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Abstract

Sequence count data are commonly modelled using the negative binomial (NB) distribution.

Several empirical studies, however, have demonstrated that methods based on the NB-

assumption do not always succeed in controlling the false discovery rate (FDR) at its nomi-

nal level. In this paper, we propose a dedicated statistical goodness of fit test for the NB dis-

tribution in regression models and demonstrate that the NB-assumption is violated in many

publicly available RNA-Seq and 16S rRNA microbiome datasets. The zero-inflated NB distri-

bution was not found to give a substantially better fit. We also show that the NB-based tests

perform worse on the features for which the NB-assumption was violated than on the fea-

tures for which no significant deviation was detected. This gives an explanation for the poor

behaviour of NB-based tests in many published evaluation studies. We conclude that non-

parametric tests should be preferred over parametric methods.

Introduction

In research areas such as RNA-sequencing (RNA-Seq) and microbiomics, sequencing tech-

nologies are applied to measure the composition of mixtures of nucleic acids [1, 2]. The

resulting collection of sequences is then considered as a proxy for the transcriptomic state of

a tissue or cell (in RNA-Seq) or for the species composition (for the microbiome). As both

research areas employ the same technologies, their data properties and analysis techniques

are similar. Apart from the biological variability between samples, the multiple manipula-

tions, going from nucleic acid extraction, reverse transcription and PCR amplification to

actual sequencing, introduce additional variability into the feature count tables. It is often

assumed that the sequence counts from a single feature (either a taxon or a gene) follow the

negative binomial (NB) distribution [3, 4]. The NB distribution can be seen as a extension of

the Poisson distribution that allows for overdispersion due to the biological variability. This

overdispersion is also strongly related to the frequency of zeroes in the count data. As evident
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from Fig 1, the overdispersion varies between features and depends on the biological nature

of the samples, being notably large for microbiome data of human origin.

NB regression models [5] correct for sample-specific covariates such as sequencing depth or

library size. Methods based on the NB distribution have been used for many purposes, such as

clustering [6], discriminant analysis [7] and hypothesis testing [3, 8, 9]. In this paper we focus

on the latter: testing for differential expression (RNA-Seq) and testing for differential abun-

dance (microbiome). Good statistical hypothesis tests should be able to control the probability

of a type I error (false positive result) at the nominal significance level and they should have

sufficient power for detecting interesting biological results. Since with sequencing experiments

not a single hypothesis is to be tested, but hundreds to thousands of hypotheses are tested

simultaneously, these desirable properties of statistical tests can be reformulated as follows.

The testing procedure (1) should be able to control the false discovery rate (FDR) at the nomi-

nal level, and (2) it should have sufficient sensitivity (i.e. true positive rate) for detecting inter-

esting biological results.

Popular statistical tests for sequencing experiments include edgeR [10] and DESeq2 [11],

which both rely on the NB assumption. These methods have been evaluated in many studies,

using synthetic data generated with the very same NB distribution [6–8, 12]. As a self-fulfilling

prophecy, the methods are then found to perform well, i.e. they appear to control the FDR and

have good sensitivity. On the other hand, when evaluating the methods using realistically sim-

ulated data (e.g. by resampling from real datasets), comparative studies have revealed a sub-

standard performance [13–16]. In particular, they conclude that the NB-based methods show

Fig 1. Boxplots of estimated feature-specific dispersion parameters of the negative binomial distribution per

dataset. The red dashed line indicates the threshold above which the lack of fit to the negative binomial distribution

could not be assessed reliably. See S4 Appendix for details on the datasets used.

https://doi.org/10.1371/journal.pone.0224909.g001
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a poor FDR control; often the FDR is larger than the nominal level, resulting in too many false

positive findings. Nonparametric methods, which do not rely on strong distributional assump-

tions, have been demonstrated to control the FDR with realistically simulated data, e.g. the

Wilcoxon rank sum test and ALDEx2 [17].

To date no conclusive explanation has been found for this drop in performance. One obvi-

ous possible explanation is that real sequence count data are not well described by the NB dis-

tribution. The goodness of fit of ecological count data to the NB distribution has been formally

tested before, but not with theoretically supported tests. These investigations only considered a

limited number of datasets and they did not find a lack of fit to the NB distribution [18–20].

In this paper we propose a new statistical goodness of fit (GoF) test for the NB distribution

in regression models that are commonly used for analysing RNA-Seq and microbiome studies.

The performance of the new GoF test is evaluated in a simulation study. When applied to pub-

licly available RNA-Seq and microbiome datasets, a lack of fit was discovered for many fea-

tures in several datasets. Finally, the consequences of these violations to the NB assumption are

investigated.

Smooth tests for the negative binomial distribution in regression

models

Negative binomial regression models

NB regression models are described here for a single feature. Let (Yi, xi), i = 1, . . ., n, denote

the n sample observations of outcome Y and the p-dimensional regressor x. The regressor vec-

tor may include dummy variables for the coding of factor variables, and it may include a con-

stant if an intercept is to be included in the model. We consider NB regression models of the

form

Y j x � NBðmðxi; βÞ; �Þ

where ϕ is the overdispersion parameter and

mðx; βÞ ¼ expðb0 þ βtxÞ ð1Þ

in which β0 is a given constant, which is generally referred to as the offset of the regression

model.

The smooth test will be constructed for the model used for comparing two experimental

conditions (e.g. two treatments). This model includes an offset β0 = log(library size), an inter-

cept and only one regressor, xi, defined as a 0/1 dummy variable referring to the two experi-

mental conditions. Hence, xti ¼ ð1; xiÞ. Model 1 thus reduces to

mðx; b1; b2Þ ¼ expðb0 þ b1 þ b2xÞ: ð2Þ

We further assume that, given the regressor xi, the outcomes Yi are independently

distributed.

Construction of the test statistic

For the one-sample problem (i.e. testing the null hypothesis that a sample comes from a

hypothesised distribution) many types of GoF tests have been proposed; see [21] for a compre-

hensive overview. Our test fits within the framework of smooth tests. For the one-sample prob-

lem this class of tests was first introduced by [22] and later generalised [23]. The main idea of

smooth tests is to first embed the hypothesised distribution into a larger distribution that con-

tains extra parameters, which we refer to as embedding parameters, such that when these extra
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parameters equal zero, the embedding distribution collapses to the hypothesised distribution.

The GoF null hypothesis is thus equivalent to setting all embedding parameters to zero. The

smooth test is then the efficient score test for this testing problem.

The extension of smooth tests from the one-sample problem to a regression setting, was

first described in a PhD thesis [24]. Detailed theory and a few examples (normal, Poisson and

zero-inflated Poisson regression) were recently provided [25]. In this section we give a brief

outline of the construction. More details can be found in S1 Appendix.

Let f(y;μ, ϕ) denote the probability mass function of the negative binomial distribution with

mean μ given by Eq 2. Thus μ depends on x and on β. In particular,

f ðy; m; �Þ ¼ P Y ¼ yf g ¼
Gðyþ �� 1

Þ

y!Gð�� 1
Þ

m�

1þ m�

� �y
1

1þ m�

� �1=�

; ð3Þ

where Γ(�) is the gamma function. Next, this distribution is embedded in a family of smooth

alternatives,

fJðy; m; �; θÞ ¼ Cðm; �; θÞexp
XJ

k¼1

yjhjðy; m; �ÞÞf ðy; m; �

 !

; ð4Þ

where J is the order of the smooth alternative, θt = (θ1, . . ., θJ) is the vector of embedding

parameters, C(μ, ϕ, θ) is the normalisation constant, and {hk(y;μ, ϕ)} is a set of functions that

are orthonormal on the hypothesised NB model. In particular, these functions must satisfy

X1

y¼0

hjðy; m; �Þhlðy; m; ; �Þf ðy; m; �Þ ¼ djl; ð5Þ

with δjl = 0 if j 6¼ l and δjl = 1 if j = l.
The smooth test is basically the efficient score test for testing the null hypothesis H0: θ = 0

within the smooth family. Since the smooth family does not only contain the embedding θ
parameters, but also the parameters β and ϕ, these nuisance parameters need to be estimated

from the data and the score test needs to account for their estimation. We consider the method

of maximum likelihood (ML) for parameter estimation. Note that this estimation method dif-

fers from the methods used for edgeR [10] and DESeq2 [11]. However, our choice does not

undermine the credibility of the results of our testing procedure: as long as the smooth test

controls the type I error and has power, it is a valid testing procedure. Changing the estimation

procedure, as part of the data analysis pipeline, does not alter the validity of a distributional

assumption.

The next few paragraphs describe the ML estimation procedure, and shows the construc-

tion of the efficient score test statistic. For a score test we only need the ML estimators (MLE)

of β and ϕ under the null hypothesis, i.e. in the hypothesised NB regression model given by

probability mass function of Eq 3. First the log-likelihood function is constructed,

lðb; �Þ ¼
Xn

i¼1

log f ðyi; b; �Þ:
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Next, the score statistics for the parameters β and ϕ are computed,

@

@b
lðb; �Þ ¼

Xn

i¼1

@

@b
log f ðyi; b; �Þ ¼

Xn

i¼1

xiðyi � miÞ
1þ mi�

@

@�
lðb; �Þ ¼

Xn

i¼1

@

@�
log f ðyi; b; �Þ

¼
Xn

i¼1

Cðyi þ �
� 1
Þ � Cð�

� 1
Þ � log ð1þ �miÞ þ 1 �

yi�þ 1

1þ �mi

� �

;

with C(�) the digamma function. We will use the notation

sbðyi; b; �Þ ¼
@

@b
log f ðyi; b; �Þ

s�ðyi; b; �Þ ¼
@

@�
log f ðyi; b; �Þ

ð6Þ

for the score functions of β and ϕ, respectively.

The MLEs of β and ϕ, subsequently denoted by b̂ and �̂, are the solution to the system of

equations @

@b
lðb; �Þ ¼ 0 and @

@�
lðb; �Þ ¼ 0. No analytical solution is available, and so an itera-

tive numerical algorithm is needed.

In the presence of nuisance parameters, there generally are two approaches for the con-

struction of efficient score tests. Either the information matrix is corrected to account for the

estimation, or the orthonormal functions in the smooth family are altered to make them also

orthogonal to the score functions of the nuisance parameters. We take the latter route. In par-

ticular, we require in addition to the orthonormality condition of Eq 5 that the h-functions

also satisfy

X1

y¼0

hjðy; m; �Þsbðy; m; �Þf ðy; m; �Þ ¼
X1

y¼0

hjðy; m; �Þs�ðy; m; �Þf ðy; m; �Þ ¼ 0 ð7Þ

for all parameter values. For the implementation of the test in this paper, we have opted for

polynomial h-functions because the resulting score test statistics have an interpretation related

to deviations from the hypothesised NB distribution in terms of moments [21, 23, 26]. For

example, the score test statistic based on the third order polynomial, say h3, can detect devia-

tions from the NB distribution in terms of the third order moment (skewness). Similarly, the

statistic based on the fourth order polynomial, say h4, detects deviations in the fourth order

moment (kurtosis). In S1 Appendix it is shown how the Gram-Schmidt orthogonalisation pro-

cedure can be used for constructing the orthonormal polynomials. Note that the orthonormal

constraints, expressed by Eqs 5 and 7, should hold for all μ and all ϕ. Since the former parame-

ter equals exp(β0 + β1 + β2x), the orthonormal polynomials should be computed separately for

the two experimental condition groups (x = 0 and x = 1), and in practice the unknown param-

eters should be replaced by their MLEs.

For notational comfort we denote the vector of nuisance parameters (here: β and ϕ) by

ηt ¼ ðβ; �Þ. The smooth test statistic is a score test statistic which requires the score functions

for the θ parameters in the smooth family of alternatives (Eq 4), evaluated under the null

hypothesis. For parameter θk, this restricted score function is given by

sy;kðy; x; η; θÞjθ¼0 ¼
@

@yk
log fJðy; x; η; θÞ

�
�
�
�
θ¼0

¼ hkðy; x; ηÞ:
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Define

VkðηÞ ¼ n� 1=2
Xn

i¼1

hkðyi; xi; βÞ

and Vt = (V1(η), . . ., VJ(η)).

The score test statistic is given by

TJ ¼ Vðη̂ÞtðI � 1ðη̂ÞÞ
yy
Vðη̂Þ; ð8Þ

where I(η) is the Fisher information matrix for the parameter vector (η, θ) in the smooth alter-

native, evaluated under the null hypothesis. In S1 Appendix we demonstrate that this matrix

equals n times the identity matrix. This simple form is a consequence of the orthonormality

conditions imposed on the orthonormal h-functions. The expression ðI � 1ðη̂ÞÞ
yy

in Eq 8 refers

to the elements in the inverse Fisher information matrix that refers to the J-dimensional θ vec-

tor, and hence it equals n−1 times the identity matrix. Thanks to this diagonal structure, we can

write the test statistic TJ as a decomposition of J components, i.e.

Tj ¼ V
2

1
ðη̂Þ þ � � � þ V2

J ðη̂Þ:

The distribution theory provided in [23] and [25] is directly applicable, resulting in the asymp-

totic null distributions of TJ and Vðη̂Þ. Under the null hypothesis, as n!1,

Vðη̂Þ� !d MVNð0; IÞ TJ� !
d
w2

J :

Since this is an asymptotic result, its practical validity for realistic sample sizes should be

empirically investigated in a simulation study. This is the topic of the next section. In particu-

lar, the parametric bootstrap will be assessed. The parametric bootstrap constructs the null dis-

tribution of the test statistic based on repeatedly sampling n sample observations from the

fitted hypothesised model. For the one-sample problem, the parametric bootstrap is described

in detail in [23], but this procedure needs to be adjusted to the regression setting. Details are

given in S2 Appendix.

Simulation study

According the theory of [25], the smooth test statistic TJ asymptotically has a w2
J null distribu-

tion and the components Skðη̂Þ asymptotically have standard normal distributions. Still, this

does not guarantee that the use of these limiting distributions in practical settings with rather

small sample sizes, gives good type I error control. In this section we empirically evaluate the

null distribution of the test statistic and its p-value for realistic sample sizes. We also evaluate

the tests with p-values calculated based on the parametric bootstrap procedure. For most

smooth tests the bootstrap procedure gives good results [23].

We produced 6 datasets, each with counts randomly generated from NB distributions

with increasing overdispersion parameter (ϕ 2 {0.01, 0.1, 1, 10, 20, 30}). Each dataset has

p = 500 features in 50 samples balanced over two treatment groups. The mean of the NB

distribution for feature j in sample i is given by logμij = β0i + β1j + β2xi, where xi is a 0/1

dummy coding for the treatment group, the offsets β0i (log-library sizes) are sampled from a

normal distribution with mean 9.21 and standard deviation 1.15. The feature baselines β1j

are sampled from a uniform distribution over the interval [-13.8, -6.91], and the log-fold

change β2 is fixed to 2. These settings correspond to the parameter values observed in real

datasets.
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The results are shown in Fig 2. All QQ-plots of p-values from the asymptotic χ2 approxima-

tion show a substantial deviation from the uniform distribution. This indicates that for a sam-

ple size of 50 this asymptotic approximation cannot be reliably used as it will not result in a

control of the type I error rate. The QQ-plots for the bootstrap p-values, on the other hand,

show good resemblance to the uniform distribution, unless the overdispersion parameter is

larger than 10. Moreover, the resemblance to the uniform distribution is particularly close for

small p-values, which is important for the type I error rate control.

We may conclude that the parametric bootstrap is a reliable method for p-value calculation

for the tests developed in this paper, unless the overdispersion is larger than 10. The good

approximation to the uniform distribution is also necessary for good FDR control in the multi-

ple testing context. In S3 Appendix also the sampling distribution of the estimator of the over-

dispersion parameter is investigated. For extreme small or large values of the overdispersion

parameter, bias and non-normality of the estimator is observed. This may be part of the expla-

nation of the poor behaviour of the goodness of fit test for such extreme overdispersions.

Estimating the proportion of features with lack-of-fit

In this section, the goal is to estimate the number of features poorly fit by the NB distribution,

rather than identifying which features show a deviating distribution. For this we leverage the

fact that many features are being tested simultaneously, using the method developed by [27]. It

relies on the property that the distribution of the p-values is a mixture distribution of p-values

of features for which the null hypothesis holds, and p-values of features for which the null

hypothesis does not hold. The density function of the p-values can then be described as

gðpÞ ¼ p0g0ðpÞ þ ð1 � p0ÞgAðpÞ;

where g0(p) is the density of p-values under the null distribution, gA(p) the density of p-values

under the alternative distribution and π0 the mixing proportion. The distribution g0(p) is

known to be uniform on [0, 1], and the distribution gA(p) is skewed to the right. If we assume

that there is some pc for which gA(p|p> pc) = 0, we may employ the fdrtool R-package [28] for

the estimation of pc. [27] proposed a modified Grenander density estimator for g(p). This esti-

mator is similar to a nonparametric estimator of g(p), with the additional restriction of being

monotonically decreasing (since gA(p) is monotonically decreasing with p, and g0(p) is uni-

form, g(p) must also be monotonically decreasing). The mixing proportion π0 is then estimated

as

p̂0 ¼ min 1;

Pp
k¼1
Iðpk > pcÞ
p

1

1 � ĜðpÞ

 !

with ĜðpÞ the distribution function corresponding to the estimate ĝðpÞ. The quantity we are

interested in is 1 − π0, i.e. the proportion of features that is not well fit by the NB. This

approach has a very particular advantage: there is no need for very precise p-values for this

estimation procedure. This means that a small number of bootstrap samples suffice, which

greatly reduces the computational burden.

Finally, we note that even when a comparatively small percentage of features does not fol-

low the NB distribution, this may still affect the analysis of an entire dataset. Typically, the neg-

ative binomial regression model is used to perform one test per feature. Next, one implements

a multiple testing correction that works on the ensemble of p-values. Hence, a violation of the

assumptions for some features can also affect the inference for features that do follow the nega-

tive binomial distribution.
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Fig 2. The uniform QQ plots of 500 p-values based on (a) the asymptotic null distribution and on (b) the bootstrap. The overdispersion

parameter is printed on top of each panel.

https://doi.org/10.1371/journal.pone.0224909.g002
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Application to sequencing data

The new smooth test with J = 4 was applied to a wide range of datasets: microbiome data from

human [29–34], animal [35, 36], inert surface [37] and freshwater [38, 39] origin, as well as

RNA-seq data [14, 40, 41]. More details on these datasets can be found in S4 Appendix. Fea-

tures with an estimated overdispersion parameter of 10 or larger were omitted from the analy-

sis so as to guarantee the validity of the bootstrap testing procedure (See Fig 1 for the

distribution of the estimates of the overdispersion parameters). For the other features, the

bootstrap (with 1,000 bootstrap runs) was used for p-value calculation. Subsequently, the

method of the previous section was applied for estimating, for each dataset, the fraction of fea-

tures poorly fit by the NB distribution. The results are summarised in Fig 3. The fraction of

non-NB distributed features ranges from 2% to 90%, with many datasets having more than

25% of the features deviating from the NB assumption. For completeness we have repeated the

analysis using all features; see S1 Fig. Although not all bootstrap p-values can be trusted, this

analysis gives the same overall conclusion.

Zero-inflated models have been proposed as an improvement of the NB distribution [42–

45]. All features were tested with a likelihood ratio (LR) test for comparing the NB against a

zero-inflated negative binomial (ZINB) distribution. Based on these p-values, the fraction of

significant features was estimated as before. Some exceptions notwithstanding, most of the

datasets did not exhibit zero-inflation with respect to the NB distribution, or not for suffi-

ciently many features to explain the observed lack of fit to the NB distribution (see Fig 4). Note

that this LR test only serves to compare the NB and ZINB models, and does not provide

Fig 3. Estimated proportions of features with lack of fit to the negative binomial distribution per dataset. Error

bars represent standard errors.

https://doi.org/10.1371/journal.pone.0224909.g003
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evidence that the ZINB distribution as such fits the data well. It is also important to remark

that these proportions only refer to the features for which a ZINB model could be fitted and

may therefore overestimate the real proportion of zero-inflated features (S1 Table shows the

proportions of features without zeroes and for which hence no ZINB distribution can be fitted.

Note that particularly the RNA-Seq datasets show many features without zero counts).

In S5 Appendix we further investigated possible data-related features that could explain the

lack of fit to the NB assumption, but no very clear conclusions can be formulated. We observe

that poorly fit features are often among the high abundant features with intermediate zero fre-

quencies. Moreover, the fit to the NB is worse in samples with large library sizes.

Consequences

From the results from the previous section it is clear that many features in sequence count data

do not follow the NB distribution. It has been shown before that the performance of statistical

tests that rely on the NB distribution deteriorates when applied to realistically simulated data

[13–16]. In this section we investigate the validity of NB-based hypothesis tests when applied

to features that exhibited a lack of fit to the NB distribution.

Based on the bootstrap p-values of the smooth test, q-values are obtained from the

procedure of [27]. All features with q-values smaller than 10% are grouped together and con-

sidered to be “poorly fit features”. The other features are considered to be well fit by the NB

distribution.

Fig 4. Estimated proportion of features with significant zero-inflation with respect to the NB distribution. Error

bars represent standard errors.

https://doi.org/10.1371/journal.pone.0224909.g004
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For all datasets the following simulation procedure is followed. Samples are randomly allo-

cated to one of two groups with equal probability (similar to the “real data shuffling” in [13]).

Next, to every feature a negative binomial regression model is fitted with maximum likelihood,

with the library sizes as offset and the original grouping variable (S4 Appendix) and the ran-

dom grouping variable as regressors. P-values for the Wald test for the random grouping vari-

able are calculated for every feature. In a similar fashion edgeR and DESeq2 were applied, as

well as the nonparametric Prentice rank sum test [46]. The latter test is an extension of the

Wilcoxon rank sum and Friedman tests, and it can be used for testing the effect of the random

grouping variable, while accounting for the additional grouping variable. All p-values are

expected to be distributed as the [0, 1] uniform distribution. This procedure is repeated 50

times for each dataset. The HMP oral cavity dataset was omitted from this study, as all features

had q-values below 0.1. Fig 5 shows the proportions of p-values smaller than 0.10 for both

groups of features and for all datasets. Results are shown for the four tests for differential abun-

dance/expression. If the proportion is close to 0.1, then the test is able to control the type I

error at this level. The full uniform QQ-plots (S2 Fig) are more informative, but overall the

conclusions are the same.

The results show that for the Wald and edgeR tests, which both rely on the NB-distribution,

the poorly fit features generally show a larger proportion of small p-values than the features for

which no lack of fit to the NB was detected. This demonstrates that the poor FDR control of

NB-based tests can be due to the poor fit of the NB-distribution to real sequencing count data.

Overall, DESeq2 gives much better results than the other two NB-based tests. We can also see a

difference depending on the origin of the datasets. For the human microbiome datasets we see

large proportions, corresponding to increased type I error rates. The same conclusion holds

Fig 5. Boxplots of proportions of p-values smaller than 0.1 for features with poor and good fit to the NB distribution, per dataset. The p-values are computed with

the Wald test in a NB model, edgeR, DESeq2 and with the Prentice rank sum test.

https://doi.org/10.1371/journal.pone.0224909.g005
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for the RNA-Seq datasets, but to a lesser extent. The results for the environmental microbiome

datasets suggest conservative type I error rate control.

For the nonparametric Prentice rank sum test, no large difference between poorly and well

fit features can be observed. Moreover, the proportions are not often larger than 0.10, indicat-

ing that this test controls the type I error. This can be expected, because the test does not rely

on the NB distributional assumption.

Conclusion and recommendation

Sequencing count data are often assumed to follow the NB or ZINB distributions, which

form the basis of several statistical procedures for testing for differential expression (RNA-

Seq) or differential abundance (microbiome). When such statistical methods are evaluated in

parametric simulation studies, the count data are often generated from the same distribu-

tions. These statistical tests then seem to perform well, in the sense that they control the FDR

and have good sensitivity. This is, of course, a self fulfilling prophecy. On the other hand,

when these methods are evaluated in simulation studies with realistically simulated data,

these NB-based methods show a poor FDR control. In particular, their true FDR is frequently

much larger than the nominal level, leading to too many false positive results. The conse-

quence of such poor FDR control, is that too many features (genes or taxa) will be called dif-

ferentially expressed or abundant, potentially resulting in the publication of many false

positive results, and hence contributing to the issue of poor reproducibility of scientific publi-

cations [13–16]. Nonparametric methods (the Wilcoxon rank sum test and ALDEx2), on the

other hand, generally perform better in terms of controlling the FDR, but they have smaller

sensitivity.

In an attempt to understand the cause of the poor FDR control of NB-based methods, we

aimed to assess this distributional assumption in several public RNA-Seq and microbiome

sequencing count datasets. For this purpose, we had to develop a new statistical goodness of fit

test for the NB assumption in regression models, such that library size could be accounted for,

and data from several experimental groups (e.g. treatments) could be simultaneously tested.

This approach allows us to use more data for a single hypothesis test, hence increasing the

power of the test. We developed a new smooth goodness of fit test, which was empirically eval-

uated in a simulation study, from which we conclude that the bootstrap version of the test

gives valid results (i.e. have uniform p-value distribution under the null hypothesis) as long as

the overdispersion of the NB distribution is not larger than 10.

We analysed 13 sequencing count datasets with the new goodness of fit test and we esti-

mated the proportion of features that does not obey the NB assumption. We conclude that

most datasets have more than 25% of their features deviating from the NB assumption, and 5

out of the 13 datasets have more than 40% of the features that cannot be described by the NB

distribution. We also checked whether the ZINB distribution does significantly better fit to the

data, but apart from 3 datasets, no considerably better fit was observed.

Finally, the features with lack of fit to the NB distributions were found to be more prone to

incur false positive findings in statistical tests that rely on the NB distribution, than well fit fea-

tures. On the other hand, the nonparametric rank sum test performed equally well for well fit

and poorly fit features, and managed to control the type I error rate.

Researchers can thus apply our new goodness of fit test to their sequence count datasets, to

see if the NB distribution provides a good fit to them. The result of this test should then guide

the choice of hypothesis test, e.g. for differential abundance or expression detection. If the fit is

poor, we recommend to use the nonparametric tests to analyse these data.
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Supporting information

S1 Fig. Poorly fit features. Barplots of the estimated proportion of features poorly fit by the

negative binomial distribution, when using all features (also those with dispersion >10). Error

bars represent standard errors.

(EPS)

S2 Fig. Uniform QQ-plots. Uniform QQ-plots of the p-values of four tests (Wald test in a NB

model, edgeR, DESeq2 and with the Prentice rank sum test) for all datasets evaluated under

Mock simulations (50 simulation runs). QQ-plots for poorly and well fitted features are

shown.

(EPS)

S1 Appendix. Construction of the test statistic. In this appendix more details are given about

the construction of the smooth test statistic.

(PDF)

S2 Appendix. The parametric bootstrap. In this appendix more details are given about

parametric bootstrap procedure for p-value calculations.

(PDF)

S3 Appendix. Estimation of the overdispersion parameter. In this appendix results of a sim-

ulation study are presented, aimed at investigating the sampling distribution of the MLE of the

overdispersion parameter for a range of overdispersion values.

(PDF)

S4 Appendix. Datasets. In this appendix details are provided about the datasets used in the

paper.

(PDF)

S5 Appendix. Exploration of the lack of fit. In this appendix the relationship between the fit

to the NB distribution and some data-related features are graphically investigated.

(PDF)

S6 Appendix. Datasets and R-code. All datasets used in the analysis, together with the R-code

used to produce the outputs.

(GZ)

S1 Table. Zero observations. Proportions of features without zero observations in all datasets

under study.

(PDF)
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