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Abstract: The social relations model (SRM) is typically used to identify sources of variance in interpersonal dispositions in families.
Traditionally, it uses dyadic measurements that are obtained from a round-robin design, where each family member rates each other family
member. Those dyadic measurements are mostly considered to be continuous, but we, however, will discuss how the SRM can be adapted to
count dyadic measurements. Such SRM for count data can be formulated in the SEM-framework by viewing it as a confirmatory factor analysis
(CFA), but it can also be defined in the multilevel framework. These two frameworks result in equivalent models of which the parameters can
be estimated using maximum likelihood estimation or a Bayesian approach. We perform a simulation study to compare the performance of
those two estimators. As an illustration, we consider intergenerational co-activity data from a block design and contrast family dynamics
between non-divorced families and stepfamilies.
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Families consist of complex interpersonal relationships, that
are characterized by interdependence (Kelley, 1979). To
completely grasp these interpersonal processes, we must
understand the reciprocal nature and context of these
family relationships (Reis, Collins, & Berscheid, 2000).
This becomes possible in a holistic approach, in which
families are seen as dynamic systems and where the family
members form interdependent subsystems (Cox & Paley,
2003). A model that is able to capture the family as a
complex system in which family members mutually influ-
ence each other is the family social relations model (Cook,
1994; Kashy & Kenny, 1990). It models these complex
family dynamics at three different levels (i.e., individual,
dyadic, and family), while taking into account the different
family roles. It is a modified version of the traditional social
relations model (SRM; Kenny & La Voie, 1984) and
typically makes use of continuous dyadic measurements
that are obtained from a round-robin design. It has also
been used to analyze ratings from a block design as well
as ratings from specific family subsystems, for example,
cohesiveness in mother-child, father-child, and father-
mother dyads (Cook & Kenny, 2006).

The main challenge that we will tackle in this paper lies in
the nature of the dyadic measurements obtained from a

block or round robin design. Up until now, most SRM
research is limited to the decomposition of continuous
dyadic measurements. In the present study, we accommo-
date the family SRM to count outcomes as well. Typically,
the parameters of the family SRM are estimated using
modeling strategies that by default rely on the use of the
maximum likelihood (ML) framework, that is, structural
equation modeling (SEM) (Kenny, Kashy, & Cook, 2006;
Stas, Schönbrodt, & Loeys, 2015) and multilevel modeling
(Rasbash, Jenkins, O’Connor, Tackett, & Reiss, 2011;
Snijders & Kenny, 1999). The SRM parameters, however,
can also be estimated in a Bayesian framework (Gill &
Swartz, 2007). Currently the Bayesian estimator can only
be derived using the multilevel framework. Such Bayesian
approach has already been proposed for the SRM without
family roles, where the continuous outcomes are obtained
according to a round robin design (Lüdtke, Robitzsch,
Kenny, & Trautwein, 2012) and for categorical dyadic
measurements (Hoff, 2015), such as count measurements
(Koster & Leckie, 2014; Koster, Leckie, Miller, & Hames,
2015). Instead of focussing on the SRMwithout roles, wewill
explore the SRM with family roles and accommodate it to
count outcome variables. Although previous research indi-
cated that the Bayesian approach seems promising in the
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estimation of the SRM without roles, it also showed that for
continuous outcomes the Bayesian approach can result in
biased estimators of the variances for small cluster sizes in
combination with small sample sizes (Lüdtke et al., 2012).
Since the family SRM always entails a small group size,
one may wonder whether the performance of the Bayesian
approach is problematic, especially when considering count
data? And if so, is the ML-estimator a more adequate alter-
native? To answer these questions, we perform a simulation
study where the performance of the Bayesian approach is
compared to the performance of the ML-estimator.

As an illustrating example throughout this paper, we
consider data on intergenerational co-activity within fami-
lies. We use co-activity data from non-divorced families
and stepfamilies that participated in the NEAD study
(Nonshared Environment in Adolescent Development;
Neiderhiser, Reiss, & Hetherington, 2007). In this study
each parent was asked separately to each of the two chil-
dren about certain types of activities, such as going for a
walk with the child in the past month. The same question
was asked of each of the two children, regarding activities
with each parent. A measure of intergenerational co-activity
is obtained by counting the number of different activities
that a family member reported with another family mem-
ber. As such, the outcome reflects the perception of the
rater on the number of shared activities within the past
month. Using the SRM, we can then identify the levels
(family, individual, and dyadic) that explain most variability
in perceived co-activity between families, and investigate
whether the family dynamics of perceived co-activity are
different between non-divorced families and stepfamilies.

This article is organized as follows. We start with an
introduction to the SRM in a block design. We first show
how the SRM can be modeled as a confirmatory factor
analysis (CFA) in the SEM-framework or by formulating it
in the multilevel framework. Next, we show how the
parameter estimates can be obtained by using ML or a
Bayesian approach. Then a detailed description of the
NEAD study is given. Subsequently, we use the co-activity

data as an inspiration source for our simulation study where
the ML-estimators are compared to the Bayesian estimators
of the SRM-effects. Accordingly, the approaches are illus-
trated using the co-activity data. The analyses described
throughout the article can easily be replicated by the reader
using the code found in Electronic Supplementary Material
(ESM 1). We end with a discussion of our findings.

The Blocked Family Social Relations
Model

The SRM traditionally analyzes data gathered according to a
round robin design. Such design typically involves three or
four family members (Kenny et al., 2006). When members
of a four-person family are asked to rate each other’s
behavior 12 dyadic measurements or scores are obtained
(Figure 1A). The SRM decomposes thesemeasurements into
a family effect, a perceiver and target effect (both at the indi-
vidual level), and a relation-specific effect (at the dyadic
level). The family effect reflects the average dyadic
measurement. The perceiver effect reflects how a family
member tends to perceive the others; this effect is some-
times referred to as the actor effect as well. The target or
partner effect reflects how a particular family member is
generally seen by the other members. Lastly, the relation-
ship effect captures how a perceiver uniquely sees the target,
while controlling for family, perceiver, and target effects.

However, sometimes family researchers are interested in
family dynamics that are based on only a particular subset
of relationships, for example, parent-adolescent interac-
tions. To increase the efficiency of data collection, the
dyadic measurements can then be obtained from a block
design. In a block design, subjects are divided into
subgroups and members of each subgroup rate all the
members of the other subgroup (Kenny et al., 2006). The
most natural subgroups in a family setting are the different
generations, with parents rating their children and vice

Mother Father

Child1 Child2

(A) 

Mother Father

Child1 Child2

(B)

Figure 1. Designs applied in the SRM. (A) Round robin design; (B) Block design.
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versa (Figure 1B). When members of a four-person family
are asked to rate each other’s behavior according to such
a block design eight intergenerational dyadic measure-
ments are obtained. If the SRM is applied to analyze data
from such a design, it also allows to make a distinction
between the roles of the different members within the
subgroups (Kenny et al., 2006). Meaning that it allows,
for example, for a distinction between the dyadic measure-
ments of the father and the mother.

Typically, estimation of the parameters of the family SRM
relies on structural equation modeling (SEM) by approach-
ing the SRM-analysis as a CFA (Kenny et al., 2006; Stas
et al., 2015). Alternatively, the SRM may be fitted as a mul-
tilevel model (Rasbash et al., 2011; Snijders & Kenny, 1999).
In the following, we will show how the SRM for dyadic mea-
surements from a block design can be modeled as a CFA in
the SEM-framework or by formulating it in the multilevel
framework. Note that the dyadic measurements from a
round robin design are modeled in a similar fashion.

SEM-Framework

The SRM decomposes the (intergenerational) dyadic mea-
surements (Xij) into four different latent effects: a
family effect, a perceiver effect, a target effect, and a
relation-specific effect. In a four-person family the indices
i and j represent the father (F), mother (M), child 1 (C1)
or child 2 (C2). In our illustration XMC1, for example, is

the number of different activities that the mother reported
with child 1. Self-ratings (i.e., i = j) and intragenerational
ratings are not considered here.

Figure 2 illustrates this decomposition within the SEM-
framework, where the SRM effects are specified as latent
variables. The arrows point from the latent variables toward
the dyadic measurements, illustrating how the latter are
influenced by the former. The dyadic measurement XMC1,
for example, is a formation of the family effect, the mother’s
perceiver effect, the target effect of child 1 and the mother–
child 1 relationship effect. In the CFA-model, this dyadic
measurement is thus allowed to load on the family effect,
the perceiver effect of the mother, the target effect of child
1 and themother–child 1 relationship-effect. Typically, factor
loadings between the dyadic measurements and the latent
variables are all fixed to one in the SRM analysis.

Note, that with only one indicator per dyadic measure-
ment the relationship effect cannot be disentangled from
the measurement error. To disentangle the relationship
effect from the measurement error at least two indicators
of each dyadic relation are needed (Back & Kenny,
2010). However, the use of two indicators is sometimes
avoided in SRM-applications with small samples, because
it can lead to unstable estimates of the components
(Stas et al., 2015). In this article, we will consider only
one observation per dyadic measurement. This implies that
the relationship effects will be systematically overestimated
and thus cannot be interpreted unambiguously.

Figure 2. CFA-model for the block social
relations model.
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In general, SRM components are assumed to be indepen-
dent, but some are related to each other through patterns of
reciprocity (Kenny et al., 2006). Generalized reciprocity
reflects the correlation between a person’s perceiver and
target effect (e.g., capturing whether the number of activi-
ties perceived by the mother is associated with the number
of activities that the children perceived in relation to the
mother). Dyadic reciprocity reflects the correlation between
the relationship effects that represent two sides of a certain
relationship (e.g., capturing whether the number of M–C1
relation-specific activities is associated with the number of
C1–M relation-specific activities). These two types of
reciprocity are indicated in Figure 2 by two-headed arrows.
For data such as perceived co-activity measures, reciprocity
correlations are more accurately conceptualized as agree-
ment in the perspectives of the respondents. We will,
however, use the term reciprocity to be consistent with
the SRM literature.

Finally, we discuss the mean-structure of the SRM. In the
SRM for dyadic measurements from a block design, we
have a total of 17 SRM means (one family mean, four
perceiver means, four target means, and eight relationship
means) while only eight means are observed. Therefore to
identify the model, restrictions are needed. The family
mean can be defined as the average over the eight dyadic
measurements. Furthermore mean perceiver effects and
mean target effects are assumed to sum to zero. By design,
the sum of the parents’ mean perceiver effects equals the
sum of the children’s mean target effects. Restrictions are
further applied on the relationship effects such that the
mean SRM relationship effects sum to zero for a given
perceiver or a given target. With those restrictions, the
means of the SRM-effects are just identified.

Multilevel Framework

Alternatively, the SRM can be fitted in the multilevel frame-
work (Rasbash et al., 2011; Snijders & Kenny, 1999). Note
that the SRM in the multilevel framework is equivalent to
the SRM in the SEM framework (Rovine & Molenaar,
2000). Here, the dyadic measurement (Xij) is modeled as
a combination of the random SRM effects:

Xij ¼ lij þ bFam þ bPeri þ bTarj þ �ij; ð1Þ

where μij denotes the expected number of perceived
co-activities by role i with role j, bFam denotes the family
effect, bPeri denotes the perceiver effect of role i, bTarj
denotes the target effect of role j, and �ij denotes the
measurement error. Note that no relationship effects are
explicitly incorporated in the model, since those can only
be separated from error measurement when there are
multiple dyadic measurements available.

In the multilevel perspective, the SRM effects are
random effects that are assumed to be (bivariate) normally
distributed:

bFam � N 0;r2
Fam

� �
; ð2Þ

bPeri
bTari

� �
� N

0

0

� �
;

r2
Peri

qirPerirTari

qirPerirTari r2
Tari

" # !
;

ð3Þ
where r2

Fam measures the family variance, r2
Peri

measures
the perceiver variance of role i, r2

Tari
measures the target

variance of role i, and qirPerirTari measures the general-
ized reciprocity for role i. This formulation clearly shows
that we have role-specific distributions for the perceiver
and target effects.

Under the scenario of dyadic measurements at the inter-
val level, the residuals are assumed to be bivariate normally
distributed:

�ij
�ji

� �
� N

0

0

� �
;

r2
�ij

qijr�ijr�ji

qijr�ijreji r2
�ji

" # !
; ð4Þ

where r2
eij

measures the relationship variance between
perceiver i and target j, and qijreijreji measures the dyadic
reciprocity.

Under the scenario of count dyadic measurements, a
Poisson distribution for Xij given the random SRM effects
can be assumed, with mean μij. Ideally a bivariate Poisson
distribution should be assumed for Xij and Xji, but practical
implementation is lacking in most software. Hence, we will
leave the dyadic reciprocity unspecified. Note that for ease
of exposition we focus on the Poisson distribution, but one
should be aware of its strong assumptions (Loeys,
Moerkerke, De Smet, & Buysse, 2012). It assumes the mean
and the variance to be equal and does not allow for frequent
zero-valued observations (i.e., zero-inflation). Negative
binomial distributions or zero-inflated count models could
be used as alternatives to overcome these issues.

As mentioned before, SRM-researchers are mainly inter-
ested in the relative importance of the SRM effects as
sources of variation in the dyadic measurements. To this
end, they calculate the variance partition coefficient
(VPC) of each SRM effect for each dyadic measurement.
The VPCs for normally distributed dyadic measurements
can easily be obtained by dividing each estimated variance
by the total of the four estimated variances. For example,
the amount of variability in XMC1 attributed to the variance
in the perceiver effect of the mother, is than given by

VPCPerM ¼ r2
PerM

r2
Fam þ r2

PerM þ r2
TarC1 þ r2

�MC1

: ð5Þ
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The VPCs of count dyadic measurements are more com-
plex. Austin, Stryhn, Leckie, and Merlo (2018) recently
proposed a VPC for count outcomes. Using their expres-
sion, the variability in XMC1 attributed to either the family
effect, the perceiver effect of the mother or the target effect
of child 1 is than given by equation (6) at the bottom of the
page.

Using a first order Taylor expansion for expðr2
Famþ

r2
PerM þ r2

TarC1
Þ, this expression to the following equation (7)

below.
This allows us to obtain a first order approximation of the

variance that can be attributed to the perceiver effect of the
mother alone, as decribed in equation (8) at the bottom of
the page.

Similar as in the SEM-framework, the eight means μij
can be specified in terms of a family mean (βFam), three
perceiver means (bPeri ), three target means (bTari ) and a
relation-specific mean (bRelij ).

Estimators for High Dimensional Random
Effects

The parameters of the SRM model for dyadic scores at the
interval level can easily be estimated using ML estimation.
ML estimation is used by default by popular SEM packages,
such as Mplus (Muthén & Muthén, 2012) or lavaan
(Rosseel, 2012), and by multilevel packages, such as lme4
(Bates, Mäechler, Bolker, & Walker, 2015) or nlme in R
(Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2018).
Despite the equivalence between the SEM and multilevel
framework, SEM software is currently a better choice for
estimating the SRM model; because multilevel software
does not easily allow to define constraints on the mean-
structure. Although the ML-estimator is used by default
by many researchers, it does have some general limitations:

(1) in a small sample size there is no guarantee that the
point estimates are unbiased (Lee & Song, 2004) and (2)
improper estimates (i.e., Heywood cases) might be obtained
for a complex SEM-model such as the SRM (Nevitt &
Hancock, 2004). The ML-estimator, moreover, has an
additional limitation in the non-normal case: the computa-
tion time increases exponentially with increasing number of
latent effects, because integrating out the latent effects
becomes analytically intractable when dealing with non-
normal outcomes. In that case, the likelihood function is
tackled by either approximating the integrand or the inte-
gral itself (Tuerlinckx, Rijmen, Verbeke, & De Boeck,
2006). When considering a Poisson distribution the inte-
gration becomes analytically intractable, and one may have
to rely on Monte Carlo integration to evaluate the integrand
(Tuerlinckx et al., 2006). This method is particularly useful
for higher-dimensional integrals and is easily available in
the SEM software Mplus.

Alternatively, the parameters of the SRM model can be
estimated using a Bayesian approach. Such Bayesian
approach has the potential to overcome some of the short-
comings of the ML-estimator. First, sampling-based
Bayesian approaches allow one to make reliable inferences
about variance components even in small sample sizes.
Second, improper estimates may occur less in the Bayesian
approach, if the parameter space of the model is correctly
specified. Lastly, with an increasing number of latent
variables, the Bayesian approach is computationally faster
than the ML-estimator. Especially, Gibbs sampling is well
suited for the estimation of such high dimensional model
(Lüdtke et al., 2012). SEM-packages such as blavaan (Merkle
&Rosseel, 2018) andMplus have a Bayesian estimator using
Gibbs sampling available. However, both blavaan and the
Bayesian Mplus can currently not deal with count variables.
By defining the SRM as a multilevel model, Bayesian soft-
ware such as JAGS (Plummer, 2009) can easily perform

VPCMC1 ¼

exp 2lij þ 2 r2
Fam þ r2

PerM þ r2
TarC1

� 	� 	
� exp 2lij þ r2

Fam þ r2
PerM þ r2

TarC1

� 	� 	
exp 2lij þ 2 r2

Fam þ r2
PerM þ r2

TarC1

� �� 	
� exp 2lij þ r2

Fam þ r2
PerM þ r2

TarC1

� �� 	
þ exp lij þ 1

2 r2
Fam þ r2

PerM þ r2
TarC1

� �� 	 :
ð6Þ

VPCMC1 ¼
exp 2lij

� 	
r2

Fam þ r2
PerM þ r2

TarC1

� 	
exp 2lij

� 	
r2

Fam þ r2
PerM þ r2

TarC1

� �þ exp lij

� 	
1þ 1

2 r2
Fam þ r2

PerM þ r2
TarC1

� �� � : ð7Þ

VPCPerM ¼
exp 2lij

� 	
r2

PerM

� 	
exp 2lij

� 	
r2

Fam þ r2
PerM þ r2

TarC1

� �þ exp lij

� 	
1þ 1

2 r2
Fam þ r2

PerM þ r2
TarC1

� �� � : ð8Þ
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Gibbs sampling. Note that blavaan also makes use of JAGS
to perform Gibbs sampling. However, the interface of
blavaan allows the user to define the model as a SEM, while
the way the model is defined within JAGS itself leans more
naturally towards the multilevel framework. As mentioned
before both modeling strategies should result in identical
models, the only difference lies in the way the model is
being explicitly defined. For a detailed description on the
Bayesian sampling process for the SRM (without roles) in
the multilevel framework, we refer to Lüdtke et al. (2012).

In JAGS the user only needs to specify the model, which
includes the decision of the likelihood and prior distribu-
tions. In the case of the SRM, the eight likelihood distribu-
tions of the dyadic outcomes are specified in accordance
with their model-implied distribution. These distributions
all have means that embody the expected value of the
dyadic measurement as a combination of the SRM effects.
To obtain a Bayesian solution, data augmentation takes
place in Gibbs sampling by treating the individual random
effects (i.e., the SRM effects) as hypothetical observed vari-
ables that are normally distributed and also have likelihood
distributions with a certain mean and (co)variance. Their
posterior means and (co)variances are the parameters of
interest. Usually, non-informative prior distributions are
specified for these parameters. For the priors of the means
it is important to take into account the restrictions that are
needed on the SRM mean-structure. Typically, in Gibbs
sampling a conjugate prior, such as the Wishart prior, is
used for the precision matrices. However, some caution is
needed, since the Wishart prior is in fact not completely a
non-informative prior. Specifically, a Wishart prior with a
scale matrix that resembles the true underlying (co)vari-
ance matrix will result in less biased variance estimates
(Kass & Natarajan, 2006). In practice the underlying
(co)variance matrix is not known and we will need to
conduct a sensitivity analysis on the specification of the
prior to evaluate the effect of different scale matrices on
the (co)variance estimates (Schuurman, Grasman, &
Hamaker, 2016).

NEAD Study

Sample

The data were collected as part of the NEAD study in the
United States. The original sample size consists of 720
four-member families (i.e., mother, father, an older sibling,
and a younger sibling, further abbreviated as “M,” “F,”
“C1,” and “C2,” respectively), who were recruited through
random digit dialing and market panels (Neiderhiser et al.,
2007). The dataset included five sibling types that are
residing in two types of families (i.e., non-divorced families

and stepfamilies): monozygotic twins, dizygotic twins, and
non-twin full siblings in non-divorced families and non-twin
full, half and genetically unrelated siblings in stepfamilies.
Since non-twin full siblings is the only sibling type that is
present in both types of families, we will consider in the
current study only the 276 families that consist of non-twin
full siblings (Hetherington et al., 1999). There were 94 non-
divorced families and 182 stepfamilies. In the stepfamilies
the biological parent was always the mother. By design
the siblings are of the same sex and there were 133 brother-
and 143 sister-pairs. The children were between 10 and 18
years with siblings 4 years or less apart in age. The younger
siblings were, on average, 13 years (SD = 1.96) and the older
siblings were, on average, 15 years (SD = 1.94).

Measure

Measures of perceived intergenerational co-activity were
obtained using the expression of affection questionnaire
(EAF; Hetherington & Clingempeel, 1992). This question-
naire is often used to obtain an indication for affective
family processes, such as warmth and support (Neiderhiser
et al., 2007). The EAF is applied according to a block design,
meaning that members of each generation rate the co-
activity with members of the other generation. Since there
are only four-person families included in the current study,
this resulted in eight dyadic ratings of co-activity per item
per family. Among other, the EAF questionnaire contains
10 items on specific activities that occur between parents
and children (e.g., “Have you played a musical instrument,
sang together or listened tomusic together in the pastmonth
with your mother/father?”). The family members were
asked to indicate whether this activity had occurred at all
during the last month (0 = no, 1 = yes). The sum of those
10 items reflects the diversity of co-activity over the past
month with other family members as perceived by the rater.

Simulation Study

Technical Details

In the simulation study, we evaluate which estimator per-
forms best in estimating the SRMmeans and (co-)variances
for count data. We compare the performance of the
ML-estimator with the performance of Bayesian estimator.
Our simulation study is designed to generate Poisson dis-
tributed count data that resemble the co-activity data from
the case study. The true population parameters approxi-
mately mimic the NEAD-data. In the data-generating
model the variance of the family effect on the log scale
r2

Fam is set to 0.05, the variances of all the perceiver effects
on the log scale r2

Peri
are set to 0.5 and the variances of all
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the target variances on the log scale r2
Tari

are set to 0.05.
Further, the log of the mean of the family effect βFam is
set to 1 and the log of the means of the perceiver and target
effects, that is, bPeri and bTari , are all set to 0.1 or �0.1 so
that the above-mentioned restrictions are satisfied.
Additionally the means of the relationship effects bRelij are
all set to 0.010, �0.010, 0.015 or �0.015 so that above-
mentioned restrictions on the means of the relationship
effects are also satisfied.

Four different sample sizes are considered, N = 50, N =
150, N = 300, and N = 500. In the Bayesian approach we
specified non-informative priors on the means (i.e., family
mean, the role-specific perceiver and target means, and
the relationship means) that each followed a normal distri-
bution with a mean of zero and a precision of 0.0001. For
the precision matrices, we defined the following priors

sFE � Γ 0:01;0:01ð Þ; ð9Þ

Σ�1
PerTari

� W 2;xIð Þ; ð10Þ

with the prior for the precision of the family effect
gamma-distributed with a scale and shape parameter of
0.01 and the prior for the precision matrix of the per-
ceiver and target effects for each role Wishart distributed.
The two parameters of the Wishart prior are the degrees
of freedom (= 2) and the scale matrix (= ωI). To allow for
a sensitivity analysis on the scale matrix of the Wishart
prior, we varied ω between 0.2, 1, and 5. By considering
those three different scale matrices, we can assess the
impact on the (un)biasedness of the variance components
of the SRM. We consider large perceiver variances and
small target variances, because the influential character
of the Wishart prior is especially apparent when the true
variances are close to zero (Schuurman et al., 2016). We
generate 1,000 simulated datasets for each condition.
For the ML-estimator these data sets are analyzed using
Mplus and for the Bayesian approach they are analyzed
in R (R Development Core Team, 2017) using rjags
(Plummer, 2016). In the former, the estimates are
obtained using Monte-Carlo integration with 5,000 inte-
gration points. In the Bayesian approach Gibbs sampling
is used with an adaptation period of 1,000 iterations, 3
chains of 10,000 iterations and a thinning factor of 15.
Lastly, for the Bayesian approach the mean of the
posterior distribution is used as an estimator of the SRM
means and variances.

The performances of the two frameworks are compared
in terms of bias, coverage and precision. First, the bias is
assessed by taking the difference between the median of
the estimated parameter across simulations and the
underlying true value using a boxplot. Note that we use
the median instead of the mean to minimize the impact
of outliers. The empirical coverage is calculated as the

proportion of times the true value lies in the 95% confi-
dence interval of the estimated parameter. Further, the pre-
cision is calculated using the median absolute deviation
(MAD) from the true value, which is a more robust measure
than the mean squared error (MSE). Note that in the body
of text we do not provide tables with results for every single
SRM-effect, but rather opt to present only the results for the
family effect, one perceiver and one target effect. This,
because the underlying values for all the perceiver and
target effects are quasi the same.

Results

Bias
Figures 3 and 4 present the absolute bias for the means and
the variances for the family effect and the perceiver and
target effect of the mother. Both the ML-estimator and
the Bayesian estimator retrieve the SRM parameters of
the mean-structure under all the conditions well, except
for the Bayesian estimator with ω = 5 of the family mean.
All the methods perform relatively well in the estimation
of the variances of the family and perceiver effect.
However, the Bayesian estimators tend to result in biased
estimates for small target variances, especially when ω =
1 or ω = 5. This observation is not very surprising, since
the influential character of the scale matrix of the Wishart
is more apparent when the true variances are close to
zero (Schuurman et al., 2016). These results clearly show
that the Wishart can be a very influential and informative
prior. However, since the bias disappears, albeit gradually,
when ω = 0.2 with increasing sample size, we conject that
the Wishart prior does result in asymptotically unbiased
estimates for the variances. No evidence for bias is found
for the ML-estimates of the variances under all sample
sizes.

Note that other priors could have been used, that could
potentially lead to more accurate estimates of the variance
components. First, there are some non-informative priors
that are based on the Wishart distribution: the scaled
inverse (Gelman & Hill, 2007; O’Malley & Zaslavsky,
2005) and the hierarchical inverse Wishart (Huang &
Wand, 2013). In our setting, however, those did not result
in stable convergent chains. Second, one could make use
of separate non-informative priors for the variances and
covariances by applying the separation method of Barnard,
McCulloch, and Meng (2000). The separation technique is,
however, not ideal when performing Gibbs sampling due to
its assumption of conditional conjugacy (Alvarez, Niemi, &
Simpson, 2014). Given these computational restrictions, the
Wishart prior is in our opinion the best option available in
this Bayesian sampling scenario.

Also ML-estimation is not without its downsides, since
Mplus failed to converge in 6.6–16.4% of the datasets. More
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Figure 3. Simulation results for bias on the means of the SRM effects, where ω = 1, 0.2, and 5 each refer to the different Bayesian approaches and
ML refers to ML estimation (Black line = true value). (A) Family effect; (B) Perceiver effect of the mother; (C) Target effect of the mother.
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Figure 4. Simulation results for bias on the variances of the SRM effects, where ω = 1, 0.2, and 5 each refer to the different Bayesian approaches
and ML refers to ML estimation (Black line = true value). (A) Family effect; (B) Perceiver effect of the mother; (C) Target effect of the mother.
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convergency issues are encountered in smaller samples.
These issues could be circumvented by increasing the
number of integration points, however, that increases the
computation time heavily.

Coverage
An overview of the coverage rates can be found in Table 1.
None of the conditions displays a good coverage probability
in small samples. With increasing sample size all the condi-
tions tend to approach the aspired probability coverage rates
for the means, except for the Bayesian approach withω = 5.
Only the Bayesian approach with ω = 0.2 reaches the
desired coverage probability rates for the variance parame-
ters with increasing sample size, except for the coverage
probability of the small target variance. The other conditions
all show over- or under-coverage for each of the variance
parameters.

Precision
TheMAD is shown in Table 2. All the conditions have about
the same precision for parameters of the mean-structure. As
expected this precision improves as the sample size
increases. For the variance parameters, the Bayesian
approach withω = 0.2 results in the most precise estimates.
However, this discrepancy in precision for the variance
parameters with the ML-estimator becomes smaller in
larger samples.

Conclusion
We conclude that the ML-estimator tends to result in less
biased estimators of the SRM parameters, while the Baye-
sian approach tends to result in more precise estimators.
However, the performance of both the ML-estimator and
the Bayesian estimator with ω = 0.2 is very comparable
for large samples. The latter may thus be an acceptable
alternative if the ML-approach fails to converge.

Case Study

Results

Overall Analysis
It is well-known that parent-adolescent interactions and the
affective climate of the family have an impact on the
adolescent’s social development and personal functioning
(Ge & Conger, 1999; Kim, Conger, Lorenz, & Elder,
2001; Paley, Conger, & Harold, 2000). Not surprisingly,
various studies have shown that family co-activity, which
can be seen as an interaction with a positive affect, has such
an effect (e.g., Hodge et al., 2017; Zabriskie & McCormick,
2001). But what are the sources of the variability in co-
activity between families? The SRM can be used to formu-
late an answer on this question.

Using the NEAD co-activity data, we fitted an SRM in the
statistical software Mplus using ML estimation. First we
made the assumption that the dyadic measurements are
normally distributed. To assess this assumption, we can
contrast the model-based predictions with the observed
dyadic measurements (Kruschke, 2014). Not all the predic-
tive distributions mimic the observed count distributions
well (Figure 5).

Instead of a normal distribution, we next assume a
Poisson distribution. Then the ML-estimates are obtained
by making use of Monte-Carlo integration with 5,000 inte-
gration points. Again, a predictive check can be performed.
Figure 5 reveals that this model fits much better. Estimates
of the SRM parameters of the model assuming a Poisson
distribution can be found in Table 3, as well as their
95% credibility intervals (CI). Alternatively, the estimates
of the parameters can be obtained by using Bayesian
sampling methods. For this, we made use of the R-package

Table 1. Simulation results for the coverage rate of the ML-estimator
and Bayesian estimator for SRM-effects in blocked design

Condition N = 50 N = 150 N = 300 N = 500

Family effect mean

ω = 0.2 0.965 0.956 0.951 0.938

ω = 1 0.937 0.936 0.930 0.934

ω = 5 0.844 0.829 0.821 0.838

ML 0.933 0.945 0.950 0.912

Perceiver effect mean

ω = 0.2 0.944 0.950 0.949 0.951

ω = 1 0.950 0.950 0.950 0.953

ω = 5 0.967 0.953 0.954 0.953

ML 0.954 0.951 0.948 0.943

Target effect mean

ω = 0.2 0.978 0.957 0.960 0.948

ω = 1 0.988 0.972 0.972 0.952

ω = 5 0.996 0.990 0.983 0.964

ML 0.941 0.951 0.937 0.959

Family effect variance

ω = 0.2 0.991 0.966 0.941 0.932

ω = 1 0.998 0.959 0.919 0.898

ω = 5 0.999 0.736 0.594 0.598

ML 0.612 0.621 0.667 0.677

Perceiver effect variance

ω = 0.2 0.903 0.934 0.952 0.954

ω = 1 0.957 0.946 0.951 0.956

ω = 5 0.995 0.990 0.973 0.970

ML 0.870 0.917 0.908 0.875

Target effect variance

ω = 0.2 1.000 1.000 0.992 0.986

ω = 1 0.920 0.623 0.704 0.803

ω = 5 0.000 0.000 0.000 0.000

ML 0.731 0.849 0.894 0.901

Note. ML = maximum likelihood; SRM = social relations model.
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rjags (Plummer, 2016). The same non-informative priors as
in the simulation study are specified for the means and the
precision matrices of all the effects. Again, the scale matrix
of theWishart,ω, was allowed to vary between 0.2, 1, and 5.
We opted for 3MCMC (Markov ChainMonte Carlo) chains,
1,000 adaptation iterations, an extra 10,000 iterations, and
the thinning factor was set at 15. The chains of the three
models mixed very well and converged clearly to a stable
point (based on traceplots, Gelman-Rubin plots, and auto-
correlation plots; results not shown).

The expected a posterior (EAP) or the mean of the
posterior distribution of the SRM parameters for the three
values of ω can be found in Table 3. However, given the
results of the simulation study we will limit our discussion
to the Bayesian estimates where ω = 0.2. Note that the
exponent of the SRM means is presented, this to facilitate
the interpretation. In all the families, 2.852 activities are

on average perceived to have occurred in the past month.
Additionally, the mothers report on average the most
activities within the families: relative to other family mem-
bers they perceive on average 1.447 times more different
activities with other family members (i.e., their children).

Next, we can interpret the SRM variances by determining
the VPC. The relative variance decomposition of the two
models is shown in Figure 6. Based on the relative variance
decomposition in Figure 6B, we find that the perceiver
effects explain more variance of the co-activity behavior
than the target effects. These results are in line with previ-
ous family research on affectivity (Eichelsheim, Dekovic,
Buist, & Cook, 2009). Typically, the family effect is found
to be a small source of variance. However, here we notice
that it explains a great part of the dyadic measurements
when the mother is perceiver. This can be explained by
the fact that both the perceiver and target effect of the
mother have a small variance. Thus, the amount of
perceiver and target variance of the mother does not vary
a lot across families. This stable and high perception of
activities concurs with how the society typically bestows
the mother with the role of keeping the family together
(Weaver & Coleman, 2010).

Group Analysis
It is known that engaging in leisure activities can foster
the cohesiveness in families and is therefore of impor-
tance to stepfamilies (Pylyser, Buysse, & Loeys, 2017). We
can therefore wonder whether the family dynamics of
co-activity are different between non-divorced families
and stepfamilies. An SRM analysis that compares the
sources of variability in co-activity between non-divorced
families and stepfamilies might give some insight into
which main drivers foster family cohesiveness in stepfami-
lies compared to those in non-divorced families. Estimates
of the SRM parameters in both groups of the ML and
Bayesian approach can be found in Table 4.

When comparing the relative variance decomposition of
both groups, the differences between the two groups
become most visible (Figure 7). The variance of the
perceiver effects tends to explain more of the variance in
co-activity across stepfamilies, while the family effect tends
to explain more of the variance in the non-divorced
families. The target effects in both types of family do not
account for a lot of variance in the dyadic measurements
of co-activity. An exception is the target effect of the step-
father, which explains more of the variance in the stepfam-
ilies. The latter effect is very crucial to stepfamilies, since it
embodies the children’s perception of co-activity with their
stepfather. Specifically, children tend to deduce feelings of
mattering from such shared child-stepparent activities,
which are essential to the family functioning (Ganong,
Coleman, Fine, & Martin, 1999; Pylyser et al., 2017).

Table 2. Simulation results for the MAD of the ML-estimator and
Bayesian estimator for SRM-effects in blocked design

Condition N = 50 N = 150 N = 300 N = 500

Family effect mean

ω = 0.2 0.049 0.028 0.020 0.015

ω = 1 0.054 0.030 0.020 0.016

ω = 5 0.094 0.046 0.031 0.024

ML 0.048 0.029 0.020 0.018

Perceiver effect mean

ω = 0.2 0.062 0.036 0.026 0.019

ω = 1 0.062 0.036 0.026 0.018

ω = 5 0.066 0.037 0.025 0.018

ML 0.060 0.035 0.025 0.019

Target effect mean

ω = 0.2 0.038 0.021 0.016 0.013

ω = 1 0.037 0.021 0.016 0.013

ω = 5 0.040 0.023 0.017 0.013

ML 0.039 0.024 0.016 0.013

Family effect variance

ω = 0.2 0.021 0.016 0.015 0.013

ω = 1 0.014 0.016 0.016 0.014

ω = 5 0.017 0.026 0.026 0.024

ML 0.045 0.039 0.034 0.028

Perceiver effect variance

ω = 0.2 0.116 0.064 0.043 0.034

ω = 1 0.101 0.063 0.043 0.034

ω = 5 0.169 0.065 0.040 0.034

ML 0.107 0.070 0.052 0.043

Target effect variance

ω = 0.2 0.038 0.013 0.010 0.009

ω = 1 0.126 0.062 0.039 0.038

ω = 5 0.348 0.173 0.114 0.037

ML 0.040 0.029 0.020 0.017

Note. MAD = median absolute deviation; ML = maximum likelihood; SRM =
social relations model.
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Figure 5. Observed data (bars) versus predictive check data (lines: dashed = continuous indicators; solid = count indicators). (A) F–C1 count;
(B) F–C1 count; (C) M–C1 count; (D) M–C2 count; (E) C1–F count; (F) C1–M count; (G) C2–F count; (H) C2–M count.
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Table 3. Summary of general analysis of NEAD data. The exponent of the SRM means and the SRM (co-)variances are presented

ML-estimation Bayesian estimation

ML ω = 0.2 ω = 1 ω = 5

Parameters Estimate CI EAP CI EAP CI EAP CI

SRM means

Family Effect 2.863 [2.686, 3.053] 2.852 [2.692, 3.013] 2.821 [2.666, 2.982] 2.747 [2.596, 2.907]

Perceiver Effect M 1.452 [1.379, 1.530] 1.447 [1.381, 1.519] 1.443 [1.373, 1.517] 1.445 [1.371, 1.524]

Perceiver Effect F 0.938 [0.885, 0.994] 0.940 [0.890, 0.992] 0.944 [0.893, 0.997] 0.947 [0.894, 1.003]

Perceiver Effect C1 0.846 [0.783, 0.911] 0.843 [0.786, 0.903] 0.842 [0.784, 0.902] 0.838 [0.779, 0.899]

Perceiver Effect C2 0.869 [0.806, 0.938] 0.872 [0.811, 0.934] 0.872 [0.811, 0.935] 0.871 [0.810, 0.937]

Target Effect M 1.114 [1.064, 1.166] 1.119 [1.068, 1.174] 1.128 [1.072, 1.186] 1.139 [1.075, 1.203]

Target Effect F 0.659 [0.623, 0.697] 0.657 [0.622, 0.692] 0.651 [0.615, 0.688] 0.641 [0.602, 0.682]

Target Effect C1 1.196 [1.168, 1.225] 1.195 [1.153, 1.239] 1.197 [1.153, 1.244] 1.203 [1.150, 1.257]

Target Effect C2 1.139 [1.107, 1.171] 1.137 [1.096, 1.183] 1.137 [1.091, 1.185] 1.138 [1.085, 1.195]

SRM variances

Family Effect 0.082 [0.046, 0.118] 0.075 [0.044, 0.110] 0.060 [0.026, 0.096] 0.029 [0.006, 0.065]

Perceiver Effect M 0.028 [�0.010, 0.066] 0.044 [0.019, 0.081] 0.074 [0.045, 0.113] 0.139 [0.103, 0.188]

Perceiver Effect F 0.262 [0.178, 0.346] 0.259 [0.177, 0.353] 0.271 [0.189, 0.367] 0.325 [0.237, 0.433]

Perceiver Effect C1 0.334 [0.222, 0.446] 0.326 [0.225, 0.448] 0.334 [0.232, 0.459] 0.395 [0.284, 0.529)

Perceiver Effect C2 0.320 [0.216, 0.424] 0.311 [0.212, 0.426] 0.310 [0.208, 0.426] 0.352 [0.251, 0.476]

Target Effect M 0.000 [0.000, 0.000] 0.024 [0.012, 0.042) 0.054 [0.034, 0.083] 0.128 [0.092, 0.174]

Target Effect F 0.069 [�0.005, 0.143] 0.092 [0.041, 0.169] 0.141 [0.081, 0.231] 0.246 [0.167, 0.349)

Target Effect C1 0.002 [0.000, 0.004] 0.017 [0.009, 0.029) 0.039 [0.025, 0.056] 0.094 [0.070, 0.122)

Target Effect C2 0.001 [�0.001, 0.003] 0.017 [0.009, 0.028] 0.039 [0.026, 0.057] 0.098 [0.073, 0.131]

SRM co-variances

Perceiver – Target M �0.001 [�0.009, 0.007] 0.002 [�0.013, 0.020] 0.005 [�0.014, 0.027) 0.014 [�0.015, 0.045]

Perceiver – Target F 0.094 [0.028, 0.16] 0.089 [0.032, 0.156] 0.088 [0.031, 0.158] 0.098 [0.034, 0.174]

Perceiver – Target C1 0.024 [0.004, 0.044] 0.028 [�0.005, 0.065] 0.033 [�0.001, 0.074] 0.045 [0.002, 0.093)

Perceiver – Target C2 �0.013 [�0.033, 0.007) �0.009 [�0.042, 0.025) �0.003 [�0.036, 0.032] 0.008 [�0.031, 0.050)

Note. C1 = child 1; C1 = child 2; EAP = expected a posterior; F = father; M = mother; ML = maximum likelihood; NEAD = Nonshared Environment in
Adolescent Development; SRM = social relations model.
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Figure 6. Relative variance decomposition (black = target, dark gray = family, gray = error, light gray = perceiver). (A) ML; (B) ω = 0.2.
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By calculating the ratio of the variances of each effect
between both groups, the above described trends can be
formally tested. The family effect varies significantly more
in the ordinary families than in the stepfamilies (EAP of ratio
= 3.742,95%CI [1.255, 10.661]), illustrating that the ordinary
families vary more in their average perception of co-activity
within their intergenerational relationships. The perceiver
effect of the older sibling (i.e., child 1) varies significantly
more in the stepfamilies than theperceiver effect of the older
sibling from ordinary families (Child 1: EAP of ratio = 0.416,
95%CI [0.141, 0.875]). This shows that those children from
stepfamilies vary more in their perception of co-activity
within their relationship to their mother and stepfather.

Next, we compare the means of the SRM effects between
the two types of families. A significant ratio is present for
the mean perceiver effects of the mother (Ratio = 0.828,
95% CI [0.753, 0.912]). Relative to the family mean, the
mothers in ordinary families report 0.828 times the number
of activities reported by the mothers from stepfamilies.
Mothers from stepfamilies thus perceive more co-activity
with their children relative to the family mean than the
mothers from ordinary families. This is not surprising since
the biological parent in stepfamilies, which is often the
mother, undertakes the most action in organizing activities
to create and sustain family ties (Pylyser et al., 2017). In
contrast, the significant ratios of the father’s perceiver
and target effects suggest the opposite (Perceiver effect:
Ratio = 1.119, 95% CI [1.007, 1.243]; Target effect: Ratio
= 1.181, 95% CI [1.059, 1.317]). Relative to the family mean,
the fathers from the ordinary families perceive 1.119 times
more activities with their children than the stepfathers.
Accordingly, the children from ordinary families perceive
1.181 times more activities with their father than children
from stepfamilies. It seems that stepfathers put less effort
into sharing activities with their stepchildren, which is espe-
cially true once they share a residence (Ganong et al.,
1999). The large diversity in the tendency of stepfathers
to build a relationship with their stepchildren, can further-
more explain why they perceive or elicit on average less
co-activity with their stepchildren. This diversity in ten-
dency can also explain why the perception of co-activity
is so diverse in children from stepfamilies and, thus, why
they have perceiver effects that explain larger amounts of
variance. Lastly, there is on average more perceived
co-activity in ordinary families than in stepfamilies (Ratio
= 1.163, 95% CI [1.033, 1.310]).

Discussion

The SRM has received much attention in family litera-
ture. We presented a version of the family SRM that is

appropriate for count data, hereby we extended the count
SRM model proposed by Koster and Leckie (2014) to the
family setting. Specifically, we proposed two approaches
to estimate the SRM parameters for count data: the
ML-estimator and the Bayesian estimator.

The simulation study showed that the ML-estimator
actually results in less biased estimators for SRM-effects
than the Bayesian estimator. This is especially true for small
SRM variances. The presence of biased estimates of the
variances by the Bayesian approach was not surprising
given previous research on the Bayesian approach of the
SRM (Lüdtke et al., 2012) and on the influential character
of the scale matrix of the Wishart (Schuurman et al.,
2016). Both approaches are, however, equally good in esti-
mating the parameters of the mean-structure. The results
also indicated that the Bayesian approach with a scale
matrix that resembles the true underlying values performs
just as good as the ML-estimator in large samples, a result
which is in line with previous research on the definition of
the scale matrix of the Wishart prior (Kass & Natarajan,
2006). In that sense, a researcher could still opt to perform
an SRM for count data using the Bayesian approach, since it
still possesses some strengths compared to the frequentist
approach. First, the ML-estimator requires more computa-
tional demand than the Bayesian approach and sometimes
fails to converge. Second, the Bayesian approach can take
into account prior information. And lastly, variance esti-
mates cannot be negative. Furthermore, the applicability
of these two approaches was illustrated using count dyadic
measurements on perceived co-activity from the NEAD
study. Note that we looked in two different modeling
frameworks, the SEM and multilevel framework, because
the two estimators are not yet directly available in both
frameworks. Although we presented an SRM for count data
from a block design, it should be noted that results also
apply to count data from a round robin design.

There are some methodological limitations present in
this paper. First, it might be interesting to study how other
Bayesian sampling strategies, such as the No-U-Turn
Sampler (NUTS; Hoffman & Gelman, 2014), perform in
estimating the SRM parameters. For example, in NUTS
the separation strategy can be performed more easily.
Second, a more extensive sensitivity analysis on the priors
could be performed. Here, we limited our analysis to one
hyperparameter of the Wishart distribution. Further
research could study, for example, what the impact is of
the other hyperparameter of the Wishart prior (i.e., the
degrees of freedom) on the (co)variance estimates. Also,
other adaptations of the Wishart prior, such as the uniform
shrinkage prior (Chen & Wehrly, 2016; Natarajan & Kass,
2000), could be investigated. To that extent, researchers
might also look into the impact of improper priors on the
estimates of the variance components (Schuurman et al.,
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Table 4. Summary of group analysis of NEAD data. The exponent of the SRM means and the SRM (co-)variances of ordinary families and
stepfamilies are presented

Ordinary families Stepfamilies

ML ω = 0.2 ML ω = 0.2

Parameters Estimate CI EAP CI EAP CI EAP CI

SRM means

Family Effect 3.083 [2.858, 3.327] 3.135 [2.844, 3.450] 2.565 [2.425, 2.713] 2.696 [2.525, 2.873]

Perceiver Effect M 1.305 [1.231, 1.383] 1.269 [1.180, 1.368] 1.571 [1.495, 1.652] 1.532 [1.442, 1.630]

Perceiver Effect F 1.003 [0.937, 1.074] 1.020 [0.936, 1.104] 0.905 [0.854, 0.959] 0.911 [0.849, 0.976]

Perceiver Effect C1 0.840 [0.776, 0.910] 0.845 [0.765, 0.934] 0.828 [0.764, 0.897] 0.844 [0.770, 0.930]

Perceiver Effect C2 0.909 [0.838, 0.987] 0.915 [0.826, 1.008] 0.849 [0.783, 0.919] 0.849 [0.775, 0.926]

Target Effect M 1.044 [0.991, 1.100] 1.059 [0.980, 1.139] 1.176 [1.116, 1.239] 1.158 [1.085, 1.231]

Target Effect F 0.732 [0.691, 0.776] 0.730 [0.676, 0.790] 0.598 [0.560, 0.637] 0.618 [0.575, 0.663]

Target Effect C1 1.155 [1.114, 1.197] 1.152 [1.086, 1.224] 1.230 [1.196, 1.265] 1.224 [1.167, 1.282]

Target Effect C2 1.134 [1.090, 1.181] 1.124 [1.054, 1.197] 1.157 [1.123, 1.192] 1.141 [1.088, 1.20]

SRM variances

Family Effect 0.168 [0.122, 0.214] 0.137 [0.079, 0.210] 0.001 [�0.001, 0.003] 0.046 [0.014, 0.085]

Perceiver Effect M 0.000 [0.000, 0.000] 0.041 [0.017, 0.089] 0.161 [0.123, 0.199] 0.066 [0.028, 0.118]

Perceiver Effect F 0.233 [0.153, 0.313] 0.162 [0.065, 0.295] 0.457 [0.365, 0.549] 0.286 [0.181, 0.422]

Perceiver Effect C1 0.270 [0.172, 0.368] 0.166 [0.062, 0.321] 0.599 [0.477, 0.721] 0.415 [0.275, 0.597]

Perceiver Effect C2 0.296 [0.192, 0.400] 0.175 [0.064, 0.336] 0.496 [0.396, 0.596] 0.357 [0.231, 0.513]

Target Effect M 0.000 [0.000, 0.000] 0.040 [0.016, 0.086] 0.004 [�0.004, 0.012] 0.031 [0.014, 0.063]

Target Effect F 0.004 [�0.012, 0.020] 0.054 [0.019, 0.127] 0.205 [0.111, 0.299] 0.129 [0.050, 0.239]

Target Effect C1 0.000 [0.000, 0.000] 0.027 [0.013, 0.051] 0.007 [0.001, 0.013] 0.023 [0.012, 0.0414]

Target Effect C2 0.003 [�0.005, 0.011] 0.031 [0.014, 0.059] 0.000 [0.000, 0.000] 0.021 [0.011, 0.037]

SRM co-variances

Perceiver – Target M 0.000 [0.000, 0.000] �0.001 [�0.028, 0.025] 0.024 [0.000, 0.048] 0.005 [�0.020, 0.034]

Perceiver – Target F 0.029 [�0.041, 0.099] 0.010 [�0.052, 0.082] 0.166 [0.081, 0.250] 0.104 [0.028, 0.195]

Perceiver – Target C1 0.002 [�0.024, 0.028] 0.008 [�0.032, 0.060] 0.063 [0.031, 0.095] 0.043 [�0.004, 0.096]

Perceiver – Target C2 �0.030 [�0.066, 0.006] �0.007 [�0.055, 0.041] �0.004 [�0.032, 0.024] �0.011 [�0.056, 0.036)

Note. C1 = child 1; C1 = child 2; EAP = expected a posterior; F = father; M = mother; ML = maximum likelihood; NEAD = Nonshared Environment in
Adolescent Development; SRM = social relations model.
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Figure 7. Relative variance decomposition of non-divorced and stepfamilies (black = target, dark gray = family, gray = error, light gray =
perceiver). (A) Non-divorced families ω = 0.2; (B) Stepfamilies ω = 0.2.

�2019 Hogrefe Publishing Methodology (2019), 15(4), 157–174

J. Loncke et al., Social Relations Model for Count Data 171

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e A
m

er
ic

an
 P

sy
ch

ol
og

ic
al

 A
ss

oc
ia

tio
n 

or
 o

ne
 o

f i
ts

 a
lli

ed
 p

ub
lis

he
rs

.
Th

is
 a

rti
cl

e 
is

 in
te

nd
ed

 so
le

ly
 fo

r t
he

 p
er

so
na

l u
se

 o
f t

he
 in

di
vi

du
al

 u
se

r a
nd

 is
 n

ot
 to

 b
e 

di
ss

em
in

at
ed

 b
ro

ad
ly

.



2016). Further, it might be possible that in a real count data
example overdispersion or zero-inflation is present. In that
case it might be interesting to look into alternatives to the
Poisson distribution such as the negative binomial distribu-
tion or zero-inflated countmodels. Lastly, it should be noted
that we could also have opted to define and constrain the
mean structure of the family SRM in another way. Here,
we opted to constrain the means of the actor and target
effects in an effect-coding manner relative to the family
mean, which is the most conventional way to define the
mean structure of the family SRM. However, other ways to
define the mean structure, such as dummy-coding, are
possible too. Perhaps another way of defining the constraints
on the mean-structure might allow to model the family SRM
more easily within the current multilevel software.

Despite these methodological limitations, we hope that
the illustrative application and the methodological results
of this paper will inspire family researchers to study dynam-
ics in families on the basis of count dyadic measurements
from a block or a round robin design.

Electronic Supplementary Material

The electronic supplementary material is available with
the online version of the article at https://doi.org/
10.1027/1614-2241/a000178
ESM 1. This file contains the MPlus and R code of the
studies.
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