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A key aspect of human cognitive flexibility concerns the ability to convert complex symbolic instructions into 

novel behaviors. Previous research proposes that this transformation is supported by two neurocognitive states: 

an initial declarative maintenance of task knowledge, and an implementation state necessary for optimal task 

execution. Furthermore, current models predict a crucial role of frontal and parietal brain regions in this pro- 

cess. However, whether declarative and procedural signals independently contribute to implementation remains 

unknown. We report the results of an fMRI experiment in which participants executed novel instructed stimulus- 

response associations. We then used a pattern-tracking procedure to quantify the contribution of format-unique 

signals during instruction implementation. This revealed independent procedural and declarative representations 

of novel S-Rs in frontoparietal areas, prior to execution. Critically, the degree of procedural activation predicted 

subsequent behavioral performance. Altogether, our results suggest an important contribution of frontoparietal 

regions to the neural architecture that regulates cognitive flexibility. 
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. Introduction 

Instruction following constitutes a powerful instance of human cog-

itive flexibility. The greater specificity and efficiency in the transmis-

ion of task procedures compared to trial-and-error or reinforcement

earning make it a distinctive skill that separates humans from other

pecies ( Cole et al., 2013 ). While recent years have witnessed substantial

rogress in our understanding of instruction following, the precise neu-

al coding schemes that organize brain activity during the rapid trans-

ormation of abstract instructed content into effective behavior are still

oorly understood. 

Previous behavioral studies have reported an intriguing signa-

ure of instruction processing, namely, a rapid configuration of in-

tructed content predominantly towards action ( González-García et al.,

020 ; Liefooghe et al., 2012 , 2013 ; Liefooghe and De Houwer, 2018 ;

eiran et al., 2012 , 2015a ). This signature separates instruction im-

lementation from related work in task switching and working mem-

ry: although preparation for action is not unique to novel instruc-

ions, in other contexts repetitive task execution makes it possible to

etrieve specific long-term memory traces that allows for successful ex-

cution ( Qiao et al., 2017 ; Zhang et al., 2013 ). In instruction imple-

entation, however, long-term memory traces are reasonably ruled out

 Liefooghe et al., 2012 ; Meiran et al., 2015a ; Muhle-Karbe et al., 2016 ),

nd rather, an efficient proactive configuration can be achieved with-
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ut prior practice. This configuration has a profound impact on brain

ctivity. The intention to execute an instruction induces automatic mo-

or activation ( Everaert et al., 2014 ; Meiran et al., 2015b ) and specific

scillatory features ( Formica et al., 2020b ), engages different brain re-

ions to coordinate novel stimuli and responses ( Demanet et al., 2016 ;

onzález-García et al., 2017 ; Hartstra et al., 2011 ; Palenciano et al.,

019b , 2019a ), and alters the neural representation of instructed con-

ent in control brain regions, primarily, the frontoparietal network

FPN) ( Bourguignon et al., 2018 ; Muhle-Karbe et al., 2017 ). These and

ther findings propose a crucial role of the FPN in the rapid access to and

onfiguration of an implementation stage, a highly efficient task readi-

ess state that support successful execution ( Bourguignon et al., 2018 ;

onzález-García et al., 2017 ; Hartstra et al., 2011 ; Muhle-Karbe et al.,

017 ; Palenciano et al., 2019b , 2019a ; Woolgar et al., 2015 ). 

To account for these findings, prominent theoretical models

 Brass et al., 2017 ) put forward a serial-coding hypothesis of frontopari-

tal function, a multi-step process in which the FPN first encodes in-

tructed information into a declarative code, that is, a persistent rep-

esentation of the memoranda conveyed by the instruction. When this

nformation becomes behaviorally relevant, FPN declarative represen-

ations are transformed into an implementation state that is optimized

or specific task demands ( Brass et al., 2017 ). Current models propose

hat such implementation state consists primarily of procedural codes,

 proactive binding of relevant perceptual and motor information into
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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 compound representation that leads to the boost of relevant action

odes related to behavioral routines ( Muhle-Karbe et al., 2017 ). 

However, the characterization of neural coding during implemen-

ation remains unclear, primarily due to the fact that previous analyt-

cal approaches were unable to track representational formats of spe-

ific nature. Previous work thus identified some properties of the FPN

uring the implementation of novel instructions, such as enhanced de-

oding of stimulus ( González-García et al., 2017 ; Muhle-Karbe et al.,

017 ) and rule identity ( Ruge et al., 2019 ), or altered similarity

ithin to-be-implemented S-R associations ( Bourguignon et al., 2018 ;

alenciano et al., 2019b ). Although these results reveal unique signa-

ures of instruction implementation, they are agnostic regarding the

unctional representational state underlying such effects, that is, the ex-

ent to which they capture a contribution of procedural and declarative

ignals. Furthermore, previous approaches were not able to eliminate

he contribution of domain-general processes, such as arousal or atten-

ion, which could potentially drive some of the differences between im-

lementation and other experimental conditions. Therefore, currently,

t cannot be discerned whether such implementation state is uniquely

upported through the proposed procedural codes, or whether it addi-

ionally preserves task content in an independent, declarative format.

urthermore, the specific contribution of these two representational for-

ats to successful behavior remains unknown. 

Here, we used a canonical template tracking procedure to capture

hether different signals governed FPN activity during the prioritization

f novel instructions ( Brass et al., 2017 ). Using data from two indepen-

ent localizers that encouraged either a declarative or action-oriented

aintenance of novel instructions, we derived instruction-specific mul-

ivariate patterns of activity in declarative and procedural formats, re-

pectively. We then assessed the contribution of these canonical declar-

tive and procedural templates prior to task execution. Importantly, this

artialling logic allowed to determine the format-specific contribution

f procedural and declarative representational formats and to partial out

he contribution of domain-general processes. 

. Materials and methods 

Methods are reported, when applicable, in accordance with the Com-

ittee on Best Practices in Data Analysis and Sharing (COBIDAS) report

 Nichols et al., 2017 ). 

.1. Participants 

Thirty-two participants (mean age = 23.16, range = 19–33; 20 fe-

ales, 12 males) recruited from the participants’ pool from Ghent Uni-

ersity participated in exchange of 40 euros. They were all right-handed

confirmed by the Edinburgh handedness inventory), clinically healthy

nd MRI-safe. The study was approved by the UZ Ghent Ethics Commit-

ee and all participants provided informed consent before starting the

xperiment. Of the initial 32 participants, 3 were excluded after acqui-

ition (1 participant performed at chance during the task; 1 participant

ad an error rate of 1 in catch trials (see below); 1 participant’s within-

un head movement exceeded voxel size), resulting in a final sample

f 29 participants. Due to an incomplete orthogonalization of the cued

nd uncued S-R pairings, the first three participants were excluded from

ultivariate analyses ( n = 26). 

.2. Apparatus, stimuli, and procedure 

S-R associations were created by combining images with words that

ndicated the response finger. Each S-R association was presented just

nce during the entire experiment to prevent the formation of long-term

emory traces ( Meiran et al., 2015a ). Given this prerequisite, images of

nimate (non-human animals) and inanimate (vehicles and instruments)

tems were compiled from different available databases ( Brady et al.,

013 , 2008 ; Brodeur et al., 2014 ; Griffin et al., 2006 ; Konkle et al.,
010 ), creating a pool of 1550 unique pictures (770 animate items, 780

nanimate). To increase perceptual similarity and facilitate recognition,

he background was removed from all images, items were centered in

he canvas, and images were converted to black and white. 

The response dimension was defined by the combination of a word

 “index ” or “middle ”) and the position of the mapping in the encoding

creen. For instance, if an S-R pair containing the word “index ” was dis-

layed on the left-hand side of the screen, this informed participants

hat the correct response associated with that particular stimulus would

e “left index ”. This allowed us to have 2 mappings on screen that in-

olved the same (stimulus and) response category (e.g. index finger) but

ifferent effectors (e.g. left index finger vs right index finger). 

Importantly, even though specific S-R associations were presented

nly once throughout the experiment, they could be grouped de-

ending on the specific combination of stimulus and response dimen-

ions. Specifically, the combination of the 2 stimulus dimensions (an-

mate/inanimate items) and the 2 response dimensions (index/middle

nger) lead to 4 finger-animacy pairings: S-R 1 (animate-index), S-R

 (inanimate-index), S-R 3 (animate-middle), and S-R 4 (inanimate-

iddle). 

In the main task, each trial started with an encoding screen (5000

s) that displayed 4 S-R associations. The two mappings on the upper

alf of the encoding screen belonged to one S-R pairing, and the other

wo belonged to another S-R pairing. Immediately after the encoding

creen, a retro-cue appeared. Informative retro-cues (75% of trials) con-

isted of an arrow centered in the middle of the screen pointing either

pwards or downwards. Therefore, informative retro-cues did not se-

ect a specific S-R mapping but rather two mappings belonging to the

ame S-R pairing (e.g. “animate - index finger ”). Such grouping was

rucial for analysis purposes since it allowed us to identify the selected

-R pairing, as well as the unselected category that was initially encoded

ut could be dropped from working memory after the retro-cue. Ad-

itionally, for each trial, we identified the not presented S-R pairings,

hich would serve as empirical baseline for our template tracking anal-

sis (see below). In contrast, neutral retro-cues did not select any map-

ing. The retro-cue was displayed for 1000 ms and was followed by

 fixation point (cue-target interval; CTI), which duration was jittered

ollowing a pseudo-logarithmic distribution (mean duration = 2266 ms,

D = 1276 ms, range = [600–5000]). Directly after the CTI, a target

as on screen for 1500 ms. Target screens displayed the image belong-

ng to one of the selected mappings, prompting participants to execute

he associated response by pressing the corresponding button in an MRI-

ompatible button box. In neutral trials, the target could be the stimulus

f any of the 4 S-R encoded mappings. Additionally, in ~6% of trials, a

atch target appeared. This consisted of a new image, different from any

f the encoded stimuli, to which participants had to answer by pressing

he 4 available buttons in the response box. Catch trials were included

o ensure that participant encoded all four S-R associations and were

qually likely after an informative and a neutral retro-cue. Last, after

he target screen, a fixation point was shown between trials (inter-trial

nterval, ITI) for a jittered duration (following the same parameters as

he CTI jitter). Each trial lasted on average 12 s. The sequence of trial

vents is depicted in Fig. 1 . 

The main task was divided into 4 runs. Each run contained 51 trials

48 regular and 3 catch trials). Of the 48 regular trials, 75% contained an

nformative retro-cue, and the remaining trials displayed neutral retro-

ues. The S-R pairings selected and unselected by the retro-cue were

ully counterbalanced, resulting in 36 trials per pairing across the entire

xperiment. For instance, there were 36 trials in which Pairing 1 map-

ings were selected by the retro-cue. Of these 36 trials, in one third, the

nselected mappings (that is, mappings shown in the encoding screen

ut not selected by the retro-cue) belonged to Pairing 2, another third

o Pairing 3, and the last third to Pairing 4. Each run lasted around 10

inutes, and the main task, containing 204 trials, lasted around 40 min-

tes in total. Prior to the main task, outside of the scanner, participants

erformed a practice session with trials following the same structure
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Fig. 1. Behavioral paradigm. On each trial, participants first encoded 

four novel S-R mappings consisting in the association between an (an- 

imate or inanimate) item and a response (index or middle fingers; 

response hand defined by the position of the mapping on the screen; 

e.g. “helicopter-index ” on the left-hand side of the screen requested 

participants to press the left index if the target screen displayed a he- 

licopter). After the encoding screen, an informative retro-cue (75% of 

the trials) signaled the relevance of two of the mappings. In the re- 

maining 25% of trials, a neutral retro-cue appeared, and none of the 

mappings were cued. Last, a target stimulus prompted participants to 

provide the associated response (in this example, “right index ” finger 

press). 
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escribed above with the exception that feedback was included to help

amiliarization. The practice session was structured in blocks of 11 tri-

ls. Participants performed these blocks until they achieved at least 9

orrect responses. S-R mappings used during the practice were never

sed again. 

After the main task, participants performed two localizers to obtain

n independent canonical representation of each S-R pairing in the two

ormats of interest. The two localizers were aimed at encouraging ei-

her a primarily procedural or a primarily declarative coding of new

-Rs. Although a localizer eliciting uniquely one of these two types of

oding is hard to conceive (for instance, one could claim a declarative

epresentation of the elements of a task is required before any proce-

ural representation can emerge ( Formica et al., 2020a )), our pattern

nalysis (see below) capitalized on the specific engagement of procedu-

al and declarative strategies encouraged by each of these localizers. 

The structure of the task was almost identical in the two localiz-

rs. In both localizers, trials started with an encoding screen (2000 ms)

hat contained two mappings of the same S-R pairing, followed by an

nter-stimulus interval of jittered duration (same parameters as the jit-

ers in the main task). Importantly, in both localizers, even though the

wo encoded mappings belonged to the same S-R pairing, they specified

ifferent effectors (for instance: “if you see an elephant, press left index

nger; if you see a tiger, press right index finger), and therefore partic-

pants needed to maintain both mappings rather using other strategies,

uch as remembering 2 images and one response. 

Last, a target screen appeared (1500 ms) followed by a jittered

TI. The target screen differed in the two localizers and was inspired

y previous studies investigating the dissociation of implementing vs.

emorizing new instructions ( Liefooghe et al., 2012 ; Liefooghe and De

ouwer, 2018 ; Muhle-Karbe et al., 2017 ). In the procedural localizer,

he target consisted of a single image that prompted participants to ex-

cute the associated response. Although this configuration renders the

rocedural localizer similar to the main task, it remained different in a

rucial aspect. Whereas in the procedural localizer participants could

repare for executing one of the 2 mappings directly in the encod-

ng screen, in the main task this highly action-oriented coding format

as strategically optimal only after the selection process elicited by the

etro-cue. Since our analyses focused on this moment of the main task,

he localizer thus provided a means to test whether the selection of a

ovel S-R from working memory engaged similar procedural signals. 

The declarative localizer, in contrast to the procedural one, displayed

 memory target consisting of one image and one response finger (e.g.

eft index). Participants were trained to answer whether the displayed

apping was correct (same association as the encoded one) or incorrect

different association) by pressing both left-hand buttons (when “cor-

ect ”) or both right-hand buttons (when “incorrect ”). Therefore, in the

emorization localizer, participants never had to prepare to execute

he encoded mapping but rather just maintain its information. As in

he main task, catch trials consisted of new images, to which partici-

ants had to respond by pressing all 4 available buttons. Each trial lasted

round 8 s on average, and each localizer contained 66 trials (15 per S-R
 l  
airing + 6 catch trials), resulting in a total of 9 min per localizer. Given

hat the task demands for the procedural localizer were more similar to

he main task, this localizer was performed always before the declara-

ive localizer, which required more detailed explanation to participants.

mportantly, the nature of our template tracking approach (see below)

ccounted for any potential order confound in such analysis, since tem-

late activation is measured against an empirical within-localizer base-

ine, and not directly compared between localizers. 

All tasks were presented in PsychoPy 2 Peirce (2007) running on

 Windows PC and back-projected onto a screen located behind the

canner. Participants responded using an MRI-compatible button box

n each hand (each button box contained two buttons, on which partic-

pants placed their index and middle fingers). 

.3. Data acquisition and preprocessing 

Imaging was performed on a 3T Magnetom Trio MRI scanner

Siemens Medical Systems, Erlangen, Germany), equipped with a 64-

hannel head coil. T1 weighted anatomical images were obtained us-

ng a magnetization-prepared rapid acquisition gradient echo (MP-

AGE) sequence (TR = 2250 ms, TE = 4.18 ms, TI = 900 ms,

cquisition matrix = 256 × 256, FOV = 256 mm, flip angle = 9°,

oxel size = 1 × 1 × 1 mm). Moreover, 2 field map images (phase

nd magnitude) were acquired to correct for magnetic field inhomo-

eneities (TR = 520 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, image ma-

rix = 70 × 70, FOV = 210 mm, flip angle = 60°, slice thickness = 3 mm,

oxel size = 3 × 3 × 2.5 mm, distance factor = 0%, 50 slices). Whole-

rain functional images were obtained using an echo planar imaging

EPI) sequence (TR = 1730 ms, TE = 30 ms, image matrix = 84 × 84,

OV = 210 mm, flip angle = 66°, slice thickness = 2.5 mm, voxel

ize = 2.5 × 2.5 × 2.5 mm, distance factor = 0%, 50 slices with slice ac-

eleration factor 2 (Simultaneous Multi-Slice acquisition)). Slices were

rientated along the AC-PC line for each subject. 

For each run of the main task, 373 volumes were acquired, whereas

30 volumes were acquired during each localizer. In all cases, the

rst 8 volumes were discarded to allow for (1) signal stabilization,

nd (2) sufficient learning time for a noise cancellation algorithm (Op-

oACTIVE, Optoacoustics Ltd, Moshav Mazor, Israel). Before data pre-

rocessing, DICOM images obtained from the scanner were converted

nto NIfTI files using HeuDiConv ( https://github.com/nipy/heudiconv ),

n order to organize the dataset in accordance with the BIDS format

 Gorgolewski et al., 2017 ). Further data preprocessing was performed in

PM12 (v7487) running on MATLAB R2016b. First, anatomical images

ere defaced to ensure anonymization. They were later segmented into

ray matter, white matter and cerebro-spinal fluid components using

PM default parameters. In this step, we obtained inverse and forward

eformation fields to later (1) normalize functional images to the atlas

pace (forward transformation) and (2) transform ROIs from the atlas

n to the individual, native space of each participant (inverse transfor-

ation). Regarding functional images, preprocessing included the fol-

owing steps in the following order: (1) Images were realigned and un-

https://github.com/nipy/heudiconv
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arped to correct for movement artifacts (using the first scan as refer-

nce slice) and magnetic field inhomogeneities (using fieldmaps); (2)

lice timing correction; (3) coregistration with T1 (intra-subject regis-

ration): rigid-body transformation, normalized mutual information cost

unction; 4 th degree B-spline interpolation; (4) registration to MNI space

sing forward deformation fields from segmentation: MNI 2mm tem-

late space, 4 th degree B-spline interpolation; and (5) smoothing (8-

m FWHM kernel). Multivariate analyses were conducted on the un-

moothed, individual subject’s functional data space and results were

ater pooled across participants for region-of-interest analyses. 

.4. Experimental design and statistical analysis 

Our main task design consisted of two within-subject factors orthog-

nally manipulated: retro-cue status (informative vs. neutral) and se-

ected S-R pairing. Regarding behavioral data analyses, we used JASP

ASP Team (2018) to perform two-tail paired t-tests comparing reac-

ion times and error rates for trials with informative vs. neutral trials

collapsing across selected S-R pairing). 

.4.1. General Linear Model (GLM) estimations and mass-univariate 

nalyses 

Four GLMs were estimated for each participant in SPM. First, a GLM

as used to assess changes in activation magnitude between informative

nd neutral retro-cues during the main task. A model was constructed in-

luding, for each run, regressors for the encoding screen (zero duration),

nformative/neutral retro-cues (with duration), informative/neutral CTI

with duration), target (zero duration) and ITI interval (with duration).

rials with errors were included as a different regressor that encom-

assed the total duration of the trial. All regressors were convolved with

 hemodynamic response function (HRF). At the population level, pa-

ameter estimates of each regressor were entered into a mixed-effects

nalysis. To correct for multiple comparisons, first we identified indi-

idual voxels that passed a ‘height’ threshold of p < 0.001, and then the

inimum cluster size was set to the number of voxels corresponding

o p < 0.05, FWE-corrected. This combination of thresholds has been

hown to control appropriately for false-positives ( Eklund et al., 2016 ).

 second GLM was estimated on the non-normalized and unsmoothed

ain task data for all multivariate analyses. This GLM contained beta es-

imates that specified the cued/uncued S-R pairings during informative

etro-cues. For each participant and run, a model was built including

he following regressors: encoding (zero duration), neutral retro-cues

with duration), targets (zero duration), CTI and ITI (with duration).

or informative retro-cues, a regressor that encompassed the total du-

ation of the retro-cue was created for each S-R pairing combination

e.g. CuedPairing1_UncuedPairing2), resulting in a total of 12 regres-

ors (3 per finger-animacy pairing). Errors were included as a different

egressor encompassing the full duration of the trial. Last, a third and

ourth GLMs were performed on the non-normalized and unsmoothed

ata from the two localizers. For each localizer, we built a model that

ontained regressors for the encoding screen (zero duration), encoding-

arget interval (ISI, with duration) for each S-R pairing (total of 4 regres-

ors), target (zero duration), ITI (with duration), and errors (full trial).

s in the previous GLM, these models were not used in a population-

evel GLM and were estimated for later use in the canonical template

racking procedure. 

.4.2. Multivariate pattern analysis (MVPA) 

MVPA was performed on the beta images of the second GLM us-

ng The Decoding Toolbox ( Hebart et al., 2015 ) (v3.99). To assess the

epresentation of cued S-R pairings during implementation, we carried

ut ROI-based one-vs-one multiclass decoding of S-R pairings. In each

old of the leave-one-run-out procedure, we trained a classifier (linear

upport vector machine (SVM); regularization parameter = 1) on the

dentity of the cued S-R pairing using all informative retro-cue betas but
our (one from each class). The classifier was then tested on the remain-

ng samples. Thus, the held-out data in each cross-validation fold was

rom different experimental runs to the training data. The accuracy was

veraged across folds. Only one decoding was performed per ROI, us-

ng all voxels. To remove any potential magnitude difference between

lasses, we z-scored the values of each condition across voxels before

he analysis (therefore, each condition that entered the analysis had a

ean activation of 0 and an s.d. of 1). We then repeated the same pro-

edure but now training and testing the classifier on the identity of the

ncued S-R pairing. 

Statistics of decoding analyses followed a permutation approach

ombrisson and Jerbi (2015) . For each ROI, we computed a null dis-

ribution by repeating the decoding protocol 1000 times swapping the

abels of the true classes. We then established the chance level for a

iven participant as the mean value of this null distribution. To assess

ignificance at the population level, we first compared accuracy minus

hance scores of all participants against 0, using a one-sample t-test.

hen, we computed the empirical null distribution of t-values by, on

ach of 1000 permutations, randomly flipping the sign of each individ-

al score and performing a new t-test. Finally, an effect was considered

ignificant if the observed t -value was larger than 95% of the t-values in

he null distribution (thus, significance level = p < 0.05). 

.4.3. Canonical template tracking procedure 

The main goal of the current study was to assess the contribution

f procedural and declarative signals during instruction implementa-

ion. To do so, we followed a canonical template tracking procedure

 Wimber et al., 2015 ) (see Fig. 4 for a visual representation of the anal-

sis). The main rationale of this analysis was (1) to obtain canonical

epresentations of the different S-R pairings under the two different for-

ats of interest (procedural and declarative) from the ISI of the localiz-

rs, and later (2) estimate the extent of variance during implementation

n the main task uniquely explained by each of these representations.

mportantly, this analysis was aimed at obtaining evidence for the pres-

nce (or lack thereof) of procedural and/or declarative signals and not

o compare their strengths. 

The functional localizers performed after the main task allowed us to

btain a participant-specific canonical pattern of activation for each S-R

airing in declarative and procedural formats. All patterns were derived

rom beta weights of the GLMs described in the section General Linear

odel estimations. Prior to analysis, betas were converted into t-maps

nd, given the impact of noise on correlation estimates, we performed

ultivariate noise normalization on each individual run of the main task

nd template separately ( Walther et al., 2016 ). To do so, we used the

esiduals of each participant’s GLMs to estimate the noise covariance

etween voxels. These estimates, regularized by the optimal shrinkage

actor ( Ledoit and Wolf, 2004 ), were used to spatially pre-whiten the

-maps. 

To measure the contribution of the canonical patterns during the

ain task, for each region, we computed the semi-partial correlation be-

ween the pattern of activity during the retro-cue in the main task and

he canonical template of each S-R pairing in the two formats. Semi-

artial correlations make it possible to estimate how much unique vari-

nce the independent variable (e.g. the residuals of regressing the pro-

edural template of one S-R pairing on the declarative template of the

ame pairing) explains in relation to the total variance in the dependent

ariable (e.g. activity during the main task), and are thus more prac-

ically relevant than partial correlations because they are scaled to the

otal variability in the dependent variable, rather than to the variance

naccounted for by the rest of variables. 

An important feature of the described template tracking approach is

hat it was optimized to detect whether the two signals of interest were

ndependently accounting for unique variance during implementation,

nd not to compare the strength of these two signals. Therefore, the

aw semi-partial correlation magnitude of each template with the task

as of no interest. Only the relative difference between cued, uncued
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Fig. 2. Behavioral results. ( a ) Reaction times in neutral, informative, 

and catch trials. ( b ) Error rates in neutral, informative, and catch tri- 

als. The thick line inside box plots depicts the second quartile (me- 

dian) of the distribution (n = 29). The bounds of the boxes depict the 

first and third quartiles of the distribution. Whiskers denote the 1.5 

interquartile range of the lower and upper quartile. Dots represent in- 

dividual subjects’ scores. Grey lines connect dots corresponding to the 

same participant in two different experimental conditions. 
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-Rs, and the empirical baseline provided by the not-presented S-R was

nformative for our hypotheses. Since our GLM included different retro-

ue regressors depending on the selected S-R pairing, we could obtain

 specific activation value for cued, uncued and not-presented pairings.

mportantly, semi-partial correlations were used to obtain the amount of

ariance shared between the main task and a template of an S-R pairing

e.g. in procedural state) that is not explained by the template of that

ame pairing in the opposite state (e.g. declarative). As such, this ap-

roach is sensitive to content-specific signals and rules out the relative

ontribution of domain general processes that are shared between the

wo localizers, ensuring that any significant result would only capture

he activation of S-R information in a specific format. To statistically test

he boost of cued information, we first normalized the semi-partial cor-

elation scores by using Fisher’s z transformation and then performed

aired t-tests between the cued, uncued and not-presented S-R pairings

ctivation (FDR-corrected for multiple comparisons). 

.5. Region-of-interest (ROI) definition 

Frontoparietal ROIs were obtained from a parcellated map of the

ultiple-demand network ( Fedorenko et al., 2013 ). Specifically, frontal

OIs comprised the inferior and middle frontal gyrus regions of the map,

nd parietal ROIs comprised the inferior and superior parietal cortex

egions. All ROIs were registered back to the native space of each subject

sing the inverse deformation fields obtained during segmentation. 

We obtained a ventral visual cortex ROI by extract-

ng the following regions in the WFU pickatlas software

 http://fmri.wfubmc.edu/software/PickAtlas ): bilateral inferior oc-

ipital lobe, parahippocampal gyrus, fusiform gyrus, and lingual gyrus

all bilateral and based on AAL definitions). The primary motor cortex

OI was also obtained using WFU pickatlas by extracting the bilateral

1 region. 

. Results 

.1. S-R prioritization enhances instruction execution 

Analysis of participants’ behavioral performance revealed that retro-

ues helped participants in prioritizing novel S-Rs. Specifically, partici-

ants were faster ( t 28,1 = 13.51, p < 0.001, Cohen’s d = 2.51; Fig. 2 a) and

ade less errors ( t 28,1 = 7.96, p < 0.001, Cohen’s d = 1.47; Fig. 2 b, left

anel) in trials with informative retro-cues, compared to neutral. Partici-

ants were slower in catch trials compared to informative ( t 28,1 = 11.68,

 < 0.001, Cohen’s d = 2.17) and neutral trials ( t 28,1 = 3.36, p = 0.002,

ohen’s d = 0.63). This longer RT probably reflected the requirement
o disengage from the encoded S-Rs and respond correctly to the new,

on-encoded image. In line with this interpretation, responses to catch

mages after a neutral retro-cue (M = 981 ms, SD = 122) were slower

han after an informative retro-cue (M = 909 ms, SD = 95; t 27,1 = 3.81,

 < 0.001, Cohen’s d = 0.72). This cost of WM load only modulated RTs:

rror rates for catch trials were lower than in neutral trials ( t 28,1 = 4.83,

 < 0.001, Cohen’s d = 0.90), and not significantly different from in-

ormative trials ( t < 1), suggesting that participants were able to detect

ew images and, therefore, that they successfully encoded all mappings

f the encoding screen. 

Regarding performance during the two localizers, we expected more

uccessful behavior during the procedural localizer task, given the

impler nature of the task. Accordingly, participants responded faster

t 28,1 = 25.75, p < 0.001, Cohen’s d = 4.78) and made less errors

t 28,1 = 3.99, p < 0.001, Cohen’s d = 0.74) during the procedural lo-

alizer (RT M = 652 ms, SD = 84; ER M = 0.15, SD = 0.1), compared to

eclarative one (RT M = 1042, SD = 75; ER M = 0.25, SD = 0.08). 

.2. Identifying novel S-R selection activity 

As a first step, we investigated which brain regions were predom-

nantly involved in the selection of instructions from working mem-

ry (WM). Based on recent experimental results ( González-García et al.,

020 ; Myers et al., 2018 ; Yu and Postle, 2018 ) and theoretical models

f WM ( Myers et al., 2017 ), we assumed that selection would prioritize

elevant S-R associations into a behavior-optimized state, akin to im-

lementation. As such, retro-cues served as a tool to locate in time the

oment after initial encoding in which implementation-specific signals

hould be magnified in detriment of encoded but uncued S-Rs, which

ould be potentially dropped from WM. Specifically, we predicted that

f such prioritization of S-Rs is indeed similar to instruction implementa-

ion, then the FPN should be particularly engaged in trials with informa-

ive retro-cues ( Bourguignon et al., 2018 ; González-García et al., 2017 ;

ackson and Woolgar, 2018 ; Muhle-Karbe et al., 2017 ; Palenciano et al.,

019a ; Woolgar et al., 2015 ). We thus established a set of a priori candi-

ate regions that encompassed frontal (inferior and middle frontal gyri)

nd (inferior and superior) parietal cortices (see Fig. 3 b, and the Region-

f-interest definition section in the Methods). We then performed a

hole-brain analysis to find regions sensitive to S-R selection (defined as

nformative vs. neutral retro-cues) in their overall activation magnitude

sing a general linear model (GLM). We found that informative retro-

ues elicited significantly higher activity in regions of the FPN, including

he inferior and middle frontal gyri, inferior and superior parietal cor-

ices, as well as regions outside the FPN, such as the lateral occipital

ortex ( Fig. 3 a, primary voxel threshold [ p < 0.001 uncorrected] and

http://fmri.wfubmc.edu/software/PickAtlas
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Fig. 3. S-R selection induced changes in frontoparietal neural activity. ( a ) GLM contrast of informative > neutral retro-cue trials. Warm colors show regions with 

significantly higher activity magnitude during informative compared to neutral retro-cues (primary voxel threshold [ p < 0.001 uncorrected] and cluster-defining 

threshold [FWE p < .05]). ( b ) Set of regions-of-interest defined prior to analyses, encompassing frontal (inferior and middle frontal gyri) and (inferior and superior) 

parietal cortices. ( c ) Mean S-R pairing decoding (minus empirical chance level) within each region of interest. Error bars denote between-participants s.e.m. Grey 

asterisks denote accuracies significantly above chance level (permutation-based one-sample t-test, 1k permutations). Black asterisks denote significantly higher 

accuracies for cued compared to uncued S-R pairings (permutation-based paired t-test, 1k permutations). 

Table 1 

Statistics, p-values and BF 10 estimates for ROI-based de- 

coding results. BF10 > 3 suggests support for the alterna- 

tive hypothesis, whereas BF10 < 0.3 indicates support for 

the null hypothesis. 

ROI t p BF 10 

cued ldlpfc 1.3088 0.108 0.445 

rdlpfc 2.1274 0.02 1.412 

lpar 3.5149 < 0.001 21.601 

rpar 3.4638 < 0.001 19.32 

uncued ldlpfc -0.2089 0.406 0.211 

rdlpfc -1.5223 0.068 0.575 

lpar -0.0739 0.454 0.208 

rpar -0.336 0.384 0.218 

comparison ldlpfc 1.1338 0.142 0.632 

rdlpfc 2.4384 0.01 4.794 

lpar 2.5978 0.01 6.475 

rpar 2.2243 0.018 3.255 
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luster-defining threshold [FWE p < 0.05]). Overall, the resulting sta-

istical map roughly overlap with the set of a priori defined regions of

nterest (ROIs; Fig. 3 b), confirming the involvement of the FPN in S-R

election and, more broadly, providing initial evidence that such prior-

tization could engage similar mechanisms as instruction implementa-

ion. 

Next, we predicted that the prioritization state would modulate the

epresentation of S-R pairings. To test this hypothesis, we performed

wo similar multivariate decoding analyses in the 4 FPN ROIs. First,

e tested if at the moment of the retro-cue the patterns of activity in

hese four regions carried information about the specific finger-animacy

airing of the cued S-R. We found significant decoding in the right PFC

nd bilateral parietal ROIs (permutation-based one-sample t-tests, all

 s < 0.02), and not significant decoding in the left PFC ( t 25,1 = 1.69,

 = 0.1), although a Bayesian t-test suggested no conclusive evidence for

either the alternative nor the null hypothesis in this ROI (BF 10 = 0.45).

ext, we tested the extent to which the FPN also carried information

bout the encoded, but not cued pairing. In contrast to the previous re-

ults, we expected these pairings not to be decodable, given that uncued

appings could be dropped from memory. In line with our prediction,

ecoding did not reach significance in any of the ROIs (all p s > 0.06),

nd a Bayesian counterpart of the analysis provided support for the null

ypothesis (in left DLPFC and bilateral parietal ROIs, all BFs < 0.3) and

nconclusive evidence in the right DLPFC (BF 10 = 0.58). Finally, we di-

ectly compared the decoding accuracies for the cued and uncued pair-

ngs. This analysis revealed significantly stronger decoding of the cued

airing compared to the uncued one in right PFC and bilateral pari-

tal cortices (permutation-based paired t-tests, all p s < 0.02, Fig. 3 c; see

able 1 for individual statistics, p-values and BF 10 estimates). 
.3. Tracking format-unique S-R patterns 

Altogether, these results show that instruction prioritization has a

rofound impact on FPN activity, impacting the representation of se-

ected and irrelevant S-Rs. However, similarly to previous studies, they

re agnostic regarding the nature of the signals underlying such effect.

he main goal of our study was to test whether both declarative and pro-

edural signals contributed to the representational organization of FPN

ctivity during instruction implementation. To do so, we implemented a

anonical template tracking procedure that allowed us to estimate neu-

al activations of specific S-R pairings under the two functional formats

f interest (see Fig. 4 , for a visual representation of the procedure, and

ethods, for a detailed description of the analysis). Importantly, this ap-

roach revealed the amount of shared variance between task data and

 given template (e.g. S-R pairing 1 in procedural state) that is not ex-

lained by the same template in the alternative state (e.g. S-R pairing

 in declarative state). Therefore, processes common to both localizers

e.g. arousal, domain-general attention and/or task preparation) can-

ot inflate correlations, and any significant enhancement from baseline

ather reflects the activation of S-R-specific information in a specific

ormat during the main task. 

To validate this procedure outside the FPN, we created an ROI com-

rising the primary motor cortex, where implementation should be dom-

nated by action-oriented signals and no declarative information about

-R pairings is expected. The results obtained ( Fig. 5 ) matched the pre-

ictions, revealing a specific enhancement of procedural information of

he cued pairing compared to the uncued (t 25,1 = 4.08, p < 0.001, Co-

en’s d = 0.80), and critically, to the empirical baseline defined by the

ot-presented pairings (t 25,1 = 5.45, p < 0.001, Cohen’s d = 1.07). No

ctivation of the uncued S-R pairing was found (t 25,1 = 1.32, p = 0.2,

ohen’s d = 0.26). As predicted, no differences between cued, uncued

nd baseline pairings were found in declarative signals (all t s < 1.53, all

 s > 0.14). 

To further assess the sensitivity of our tracking approach, we re-

eated the analysis on the beta estimates obtained during the encod-

ng screen of the trial, where no differences should be found between

ued and uncued mappings. Given the results during the retro-cue pe-

iod, here we focused on procedural activation scores. We then entered

he template activation scores of the encoding and retro-cue events in a

epeated-measures ANOVA with the factors S-R type (cued vs. uncued)

nd Event (Encoding vs. Retro-cue). Importantly, the activation scores

ntered were the scores for cued and uncued relative to not-presented

appings, therefore not-presented mappings were not included as a sep-

rate level in the S-R type factor of the ANOVA. This analysis yielded

 significant S-R type ∗ Event interaction (F 25,1 = 10.61, p = 0.003,
2 

p = 0.3). The interaction effect revealed a difference in activation

f cued and uncued S-Rs only during the retro-cue screen (F = 16.68,
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Fig. 4. Schematic of the canonical template tracking procedure. For each region of interest, we extracted the pattern of activity of specific S-R pairings during 

informative retro-cues (upper panel, in yellow) and computed similarity with canonical templates of such pairings in declarative (bottom left, in blue) and procedural 

(bottom right, in green) formats, obtained in two separate localizers. Importantly, similarity was assessed via semi-partial correlations, obtaining the proportion of 

uniquely shared variance between task and template data (middle, Venn diagram) of the cued, uncued and not-presented S-R pairings, which provide an empirical 

baseline. Graphs represent a hypothetical set of results, in which implementation recruits non-overlapping procedural and declarative representations of cued S-R 

pairing. This informational boost, relative to baseline (not-presented S-R pairings), is superior to that of the uncued pairing. 

Fig. 5. Template tracking procedure results in the primary motor cortex. Bars 

represent the normalized semi-partial correlation between task data and the 

procedural and declarative templates of cued, uncued and not presented S-R 

pairings. Error bars denote within-participants s.e.m ( Morey, 2008 ). Asterisks 

denote significant differences (p < 0.05, paired t-test). 
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 < 0.001), whereas no significant differences were found during the

ncoding screen (F < 1, p = 0.67). Furthermore, it revealed a boost in

he activation of cued mappings during the retro-cue, compared to the
ncoding screen (F = 4.9, p = 0.036). No difference was found for the

ncued S-Rs (F = 2.5, p = 0.125), although activation was numerically

eaker during the retro-cue (M = 0.001, SD = 0.004) than during the en-

oding screen (M = 0.003, SD = 0.006). To directly test whether activa-

ion for cued and uncued during the retrocue was greater that during the

ncoding screen, we performed a new ANOVA in which we introduced

irect scores (not relative to baseline), therefore including not-presented

-R as another level of the S-R type factor. This ANOVA confirmed the

vent ∗ S-R type interaction (F = 6.71, p = 0.003). Moreover, post-

oc tests (Bonferroni-corrected) revealed, first, that during the retrocue

creen cued S-Rs had higher activation than uncued ( t = 4.66, p < 0.001)

nd not-presented S-Rs ( t = 5.58, p < 0.001), whereas uncued and not-

resented S-Rs did not differ (t < 1). In contrast, no differences were

ound between cued, uncued and not-presented S-Rs during the encod-

ng epoch (all ps > 0.11). 

.4. Declarative and procedural contributions to instruction 

mplementation in frontoparietal regions (and beyond) 

To elucidate which signals govern implementation in control-related

egions, we carried out the template tracking procedure on each FPN re-

ion separately. Furthermore, we decided to include the ventral visual

ortex (VVC) in this analysis to explore the effect of implementation in

igher-order visual regions, since these have been consistently shown

o be involved in instruction processing ( González-García et al., 2017 ;
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Fig. 6. Canonical template tracking procedure results in frontoparietal cortices and ventral visual cortex. Bars represent the normalized semi-partial correlation 

between task data and ( a ) the procedural and ( b ) declarative templates of cued and uncued S-R pairings. Importantly, raw semi-partial correlation magnitudes 

of cued pairings are not informative (and did not differ between procedural and declarative signals, all t s < 1), and therefore results are plotted relative to the 

empirical baseline (not-presented S-Rs). Thus, the heights of the bars in panels a and b simply reflect the difference from baseline and not necessarily different 

raw semi-partial correlations. Error bars denote within-participants s.e.m. Gray asterisks denote a significant increase from baseline (p < 0.05, paired t-test, FDR- 

corrected). Black asterisks denote significant differences between cued and uncued pairings (p < 0.05, paired t-test, FDR-corrected). ( c ) Across-participant correlation 

of Inverse Efficiency Scores and procedural activation index in frontoparietal cortices. ( d ) Correlation of Inverse Efficiency Scores with declarative activation index 

in frontoparietal cortices. In c and d , dots represent individual participants, thick lines depict the linear regression fit, and asterisks denote significant Pearson’s 

correlation (p < 0.05). Activation indices are obtained by subtracting the activation of uncued S-Rs to the activation of cued S-Rs (this can lead to negative values, 

as can be seen in the c and d ). 
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(  
uhle-Karbe et al., 2017 ; Palenciano et al., 2019b , 2019a ) and our uni-

ariate results also revealed their engagement in the current task. 

Importantly, our main goal was to assess whether FPN contained

rocedural and/or declarative signals during implementation and not

o compare the strength of these to each other. Therefore, the raw semi-

artial correlation of cued pairings in procedural and declarative for-

ats, which could be biased by for instance higher resemblance between

he procedural localizer and the main task, was not informative for our

urpose (and did not differ between procedural [M = 0.03, SD = 0.014]

nd declarative signals [M = 0.03, SD = 0.015], t < 1, p = 0.34). Instead,

e focused on the comparison of these activations to the within-localizer

mpirical baselines provided by the irrelevant mappings on each for-

at. Supporting previous results and theoretical models ( Brass et al.,

017 ; Muhle-Karbe et al., 2017 ), this analysis ( Fig. 6 a) revealed priori-

ization involves the representation of relevant information in an action-

riented format in the FPN (two-tail paired t-test against empirical base-

ine [not-presented pairings], all t s > 2.16, all p s < 0.04, all Cohen’s d

 0.42). Critically, procedural information of cued pairings was signifi-

antly more activated than uncued pairings (all t s > 2.26, all p s < 0.04,

ll Cohen’s d > 0.44). Regarding declarative information ( Fig. 6 b), pari-

tal nodes of the FPN showed a specific enhancement of declarative in-

ormation of the cued S-R pairing, compared to the irrelevant ( t s > 3, all

 s < 0.005, all Cohen’s d > 0.6) and uncued ones ( t s > 2.16, all p s < 0.02,

ll Cohen’s d > 0.49). In contrast, no significant differences were found
n frontal nodes between cued and uncued S-Rs, and cued and irrelevant

-Rs ( t s < 2.06, all p s < 0.05, all Cohen’s d < 0.4). To further assess this

ifference between frontal and parietal nodes we performed an ANOVA

n the activation scores with the factors ROI (left frontal, right frontal,

eft parietal, right parietal) and S-R (cued, irrelevant). This yielded a

ignificant ROI ∗ S-R interaction (F 75,3 = 4.33, p = 0.007, 𝜂2 
p = 0.15),

evealing that the declarative activation of cued S-Rs was significantly

bove baseline in parietal (Fs > 9.5, ps < 0.005) but not frontal nodes

Fs < 0.6, ps > 0.28) of the FPN. Another ANOVA but with cued and

ncued as levels of the S-R factor revealed a similar profile difference,

lthough the interaction in this case was not significant (F = 2, p = 0.13).

ast, an ANOVA with uncued and irrelevant as S-R levels revealed no

ignificant differences in activation between these two levels (F = 1.22,

 = 0.28), and this was not modulated by the ROI (F < 1, p = 0.78), sug-

esting that declarative information of uncued S-Rs was not activated

bove baseline in any of the FPN nodes. 

Importantly, the lack of declarative activation of cued S-Rs on frontal

odes, and overall the lower enhancement from baseline compared to

rocedural information (as can be seen comparing Fig. 6 a and 6 b) can-

ot be due to a lower correlation magnitude of declarative signals with

he main task (no significant differences with the correlation magni-

ude of procedural signals, t < 1, p = 0.45). Still, given the overall

ow signal-to-noise ratio and pattern reliability in prefrontal cortices

 Bhandari et al., 2018 ), slight differences inherent in the templates could
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Table 2 

Individual ROI Pearson’s rs, p-values, and BF 10 esti- 

mates. BF interpretation is identical to Table 1 . 

ROI r p BF 10 

procedural ldlpfc -0.475 0.014 4.203 

rdlpfc -0.583 0.002 24.887 

lpar -0.641 < 0.001 88.146 

rpar -0.605 0.001 39.057 

declarative ldlpfc 0.096 0.639 0.27 

rdlpfc -0.339 0.09 0.955 

lpar 0.213 0.297 0.408 

rpar 0.113 0.582 0.281 
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ffect the activation measures. For instance, it could be argued that the

mount of signal in declarative templates is intrinsically lower than that

f procedural templates, which in turn might induce a lack of power to

etect the activation of declarative templates in the same regions during

he task. To rule out these concerns, for each template and region of the

PN, we compared the signal-to-noise ratio (computed as mean t-value

cross voxels of the ROI divided by the standard deviation), informa-

ional content (computed as Shannon entropy) and correlationability of

he templates (i.e. the degree to which individual templates correlated

ith other templates from the same localizer). This analysis revealed

hat procedural and declarative FPN templates did not differ in any of

hese measures (all BF 10 < 0.5). Moreover, we tested pattern reliability

n each localizer separately by assessing the stability of patterns of the

ame S-R pairing in odd and even trials. To do so, we computed a new

LM with two regressors per S-R pairing, one for odd and another for

ven trials. We then estimated the correlation (Spearman’s rho) between

ach regressor. Finally, we compared the similarity of each specific S-R

airing (e.g. in odd trials) with its counterpart (in even trials) to the sim-

larity of the same S-R pairing and the rest of pairings (in even trials). A

igher within-pairing compared to between-pairing correlations would

uggest reliability of the patterns of activity obtained during the localiz-

rs. This analysis revealed statistically reliable patterns in all ROIs and

n both localizers (all t > 2.6, all p < 0.05, FDR-corrected for multiple

omparisons), supporting the idea that templates contained S-R specific

nformation. 

Last, higher-order visual regions showed a similar pattern to parietal

odes of the FPN. As before, the raw semi-partial correlation magnitude

f cued pairings with the main task was of no interest and did not differ

t < 1, p = 0.63) between declarative (M = 0.018, SD = 0.024) and proce-

ural signals (M = 0.022, SD = 0.023). Compared to the empirical base-

ine, we found a significant enhancement of both procedural ( t = 8.80,

 < 0.001, Cohen’s d = 1.73) and declarative ( t = 6.76, p < 0.001, Cohen’s

 = 1.33) information of the cued S-R pairing. Crucially, these signals

ere significantly stronger than the ones of uncued mappings (proce-

ural: [ t = 6.19, p < 0.001, Cohen’s d = 1.21]; declarative: [ t = 5.84,

 < 0.001, Cohen’s d = 1.15]). 

.5. Action-oriented codes support novel instruction implementation 

To assess the behavioral relevance of declarative and procedural sig-

als, we reasoned that if action-oriented representations are crucial dur-

ng implementation in control-related regions, and implementation can

e conceived as a behavior-optimized state, then the degree of action-

riented activation should predict the efficiency of instruction execu-

ion. To test this hypothesis, we first converted RTs and error rates

f informative retro-cue trials into a single compound measure (In-

erse Efficiency Scores; IES. IES were obtained by dividing each partici-

ant’s mean RT by the percentage of accurate responses Townsend and

shby (1983) ). Then, we derived a template activation index by sub-

racting the degree of activation of cued pairings to that of uncued pair-

ngs for each region and format (procedural and declarative). Note that

his can lead to a negative activation index (if activation for uncued pair-

ngs is stronger than for cued ones). Finally, we correlated individual IES

ith the activation indices on each region of the FPN. This analysis re-

ealed significant negative correlations in all FPN regions between IES

nd procedural activation (all Pearson’s r s > -0.475, all p s < 0.02; See

able 2 for individual ROI Pearson’s rs, p-value and BF 10 estimates). 

Regarding declarative codes, we considered three hypotheses. First,

f procedural representations are highly dependent on the quality of

eclarative representations so that participants with high procedural

ctivation also have high declarative activation, one could expect that

eclarative signals of relevant S-Rs should in principle aid performance

s well. Second, declarative activations could be driven primarily by

articipants with lower procedural activation. In that case, we should

nd the opposite correlation with behavior (higher declarative activa-

ion would predict worse performance). Last, if declarative correlations
eflect a residual activation of this coding format that might support the

mergence of procedural codes but it is not itself related to behavior,

e should expect no correlation. This analysis revealed that IES did not

orrelate with declarative activation in any region (all r s < -0.34, all

 s > 0.09), although conclusive evidence for the null hypothesis was

nly found for the left DLPFC and right parietal ROIs (BF10s < 0.3; for

he remaining ROIs, evidence was inconclusive; see Table 2 ). 

When averaging activation indices across FPN regions, an identical

attern was found, namely, a significant correlation of IES with proce-

ural ( r = -0.679, p < 0.001) but not declarative ( r = 0.06, p = 0.77)

ctivation ( Fig. 6 c-d). Moreover, these two correlations were signifi-

antly different (z = -3.13, p = 0.0018). Similar results were obtained

hen using RTs (procedural: r = -0.67, p < 0.001; declarative: r = 0.076,

 = .71) and error rates (procedural: r = -0.54, p = 0.004; declarative:

 = -0.019, p = 0.93) as behavioral measures. Also, when removing par-

icipants with negative procedural activation scores (which could reflect

he use of suboptimal strategies to solve the task, or noise in the estima-

ion of the neural measures) from the analysis, the correlation with IES

emained significant (r = -0.54, p = 0.009), whereas the correlation of

eclarative activation and IES was not significant ( r = -0.17, p = 0.43).

inally, we tested if the degree of procedural activation predicted the de-

ree of declarative activation. This correlation was also not significant

 r = -0.17, p = 0.40), and if anything pointed in the direction that par-

icipants with higher procedural activation were the ones with weakest

eclarative signals, and vice versa. 

Altogether, these results show that the more implementation was

overned by relevant procedural codes in the FPN, the faster and

ore accurately participants executed the instruction. In contrast, the

trength of declarative signals of the same S-R association did not pre-

ict behavioral performance. 

. Discussion 

In the current study, we report a pervasive effect of novel instruction

mplementation across behavioral and neural data. A canonical template

racking procedure revealed that unique declarative and procedural rep-

esentations govern FPN activity during implementation, prior to execu-

ion. These representations were specific to prioritized S-Rs and did not

ake place for irrelevant mappings. Critically, our results show that pro-

edural (but not declarative) activation in the FPN predicted efficient

xecution of novel instructions. 

.1. Frontoparietal flexible coding of novel S-Rs 

Previous research has highlighted the important role of the FPN in

he implementation of novel instructions ( Bourguignon et al., 2018 ;

emanet et al., 2016 ; González-García et al., 2017 ; Hartstra et al., 2011 ;

uhle-Karbe et al., 2017 ; Palenciano et al., 2019a , 2019b ; Ruge and

olfensteller, 2010 ). Accordingly, our results show that the FPN rep-

esents relevant S-R pairings during implementation. However, these

esults remain agnostic regarding the functional nature of the neural

odes underlying this effect. Here, we leveraged a canonical template
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racking approach to approximate to process-pure measures of procedu-

al and declarative coding formats. This allowed us to later investigate

he unique contribution of each format to instruction implementation. 

In accordance with the serial-coding hypothesis, we observed that

mplementation engaged the activation of procedural representations

 Brass et al., 2017 ; Muhle-Karbe et al., 2017 ). Interestingly, our results

how that, in addition to procedural codes, some nodes of the FPN pre-

erve relevant declarative information about the upcoming task. 

A first consideration concerns the exact nature of the reactivated

ignals. In the declarative localizer, participants had to remember spe-

ific S-R associations and match them to another S-R probe. In contrast,

n the procedural localizer, participants’ goal was to execute the cor-

ect response associated with a target stimulus. The different readout

rom WM thus encouraged different strategies, as suggested by previous

tudies ( González-García et al., 2020 ; Liefooghe et al., 2012 ; Muhle-

arbe et al., 2017 ). Therefore, it is conceivable that templates will con-

ain unique information: a persistent maintenance of the memoranda

n the declarative localizer, and a proactive action-oriented representa-

ion in the procedural localizer. However, procedural and declarative

epresentations likely share further information, for instance, related to

pecific perceptual stimulation and domain-general processes, such as

rousal or attention. We took several measures to reduce the influence

f such components. First, template activation was derived from semi-

artial correlations between data from the main task and the localizers.

hus, our measure reflects unique shared variance between the task and

he representation of an S-R pairing in a given localizer, partialling out

he variance explained by the representation of the same S-R in the re-

aining localizer. Importantly, our study was aimed at assessing the

resence (or lack thereof) of procedural and/or declarative signals and

ot at comparing to what extent one signal might be more predictive

han the other, and therefore we base our results in activation of tem-

lates relative to empirical baselines provided by not-presented S-Rs.

econd, templates were built for S-R pairings rather than unique map-

ings, and therefore a contribution of perceptual features to template ac-

ivation seems unlikely. Moreover, semi-partial correlations were com-

uted between data from the retro-cue screen (in the main task), and

nter-stimulus interval (in the localizers), which reduces the likelihood

f significant correlations due to perceptual similarity between tem-

lates and specific S-Rs. Therefore, although other non-mutually exclu-

ive explanations cannot be fully discarded (e.g. “procedural ” templates

ontaining procedural signals but also any other code present in the pro-

edural localizer and not in the declarative one), we believe it is the most

arsimonious interpretation to consider that our procedure succeeded at

racking format-specific signals, especially given the validation results

n the motor cortex. 

An important aspect then concerns the specific functional signifi-

ance of each format. Regarding procedural templates, although the con-

guration of the procedural localizer was similar to the main task, the

ighly action-oriented encoding format encouraged during this localizer

as strategically optimal only after the selection process elicited by the

etro-cue in the main task. Thus, this localizer allowed us to test whether

he selection of an S-R from WM engaged the same procedural signals

licited by encoding tasks with the intention to implement. With respect

o the declarative templates, an intriguing question is what exactly is be-

ng reactivated, and how is this not present in the procedural localizer

which necessarily has to contain some declarative information as well

 Formica et al., 2020a )). One possibility is that the specific demands of

ach localizer encourage differentiated coding strategies, that is, differ-

nt readouts from WM could modulate the specific way in which each

ormat is represented. However, we believe a more likely, non-mutually

xclusive possibility regards the previously mentioned distinction be-

ween the procedural localizer and the main task. Given that the process

f maintenance prior to selection is likely diminished in the procedural

ocalizer, it is feasible that such maintenance signals are present in the

ain task relatively independent from the codes established in the pro-

edural localizer. In turn, it is possible that declarative codes account
t least partially for such maintenance components, leading to the ob-

erved declarative activations in the main task. 

From this standpoint, our results suggest that during novel instruc-

ion implementation, FPN regions contain information about the declar-

tive memoranda conveyed by the instruction and an independent

ction-oriented S-R code that primarily drives task execution. 

.2. Heterogeneous S-R coding within the FPN 

Although we did not have specific hypotheses for the role of individ-

al FPN regions, a second important finding concerns the heterogeneity

f results within this network. Frontal nodes showed the implementa-

ion profile predicted by the serial-coding hypothesis, namely, a primar-

ly procedural representation of instructed content. This is in line with

revious studies that propose a crucial role of the frontolateral cortex

n the integration of stimulus and response information into a task set

ased on verbal instructions ( De Baene et al., 2012 ; Hartstra et al., 2012 ,

011 ), as well as in representing task rules ( Jackson and Woolgar, 2018 ;

oose et al., 2017 ; Wisniewski et al., 2019 ; Woolgar et al., 2015 ) and

oals ( Muhle-Karbe et al., 2014 ). 

In contrast, parietal nodes carried both procedural and declara-

ive information in their patterns of activity. Whereas the role of

arietal regions in representing goals and task set information is

idely acknowledged ( González-García et al., 2017 ; Jackson and Wool-

ar, 2018 ; Muhle-Karbe et al., 2017 , 2014 ; Palenciano et al., 2019b ;

isniewski et al., 2015 ; Woolgar et al., 2015 ), it is unclear what drives

uch declarative activation. One possibility is that it reflects a category-

pecific top-down selection scheme, driven by increased attention to-

ards the cued S-R ( Nobre et al., 2004 ; Tamber-Rosenau et al., 2011 ).

he fact that a similar pattern was found in higher-order visual re-

ions, which usually coordinate with parietal cortices to represent rel-

vant task dimensions in anticipation of future demands ( González-

arcía et al., 2015 ; Kuo et al., 2014 ; Lepsien and Nobre, 2007 ), further

upports this possibility. This tentative interpretation would be coherent

ith goal neglect effects reported in patients with frontal lobe damage

 Duncan et al., 1996 ). These patients are capable of selecting, main-

aining, and remembering task-relevant information, yet their ability

o transform relevant information into goal-driven actions is impaired.

uch dissociation goes at least partially in line with our results in that

1) goal-oriented representations depends critically on prefrontal cor-

ices (impaired in goal neglect patients), and (2) the involvement of

ther control-related regions, intact in these patients, boosts the declar-

tive representation of specific task information, such as particular S-R

airings, presumably in coordination with posterior category-selective

egions. However, these results should be interpreted with caution, since

he difference between frontal and parietal regions could partly reflect

 difference in activation magnitude not captured by our method, due

o a generally weaker coding in frontal lobes ( Bhandari et al., 2018 ).

till, the impact of this alternative interpretation seems relatively lim-

ted, given we observed a similar raw semi-partial correlation magni-

ude of cued pairings with the main task, and no differences in terms

f signal-to-noise ratio, informational content, and correlationability of

he templates. 

.3. Implementation as a selective output gating process 

Remarkably, although we found both signals in the FPN during im-

lementation, only procedural representations predicted efficient be-

avior and, if anything, stronger procedural activations did not predict

tronger declarative signals. The fact that implementation is signaled by

etro-cues renders this effect relevant to current debates on information

rioritization and WM architecture. In this regard, our results are consis-

ent with the interpretation of implementation as a particular instance of

utput gating mechanisms. Similar to the idea of an input gate that lim-

ts what information enters WM, some computational models propose

n additional gate that determines which pieces of this information will
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rive behavior ( Chatham et al., 2014 ). Recent theoretical frameworks

uggest a role of prioritization not only in selecting relevant content

rom WM but also in reformatting such content into a “behavior-guiding

epresentational state ” ( Myers et al., 2017 ), analogous to an output gat-

ng mechanism. Interestingly, these models propose that whereas other

ontrol-related regions might be involved in attention-driven represen-

ations of relevant content, frontal regions are thought to be especially

mportant in transferring this content into a state that is optimal for

ehavior. Accordingly, our results suggest that an action-oriented rep-

esentation of novel instructions dominates activity in frontal cortices

nd that this representational format is tightly linked to behavioral effi-

iency. A limitation of the current study concerns the lack of specificity

n what precise information is captured on each template: it is possi-

le that part of the correlation with behavior we observe is driven not

nly by procedural codes but also by any other code of different nature

hat is present in the procedural localizer and not in the declarative one,

lthough what this code would be specifically remains unknown. This

uestion awaits further investigation. 

Importantly, our results reveal that the neural substrate of instruc-

ion prioritization involves further brain regions, such as category-

elective and parietal cortices, and that procedural and declarative in-

ormation coexist in these regions. This raises the question of what the

ontribution of declarative representations might be. One possibility is

hat declarative codes support the generation and maintenance of proce-

ural codes, but once these are created, they do not directly contribute

o behavior. It should be noted, however, that fMRI data lacks the tem-

oral resolution to discern the dynamic profile of these two representa-

ional formats. Thus, the conclusions about the dynamics of declarative

nd procedural codes in the FPN we can extract from the current dataset

re limited. Further research is needed to elucidate whether, in smaller

imescales, a temporal hierarchy between these two signals can be es-

ablished or, in contrast, whether both signals are held simultaneously

n these regions. Future studies should employ time-resolved techniques

hat can succeed at characterizing the contribution of different brain re-

ions to separate control and WM processes ( Quentin et al., 2019 ). 

Last, the current work relies on a relatively high number of tests and

ecisions along the analysis pipeline, which could potentially impact the

esults and the conclusions extracted from them ( Botvinik-Nezer et al.,

020 ). As such, the new method proposed here would benefit from in-

ependent conceptual replications and extension of the current findings

n the future. 

. Conclusions 

In summary, the present study reveals the strong impact of instruc-

ion implementation on frontoparietal regions. We observed that these

egions contain information about prioritized S-R pairings in detriment

f the irrelevant ones during implementation. This information con-

ained two non-overlapping neural codes, one reflecting the declarative

aintenance of task, and another, more pragmatic, action-oriented cod-

ng of the instruction. Importantly, the strength of procedural activation

redicted behavioral performance. Altogether, our results highlight the

ontribution of frontoparietal regions to output gating mechanisms that

rive flexible behavior. 
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