Head and neck cancer (HNC), the seventh most common form of cancer worldwide,
is a group of epithelial malignancies affecting sites in the upper aerodigestive tract. The 5-year
overall survival for patients with HNC has stayed around 40–50% for decades, with mortality being
attributable mainly to late diagnosis and recurrence. Recently, non-coding RNAs, including tRNA
halves, YRNA fragments, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), have
been identified in the blood and saliva of patients diagnosed with HNC. These observations have
recently fueled the study of their potential use in early detection, diagnosis, and risk assessment.
The present review focuses on recent insights and the potential impact that circulating non-coding
RNA evaluation may have on clinical decision-making in the management of HNC.

Keywords: head and neck cancer; circulating non-coding RNA; liquid biopsy; biomarkers

1. Introduction

Head and neck cancer (HNC) encompasses a wide range of tumors arising from
numerous anatomic subsites, including the lips, oral cavity, oropharynx, nasopharynx,
hypopharynx, larynx, nasal cavity, paranasal sinuses, and salivary glands (Figure 1). Squa-
mous cell carcinoma (SCC) is the most frequent histological type, accounting for 90% of
HNC cases [1]. Globally, HNC the seventh most frequent malignancy, with more than
880,000 new cases reported in 2018, representing 4.9% of the total number of cancer cases [2].
HNC has a high incidence and mortality profile worldwide, with age-standardized inci-
dence and mortality rates of 10.10 and 5.04 per 100,000, respectively, in 2018 [2]. In western
Europe, Jethwa et al. [3] found that males were affected three times as frequently as females,
with the highest rates of HNC occurring in older men, and found that the risk factors for
HNC included upper aerodigestive tract mucosa exposure to carcinogens such as tobacco
and alcohol [3]. While smoking-related cancers appear to be declining, there have been
increasing incidences of SCCs of the oropharynx and nasopharynx in young individuals
in recent years; these increases have been linked to infection with human papillomavirus
(HPV) and, less commonly, Epstein–Barr (EBV) virus [1,4]. The observation of substantially
better prognoses for these malignancies among HPV positive patients than for tobacco
users has suggested that activation of HPV-specific oncogenic signaling pathways may be
relevant for HNC prognosis [5–8].
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Figure 1. Head and neck cancer (HNC) types. Regions and frequencies where head and neck cancers
are diagnosed are indicated.

Typically, HNCs present with symptoms from the primary site, such as persistent
hoarseness, long-lasting dysphagia, oral mucosa ulcers, epistaxis, or otalgia. Patients in
whom the primary neoplastic site is the tongue base, upper glottis, or nasopharynx often
present with cervical lymphadenopathy as their first presenting sign. Most patients (60%)
are diagnosed at an advanced stage of disease (III or IV), at which points survival rates
are reduced relative to those for early stages (I or II). Distant metastases are found in only
about 10% of cases at presentation, and concomitant or delayed second primary tumors of
the upper aerodigestive tract occur in 10–15% of patients. Despite recent advances in loco-
regional treatment protocols, including advanced surgery, radiotherapy, chemotherapy,
or combinations thereof, 50–60% of patients with locally advanced disease develop loco-
regional recurrence and a further 20% progress to distant metastasis [9]. Challenges in HNC
care include rapid detection of primary tumors during the early stages of the disease, the
development of improved surveillance methods following potentially curative treatment,
unambiguous distinction of metastasis from recurrences and second primary tumors, and
the development of therapeutic options for cases that are currently considered untreatable.

In response to these difficulties, new screening modalities have emerged in multiple
areas of oncology. Key among these are liquid biopsies, wherein tumor cells or tumor-
derived products released into body fluid are collected and examined with the aim of
detecting cancer biomarkers [10]. Multiple biofluids can be used for analysis, with pe-
ripheral blood being the most commonly investigated specimen. Compared to classical
excisional biopsies, blood sampling is less invasive and it holds the promise of rapid, safe,
and highly informative genetic analysis. Hence, blood sampling provides an accessible
means of real-time evaluation of the disease and, potentially, the opportunity to identify
small tumors not yet visible by medical imaging techniques. It is important to bear in
mind that the main costs of a liquid biopsy are the associated laboratory studies and
downstream data analysis. Ideally, liquid biopsies should be inexpensive enough to be
analyzed at multiple time points during treatment. Such repeat monitoring can improve
HNC outcomes while reducing patient morbidity due to unnecessary treatments, boosting
treatment development and optimizing the use of healthcare resources [11].

Various types of circulating tumor-derived products have been identified, including
circulating tumor cells (CTCs) as well as biomolecules including circulating tumor DNA
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(ctDNA) and circulating tumor RNA (ctRNA) [10]. Isolation, detection, and characteriza-
tion of CTCs can provide crucial information regarding disease stratification at the point
of diagnosis based on the mutational status of the tumor, chromosomal abnormalities,
methylation status, and the overall tumor heterogeneity and complexity [12]. The clinical
use of CTCs has been hindered by detection limits due to low presence in early disease
stages and due to heterogeneity of metastatic potential. Biomolecules such as ctDNA and
ctRNA are highly promising biomarker candidates. Clonal events can be investigated
through ctDNA studies and CTC studies. Conversely, compared with DNA biomarkers,
RNA biomarkers provide better dynamic insights into cell regulation and states. In most
body fluids, ncRNA stability is warranted through diverse transport mechanisms including
encapsulation into membranous vesicles such as exosomes, microvesicles, apoptotic bodies,
and association to RNA-binding proteins, or lipoprotein complexes [13–18]. In addition,
tRNAs and tRNA-derived fragments are known to possess nucleotide modifications at
multiple sites, which bear important roles for the stabilization of tRNAs [19]. However,
since these molecules are affected by biological processes throughout the body, other con-
current biological events can have confounding effects. For example, DNA released from
apoptotic leukocytes is a major source of contaminants, especially when taking into account
post-chemotherapeutic-associated non-targeted cellular death.

The biomarker potential of ctRNA analytes has been explored in recent years and
several research groups have provided consolidating evidence of ctRNA implications in
oncogenic processes and of their use as biomarkers in HNC [20,21]. Evidence is accumulat-
ing rapidly in this emerging field. In this review, we will provide an overview of ctRNA
types and an update regarding research progress related to the biological and clinical
significance of non-coding ctRNA types as biomarkers for HNC diagnosis, risk assessment,
and monitoring.

2. CtRNA: Types, Biogenesis, and Roles

Some 60–70% of the transcriptome consists of non-coding RNA. After long being
ignored, non-coding RNA has since been shown to be involved in normal development
and disease [22,23]. Hombach and Kretz [24] suggested distinguishing small non-coding
RNAs (sncRNAs), with <200 nucleotides (nt) from long non-coding RNAs (lncRNAs),
with >200 nt; circular RNAs are included in the latter group (Figure 2). In the following
paragraphs, currently used non-coding RNA classes are described, with an emphasis on
those classes that are germane to the current review.



Cells 2021, 10, 48 4 of 13Cells 2021, 10, x 4 of 13 
 

 

 

Figure 2. Biogenesis and functions of non-coding RNAs found in the circulating system in HNC patients. (A) Pri-miRNAs are con-

verted into pre-miRNA by DROSHA, exported from the nucleus to the cytoplasm by XPO5, cleaved by DICER1, and assembled into 

the RISC complex, which allows translational repression or mRNA degradation. (B) lncRNAs engage in many cellular functions 

including miRNA sponging, protein scavenging, acting as a scaffold for proteins functioning together, chromatin remodeling sup-

port, and contributing active (or silencing) gene transcription and modulating mRNA functions. (C) ScnRNA, called YRNA, is tran-

scribed (chromosomal location 7q36) and bound by SSB and RO60 proteins. In the cytoplasm YRNA is broken into fragments. (D) 

tRNAs are transcribed in the nucleus via RNA polymerase III as large precursors with 5′-leader and 3′-trailer sequences. The 5′-leader 

sequence is cleaved out by RNase P and the 3′-trailer sequence is removed by ELAC1/2 (a.k.a. RNase Z) to yield mature tRNAs. tRNA 

halves are generated by anticodon-cleaving enzyme ANG. 

Figure 2. Biogenesis and functions of non-coding RNAs found in the circulating system in HNC patients. (A) Pri-miRNAs
are converted into pre-miRNA by DROSHA, exported from the nucleus to the cytoplasm by XPO5, cleaved by DICER1,
and assembled into the RISC complex, which allows translational repression or mRNA degradation. (B) lncRNAs engage
in many cellular functions including miRNA sponging, protein scavenging, acting as a scaffold for proteins functioning
together, chromatin remodeling support, and contributing active (or silencing) gene transcription and modulating mRNA
functions. (C) ScnRNA, called YRNA, is transcribed (chromosomal location 7q36) and bound by SSB and RO60 proteins.
In the cytoplasm YRNA is broken into fragments. (D) tRNAs are transcribed in the nucleus via RNA polymerase III
as large precursors with 5′-leader and 3′-trailer sequences. The 5′-leader sequence is cleaved out by RNase P and the
3′-trailer sequence is removed by ELAC1/2 (a.k.a. RNase Z) to yield mature tRNAs. tRNA halves are generated by
anticodon-cleaving enzyme ANG.
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2.1. miRNA

miRNAs are a highly conserved class of RNAs accounting for approximately 1%
of the total number of estimated RNA molecules in cells [25]. They occur in intergenic,
intronic, and exonic regions as hairpin-shaped precursors, and their expression involves
the transcriptional machinery of protein-coding genes, including the participation of RNA
polymerase II. Further processing into mature miRNAs is performed by the Drosha and
Dicer enzymes [26,27]. Mature miRNAs are 19~25 nt long and bind specific sites in 3′

untranslated regions of target mRNAs. This process can suppress translation or target
degradation [26–29]. Importantly, individual miRNAs can have either oncogenic or tumor-
suppressive functions. Although the majority of miRNAs are reported to be involved in
general oncogenic pathways (e.g., let-7, miR-21, miR-155), it was demonstrated that miRNA
profiles reflect the developmental lineage of tumors and are therefore able to accurately
distinguish between multiple tumor types [30,31].

2.2. tRNA and tRNA-Derived Fragments

In recent years, an increasing number of studies have found that the RNA polymerase
III-transcribed pre- or mature tRNAs are cleaved into tRNA-derived small RNAs (tsRNAs),
tRNA-derived fragments (transfer RNA-derived RNA fragments, tRFs), and tRNA halves
known as tRNA-derived stress-induced small RNAs (tiRNAs) [32]. Our understanding of
tRFs and tiRNAs is improving at a fast pace, and multiple research teams have shown that
they have various biological functions including acting as miRNAs to regulate translation,
gene expression, and cellular stress responses [33,34]. Decades ago scientists had already
pinpointed the excretion of tRNA fragments in urine of different cancer patients, varying in
level with stage of the disease [35]. Recently, tRNA-derived fragments have been shown to
be involved in human disease and, more specifically, in cancer cell proliferation, metastasis,
progression, and survival [36–38].

2.3. YRNA and YRNA-Derived Small RNAs

YRNAs and YRNA-derived small RNAs were discovered only recently. Human YRNA
genes are clustered on a single chromosomal locus at chromosome 7q36. Four YRNA tran-
scripts have been identified: YRNA1 (112 nt, 35.7 kDa), YRNA3 (101 nt, 32.2 kDa), YRNA4
(93 nt, 30.0 kDa), and YRNA5 (83 nt, 27.6 kDa) [27]. Although it would be expected based
on their stem-loop structure, YRNAs do not undergo miRNA-like biological processing.
Instead, they are transcribed in the nucleus by RNA polymerase III, and bound by SSB
protein for nuclear retention or bound to RO60 to facilitate nuclear export [39]. YRNA
degradation by caspase-3 in apoptotic cells generates YRNA-derived fragments, with one
type being 22~25 nt and the other being 27~36 nt [39]. Additionally, RNAse L produces
YRNA-derived small RNAs in response to ultraviolet light exposure [40]. Research into
YRNA and YRNA-derived small RNAs is emergent. Following their identification as an
essential factor for chromosomal DNA replication in human cell nuclei, it was shown that
YRNAs are overexpressed in solid tumors compared to normal tissue counterparts [41,42].
Interestingly, a tumor-type specific pattern of overexpression was reported [41,42]. Recent
studies have shown that the expression patterns of YNRA and YRNA-derived small RNAs
are altered in several diseases, including coronary artery disease, Sjogren syndrome, and
cancer [40,43].

2.4. lncRNA

lncRNAs are RNA transcripts that are longer than 200 nt, transcribed by RNA poly-
merase II, and lacking coding potential due to being devoid of evident open reading
frames [44]. Different initiatives have led to the identification, categorization, and an-
notation of tens of thousands of lncRNAs, which are listed in public databases such as
LNCipedia and lncRNAdb [45,46]. Current thinking implies that lncRNAs function by
forming complexes with protein and RNA molecules inside and outside of the nucleus.
lncRNAs are often poly-adenylated and, compared with coding genes, are usually less well
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conserved, more tissue-specific, and less abundant [24,47]. In addition, their expression has
been reported to be tissue- and disease-specific, exemplified by the neuroblastoma- and
melanoma-specific expression of lncNB1 and SAMMSON, respectively [48,49]. Despite on-
going research, the functions of the vast majority of lncRNAs are still unknown. However,
lncRNA function broadly falls into two categories: cis regulators of local chromatin struc-
ture and/or gene expression, and trans mediators of cellular functions distant from their
sites of transcription [50]. Recently, lncRNAs have been implicated as key regulators in
various biological processes, including the pathogenesis and progression of cancer [47,51].
lncRNAs can exert both tumor-suppressive and oncogenic effects and thus could be useful
as biomarkers or, potentially, as therapeutic targets.

3. Impact on Diagnosis
3.1. Role of miRNAs

Not unsurprisingly, the expression of miRNAs in blood has been a major focus of
investigation into the use of non-coding RNA expression in HNC diagnosis. Consider-
ing the role of EBV infection in the etiology of nasopharyngeal cancer (NPC), several
research teams investigated the presence of circulating EBV-related miRNAs in NPC pa-
tients (Figure 3). Interestingly, at least two independent teams showed that the miRNAs
BART7-3p and miR-BART13-3p can be useful in the diagnosis of early and late-stage NPC
with high sensitivity and specificity [52,53]. Detection of these miRNAs surpassed the
performance of EBV-DNA detection and immune-based assays in NPC diagnosis. Ad-
ditionally, preliminary evidence suggests that BART9-3p and BART2-5p may be useful
diagnostic markers in NPC. In a study with a cohort of high-risk patients conducted as part
of a screening program, expression of the miRNA BART2-5p enabled detection of NPC
prior to the development of clinical signs, suggesting that it may be used as a preclinical
marker, with an area under the received operating characteristic curve (AUC) of 0.858 and
95% confidence interval (CI) of 0.765–0.951. There are no serological tests for preclinical
markers of NPC to date [54].
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In addition to evaluating EBV-miRNA expression, Wen and colleagues [55] have
undertaken a broad microarray-based screening project using whole blood from cancer-free
controls and patients with different HNC subtype diagnoses. They distilled an 8-miRNA
signature that distinguishes patients with NPC from healthy controls (HCs) with a 97.14%
accuracy (sensitivity, 96.43%; specificity, 100%) and an AUC of 0.995 (p < 0.001). These
results were validated in an independent cohort with an accuracy of 86.67% (sensitivity,
86.11%; specificity, 88.89%). Similarly, a 16-miRNA signature differentiating NPC from
other HNCs was identified. This latter model provided 100% accuracy, sensitivity, and
specificity in a training cohort, and 94.44% sensitivity and 72.22% specificity in a validation
cohort. Other studies examining the utility of serum miRNA expression in NPC patients
have pointed to the diagnostic utility of expression analysis of miRNA combinations
involving miR-17, miR-20a, miR-29c, miR-223, miR-548q, miR-483-5p, miR-103, miR-29a,
and miR-31-5p [56–58]. The muddle of putative signatures suggested (see Table 1), however,
awaits thorough comparative evaluations to determine the most performant combination.

Table 1. Circulating miRNAs and miRNA signatures useful for NPC 1 diagnosis.

miRNA Method Biotype Compared Groups Reference

BART13-3p; BART9-3p Sequencing Serum NPC vs. HS 2 [52]
13 miRNAs Sequencing Plasma NPC vs. cancer-free [58]

8-miR Microarray Whole blood NPC vs. HS [55]
16-miR Microarray Whole blood NPC vs. HNC 3 + HS [55]

miR-17, miR-20a, miR-29c,
miR-223 Microarray Whole blood NPC vs. non-cancer donors [56]

miR-548q; miR-483-5p Microarray Plasma NPC vs. CN 4 controls [57]
BART7-3p; BART13-3p RT-qPCR 5 Plasma NPC vs. non-NPC (HS, CN, HNSCC 6) [53]

BART2-5p RT-qPCR Serum NPC vs. non-cancer [54]
1 NPC, nasopharyngeal cancer; 2 HS, healthy subject; 3 HNC, head and neck cancer; 4 CN, chronic nasopharyngitis; 5 RT-PCR, reverse
transcriptase quantitative polymerase chain reaction; 6 HNSCC, head and neck squamous cell carcinoma.

Lu and colleagues [59,60] undertook yet another approach to identifying oral cancer
diagnostic miRNAs. They identified miR-196a/b as being highly significantly differen-
tially expressed in oral cancer lesions compared to normal keratinocytes. Interestingly,
in a subsequent study, they showed that expression of both miR-196a and miR-196b can
discriminate among samples from healthy donors (n = 50), precancerous lesions (n = 16),
and oral cancer tumors (n = 90) with the following AUCs: miR-196a oral cancer vs. healthy
sample, AUC = 0.864; miR-196a precancerous vs. healthy sample, AUC = 0.760; miR-196b
oral cancer vs. healthy sample, AUC = 0.960; and miR-196b precancerous vs. healthy
sample, AUC = 0.840 [60]. Finally, in their recent meta-analysis review of seven original
research reports, Dioguardi and colleagues [61] found strong support for the oral cancer
diagnostic value of miR-21 expression in serum/plasma, with an aggregated odds ratio of
7.620 (95% CI, 3.613–16.070), aggregated sensitivity of 0.771 (95% CI, 0.680–0.842) (p < 0.001),
and an aggregate specificity of 0.663 (95% CI, 0.538–0.770) (p < 0.001).

We found only one study that included a thorough investigation of saliva-borne non-
coding RNAs in NPC diagnosis. Using a microarray containing probes for 2025 miRNAs,
Wu and colleagues [75] found that NPC saliva can be distinguished from HC saliva based
on the expression of 4 upregulated and 47 downregulated miRNAs. Furthermore, they
found that the expression of a set of 12 of these downregulated miRNAs provided excellent
discrimination of NPC patients from HCs (AUC = 0.999; 95% CI, 0.923–1.000) with 100.0%
sensitivity and 96.0% specificity [75]. Interestingly, several of the abnormally regulated
miRNAs were predicted to target endocytosis-related genes, and thus might play a role in
EBV cell entry [75].
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3.2. Role of lncRNAs

In sharp contrast to the massive volume of data published on circulating miRNA
expression for diagnosing HNCs, only a few researchers have tackled the expression of
circulating lncRNAs. In an elegantly designed study, He and colleagues [62] combined
expression of lncRNAs in cell lines, 101 NPCs, 20 patients with chronic nasopharyngitis
(CN), 20 EBV carriers (ECs), 101 HCs. They showed that NPC detection can be done
based on serum levels of MALAT1, AFAP1-AS1, AL359062, with AUCs of 0.918 for NPC
vs. HC, 0.893 for NPC vs. CN, and 0.877 for NPC vs. EC. Moreover, the expression
of these three lncRNAs discriminated even early-stage NPC patients (T1-2) from HCs
(AUC = 0.833), CN patients (AUC = 0.824), and EC patients (AUC = 0.800). These data
support the notion that lncRNAs may have important diagnostic potential. Furthermore,
knock-down of the lncRNA AL359062 in NPC cell lines resulted in reduced migration,
invasiveness, and proliferation, indicating that this lncRNA, and perhaps others, could
be therapeutic targets [62]. Pursuing an unbiased approach, Yao and colleagues [63]
screened plasma samples using sequencing and microarrays for lncRNAs whose expression
in plasma was associated with a diagnosis of head and neck squamous cell carcinoma
(HNSCC). Filtering, validation in larger sample sets, and cross-validation of expression
in tissue led to the identification of three lncRNAs that were predictive of a diagnosis
of HNSCC: HOXA11-AS, LINC00964, and metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1). The combined expression of these three lncRNAs into one risk
score allowed Yao and colleagues [63] to distinguish patients with HNSCC from HC donors
with AUCs of 0.925 and 0.839 in independent discovery and validation cohorts, respectively.
Finally, Shao et al. [64] showed that serum expression of lncRNA AC007271.3 combined
with serum SCC antigen presence could be used to distinguish oral SCC patients from
normal controls with an AUC of 0.902 (0.849–0.955), sensitivity of 82.5%, and specificity of
91.4%. Moreover, they found that AC007271.3 expression was associated with degree of
pathological differentiation (p = 0.022), clinical stage (p = 0.005), and lymphatic metastasis
(p = 0.011), but not with age, sex, or alcohol history [64].

3.3. Role of YRNAs and tRNAs and Derived Fragments

The involvement of YRNAs, tRNAs, and their derivatives in HNCs represent a largely
unexplored field of study. Recently, Dhahbi and colleagues [76] performed a small RNA
sequencing study of serum samples from patients with oral SCC, focusing on the expression
of tRNA halves and YRNAs. Interestingly, they found that the expression of 22 tRNA halves
and four YRNA fragments were decreased in the serum of oral SCC patients. However,
only one tRNA half and no YRNA fragments could be confirmed to be downregulated in
cancerous tissues [76]. In a previous deep sequencing study of serum/plasma sncRNAs,
Martinez and colleagues [65] found that, compared to samples from HCs, samples from
patients diagnosed with HNSCC had significantly increased circulating levels of 5′ tRNA
halves derived from iso-acceptors of tRNAAla, -Cys, and -Tyr, together with decreased
circulating levels of 5′ tRNA halves derived from tRNA-Arg, -Glu, -Gly, -Lys, -Trp, and -Val.
They identified 19 types of YRNA-derived small RNAs that were decreased in HNSCC
samples, including 11 that were derived from the 3′ end and 8 that were derived from the
5′ end of YRNA genes. Only two YRNA-derived sncRNAs were increased in abundance in
HNSCC samples, both of which were derived from the 5′ ends of YRNA genes [65].

4. Response Evaluation, Residual Disease, and Recurrence

Monitoring of therapeutic response and quantifying residual disease offer opportuni-
ties to enhance survival chances. For example, evaluation of minimal residual disease and
concurrent risk stratification has led to risk-adapted treatment protocols with increased ther-
apeutic success in patients with childhood acute lymphoblastic leukemia [77,78]. This ap-
plication has yet to be explored with non-coding RNAs in HNC liquid biopsies. However,
Fayda and colleagues [66] found that plasma levels of the lncRNA GAS5 were significantly
higher in samples from HNC patients with a partial therapeutic response or progressive dis-
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ease than in samples from patients who showed a clinical response to therapies. Following
up on the reporting of 33 miRNAs with differential expression in NPC samples relative to
control samples Xu et al. [67] documented fluctuating miRNA expression levels in plasma
from NPC patients at diagnosis and in 3-, 6-, and 12-month post-radiochemotherapy serum
samples. Importantly, they found that the dynamic changes of expression levels of four
miRNAs during follow-up were predictive of NPC recurrence [67]. Similarly, in a study
of oral SCC, Yan et al. [68] found that miR-486-5p, miR-375, and miR-92b-3p expression
levels changed postoperatively compared to pre-operatively, and that absence of these
changes was associated with oral SCC recurrence 9–12 months after surgery [68]. Similarly,
He et al. [62] found that persistence of high serum levels of MALAT1, AFAP1-AS1, and
AL359062 lncRNAs following treatment was associated with recurrence, residual NPC in
lymph nodes, or metastasis.

5. Impact on Prognosis

Studies examining the prognostic value of serum levels of tumor-associated anti-
gens [79], proinflammatory cytokines [80,81], hormones, and other molecules [82] have
yielded inconsistent results. Few studies have evaluated the potential of circulating non-
coding RNAs as prognostic biomarkers in HNC. In a recent meta-analysis of six high-quality
studies (>1000 patients; only reports including key statistics such as Hazard Ratio and
Confidence Intervals) examining the potential prognostic impact of blood-borne miRNAs,
Lamichhane et al. [69] found that poor survival of patients with HNC was associated
with expression levels of miR-200b-3p, miR-9, miR-483-5p, miR-22, miR-572, miR-638,
miR-1234, miR-103, miR-29a, miR-let-7c, miR-196a, [58,70–74]. Only two miRNAs (miR-9
and miR-483-5p) have been identified, by two studies each, as being dysregulated in blood
samples from HNC patients. Both of these miRNAs were described previously as being
deregulated in tissue specimens [83,84] (Table 2).

Table 2. Circulating miRNAs allowing prognostication of HNC 1.

miRNA Method Biotype Type Reference

miR-103 Sequencing plasma NPC 2 [58]
miR-29a Sequencing plasma NPC [58]

miR-let7c Sequencing plasma NPC [58]
miR-483-5p Sequencing plasma NPC [58,74]

miR-22; 572; 638; 1234 Microarray serum NPC [71]
miR-196a RT-qPCR 3 plasma OSCC 4 [70]

miR-9 RT-qPCR serum OSCC [72]
miR-200b-3p RT-qPCR plasma OSCC [73]

1 HNC, head and neck cancer; 2 NPC, nasopharyngeal cancer; 3 RT-qPCR, reverse transcriptase quantitative
polymerase chain reaction; 4 OSCC, oral squamous cell carcinoma.

Given the strong association of NPC with EBV infection, it is noteworthy that high
pretreatment expression of miR-BART7-3p was shown recently to be predictive of a higher
risk of distant metastasis, and thus a poor prognosis (Hazard ratio, 2.94; 95% CI, 1.44–5.98,
p = 0.003), in a multivariate analysis [53]. Similarly, posttreatment levels of miR-BART7-3p
have been found to be predictive of a poor prognosis [53].

6. Conclusions and Future Perspectives

Although ctDNA assessment has been incorporated in several clinical fields, includ-
ing prenatal testing and cancer diagnostics, ctRNA assessment has not been developed.
Progress has been limited by the number of signatures available in the literature, which for
technical reasons are not amenable to direct comparison based on sensitivity, specificity,
and accuracy data. The advancement of circulating ncRNA expression analysis to a point
of clinical utility will require uniform standards with respect to biological sample material
(e.g., serum, plasma), collection methods, downstream processing, and validation. Finally,
while some information has been collected regarded the role of circulating ncRNAs in
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(early) diagnosis, there remains a prominent dearth of information regarding follow-up,
including the identification of biomarkers of residual disease and treatment responsivity,
which will require systematic longitudinal sampling prior to treatment as well as sam-
pling immediately after treatment, and long-term posttreatment monitoring over multiple
time points.
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