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Abstract—Spectral refinement (SR) offers a computationally in-
expensive means of generating a refined (higher resolution) signal
spectrum by linearly combining the spectra of shorter, contiguous
signal segments. The benefit of this method has previously been
demonstrated on the problem of fundamental frequency (F0)
estimation in speech processing – specifically for the improved
estimation of very low F0. One drawback of SR is, however,
the poorer detection of voicing onsets due to the Heisenberg-
Gabor limit on time and frequency resolution. This may also
lead to degraded performance in noisy conditions. Transitioning
between long- and short-time windows for the spectral analysis
may offer a good trade-off in these situations. This contribution
presents a method to adaptively switch between short- and long-
time windows (and, correspondingly, between the short-term and
the refined spectrum) for voicing detection and F0 estimation. The
improvements in voicing detection and F0 estimation due to this
adaptive switching is conclusively demonstrated on audio signals
in clean and corrupted conditions.

Index Terms—spectrum computation, fundamental frequency
estimation, speech enhancement, DFT, spectral refinement

I. INTRODUCTION

Audio and speech enhancement algorithms usually operate
on sub-band representations of the signals [1], [2]. These are
obtained by transforming overlapped, segmented (windowed)
time-frames of the signals into the frequency domain us-
ing filterbanks. The parameters for the frequency (sub-band)
transformation are generally selected to offer a good trade-
off between frequency resolution and output latency. However,
the windowing of the input frames before computing the sub-
band representation introduces frequency overlap between the
signals in adjacent sub-bands. Consequently closely separated
harmonics occurring in voiced segments, cannot be easily
separated. Thus, the compromise is usually detrimental to
the performance of algorithms exploiting the fundamental
frequency (F0) of speech, especially when F0 is low. Such
algorithms include, among others, approaches that exploit
the properties of speech for explicitly boosting the speech
harmonics in voiced segments [3]–[5] and for restoring the
phase consistency [6]. For such approaches, a reliable detection
of voiced/unvoiced segments and an accurate estimation of the
fundamental frequency F0 is of paramount importance. Poor
voiced/unvoiced detections and inaccurate F0 estimates lead
to annoying, audible artefacts in the enhanced speech, and

degrades the overall performance of the enhancement schemes.
Poor spectral resolution can also affect the performance of F0

estimation approaches used, e.g., in [7], [8].

The spectral leakage and aliasing effects can be ameliorated
by increasing the size of the data window. However, this leads
to a larger overall delay in the signal path and as delay restric-
tions for hands-free telephony and in-car communications are
strict, a longer data-window often means that these restrictions
can not be fulfilled anymore [9], [10]. In most hands-free
systems, therefore, the analysis and synthesis filterbanks and
overlap-add or overlap-save based schemes that satisfy the
different requirements (delay in signal path, aliasing properties,
computation complexity, etc.) are tried and proven (legacy)
implementations and can not be easily changed. Hence, the
improved or higher-resolution spectrum must be computed on
a separate data buffer for use in the analysis. A straightforward
solution is, thus, to buffer the signal to the desired (longer)
length and then compute the sub-band representation on this
buffer. This requires, however, an additional implementation
of the higher-order sub-band analysis and, consequently, addi-
tional computational cost.

In [11], the method of spectral refinement (SR) was first
proposed, where the high-resolution spectrum corresponding
to the use of a higher-order DFT was obtained by a linear
combination of the current and preceding frames of the low-
resolution short-term DFT spectra. This approach was shown
to have the following advantages over the straightforward alter-
native: (a) it is computationally significantly less expensive; (b)
it can be configured to produce either the full, high resolution
spectrum or only compute the refined spectrum for a subset
of desired frequencies – leading to a further reduction in
computational expense, without compromising on the feature-
extraction performance. This approach was generalised and
further extended to the case of polyphase filterbanks in [12]
and the benefit of this extension for the case of F0 estima-
tion was demonstrated in [13]. However, a shortcoming of
using a limited-size data-window is the restriction imposed
by the Heisenberg-Gabor limit (see e.g. [14]) namely, the
impossibility of sharply localising a signal simultaneously in
the temporal and spectral domain. For voicing detection and



F0 estimation, when the voicing is sustained the temporal
resolution is of less consequence and we benefit from the use of
a longer data-window for more accurate F0 estimation (better
frequency resolution). However, for voicing onsets, since they
are typically preceded by silence/unvoiced speech, using a
long data-window generally gives a delay of several frames
(depending on the overlap chosen) before voicing is detected.
The use of a short data window is indicated in this case.
Thus, the choice of a long or short data window should be
made depending on whether we expect sustained voicing or
not. In this paper we propose a method to switch adaptively
between the short-term and the refined spectra for improved
voicing onset detection and analyse the benefit of such adaptive
switching compared to the case of always using a short term
spectrum or the refined spectrum.

The rest of the paper is structured as follows: we first briefly
describe the spectral refinement approach. Next, we indicate
the problem with long data windows (i.e., using the refined
spectra) and present our solution (adaptive switching). We then
evaluate the proposed method on clean and corrupted speech
and present our conclusions. Whereas we consider here the
sub-band decomposition by the use of the discrete Fourier
transform, the results may also be extended to the case of
filterbanks (e.g. [12]).

II. SPECTRAL REFINEMENT (SR)
Let y(`) be the discrete time-domain signal under con-

sideration, obtained at a sampling frequency Fs. The short-
term spectrum of this signal, obtained from an N -point DFT
on windowed, overlapped signal segments, can be written
as Y

(
n
)

=
[
Y
(
0, n
)
, Y
(
1, n
)
, . . . , Y

(
N − 1, n

)]T
. In this

representation, Y
(
k, n

)
corresponds to the complex spectral

amplitude of the signal at frame n and the k-th discrete
frequency fk = kFs/N . The idea behind spectral refinement
is, then, to obtain the high-resolution spectrum Ỹ

(
n
)

=[
Ỹ (0, n), ..., Ỹ (Ñ − 1, n)

]T
, (Ñ = IN , I ∈ {2, 3, ...}) by

a linear combination of successive N -point short-term spectra
Y(n), Y(n−1),. . . ,Y(n−L) of size N , where L is termed the
history or memory for the refinement. This can be expressed
mathematically as:

Ỹ(n) = S
[
YT (n),YT (n− 1), . . . ,YT (n− L+ 1)

]T
, (1)

where S ∈ CÑ×LN is the refinement matrix. It was shown
in [11] that, by choosing the windows and frameshift (hop
size) appropriately, a sparse matrix S is obtained, whereby
computing Ỹ(n) by (1) is computationally significantly less
expensive than computing it by a DFT on the Ñ -point time-
domain signal. Figure 1 illustrates this sparse nature of the
SR matrix. Further, the spectral refinement matrix can also be
configured to produce the refined spectrum only for a subset
of desired frequencies within the high-resolution spectrum –
further reducing the computational cost. These properties make
spectral refinement particularly interesting for speech process-
ing systems with a legacy analysis/synthesis framework (and,
thereby, with a fixed resolution) since it makes an arbitrary
frequency resolution possible without introducing additional
latency or significant computational overhead.

(a)
Amplitude values of the SR matrix (N = 512 → Ñ = 1024).
The y-axis indicates the frequency supporting points in the higher
resolution spectrum.

(b) Amplitude values of a particular row of the SR matrix above. Note
that very few values are significant.

Fig. 1. Spectral refinement matrix for doubling the resolution from N = 512
to Ñ = 1024. The overlap between two adjacent frames in the short-time
spectral analysis is 256 samples, leading to L = 3. This configuration yields
an Ñ × LN = 1024× 1536-dimensional S, which is highly sparse.

III. VOICING DETECTION AND F0 ESTIMATION WITH
REFINED SHORT-TERM SPECTRA

There exists a broad variety of algorithms for estimating the
fundamental frequency of a speech signal, such as the analysis
in the cepstral domain [15], Bayesian approaches [8], or short-
term auto-correlation based schemes [16].

For the purpose of illustration we consider, here, the latter
approach as presented in [11], where the auto-correlation
function is derived from the power-spectral density (Ψ(k, n))
of the signal. When computing the Ψ(k, n) on the refined
spectra Ỹ(k, n), Ỹ

(
n
)

is first obtained (for the desired subset of
frequencies) by applying SR as in (1) to the short-term spec-
tra Y

(
n
)
. The power spectral density (PSD) is subsequently

approximated by the periodogram:

Ψ̂ỹỹ(k, n) = |Ỹ
(
k, n

)
|2 . (2)

This estimate is subsequently divided by the spectral envelope
Ψỹỹ(k, n), which can be obtained, e.g., by the LPC [2], [17]:

◦
Ψỹỹ(k, n) =

Ψ̂ỹỹ(k, n)

Ψỹỹ(k, n)
. (3)

This operation results in the power spectral estimate of the so-
called excitation signal which, in a voiced segment, consists



primarily of the spectral peaks at F0 and its harmonics. Trans-
forming

◦
Ψỹỹ(k, n) from (3) into the time-domain, we obtain

an estimate of the short-term auto-correlation function (ACF)
r̂ỹỹ(m,n), for different lags m. From this, the fundamental
frequency F0(n) is determined by the position of the maximum
within a selected range of lag-indices:

m0(n) = argmax
m:m∈{mlow,mhigh}

{
r̂ỹỹ(m,n)

}
,

and F0(n) =
Fs

m0(n)
. (4)

The limits mlow and mhigh of the allowable range of lag-indices
are determined by the typical range of F0 for human voice
(between 50 Hz and 300 Hz).

The auto-correlation function provides an additional feature
to indicate the reliability of the voicing detection – the nor-
malised ACF-value at m0(n):

ρ̃(n) =
r̂ỹỹ(m0(n), n)

r̂ỹỹ(0, n)
. (5)

Then, if the signal segment is perfectly periodic (consistent,
sustained voicing), we can expect ρ̃(n) ≈ 1. Thus, large values
of ρ̃(n) in (5) may be interpreted as a high probability that
the particular frame is voiced. With this interpretation, F0

estimates are only considered for frames n where the ρ̃(n)
exceeds a predefined threshold value, and such frames are
demarcated as voiced frames. Similarly, the F0 and the voicing
feature ρ(n) are computed for the short-term spectrum Y(k, n).

IV. LIMITATION OF LONG DATA-WINDOWS

Figure 2(a) depicts a short data frame and the corresponding
longer frame. The normalised auto-correlation for both these
data windows is depicted in Figure 2(b). From Figure 2, the
limitation of always using a long data window is evident when
speech/voicing onsets occur. Another possible limitation occurs
for noise corrupted speech where, in highly dynamic situations,
always using a long data window for the F0 and voicing
estimates may not be advantageous. We suggest, therefore, a
switching between the different window-lengths, picking the
data-window most suitable at a particular frame.

V. ADAPTIVE SWITCHING OF WINDOWS

A straightforward approach to switch between the data
windows (and, correspondingly, between the choice of the
original and the refined spectrum) would be to select the data-
window with the highest evidence of voicing. While this can
be done by a straightforward comparison of ρ(n) and ρ̃(n) as:

Choose

{
Ỹ(n) if ρ̃(n) ≥ ρ(n) ,

Y(n) otherwise ,
(6)

this is not a good idea because the range of ρ(n) and ρ̃(n)
are quite different, with ρ ≤ ρ̃ in general, even in the presence
of sustained voicing. This can be seen in the scatterplot in
Figure 3, which plots ρ against ρ̃ for a set of voiced segments
extracted from clean speech. It may be seen from Figure 3 that
while ρ̃ gets close to 1 (likely in periods of sustained voicing),
ρ is thresholded at a lower value for the same frames.

(a) A long and short data frame, at beginning of a voicing region.

(b)
Normalised auto-correlation function for the two data windows. The
voicing indication from the short window ρ(n) ≈ 0.70 is reliable
whereas that for the long window ρ̃(n) ≈ 0.25 is significantly less.

Fig. 2. A long and short data frame at the onset of voicing. The periodic
component is well captured in the short frame, but a similar analysis of the
longer data window would indicate a less-reliable detection of voicing. Here,
even the F0 estimate in the case of the long window would have a larger error
compared to the short window (note the unambiguous peak in the ACF of the
short window as compared to the noisier peak from the long window).

Thus, a direct comparison of the voicing feature as in (6)
would tend to bias the decision in favour of long windows –
which is undesirable. In fact, in terms of voicing indication,
a ‘lower’ ρ of e.g. 0.75 would be a stronger indication of
voicing compared to ρ̃ of the same value. We therefore propose
to first individually transform the voicing feature for each
case into a measure that is directly comparable. This can be
easily achieved by designing a logistic regression classifier (see
e.g., [18]) separately for ρ and ρ̃.

A. Logistic regression on ρ and ρ̃ for probability of voicing

The logistic (or logit) model can be used to model the
probability of a certain class in a binary classification problem,
given the discriminatory input feature. For a general binary
classification problem (i.e., ‘Class 0’ vs ‘Class 1’) based on
an input feature vector x, the output of a logistic regression
classifier would be given as:

L(x) =
1

1 + exp(−wTx)
∈
[
0, 1
]
, (7)

where w contains the weights of the trained model. The
convention is to interpret the output L(x) as the probability



Fig. 3. Comparison of the voicing features when using the normal (Y) or
the refined (Ỹ) spectra for detecting voicing and F0. The voicing feature ρ̃
corresponding to the refined spectrum (i.e., with the long window) is almost
always higher than ρ, which corresponds to using the original short-term
spectrum (i.e., short data-window). Whereas ρ̃ ≈ 1 during sustained voicing,
ρ seems to saturate at a lower value. Thus, using ρ and ρ̃ directly in (6) would
bias the decision in favour of the long window.

that the data-point x belongs to Class 1. Thus, we can also
write: L(x) = P

(
Class 1

∣∣x).
In our case, the input feature is ρ(n) (resp. ρ̃(n)). The aim

is to determine whether the data frame that produced this value
of ρ(n) (resp. ρ̃(n)) is voiced (Class 1) or unvoiced (Class 0).
The logit model then has two parameters and, may be written
as:

L(ρ(n)) = P
(
voiced

∣∣ρ(n)
)

=
1

1 + exp
(
− w0 − w1ρ(n)

) ,
(8)

when computed on the voicing feature of the original spectrum
(short data window), and as:

L̃(ρ̃(n)) = P
(
voiced

∣∣ρ̃(n)
)

=
1

1 + exp
(
− w̃0 − w̃1ρ̃(n)

) ,
(9)

when using the voicing feature from the refined spectrum.
The models are individually trained using annotated data

from a high-quality pitch estimation/tracking database such
as [19]. Figure 4 shows the scatterplot obtained when predict-
ing the probability of voicing using the logit model. It may
be seen that the distribution is now more equitable, allowing
for a direct comparison of the voicing reliability using the
original and the refined spectrum. The voicing probabilities,
thus derived, may now be used in (6) to effect a choice between
using the the original spectrum or the refined spectrum for
voicing detection and F0 estimation and we can reformulate (6)
as:

Choose

{
Ỹ(n) if P

(
voiced

∣∣ρ̃(n)
)
≥ P

(
voiced

∣∣ρ(n)
)
,

Y(n) otherwise .
(10)

Fig. 4. Comparison of the voicing probabilities using the logit models for
the normal (Y) and the refined (Ỹ) spectra. The distribution now shows no
bias towards one or the other approach and the reliability indicators reach
approximately 1 in both cases. The voicing probability, thus derived, may
now be used in (6) to effect a choice between using the the original spectrum
or the refined spectrum for voicing detection and F0 estimation.

Further, a common threshold may now be set on the probabil-
ities to avoid false voicing detections. This threshold can be
set as an application dependent trade-off between acceptable
false-alarms and missed detections.

VI. EXPERIMENTAL EVALUATION

To evaluate the benefit of the proposed adaptive switch-
ing within the spectral refinement framework, we use the
PTDB-TUG database [19] – a high-quality audio database,
with reliable annotations, developed for testing and evaluating
pitch estimation algorithms. The sampling frequency used is
Fs = 16 kHz and the spectral analysis parameters are fixed to
N = 512 with a frameshift of 256 samples. The signals are
windowed by a periodic Hann window before the DFT.

The spectral refinement matrix is generated as proposed
in [11] and applied to the short-term spectrum as described
in II. To enable a fair comparison, the SR matrix is designed
such that the refined spectrum is computed for the same
frequencies as the original spectrum. However, effectively
Ñ = 1024 data points are considered which, in conjunction
with the chosen frameshift of 256 samples leads to a memory
of L = 3 frames in the SR matrix.

The parameters of the logistic regression classifier are
trained on a gender-balanced subset of 20 (clean) sentences
from male and female speakers. These parameters are sub-
sequently fixed for the further analysis. The voicing detection
threshold for the logit outputs was fixed at 0.6, yielding a 10 %
false-alarm rate on the training data.

The evaluation is carried out on a total of 500 sentences
(gender-balanced) on clean as well as corrupted conditions.
Since one application area of this research is automotive, for
the noise we have selected the car and traffic noises from the



Original Refined Adaptive
spectrum (Y) spectrum (Ỹ) switching

Clean FA 11.0 % 10.9 % 15.9 %
TP 80.9 % 85.2 % 91.6 %

0 dB FA 11.0 % 13.89 % 20.4 %
TP 72.6 % 81.0 % 88.27 %

10 dB FA 12.6 % 13.2 % 19.4 %
TP 80.5 % 85.3 % 91.8 %

TABLE I
VOICING DETECTION PERFORMANCE USING THE ORIGINAL SPECTRUM,

THE REFINED SPECTRUM AND THE PROPOSED ADAPTIVE SWITCHING
BETWEEN THE TWO.

ETSI database [20] and consider mixing conditions of 0 dB and
10 dB signal-to-noise ratios. The performance is evaluated in
terms of the voicing detection and in terms of the F0 estimation
error.

A. Voicing detection

For the voicing detection accuracy, the false-alarm (FA) and
true-positive (TP) rates are presented. False-alarm means that
the algorithm under test predicts voicing where no reference
pitch is available. The results are summarised in Table. I.

B. F0 estimation accuracy

The voicing detection performance indicates the capability
of detecting voicing, independent of the actual F0 estimate.
Metrics evaluating F0 estimation accuracy, therefore, bench-
mark performance along an orthogonal dimension and, to-
gether, can give a more complete picture of the algorithms’
potential. The accuracy is typically described using two met-
rics: the gross error rate and the fine error.

The gross error rate indicates how often the pitch estimation
algorithm produces a result that is widely different from the
ground truth. The threshold for indicating an error as a gross
error can be an absolute value or can be specified as a
percentage of the deviation from the ground truth. We opt for
the former definition for the following reason: since we operate
in the discrete frequency domain, pitch estimates that resolve
to the same discrete frequency bin as the ground truth will,
in general, be accurate enough for most applications (speech
enhancement, phase restoration). Thus, defining a gross error
as a percentage of the ground truth will unfairly penalise
estimation errors for low F0, even though the effect of such
errors in a practical application would be negligible. In our
case, since the frequency resolution for the chosen DFT size
(N = 512) is ≈ 30Hz, we choose this value to define the gross
error threshold. This way, frames with gross error resolve the
estimated F0 to a discrete frequency at least one bin removed
from the true value – which strongly impacts further processing
that depends on the pitch estimate. We believe this provides a
more indicative result. The gross-error rate (GR) is, therefore,
presented as the percentage of detected voiced frames where
the F0 estimation error is larger than the set threshold:

GR =

∑
n In

total voiced frames
, (11)

where In =

{
1 |F̂0(n)− F0(n)| > 30Hz ,
0 otherwise ,

Original Refined Adaptive
spectrum (Y) spectrum (Ỹ) switching

Clean GR(%) 4.0 % 3.4 % 2.7 %
FE(Hz) 2.1 3.72 3.57

0dB GR(%) 10 % 12.4 % 9.1 %
FE(Hz) 2.4 3.9 3.73

10dB GR(%) 5.7 % 4.9 % 3.7 %
FE(Hz) 2.2 3.8 3.6

TABLE II
F0 ESTIMATION ACCURACY WHEN USING THE ORIGINAL SPECTRUM, THE
REFINED SPECTRUM AND THE PROPOSED ADAPTIVE SWITCHING BETWEEN

THE TWO.

and F̂0(n) is the estimated fundamental frequency by any
method whereas F0(n) is the ground truth value.

The fine error (FE) is the average error in the F0 estimate for
frames where the error is within the gross-error threshold. This
metric then indicates the average accuracy of the estimation
error in frames where the estimate is close to the ground truth:

FE =

∑
n |F̂0(n)− F0(n)|Jn∑

n Jn
, (12)

where Jn =

{
1 |F̂0(n)− F0(n)| ≤ 30 ,

0 otherwise .

The results are summarised in Table II.

VII. DISCUSSION

The experimental results for the voicing detection on clean
speech indicate that always using the refined spectrum can pro-
vide a better detection. This is in line with the previous research
on SR. However, that there is still potential for improvement
is indicated by the results when using the proposed adaptive
switching scheme – which offers a significant improvement in
the true-positive rate with an acceptable increase in the false-
alarm rate.

In noisy conditions, the improvement in the positive detec-
tion rate offered by the refined spectrum and the proposed
adaptive switching is even more marked compared to the
original spectrum, at the cost of a small increase in the
false-alarm rate. The increase in FA is, however, more than
compensated by the improvement in the true positive rate for
these situations.

The benefit of the proposed adaptive switching scheme,
however, can best be appreciated on the F0 estimation accu-
racy. Whereas in clean and high SNR conditions, using the
refined spectrum leads to a lower gross-error rate compared
to using the original spectrum, the performance degrades in
low SNR conditions. This confirms our hypothesis that the
use of the refined spectrum (with the correspondingly longer
data window) may not always be beneficial. Switching between
the original and the refined spectrum in the proposed adaptive
manner yields the lowest gross error rate for all conditions!

The fine error for all approaches is within the same order
of magnitude. The slightly higher fine error when using the
refined spectrum is to be expected. The refined spectrum
effectively uses a longer data window and thus averages the
periodicity of the voiced segment over a larger interval, which
smooths out the estimate for segments with quickly varying



F0. The original spectrum, which uses a shorter window, better
captures these dynamics and leads, consequently, to a smaller
FE. The proposed method, with the adaptive switching, has an
FE that is in between these two, as expected.

VIII. CONCLUSIONS

Spectral refinement is a computationally inexpensive way to
improve spectral resolution by linearly combining successive
short-term spectra. Thereby we can base the spectral analysis
for subsequent processing on a long data window, without com-
promising on latency and without significant computational
overhead. This has been previously applied to the problem of
F0 estimation and has been shown to be beneficial especially
in the estimation of very low F0. However, using the refined
spectrum leads to poorer detection of voicing onsets (due to the
Heisenberg-Gabor limit) and a poorer performance in low SNR
conditions. Switching adaptively between the original short-
term spectrum and the refined version provides a good trade-off
in these situations.

The switching logic is based on the reliability of voicing
which, in turn, is based on the maximum of the normalised
auto-correlation within the range of time-lags corresponding to
expected periodicity for speech. However, it was demonstrated
that this feature cannot be used directly for comparing the
estimates from the refined and original spectra, since it would
bias the decision towards the refined spectrum. Hence, we
proposed the use of logistic regression classifiers, individually
trained for each spectrum, to transform the voicing feature into
a probability of voicing. These probabilities are now directly
comparable and can be used to switch between the F0 estimates
from the refined and original short-term spectra.

The benefit of the proposed adaptive switching was con-
clusively demonstrated on speech data in a variety of clean
and corrupted conditions. In terms of voicing detection perfor-
mance, adaptive switching provides a significant improvement
in the true-positive rate, even in low SNR conditions, compared
to using either of the individual spectra exclusively. This
improvement comes at the cost of a small increase in the
false-alarm rate, which may be deemed acceptable. In terms
of the F0 estimation accuracy, the adaptive switching method
provides the best result in terms of gross-error rate while the
fine error is of the same order of magnitude for all approaches.

Lastly, we note that while we have demonstrated the results
on a specific F0 estimator, the discussion and results retain their
validity for most state-of-the-art F0 estimators, since these are
(implicitly or explicitly) based on the short-term spectra of the
signals.
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