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The Truth about 2-level Transition Elimination in
Bang-Bang PAM-4 CDRs

Marijn Verbeke, Guy Torfs, and Pieter Rombouts

Abstract—Reception of 4-level pulse amplitude modulation
(PAM-4) requires a clock and data recovery (CDR) circuit,
typically implemented by a PLL-like structure. An essential block
in such a CDR is the phase detector which should detect whether
the recovered clock leads or lags the incoming data edges. In
typical implementations an incoming data edge is detected by
sensing whether the incoming waveform crosses a data threshold
level. However, there is some ambiguity in detecting the incoming
data edge because PAM-4 modulation has 3 thresholds. If the
waveform crosses multiple threshold levels, the level crossings
will occur at different time instants due to the finite rise/fall
time of the incoming waveform.

In this work, we first analyze qualitatively and quantitatively
CDR systems that use one threshold for phase adjustment. Here,
eliminating the 2-level transitions decreases the amount of jitter
injected by the phase detector. However, the available transitions
for phase adjustment are also reduced, which lowers the CDR’s
robustness. Secondly, for CDR systems using three thresholds, a
combination of two techniques: majority voting and elimination
of 2-level transitions is investigated. We prove that in this case,
the elimination of 2-level transitions is not needed and even gives
a worse performance when implemented.

Index Terms—4-level pulse amplitude modulation (PAM-4),
clock and data recovery (CDR), Alexander Bang Bang phase
detector, majority voting, transition elimination, transition selec-
tion, minor, middle, intermediate, asymmetric, major transition.

I. INTRODUCTION

TO support ever increasing data rates, the traditional on-
off-keying (OOK) non-return-to-zero (NRZ) signaling

scheme employed in wireline and optical interconnects is pro-
gressively being replaced by 4-level pulse amplitude modula-
tion (PAM-4) [1], [2]. Thanks to the higher spectral efficiency,
the data rate can be doubled within the same bandwidth bud-
get. However, this comes at the cost of increased complexity
both at the transmitter as well as at the receiver side. This
manuscript focuses on a critical block in the receiver: i.e. the
clock-and-data recovery (CDR), which converts the incoming
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Fig. 1. Conceptual block diagram of a PLL-based CDR circuit.

Fig. 2. Illustration of the possible transitions in a PAM-4 waveform. The dots
indicate the threshold crossings.

waveform into a synchronized data stream with its clock. A
typical block diagram of such a CDR is shown in Fig. 1. One
of its core blocks is the phase detector (PD), which compares
the position of the edges of the recovered clock relative to
the edges of the incoming data waveform Din. Depending
on this comparison, either an early or a late signal can be
produced, indicating that the recovered clock leads or lags.
Since it is the goal of the CDR to align the edges of the
recovered clock and the incoming waveform, the early and
late signal can be interpreted as an error signal. This error
signal is then filtered by a loop filter and used to adjust a
voltage controlled oscillator (VCO).

Compared to OOK, especially the PAM-4 phase detector
block becomes significantly more complex, because multiple
transition scenarios need to be considered to detect the edges
of the incoming waveform. In practice, this edge detection
is implemented by detecting whether the incoming waveform
crosses a certain threshold level. Since there are 4 valid signal
levels, three threshold levels can be considered: VL, VM and
VH . This is illustrated in Fig. 2 together with all the possible
data transitions. An important observation is that the data
transitions always occur with a finite rise/fall time due to
bandwidth limitations in the channel between the transmitter
and receiver. This creates the key problem for PAM-4 CDRs:
i.e. the location of the threshold crossing is data dependent.
This is also evident from the dots in Fig. 2.

This problem was already recognized by numerous authors
[3]–[28] which all report on the difficulty of multi-level
phase detection. A first solution is to use only 1 threshold
level to detect the data transitions. This reduces the intrinsic
performance of the phase detection, but it is a quite common
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approach followed in e.g. [4]–[13]. It is well known that in
this simplified implementation, transitions that cross exactly
2 threshold levels will lead to incorrect edge detection. Such
transitions are called 2-level crossings (or middle or interme-
diate or asymmetric transitions). Transitions that cross either
only 1 or 3 threshold levels result in correct edge detection.
The mechanism behind this, is reviewed in Section II and a
new quantitative analysis is performed in Section III. Some
authors [11]–[13] decided to tolerate the incorrect edge de-
tection and we will show that in some cases this yields a
better performance than omitting the timing information from
the 2-level crossings. We will also analyze another solution
provided by [10]. Here, the 2-level crossings are only used to
correct the sampling position if the sampling position occurs
“very late” or “very early”. We will show that this partial
2-level elimination outperforms the case where all the 2-
level crossings are omitted. An alternative strategy [8], [9]
is to use line coding techniques to avoid 2-level crossings.
Unfortunately, this creates an overhead due to the bit/symbols
that need to be added to eliminate the 2-level crossings.

Section IV proceeds with the case where three thresholds
are used for timing adjustment. Also here quite some imple-
mentations have been published [13]–[25]. Surprisingly, all
these publications still incorporate techniques to eliminate 2-
level crossings. This is what this paper is about: we will
demonstrate in Section V with a full quantitative analysis
of a CDR system with three thresholds that it is completely
unnecessary to remove these transitions. This means that the
additional overhead to deal with the 2-level transitions can
be eliminated, leading to a more efficient implementation.
Additionally this also means that more edge information is
available to the CDR circuit such that a higher performance
can be achieved. It should be noted that there is already one
publication [26] which uses all three thresholds without 2-level
transition elimination. Below we will also discuss the solution
of [26] and compare it to other edge detection schemes. The
analysis will also show that a phase detector which uses all
three thresholds has a better performance compared to its one
threshold alternative.

Phase detection techniques that use even more than 3
thresholds are discussed in [27], [28]. But in these cases,
more samplers are required. This further increases the power
consumption. Therefore these techniques are considered less
favorable and are not discussed in this work.

Finally, simulation results are presented in Section VI and
Section VII concludes the paper.

II. PHASE DETECTION BASED ON ONE THRESHOLD

In high-speed application, the PD is typically implemented
as a binary phase detector that only indicates whether the
recovered clock leads (Early) or lags (Late) the input data.
This binary phase detection operation can be achieved by using
one comparator (with threshold VM ) and an Alexander phase
detector (Fig. 3) [29]. Alexander phase detection is based on
three successive data samples (S0, S1 and S2), which are
sampled at twice the data clock frequency. In a typical CDR,
this is done by sampling the data both on the rising as well
as the falling edges of the full-rate recovered clock Clk.

Fig. 3. Implementation of a PD with one threshold for timing adjustment.

Fig. 4. Waveforms for the locking behavior of a 1-level transition using one
threshold for timing adjustment. (a) the clock leads the data, (b) the clock is
in the ideal locked position and (c) the clock lags the data.

Fig. 4 shows the three samples taken by an Alexander PD in
the possible three cases: the clock is leading (Early), aligned
(Ideal) or lagging (Late) with respect to the data edge. The
output of the PD is calculated using the XOR operation and
summarized as [29], [30]:

Early :S0 ⊕ S1 = 0, S1 ⊕ S2 = 1 → Clk frequency ↓
Late :S0 ⊕ S1 = 1, S1 ⊕ S2 = 0 → Clk frequency ↑

Others :S0 ⊕ S1 = S1 ⊕ S2 → Do not adjust clk

The phase estimation based on a single threshold is correct
when receiving OOK-modulated data. However, for PAM-4
modulation, the transition is data dependent. The decomposi-
tion of the PAM-4 eye diagram in Fig. 5 shows four distinct
transition categories: zero-level transitions, 1-level transitions,
2-level transitions and 3-level transitions. In literature, the
three later categories are sometimes also referred to as minor,
middle and major transitions, respectively.

For a zero-level transition (Fig. 5(b)), there is no edge
information and hence these transitions are not relevant for
this work. The 1-level and 3-level transitions are shown in
Fig. 5(c) and (f), respectively. Here, the crossing point of
these transitions is located at the midpoint of the data symbols.
Please note that due to the use of one threshold, only the 3-
level transitions and two out of the six 1-level transitions can
be detected. This is indicated by the red dot in Fig. 5.

The last category comprises the 2-level transitions, which
are shown by Fig. 5(d) and (e). Depending on the transitions,
the crossing of the threshold VM occurs at two different
moments in time (indicated by the red dots). We will note
the offset between these time instants and the ideal crossing
by the offset d2.

The probability that the data crosses the threshold VM forms
the threshold crossing distribution. As seen in the second
row of Fig. 5, this threshold crossing distribution has three
peaks: the center peak originates from the 1-level and 3-level
transitions, while the two side peaks are the result of the 2-
level transitions.

The bottom three traces analyze the response of three
different PD topologies. Clearly, in the case of a 1-level and 3-
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partial

Fig. 5. The decomposition of different transitions of a PAM-4 signal when only considering the middle transition level VM . (a) Combination of all possible
transitions, (b) zero-level transitions, (c) 1-level transitions, (d) 2-level transitions leading to a left-shifted edge detection, (e) 2-level transitions leading to a
right-shifted edge detection and (f) 3-level transitions. For each category of transitions, the threshold crossing points are indicated by the red dots and the
threshold crossing distributions are given. (a) forms the combination of all possible transitions, corresponding threshold crossing points and threshold crossing
distributions. The bottom three traces indicate the phase detector output characteristics for different scenarios.

level transition, the PD operation will detect the correct edge
location (in the center of gravity of all possible transitions)
corresponding to the ideal crossing. This results in the ideal
bang-bang phase detector characteristic as illustrated in the
bottom three traces of Fig. 5, column (c) and (f) respectively.
For the case of a 2-level transition, the crossing of VM will
differ from the ideal crossing (either shifted to the left or to the
right, see Fig. 5(d) and (e)). If these 2-level transitions are used
(trace (I) of Fig. 5), the phase detector will produce a non-zero
and contradictory control signal for the different transitions at
certain sampling phases. Since the data transitions are highly
uncorrelated, this occurs in a random way which manifests
itself as a significant injection of additional jitter in the CDR.
This is highlighted by the gray area in the overall combined
phase detector characteristic for trace (I) in Fig. 5 column (a).

In order to avoid this excess jitter injection mechanism,
the 2-level transitions of the incoming data should not be
taken into account. This is also called 2-level transition
elimination or middle transition elimination and is represented
by trace (II) in Fig. 5. An undesired side effect of this is
that only four transitions (two 1-level and two 3-level) out
of all 16 possible transitions are used for the clock recovery
operation. This limited amount of usable transitions decreases
the robustness of the CDR operation, because the CDR may
have to wait a long time to receive an update signal to tune
the recovered clock. Another approach to avoid the excess
jitter injection mechanism is presented in [10] and uses partial
2-level transition elimination. In trace (III) of Fig. 5, the
system only generates a correction signal if the recovered
clock is “very early” or “very late”. If the sampling point
falls outside the very early/late regions, the PD ignores the
extracted phase information. Note that in this scenario, the
phase detector will also never provide conflicting information
and therefore does not introduce additional jitter. However,
some 2-level transitions are also not considered, which reduces
the robustness of the CDR operation.

A quantitative analysis will provide a clear trade-off be-
tween the jitter injection due to the 2-level transitions in one

case and the lower update rate in the other case.
Note that in reality the rise and fall times could be different

or vary in time. Also the threshold VM can deviate from
its ideal value. These are additional parasitic effects that can
also affect the effectiveness of the phase detector. A detailed
elaborate study of such additional effects is out of the scope
of this manuscript, but we performed a preliminary study
which suggests that our conclusions remain unchanged in the
presence of these effects.

III. PSEUDO-LINEARIZED PHASE DETECTOR GAIN USING
ONE THRESHOLD

In order to get a quantitative measure whether the partial or
complete 2-level transition elimination is beneficial for a PD
using 1 threshold, we will study both the injected jitter and
the loop dynamics of the CDR operation using a pseudo-linear
analysis technique called describing functions. The use of
describing functions [31] to model the non-linear PD behavior,
has been proven to be a straightforward and accurate analysis
method [32], [33].

First, the Alexander phase detector (Fig. 3) can be rep-
resented by a slicer in the phase domain, e.g. if the phase
difference between input data and recovered clock φe is
positive (the clock is Early) the phase detector will output
+1. Vice versa if the phase difference φe is negative, the clock
is Late and the phase detector will output -1.

This non-linear element can now be converted into its
describing functions. Assuming that the phase difference φe
has two components: a random noise component φe,n1 and
a bias φe,B , we obtain the describing function model de-
picted by Fig. 6. Each input component is multiplied by
its corresponding gain factor (resp. Kn and KB). Similar
to the phase difference, the output of the slicer φu com-
prises a random noise component φu,n and a bias φu,B .
The instantaneous difference φq between the output of the

1A random noise component in the phase domain is equivalent to jitter.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I, VOL. XX, NO. XX, MONTH 20XX 4

Fig. 6. The Alexander Bang-Bang phase detector can be decomposed in its
pseudo-linear gains Kn and KB .

Alexander phase detector φu and the output of the pseudo-
linearized model (Knφe,n + KBφe,B) can be approximated
as random distributed quantization noise2. This noise term
is added to obtain a more accurate model [32], [33]. The
linearized gains Kn and KB should be calculated such that the
power of the quantization noise is minimized [31], [32]. We
can see from Fig. 5, that the input-output characteristics of the
phase detector will differ for each transition type. Therefore,
we decompose these gain factors using Bayes’ rule for the
different transitions types:

Kn =
E {φe,nφu}
E
{
φ2e,n

} =
∑
X

Prob[X]
E {φe,nφu|X}
E
{
φ2e,n

}
≡
∑
X

Prob[X]Kn,X (1)

KB =
E {φe,Bφu}

E
{
φ2e,B

} =
∑
X

Prob[X]
E {φe,Bφu|X}

E
{
φ2e,B

}
≡
∑
X

Prob[X]KB,X (2)

where X represents the transition type, i.e.: 1-level, 2-level
(left), 2-level (right) and 3-level transitions indicated by Fig.
5(c), (d), (e) and (f) respectively. The “Prob[X]” operator
represents the probability that one of the above transitions X
occurs3. Furthermore, we define the sub-describing functions
Kn,X as E{φe,nφu|X}

E{φ2
e,n}

and KB,X as E{φe,Bφu|X}
E{φ2

e,B}
, because it

can be seen as the pseudo-linearized gain of the Alexander
PD for the case that only transition X occurs. Each of these
transition dependent gain factors Kn,X and KB,X can be
calculated and are summarized in the following sections for
the different scenarios.

A. Scenario (I): without 2-level transition elimination

For the first scenario, the 1-level, 2-level and 3-level transi-
tions should be considered. For two of the 1-level transitions
(Fig. 5(c)) and the 3-level transitions (Fig. 5(f)), the input-
output characteristic of the phase detector for these transitions
is symmetrical around zero, and thus there will be no DC
offset in the phase error in steady state regime. Therefore the
describing functions with two components (random noise and

2The random noise component of the phase error φe,n and the quantization
noise φq can be described as a discrete-time white noise process which is
sampled at the symbol rate. Therefore they can be approximated as white
noise with a bandwidth of half the symbol rate.

3There are 2 possible 1-level transitions, 4 possible 2-level transitions and
2 possible 3-level transitions which will generate an output different from
zero.

bias) reduce to a describing function with only one component,
i.e. the random noise [31]. This is however not the case for
the describing functions for the 2-level transitions. As shown
in Fig. 5(d) and (e), the crossing occurs with an offset d2 from
its ideal locking position. For these transitions, this offset can
be modeled as a bias component φe,B which is equal to +d2
for Fig. 5(d) and equal to −d2 for Fig. 5(e).

The sub-describing functions become:

Kn,1-level = Kn,3-level =

√
2

π

1

σ
(3)

Kn,2-level (right) = Kn,2-level (left)

= 2N
(
d2
σ

)
1

σ
(4)

KB,1-level = KB,3-level = 0 (5)
KB,2-level (right) = KB,2-level (left)

=
1

d2

[
2Φ

(
d2
σ

)
− 1

]
(6)

with d2 the offset between the crossing of the 2-level transi-
tions and the ideal crossing, σ the standard deviation of the
phase difference φe,n. The functions N () and Φ() are, re-
spectively, the probability density function and the cumulative
distribution function of the Standard Normal distribution and
are defined by:

N (x) =
1√
2π

exp

(
−x

2

2

)
(7)

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−v

2

2

)
dv (8)

Using (1), we can write the noise gain Kn as:

Kn,(I) =

(
1

4

√
2

π
+

1

2
N
(
d2
σ

))
1

σ
(9)

Its upper and lower limit are defined by:

Kn,(I),upper = Kn,(I)

∣∣∣∣
d2�σ

=
1

2

√
2

π

1

σ
(10)

Kn,(I),lower = Kn,(I)

∣∣∣∣
d2�σ

=
1

4

√
2

π

1

σ
(11)

As shown by (6), the bias gain factors for the 2-level
transitions, KB,2-level (left) and KB,2-level (right) are equal and not
zero. However, as the transitions are uncorrelated, the expected
value of the bias term of the output of the phase detector φu,B
will be zero.

Any variation of φu due to a bias components (originating
from the asymmetric 2-level transitions) can be perceived
as random variation due to the uncorrelated nature of the
transitions and will be included in the quantization error φq ,
for which its variance σ2

q is determined by (12) and (13).
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E
[
φ2u
]

= E
[
(Knφe,n + φq)

2
]

= K2
nE
[
φ2e,n

]
+ E

[
φ2q
]

=

(
1

4

√
2

π
+

1

2
N
(
d2
σ

))2

+ σ2
q (12)

E
[
φ2u
]

=
∑
φu

Prob [φu]φ2u =
1

2
(13)

The variance of the quantization noise σ2
q and its lower and

upper limit are given by:

σ2
q,(I) =

1

2
−

(
1

4

√
2

π
+

1

2
N
(
d2
σ

))2

(14)

σ2
q,(I),lower = σ2

q

∣∣∣∣
d2�σ

=
1

2
− 1

2π
(15)

σ2
q,(I),upper = σ2

q

∣∣∣∣
d2�σ

=
1

2
− 1

8π
(16)

This gives a measure of the amount of jitter injected into
the CDR loop due to the phase detector. The equations above
also show that the quantization noise introduced in the system
increases if the ratio of the offset between the crossing of the
2-level transitions and the ideal crossing d2, and the standard
deviation of the phase difference σ increases.

B. Scenario (II): with 2-level transition elimination

The sub-describing functions for the Alexander phase detec-
tor with 2-level transition elimination are the same as for the
scenario without 2-level transition elimination, except for the
2-level transitions. These are omitted and the corresponding
sub-describing functions are equal to zero. The sub-describing
functions and combined noise gain are:

Kn,1-level = Kn,3-level =

√
2

π

1

σ
(17)

Kn,2-level (left) = Kn,2-level (right) = 0 (18)

Kn,(II) =
2

16
(Kn,1-level +Kn,3-level) =

1

4

√
2

π

1

σ
(19)

where σ represents the standard deviation of the phase error
φe,n. If we compare (19) with (10) and (11), we can see that
the noise gain Kn for the 2-level transition elimination case
is equal to the lower limit of the noise gain Kn,lower without
2-level transition elimination.

The variance of the quantization noise term σ2
q can be

derived from (21) and (22):

E
[
φ2u
]

= K2
nE
[
φ2e,n

]
+ E

[
φ2q
]

(20)

=

(
1

4

√
2

π

)2

+ σ2
q (21)

E
[
φ2u
]

=
∑
φu

Prob [φu]φ2u =
1

4
(22)

The variance of the quantization noise σ2
q is thus given by:

σ2
q,(II) =

1

4
− 1

8π
(23)

If we compare (15), (16) and (23), we can observe that
the introduced quantization noise is the lowest when the 2-
level transition elimination is used. This is in-line with the
conclusions of prior-art work, and with our expectations which
have been discussed in the previous section. But, the analysis
also shows that the gain of the phase detectors is different
when employing 2-level transition elimination. In order to
make an accurate comparison between both phase detectors, a
comparison should be made on the system level to incorporate
both the effect of the quantization noise and phase detector
gain. As we will see later this leads to a more nuanced
conclusion.

C. Scenario (III): with partial 2-level transition elimination
The last scenario using 1 threshold for phase alignment ap-

plies partial 2-level transition elimination. The sub-describing
functions are now given by:

Kn,1-level = Kn,3-level =

√
2

π

1

σ
(24)

Kn,2-level (right) = N
(
−d2
σ

)
1

σ
(25)

Kn,2-level (left) = N
(
d2
σ

)
1

σ
(26)

with d2 the offset between the crossing of the 2-level transi-
tions and the ideal crossing, σ the standard deviation of the
phase difference φe,n. The function N () is defined by (7).

The overall describing function gain is :

Kn,(III) =
1

4

(√
2

π
+N

(
d2
σ

))
1

σ
(27)

As expected, this gain lies in between the values of the
scenarios without and with 2-level transition elimination given
by (9) and (19), respectively.

The variance for the quantization noise σ2
q is given by:

σ2
q,(III) =E

[
φ2u
]
−K2

nE
[
φ2e,n

]
(28)

=
1

2
− 1

4
Φ

(
d2
σ

)
−

(
1

4

(√
2

π
+N

(
d2
σ

)))2

(29)

for which the variance of φu is determined by:

E
[
φ2u
]

=
∑
φu

Prob [φu]φ2u = Prob [|φu| = 1] (30)

= Prob [1-level] + Prob [3-level]
+ Prob [2-level (right)] · Prob [φe,n < −d2|2-level (right)]
+ Prob [2-level (left)] · Prob [φe,n > d2|2-level (left)]

(31)

=
1

2
− 1

4
Φ

(
d2
σ

)
(32)

and where the function Φ() is given by (8).
In Section III-D, this scenario will also be compared on a

system level together with the two other scenarios.
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(a)

(b)

Fig. 7. General phase domain model of a CDR with describing functions and
with a gain compensation block Kc. (a) Original model, (b) The compensation
gain Kc is combined with the noise gain Kn to create the overall equivalent
gain K′

n. Note that the quantization noise φ′q is now also dependent on Kc.

D. Comparison on system level

The conceptual block diagram of a CDR in Fig. 1 is
converted to a general phase domain model shown in Fig. 7(a).
The combination of the loop filter and the VCO is equivalent
to the linear block G(s) [33]:

G(s) =
ω0

s

1 + ωz

s

1 + s
ωp

(33)

where ωz represents the frequency of the zero, ωp the fre-
quency of the pole and ω0 the overall amplification factor of
the linear block. Note that if ω0 has a value between ωz and
ωp, ω0 also represents the unity gain frequency. Furthermore
the non-linear behavior of the phase detector is modeled by
the describing function gain Kn and the variance of the
quantization noise σ2

q that were calculated in the previous
section. Due to the different noise gain Kn of the phase
detector in the different scenarios, the bandwidth of each CDR
system will differ. In order to perform a fair comparison, we
should compare CDR systems with the same bandwidth, for
this we introduce a compensation gain Kc, which is such that
every considered system has the same bandwidth.

By shifting the gain compensation block Kc, we transform
Fig. 7(a) to Fig. 7(b). The new equivalent noise gain K ′n and
the variance of the equivalent quantization noise term σ2

q′ of
Fig. 7(b) become:

K ′n = Kn ·Kc (34)

σ2
q′ = σ2

q ·K2
c (35)

The overall equivalent noise gain K ′n for the CDR systems
is set to 1

2σ

√
2
π , which will allow an easy comparison to the

CDR systems using 3 thresholds later in the manuscript. The
compensation gains Kc are therefore:

Kc,(I) =
2
√

2
π√

2
π + 2N

(
d2
σ

) (36)

Kc,(II) = 2 (37)

Kc,(III) =
2
√

2
π√

2
π +N

(
d2
σ

) (38)

0 1 2 3 4 5 6
d

2
/

0

0.2
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1

1.2
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1.6

1.8

2

q'2

q',(I)
2 no elimination

q',(II)
2 with elimination
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2 with elimination, with voting

q',(V)
2 no elimination, with voting

q',(VI)
2 no elimination, no voting

q',(VII)
2 with elimination, no voting1-threshold systems

3-threshold systems

Fig. 8. Comparison of the equivalent quantization noise σ2
q′ for 1 and 3

thresholds with the overall equivalent gain K′
n set to 1

2σ

√
2
π

.

By combining the noise gain Kn and the compensation gain
Kc to a fixed equivalent noise gain K ′n, we can obtain an
equivalent quantization noise term with a variance σ′2q which
is only dependent on one variable, i.e.: d2

σ .
Note that, σ, the variance of the jitter at the input of the

phase detector φe,n comprises two components: a component
coming from the jitter in the overall CDR input φin, and a
component due to injected quantization noise φq (which is fed
back in the loop). This can be understood by the inspection of
Fig. 7(b). With iterative techniques similar to [33], for a given
loop filter and input jitter variance, the value of σ can be
calculated, but this is not needed for the rest of the discussion
and hence is not done in this paper.

Fig. 8 shows the variances of the equivalent injected quan-
tization noise σ2

q′ for the compensated CDR systems without,
with and with partial 2-level transition elimination. It is shown
that if the distance between the 2-level crossings and the
ideal crossing is significant with respect to the random phase
error (d2 >> σ), the injection of jitter due to these 2-level
transitions becomes dominant.

Clearly, more quantization noise will lead to a larger vari-
ance at the input of the phase detector, reducing the perfor-
mance of the CDR. A system which uses 2-level transition
elimination or partial 2-level transition elimination is thus
beneficiary in this case.

However, if d2/σ is sufficiently small, the penalty of a
reduced update-rate due to 2-level transition elimination be-
comes more severe. That is, a CDR with 2-level transition
elimination (and with an equal transfer function) introduces
more quantization noise in the system than a CDR system
without 2-level transition elimination. In this case, it is better
to tolerate the incorrect edge detection but use all transitions
to perform a phase update.

Therefore, in contrast to common believe, there is a trade-
off between including the excess jitter injection mechanism
due to the 2-level transitions and decreasing the robustness of
the CDR operation by eliminating the 2-level transitions. This
trade-off depends on the ratio of the distance between 2-level
crossings and the ideal crossing d2, and the standard deviation
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Fig. 9. A conceptual diagram of a typical implementation of a PD with three
thresholds for timing adjustment.

of the random phase error σ.
Note that such a trade-off is made by the scenario with

partial 2-level transition elimination. It removes only the 2-
level transitions which would introduce jitter in the system.
As a result it always performs better compared to the scenario
with 2-level elimination and for most values of d2/σ it is also
better than the scenario without 2-level transition elimination
(only for very small values of d2/σ, the scenario without 2-
level transition elimination injects the lowest amount of jitter).

IV. PHASE DETECTION WITH THREE THRESHOLDS

To increase the robustness of the PAM-4 CDR, three thresh-
old levels can be used in the phase detection. A conceptual
diagram of a typical implementation is shown in Fig. 9
[13]. The implementation comprises three comparators each
with a corresponding threshold level (VL, VM , VH ), and three
Alexander phase detectors. The outputs of the Alexander
phase detectors are combined by a majority voting and 2-level
transition elimination block.

The majority voting block selects whether more early or
more late signals are generated by the three Alexander phase
detectors. Its output can be majority early, majority late or
zero. The zero output occurs if there are no transitions or if
the number of incoming early signals is equal to the number
of late signals. Typical implementations eliminate the 2-level
transitions of the incoming PAM-4 modulated waveform.

We have shown for the case where timing adjustment is
based on one threshold, that if the distance between the 2-level
crossings and the ideal crossing is significant with respect to
the random phase error ( d2 >> σ), then this 2-level transition
elimination is beneficiary. However, it is a misconception that
it is also advantageous to eliminate the 2-level transitions for
timing adjustment with three thresholds. This will be discussed
in detail below.

Similar to the case of timing adjustment with one threshold,
the transitions of PAM-4 data can be decomposed into 3 cat-
egories that contain phase information for timing adjustment:
1-level, 2-level and 3-level transitions. This is illustrated in
Fig. 10 together with all three threshold levels. Additionally,
the threshold crossings of the PAM-4 data are depicted by
the red dots in Fig. 10. For each 1-level transition, shown
in column (c) of Fig. 10, there is one threshold crossing
which resides at the ideal location. Secondly, for each 3-level

transition, Fig. 10(e), there are three threshold crossings: one
at the ideal location and one before and one after the ideal
location, which results in three peaks in the threshold crossing
distribution. The difference between the ideal crossing and the
one before, respectively the one after the ideal crossing are
denoted by d3. Finally, every 2-level transition (Fig. 10(d))
crosses two threshold levels (one before and one after the ideal
location), which results in two peaks in the threshold crossing
distribution. The difference between the ideal crossing and the
one before, respectively the one after the ideal crossing for the
2-level transitions are denoted by d2.

Summarizing, in total there are five time instances for which
a threshold crossing is observed. The ideal threshold crossing
instant is at the center between two successive data symbols
and occurs for the 3-level and 1-level transitions. Furthermore,
there are four side peaks4 in the threshold crossing distribution
shown in the second row of Fig. 10 which originate from the
3-level and 2-level transitions. Fig. 10 also depicts in the third
and fourth row, the amount of Late and Early signals that
are generated by the three Alexander PDs. The bottom four
traces analyze the response of four different PD topologies.
Clearly, the case of a 1-level transition always results in the
ideal threshold crossing instant. This results in the ideal bang-
bang phase detector characteristic as illustrated in the bottom
four traces of Fig. 10, column (c). The 2-level and 3-level
transitions for the different scenarios are discussed below.

A. Scenario (IV): Majority voting with 2-level transition elim-
ination

In this scenario, shown in trace (IV) of Fig. 10, the 2-
level transitions are not used. For the 3-level transitions, all
three Alexander PD blocks (see Fig. 9) will generate an
early/late signal. Their outputs are combined with majority
voting into either majority early or majority late. This leads
to an ideal bang bang characteristic as shown in column (e).
The combined effect is the ideal bang bang phase detector
characteristic shown in column (a). This scenario is typically
used [13]–[22].

B. Scenario (V): Only majority voting

This scenario, shown in trace (V) of Fig. 10, differs from
the previous scenario in the sense that the 2-level transitions
are also used. In this case, 2 of the Alexander PD blocks
(see Fig. 9) will generate an early/late signal. There are
3 possible cases: either two times early which after voting
becomes majority early, or 1 early and 1 late which after
voting becomes zero, or finally two times late which after
voting becomes majority late. If we look at the resulting PD
characteristic for the case of 2-level transitions, see Fig. 10
column (d), we see that it is similar to the case of 2-level
transition elimination, except for the case where the phase
error is very large (very late or very early). In this situation
the correct majority early/late signal is still generated and no
error or jitter is introduced. Note that this is in contrast to the

4Due to jitter, the threshold crossing distribution peaks broaden and cause
the four side peaks to flow together into two wider peaks.
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Fig. 10. The decomposition of different transitions of PAM-4 data when considering three transition levels VL, VM and VH . (a) Combination of all possible
transitions, (b) zero-level transitions, (c) 1-level transitions, (d) 2-level transitions and (e) 3-level transitions. For each category of transitions, the threshold
crossing points are indicated by the red dots and the threshold crossing distributions, number of generated late and early signals are given. (a) forms the
combination of all possible transitions, corresponding threshold crossing points and threshold crossing distributions. The bottom four traces indicate the phase
detector output characteristics for different scenarios.

case when only one threshold was used for phase detection
(Section II).

If we take the probability5 of the different transitions into
account, this leads to the overall phase detector characteristic
shown in trace (V), column (a). By comparing this to the
case where the 2-level transition is eliminated, we see that the
resulting overall PD characteristic is very similar but slightly
improved (it gives a stronger response for large phase errors).
Besides, the implementation is simpler because the hardware
to eliminate the 2-level transition elimination is no longer
required. Therefore this implementation is preferred. However,
no reports on this scenario were found in literature.

C. Scenario (VI): No 2-level transition elimination and addi-
tion instead of majority voting

A third scenario was implemented in [26]. Here, the outputs
of the 3 Alexander PDs (see Fig. 9) are combined by addition
instead of by majority voting. This case is represented in trace
(VI) in Fig. 10. For the case of 1-level crossings, this leads to
the same result as in the previous cases, see column (c). For the
case of 2-level crossings, the 3 possible outputs are now: two
times early, one early and one late which cancel each other
out (=zero) and two times late. The resulting characteristic
is shown in column (d). And finally for the case of 3-level
crossings, the 4 possible net outputs are now: three times early,

5There are 6 possible 1-level transitions, 4 possible 2-level transitions and
2 possible 3-level transitions

one time early, one time late and three times late. The resulting
characteristic is shown in column (e). If we again take the
probability of the different transitions into account, this leads
to the overall phase detector characteristic shown in column
(a). By comparing this to the previous cases, we see that the
resulting overall PD characteristic is again very similar.

D. Scenario (VII): 2-level transition elimination and addition
instead of majority voting

In the last scenario the outputs of the 3 Alexander PDs are
again combined by addition instead of by majority voting but
the 2-level transitions are not used. This case is represented
in trace (VII) in Fig. 10. This case is almost similar to the
previous case (with addition instead of majority voting). The
only difference is that the input-output characteristic for the
2-level transitions is now equal to zero. The combined input-
output characteristic is shown in column (a).

As with the single-threshold scenarios, the rise and fall
times can differ from each other or vary in time. Also the
threshold levels can deviate from their ideal value. Again a
detailed elaborate study of such additional effects is out of
the scope of this manuscript, but also here, a preliminary study
suggests that our conclusions remain unchanged: i.e. for the
case with three thresholds, it is better not to eliminate the
2-level transitions.
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V. PSEUDO-LINEARIZED PHASE DETECTOR GAIN USING
THREE THRESHOLDS

To perform a quantitative analysis for the comparison of the
phase detectors using three thresholds, we construct a phase
domain model that includes the describing functions of the
phase detector using three thresholds. For this, we use the same
model as in Section III (Fig. 7(a)). The combination of the
loop filter and the VCO is again equivalent to the linear block
G(s), provided by (33). The non-linear behavior of the phase
detector (with 3 thresholds) can be modeled by only using a
describing function gain Kn and the variance of the quantiza-
tion noise σ2

q . This is because the input-output characteristic
for every transition of the phase detector is symmetrical around
zero (Fig. 10), which reduces the pseudo-linear analysis to the
random-input describing functions without a bias term. The
compensation gain Kc that will be used in the comparison on
system level (later in the manuscript) in order to compensate
the noise gain Kn of the different phase detectors, is also
already included in the model.

The noise gain Kn of the different phase detectors with
three thresholds can again be decomposed as in (1). Below
all describing noise gains Kn and quantization noise sources
σ2
q for the phase detector topologies using three thresholds

for phase alignment are summarized. The full calculations are
added in the respective appendix sections.

In the equations below, σ represents the standard deviation
of the phase error φe,n and, d2 and d3 represent the difference
between a 2-level transition crossing, respectively a 3-level
transition crossing, and the ideal crossing (Fig. 10). The
functions N () and Φ() are respectively defined by (7) and
(8).

A. Scenario (IV): Majority voting with 2-level transition elim-
ination

For the scenario shown in trace (IV) of Fig. 10, the total
noise gain Kn is described by:

Kn,(IV ) =
1

2σ

√
2

π
(39)

The variance for the quantization noise σ2
q is given by:

σ2
q,(IV ) =

1

2
− 1

2π
(40)

B. Scenario (V): Only majority voting

For the scenario shown in trace (V) of Fig. 10, the total
noise gain Kn is described by:

Kn,(V ) =
1

2σ

(√
2

π
+N

(
d2
σ

))
(41)

The variance for the quantization noise σ2
q is given by:

σ2
q,(V ) = 1− 1

2
Φ

(
d2
σ

)
−

(
1

2

(√
2

π
+N

(
d2
σ

)))2

(42)

C. Scenario (VI): No 2-level transition elimination and addi-
tion instead of majority voting

For the scenario shown in trace (VI) of Fig. 10, the total
noise gain Kn is described by:

Kn,(V I) =
1

2σ

(√
2

π
+ 2N

(
d2
σ

)
+N

(
d3
σ

))
(43)

The variance for the quantization noise σ2
q is given by:

σ2
q,(V I) =

9

2
− 2Φ

(
d2
σ

)
− 2Φ

(
d3
σ

)
−

(
1

2

(√
2

π
+ 2N

(
d2
σ

)
+N

(
d3
σ

)))2

(44)

D. Scenario (VII): 2-level transition elimination and addition
instead of majority voting

For the scenario shown in trace (VII) of Fig. 10, the total
noise gain Kn is described by:

Kn,(V II) =
1

2σ

(√
2

π
+N

(
d3
σ

))
(45)

The variance for the quantization noise σ2
q is given by:

σ2
q,(V II) =

5

2
− 2Φ

(
d3
σ

)
−

(
1

2

(√
2

π
+N

(
d3
σ

)))2

(46)

E. Comparison on system level

By shifting the gain compensation block Kc, we transform
Fig. 7(a) to Fig. 7(b). We obtain an equivalent noise gain K ′n
and an equivalent quantization noise term φ′q .

The overall equivalent noise gain K ′n for all CDR systems
is set to the gain in scenario (IV), i.e. 1

2σ

√
2
π for easy

comparison.
As we plug in all the above noise gains for the different

scenarios given by (39), (41), (43) and (45) in (34), we obtain
the following compensation gains Kc:

Kc,(IV ) = 1 (47)

Kc,(V ) =
Kn,(IV )

Kn,(V )
=

√
2
π√

2
π +N

(
d2
σ

) (48)

Kc,(V I) =
Kn,(IV )

Kn,(V I)
=

√
2
π√

2
π + 2N

(
d2
σ

)
+N

(
d3
σ

) (49)

Kc,(V II) =
Kn,(IV )

Kn,(V )
=

√
2
π√

2
π +N

(
d3
σ

) (50)

The corresponding equivalent quantization noise sources
have a variance σ′2q that are found by multiplying the original
variance with the square of the respective compensation gain.

If we use a linear approximation of the transitions and basic
geometry, it can be shown that the relation between d2 and
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d3 is given by: d2
d3

= 3
4 . This is used to give a graphical

representation of the variance σ′2q of the corresponding equiv-
alent quantization noise sources as a function of d2

σ . This
representation was added to Fig. 8.

We can distinguish two different regions for the 3 threshold
scenarios in Fig. 8, i.e.: d2

σ ≥ 3 and d2
σ < 3. If d2

σ is larger
than 3, the resulting quantization noise become equal, next to
the already equal equivalent noise gain K ′n. Therefore if d2

σ
is larger than 3, there is absolutely no difference between the
systems which have implemented 2-level transition elimination
or majority voting and the systems without 2-level transition
elimination or majority voting.

For the other region (d2σ < 3), we can clearly see that
the systems with 2-level transition elimination have more
jitter injection than the systems without 2-level transition
elimination. The use of addition instead of majority voting
only provides less jitter injection if d2

σ >≈ 0.6. However,
the difference is less pronounced than the usage of 2-level
transition elimination.

Comparing the results for three thresholds with the results
for one threshold (Fig. 8) reveals that the injected jitter σ′2q
for systems with 1 threshold is always bigger than the injected
jitter σ′2q for scenario (IV) with 3 thresholds, i.e. the scenario
with elimination and with voting. As a result, a CDR system
which uses 3 thresholds is more robust than a system that uses
only 1 threshold.

VI. SIMULATIONS

We choose to compare the CDR systems in simulations
by their jitter tolerance (JTOL) performance, which is the
preferred standardized performance metric. For such jitter
tolerance simulations, sinusoidal jitter is applied at the input,
and for each jitter frequency, the jitter amplitude is increased
until we achieve a specified symbol error rate. Although,
random Gaussian jitter was used in the previous analyses
instead of sinusoidal jitter, several links with the previous
analyses can be made. First, at lower jitter tolerance fre-
quencies (in-band frequencies) the sinusoidal component at
the input of the CDR will be dominant compared to the
injected random quantization term. The describing functions
of the phase detector will therefore reduce to the sinusoidal
input describing functions. Although the absolute value of
the gain will be different, it can be shown that the relation
of the upper and lower limits of the noise gain Kn for the
different scenarios remains the same. Therefore the maximum
and minimum values for the compensation gains Kc for the
random Gaussian jitter given by (36)–(38) and (47)–(50) are
the same for the sinusoidal input describing functions. Based
on the lower JTOL frequencies, we will be able to verify
if the systems have the same equivalent gain K ′n. Second,
for the higher JTOL frequencies (out-band frequencies), the
quantization term becomes dominant and the above analyses
with random Gaussian jitter holds true. Here, we can see that
an increased injected quantization noise σ′q , will increase the
variance of the phase error σ, making it more susceptible to
symbol errors.

The previous analyses showed that the equivalent quantiza-
tion noise σ′q can be divided into 2 regions, i.e.: a small input

(a) (b)

Fig. 11. An eye diagram of a jitterless PAM-4 input signal of the CDR,
which is passed through a bandwidth limited channel of (a) 25 GHz and (b)
50 GHz.

channel bandwidth region (d2σ � 1) and a large input channel
bandwidth region (d2σ � 1). Depending on these regions,
some topologies introduce more or less quantization noise.
Therefore the performance of the all PD implementations (i.e.
three phase detectors with 1 threshold and four phase detectors
using 3 thresholds) will be verified with two channels. A
50 Gbaud/s PAM-4 modulated signal (with sinusoidal jitter)
is filtered by a fourth order Butterworth filter with either a
corner frequency of 25 GHz or 50 GHz before it is applied
to the input of the CDR instances, each with a different PD
implementation. Please note that the analysis, the simulations
and conclusions are independent of the data rate, i.e.: the
simulations can be executed with a different frequency but
by scaling the variables, we would obtain the same results.

Two eye diagrams of a jitterless input signal which is passed
through a respectively bandwidth limited channel of 25 GHz
and 50 GHz, are shown in Fig. 11(a) and Fig. 11(b). The
red horizontal lines indicate the different threshold level, and
we can clearly see the multiple phase locations where the
input waveform crosses the thresholds due to the different
transitions. As illustrated by the figures, a bandwidth limited
channel of 25 GHz will results in a case where the distance
between the non-centered crossings and the ideal crossing is
large w.r.t. the noise variance (d2σ � 1), while the other case
(with a bandwidth limited channel of 50 GHz) will result in
large noise variance compared to the difference between non-
centered and ideal crossings (d2σ � 1). These two cases will
cover both regions in Fig. 8.

An illustration of the simulation model of a CDR system
with a phase detector with 3 thresholds, 2-level transition
elimination and majority voting is presented in Fig. 12.

The “DataGeneration” block generates a jittery PAM-4
waveform. This signal is passed to three comparators, which
slice the input wave at the desired thresholds. Three Early-
Late signals are generated by three Alexander phase detectors
(identical to Fig. 3). These Early-Late signals are then pro-
cessed to provide the desired control signal. For this scenario,
the Early-Late are first added and then a majority voting
operation is performed by a saturation block. To perform the
2-level transition elimination operation, the resulting signal is
multiplied by 0 if two out of the three Early-Late signals
are different from zero. The resulting phase correction signal
is then amplified by the compensation gain Kc before it is
sent to the loop filter and VCO.

Note that from this testbench all other CDR systems can
be derived. To disable the 2-level transition elimination, the
output of the “Majority voting” block should be directly
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PAM-4 phase detector : 3 threshold / with 2-level transition elimination / with majority voting
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Fig. 12. Testbench of a CDR system with a phase detector with 3 thresholds, 2-level transition elimination and majority voting.

connected to the compensation gain Kc. If addition is used
instead of majority voting, the “Majority voting” block should
be omitted. Finally, if only 1 threshold is used instead of 3
thresholds, only the middle Alexander phase detector should
be connected to the “Majority voting” block instead of the
sum of all three Alexander phase detectors. For partial 2-level
transition elimination, additional logic needs to be added to
determine if a 2-level transition is leading to a left-shifted or
right-shifted edge detection (not present on the figure).

To make a fair comparison between all the CDRs, they have
the same loop filter and VCO. The loop filter is given by (33)
with the following values for ωz , ω0 and ωp respectively :
2π ·100 KHz, 2π ·100 MHz and 2π ·10 GHz. These values are
chosen such that the CDRs have a large bandwidth and have
sufficient margin to have a stable operation. Multiple batches
of simulation runs where executed to test the jitter tolerance
of the CDRs, which are discussed in detail in the following
sections.

A. 1-threshold CDRs results - High channel bandwidth

First, we perform the two batches of jitter tolerance simula-
tions where we set the channel bandwidth to 50 GHz. For both
batches of simulations, we apply PAM-4 data with sinusoidal
jitter to each CDR which uses 1 threshold and capture the
symbol error rate. For each frequency of the sinusoidal jitter,
we increase the jitter amplitude until we achieve a symbol
error rate of 10−5.

In the first batch of simulations, we apply the same com-
pensation gain Kc, i.e.: Kc = 2 to all CDR systems, which
corresponds to the maximum gain provided by (36)–(38). In
this case the systems are identical except for the PD.

In the second batch of simulations, we set the compensation
gains Kc,(I) = 1 , Kc,(II) = 2 and Kc,(III) = 4

3 . This is
because we expect that the ratio d2

σ will be much smaller
than 1 due to the large channel bandwidth. Therefore the
compensation gain Kc of scenario (I) without 2-level transition

elimination given by (36) drops to 1 and the compensation gain
Kc of scenario (III) with partial 2-level transition elimination
given by (38) drops to 4/3. We expect that all CDR systems
now have the same transfer function.

The corresponding jitter tolerance curves when the com-
pensation gains Kc are equal, are shown by Fig. 13(a). It
shows at the lower sinusoidal jitter frequencies that the overall
gain of the phase detectors is indeed different (as indicated by
Section III). At higher sinusoidal jitter frequencies, we can see
that all systems coincide, which implies that the systems inject
about the same amount of quantization noise. If we reduce the
compensation gains Kc of the CDR without elimination and
with partial elimination, we can see in Fig. 13(b) that the over-
all gains of all systems become equal, i.e. the curves coincide
at lower sinusoidal jitter frequencies. Additionally, the injected
quantization noise of the CDR with partial elimination and
without elimination reduces, which results in a higher JTOL
at higher sinusoidal jitter frequencies.

Overall, we can conclude that a CDR without 2-level
transition elimination (with or without compensation gain) has
a better JTOL performance compared to a CDR system with
2-level transition elimination for the case of a broad bandwidth
input channel. The difference between the scenarios without 2-
level transition elimination and partial 2-level transition elim-
ination is however very small when the corresponding CDR
systems are compensated. This matches with our calculations,
depicted in Fig. 8.

B. 1-threshold CDRs results - Low channel bandwidth
Secondly, we will test the JTOL performance when we set

the channel bandwidth to 25 GHz. We expect now that the ratio
d2
σ will be much larger than 1. Therefore, the corresponding

compensation gains Kc given by (36)–(38) will all be equal.
A first observation from the simulations with a low input

channel bandwidth (and Kc equal to 2) showed that the
bandwidth of all the CDR systems increased compared to the
cases with a channel bandwidth of 50 GHz. An explanation
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Fig. 13. Simulation results of the JTOL for the different phase detectors with 1
threshold for different values for the channel bandwidth and the compensation
gain Kc: (a) has a channel bandwidth of 50 GHz, and Kc = 2 for all
scenarios, (b) has a channel bandwidth 50 GHz, and Kc is given by the
minimum values of (36)–(38) for the different scenarios, (c) has a channel
bandwidth of 25 GHz, and Kc = 1 for all scenarios. The input data rate is
50 Gbaud/s.

for this change in CDR bandwidth for the different channels
is given by observing the eye diagram in Fig. 11. For a
25 GHz input channel bandwidth, the eye width of the input
signal is decreased, making the data recovery much more
susceptible to out-band jitter in the CDR (which is always
present). Therefore, smaller jitter levels will result in the same
bit error rate (e.g.: 1e-5 in our JTOL figures). As shown by
(9), (19) and (27), a reduction of the standard deviation of the
phase error σ will result in a higher pseudo-linear gain, which
in turn increases the CDR bandwidth.

In order to have a similar CDR bandwidth as for the
simulation results with a channel bandwidth of 50 GHz, the
compensation gain is set to 1 for all scenarios. The resulting
JTOL simulation curves are shown in Fig. 13(c). Here, we
can see that the scenario without 2-level elimination has a
far worse jitter tolerance compared to the other scenarios.
This can be explained by observing the large increase in
injected quantization noise in Fig. 8. Due to the large injected
quantization noise, the performance at low jitter frequencies
is degraded and the curves for the different scenarios do
not coincide. Note however that for all scenarios the corner
frequency of the jitter tolerance curves are equal indicating
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(c)

Fig. 14. Simulation results of the JTOL for the different phase detectors with 3
thresholds for different values for the channel bandwidth and the compensation
gain Kc: (a) has a channel bandwidth of 50 GHz and Kc = 1 for all scenarios,
(b) has a channel bandwidth of 50 GHz and Kc is given by (51)–(54) for the
different scenarios, (c) has a channel bandwidth of 25 GHz and Kc = 1/2
for all scenarios. The input data rate is 50 Gbaud/s.

that the CDR transfer functions are equal. Furthermore, the
scenarios with 2-level elimination and with partial 2-level
elimination coincide, as expected from Fig. 8.

C. 3-threshold CDRs results - High bandwidth channels

The same simulation are performed for the CDR implemen-
tations which use phase detectors with three thresholds. For the
first batch of simulations we set the bandwidth of the channel
to 50 GHz and we do not include any compensation gain ( Kc

= 1 for all scenarios). This also corresponds to the maximum
value of the compensation gain Kc given by (47)–(50). The
systems are identical except for the phase detector.

The results from the jitter tolerance simulation are shown
by Fig. 14(a). The CDR systems with a phase detector that use
2-level transition elimination have lower jitter tolerance at the
lower sinusoidal jitter frequencies, indicating that the intrinsic
gain of the phase detector is lower. Additionally, the use of
majority voting also reduces the gain of the phase detector
compared to systems which use addition in the phase detector.

From these simulation results, we can fit the corresponding
compensation gains Kc, which need to be introduced to make
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the bandwidth of the CDR systems equal:

Kc,(IV ) = 1 (51)

Kc,(V ) =
Kn,(IV )

Kn,(V )
=

2

3
(52)

Kc,(V I) =
Kn,(IV )

Kn,(V I)
=

2

5
(53)

Kc,(V II) =
Kn,(IV )

Kn,(V )
= 0.9 (54)

Note that these compensation gains Kc for a sinusoidal input
jitter are almost all equal to the lower analytical limits of (47)–
(50) derived for Gaussian input jitter.

The JTOL simulations for the compensated 3-threshold
phase detectors are shown in Fig. 14(b). As desired, the curves
coincide for the lower sinusoidal jitter frequencies, indicating
that the transfer functions of all the systems are equal. We
can however notice that the systems using 2-level transition
elimination have a lower jitter tolerance at higher sinusoidal
jitter frequencies due to a higher quantization noise injection
(see Fig. 8 for d2σ < 3). Furthermore, the use of majority voting
in the phase detector has no impact on the jitter tolerance when
the systems have the same transfer function.

The compensated 3-threshold phase detectors of Fig. 14(b),
can be compared to the compensated 1-threshold phase detec-
tors shown in Fig. 13(b), because the overall equivalent phase
detector gains K ′n are all approximately equal to 1

2σ

√
2
π .

D. 3-threshold CDRs results - Low bandwidth channels

Finally, we perform a batch of simulations to compare the
JTOL for CDR systems with 3 thresholds and with a low
bandwidth channel.

Identical to the low bandwidth channel case for CDR sys-
tems with 1 threshold, we expect that the ratio d2

σ will be much
larger than 1. Therefore, the corresponding compensation gains
Kc given by (47)–(50) will all be equal. Furthermore, the
injected quantization noises (shown in Fig. 8) are also all
equal. Therefore we should not see any difference in the JTOL
and the simulation results should coincide. Fig. 14(c) confirms
our calculations and expectations. Note that similar to the
CDR systems with 1 threshold, the compensation gains for all
scenarios are now all set to 1/2 to make the CDR bandwidths
for the low bandwidth channels equal to the CDR bandwidths
for the high bandwidth channels.

E. Threshold level variations

To further study the validity of our observations, similar
simulations as the ones shown in Fig. 14 were performed
with up to 10% deviations on the comparator threshold levels.
Also in the presence of this non-ideal effect, it was found
that all conclusions remain valid: i.e. for the case with three
thresholds, it is better not to eliminate the 2-level transitions.

VII. CONCLUSION

In this work, the phase detection for clock and data recovery
for PAM-4 is investigated. For the case where the phase

detection is based on 1 threshold levels, we have proven that it
is always better to perform partial 2-level transition elimina-
tion compared to the traditional 2-level transition elimination.
Additionally, it is beneficial to use (partial) 2-level transition
elimination when the bandwidth of the input channel is small.
However, if the bandwidth of the input channel is large, we can
achieve a better jitter tolerance if we do not perform 2-level
transition elimination. For the case where the phase detection
is based on 3 threshold levels, contrary to the established
common practice, we have demonstrated that 2-level transition
elimination is not needed for correct operation of the overall
phase detector. If the bandwidth of the input channel is large, it
is even better to avoid 2-level transition elimination to achieve
less quantization noise injection and obtain a higher jitter
tolerance. Finally, the use of majority voting does not have
a significant impact on the jitter tolerance. These results are
backed by analytical calculations and computer simulations.

APPENDIX

A. Calculations: Scenario (IV)

For the scenario shown in trace (IV) of Fig. 10, the sub-
describing functions gains are given by:

Kn,1-level = Kn,3-level =
1

σ

√
2

π
(55)

Kn,2-level = 0 (56)

The variance for the quantization noise σ2
q is given by:

σ2
q = E

[
φ2u
]
−K2

nE
[
φ2e,n

]
=

1

2
− 1

2π
(57)

B. Calculations: Scenario (V)

For the scenario shown in trace (V) of Fig. 10, the sub-
describing functions gains are given by:

Kn,1-level = Kn,3-level =
1

σ

√
2

π
(58)

Kn,2-level =
2

σ
N
(
d2
σ

)
(59)

The variance for the quantization noise σ2
q is given by:

σ2
q = E

[
φ2u
]
−K2

nE
[
φ2e,n

]
(60)

= E
[
φ2u
]
−

(
1

2

(√
2

π
+N

(
d2
σ

)))2

(61)

for which the variance of φu is determined by:

E
[
φ2u
]

=
∑
φu

Prob [φu]φ2u (62)

= Prob [φu = 1] 12 + Prob [φu = −1] (−1)2 (63)
= Prob [1-level] + Prob [3-level] +

Prob [2-level] · Prob [|φe,n| > d2|2-level] (64)

= 1− 1

2
Φ

(
d2
σ

)
(65)
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C. Calculations: Scenario (VI)

For the scenario shown in trace (VI) of Fig. 10, the sub-
describing functions gains are given by:

Kn,1-level =
1

σ

√
2

π
(66)

Kn,2-level =
4

σ
N
(
d2
σ

)
(67)

Kn,3-level =
1

σ

√
2

π
+

4

σ
N
(
d3
σ

)
(68)

The variance for the quantization noise σ2
q is given by:

σ2
q =E

[
φ2u
]
−K2

nE
[
φ2e,n

]
(69)

=E
[
φ2u
]
−

(
1

2

(√
2

π
+ 2N

(
d2
σ

)
+N

(
d3
σ

)))2

(70)

for which the variance of φu is determined by:

E
[
φ2u
]

=
∑
φu

Prob [φu]φ2u (71)

= Prob [1-level]
+ Prob [3-level] · Prob [|φe,n| < d3|3-level]
+ 4 · Prob [2-level] · Prob [|φe,n| > d2|2-level]
+ 9 · Prob [3-level] · Prob [|φe,n| > d3|3-level]

(72)

=
9

2
− 2Φ

(
d2
σ

)
− 2Φ

(
d3
σ

)
(73)

D. Calculations: Scenario (VII)

For the scenario shown in trace (VII) of Fig. 10, the sub-
describing functions gains are given by:

Kn,1-level =
1

σ

√
2

π
(74)

Kn,2-level = 0 (75)

Kn,3-level =
1

σ

√
2

π
+

4

σ
N
(
d3
σ

)
(76)

The variance for the quantization noise σ2
q is given by:

σ2
q = E

[
φ2u
]
−K2

nE
[
φ2e,n

]
(77)

= E
[
φ2u
]
−

(
1

2

(√
2

π
+N

(
d3
σ

)))2

(78)

for which the variance of φu is determined by:

E
[
φ2u
]

=
5

2
− 2Φ

(
d3
σ

)
(79)
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