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Density Functional Theory simulations have been used to identify the structural factors that
define the material properties of OTS. They show that the nature of the mobility-gap states in
amorphous Ge-rich GesoSesp is related to Ge-Ge bonds, whereas in Se-rich GespSezo — Ge
valence-alternating-pairs and Se lone-pairs are dominating. To obtain a faithful description of
the electronic structure, delocalization of states, it is required to combine hybrid exchange-
correlation functionals with large unit-cell models. The extent of the localization of the
electronic states depends on the applied external electric field. Hence, OTS materials undergo
structural changes during the electrical cycling of the device, with a decrease in the population
of less exothermic Ge-Ge bonds in favor of more exothermic Ge-Se. This reduces the amount
of charge traps, which translates into coordination changes, increase in mobility-gap and
subsequently changes the selector device electrical parameters. The threshold voltage drift

process can be explained by the natural evolution of the non-preferred Ge-Ge bonds (or
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“chains”/clusters thereof) in Ge-rich GexSe1x. The effect of extrinsic doping is shown for the
case of Si and N, which introduce strong covalent bonds in the system, increase both the

mobility-gap and the crystallization temperature and decrease the leakage current.

Introduction: Newly emerging resistive memories could meet a limited set of segments of the
memory class hierarchy (Figure 1a) due to their intrinsic limitations that cannot be easily
bypassed. At first sight, the fast switching speed and much longer endurance of the resistive
memories would seem to enable them as a good competitor for the NAND flash memories.
However, the lack of a cost-effective 3D integration and multilevel cell design (taking into
account the wide distribution of their resistance), set the resistive memories behind what can be
achieved with the state-of-the-art 3D NAND FLASH memories. On the other hand, if the
switching speed is meeting the DRAM requirements, the millions of endurance cycles that can
be achieved are nowhere near the DRAM requirements (1E15 cycles). Therefore, another class
of memories, namely the Storage Class Memory (SCM), has recently emerged to fill the gap
between DRAM and FLASH. Fortunately, some current resistive memories would meet the
requirements of the SCM, provided that they are associated with a performant selector device.
Several types of devices/physical mechanisms can be exploited to operate a selector device

(Figure 1b).[
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Figure 1 (a) lllustration of the gap present between DRAM and FLASH memories that is filled
by the Storage-Class Memory. (b) Several device classes can be used as selector.
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The most important electrical requirement for the selector device is that it should deliver a low
loff current at low voltages (i.e. below half the operating Vop for the resistive memory element),
but in the same time, to be able to conduct high lon at Vop (Figure 2a). When used in series with
the memory device, such an element can block the parasitic leakage and allows, below a certain
threshold voltage (Vi of the selector), the suppression of the leakage current through the half-
selected neighboring ON cells. This setup allows only the fully selected cell to be read or written

(Figure 2b).12!
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Figure 2 (a) OTS mechanism and the resulting Negative Differential Resistance provides a
strong rectification. (b) A 2-terminal selector device set in series with a resistive element helps
suppressing the parasitic leakage.

The present work is focusing on understanding the fundamental factors driving the volatile
Ovonic threshold switches (OTS), 4 which is the mechanism behind the negative differential
resistance (NDR) observed in GeSe based chalcogenide materials, where at threshold, the
leakage current increases exponentially with the NDR characteristic snap-back. On the
downtrace and below a certain current level, the material stops conducting, therefore switching
to an OFF state (Figure 2a).F!

At the material level, the OTS mechanism is believed to be predominantly an electronic

switching mechanism that relies on traps lying in the mobility-gap of the amorphous material

that, upon the application of a critical electric field (i.e., at V), become charged, change their
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position with respect to the conduction/valence mobility edges and contribute to a significant
current increase.'> ! Another description of the threshold switching considers the formation of
an unstable filament that electrically shunts the selector material between the electrodes.l” ®
The above-mentioned switching models are offering a consistent picture in the sense that the
dominant component is driven by an electronic switching mechanism associated with
picosecond range switching times,”! and inter-trap distances and occupations that are used as
fitting parameters.['” On top of that, the dynamic response of the Ge/Se atoms might play an
important role in the dielectric response, as witnessed for the metavalent bonds present in

11,121 The OTS mechanism is classically considered to be purely

similar chalcogenide materials.!
electronic in nature, but we do not exclude that the dynamics of the formed/broken bonds can
have a great impact on the OTS mechanism. Bond dynamics, in turn, impact on the evolution
of the atomic potential energy surface during the cycling of the device.

In large devices, a filamentation process was reported,!*! but the nature of the filamentation
that can take place in nm-sized devices remains elusive, since the reported defect density, of
the order of 10! cm™3, corresponds only to the response of a handful of electrically-active
defects active across the device.'¥ Historically, these traps were usually associated with the
signature of a chalcogen lone-pair (LP) or of a valence-alternating-pair (VAP).['31 As we will
show in this work, that is not always the case, especially for chalcogen-poor (and hence Ge-
rich) materials, such as amorphous GesoSeso (aGesoSeso). This Se-poor composition (poor with
respect to GeSe; stoichiometry) has almost all its Se atoms bonded to Ge ones and has hence a
low probability to form Se VAP. Germanium, however, is abundant, and can hence form Ge-
Ge states that lie in the mobility-gap, as reported in several first-principles studies. 4 16. 171
Through this paper, we aim not only contributing to the building of a fundamental

understanding of the atomic nature of the traps responsible for the OTS, how they evolve with

the stoichiometry of the materials but more importantly, what are the inherent limitations bound
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to the size of the atomistic models, typically used in theoretical approaches. Also, we investigate

the influence of an electric field on those mobility-gap states before any atomic movement

occurs.
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Figure 3 (a) Vi statistics in aGeSe drifts from initial 2V towards 3.5V after low-energy voltage-
accelerated ageing. (b) High-energy pulsed-cycling drifts the Vi to lower voltages. Reprinted
from 281 Copyright (2019), with permission from Elsevier

Furthermore, there is a great interest in understanding the ageing effects on the Vi instability,
which is a big reliability issue: the voltage at which the materials switch ON should be
stable/repeatable for billions of cycles. In practice, some materials can have significant Vi drift.
Depending on the operating voltage and time, the same material can have two intrinsic
degradation modes: at low energy stress (below average Vi, 3V / 100ns), the Vi drifts up in
voltage (Figure 3a), whereas high energy stress/cycling (above average Vi, 5V / 100ns) tests
show the Vi to drift to lower voltages (Figure 3b).[® 18 The two different modes need to be
understood so that the degradation can be alleviated.

The threshold switching process also takes place in phase-change memory chalcogenides before
the crystallization,'® supplying the material with the required Joule heating. In the selector

devices, however, the crystallization process is undesired, since it will lead to memory switch,

instead of volatile switch. The OTS behavior, characteristic of the amorphous state, is required
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to be maintained for billions of cycles. On that front, a good thermal robustness (no
crystallization/ageing during deposition or long operation cycles) of the selector material is the
first criterium to meet.

In this account we present a detailed investigation of the electronic properties, unveil the nature
of the charge traps in the mobility-gap of the amorphous materials for several Ge:Se ratios. The
interaction of the electronic states in the mobility-gap with the electric field is presented. We
show the possible consequences of the ageing process on the threshold voltage degradation
mechanisms. Finally, we present a way to modulate the qualitative bonding in the material,

therefore changing the electronic properties (current /voltage parameters) of the selector device.
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Figure 4: (a) Density of States in a GeSe> and (b) GeSe; crystalline phases. Eq — band gap, VB-
Valence band (predominantly Se LP 4p free electron lone-pair), CB-Conduction band
(predominantly DB-Ge 4sp® hybrid orbital). Reprinted, with permission, from Bl Copyright
2017, IEEE.

Electronic structure: before diving into the electronic structure of the disordered systems, we
first analyze in the Figure 4a and b the band gap of the crystalline GeSe, and GeSe: materials:

GeSe; is a tetrahedrally bonded crystal, where the valence band (VB) is defined predominantly

by the Se lone-pairs and the band gap is almost 50% wider than that of GeSe; crystal. In the
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GeSe there are only triply coordinated elements, which results in the sp® hybridized orbitals of
Ge combining together to form the conduction/valence bands. (Figure 4b). Comparing the two
crystalline cases, one can anticipate that non-tetrahedrally coordinated Ge will participate in the

mobility-gap states/edges of the disordered materials, whenever present.
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Figure 5 (a) Several model sizes were used for amorphous systems, ranging from 1 to 5 nm size
(up to 1000 atoms) (b) typical DOS in amorphous GeSe chalcogenide materials: IPR — degree
of localization, E, - mobility gap on a 3x3x3nm sample.

In the amorphous / disordered materials (model generation and structural details given in
Supporting Information), the linear combination of atomic orbitals for a specific state will not
span across all atoms of that model. Some states are localized in space (Anderson localization)
and conduction through those states will be slower, if compared to the conduction through a
crystal band. To identify the state localization, we tested several model sizes (Figure 5a) and
the Inverse Participation Ratio (IPR) is computed for each state: the high values are
characteristic of highly localized state.['®1 As for the electronic properties, in the amorphous
materials we look for the mobility gap (E.) and the span of mobility edge tails (near conduction
and valence edges), which consist of localized states (Figure 5Db).

In the Figure 6a, we depict a highly delocalized state of a 1x1x5nm model, which is usually at
or below/above the valence/conduction mobility edges. Between the mobility edges, we have

localized states (Figure 6b,c). If the localization length (i.e., span in space of > 99.9% electronic
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density of the localized state) is larger than the model size, that localized state can be artificially
detected as delocalized, therefore mobility gap extraction has to suffer: the state in Figure 6b
artificially seems to be delocalized in the short cell dimension directions. Apart from the
exchange-correlation functional corrections that are needed to the GGA-DFT treatment, it is
important that the model size is large enough not to introduce this type of artefacts in the
detection of the mobility gap. We extracted a localization length in the range of 1.5-3nm (trap
concentration of 10'°-10%° cm®) and concluded that a minimum model size of 2nm is required

to investigate the electronic properties of chalcogenides under study.
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Figure 6 (a) A typical delocalized state in 1x1x5nm amorphous GeSe model (iso-surface
representations) (b) state that is localized in the longitudinal direction of the model but
delocalized in the other two directions. (c) fully localized state in a 3x3x3nm (d) Typical DOS
in 2x2x2nm Ge-rich aGesoSeso model with few representations of Ge-Ge gap/tail states as insets.
Reprinted from 8 Copyright (2019), with permission from Elsevier (e) Typical DOS in Se-
rich aGesoSezo model with few Se-LP, Ges/Ges* VAP gap/tail states representations as insets.

Figure 6d shows typical DOS of Ge-rich aGespSesp 3x3x3nm model, with localized states
between the mobility edge states that show the nature of the gap states: predominantly the
trapping states are formed of Ge-Ge “chains” with small contributions from Se LP. The same

Ge-Ge bonds were found in am-GeTe.?% In the case of a Se-rich stoichiometry (aGesoSezo
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Figure 6e), we could witness a different picture: Se abundance leads to states that are made of
Se LP near the valence edge, whereas conduction tail-states show strong Ge contribution. On a
close inspection, we concluded that their nature can be described as VAP of Ge (under- and
over-coordinated Ge, see details in Supporting Information), even though the two states are
spatially far from each-other (see Figure 7). In other words, not only in chalcogens but also in
Ge there can form valence-alternating pairs that can trap electrons/holes and contribute to the
Ovonic threshold switching mechanism. A detailed description of the coordination
environments in these chalcogenides was given by Raty et al.,[*? 21 whereas Li and Robertson

showed the qualitative n-type nature of the traps in Ge-rich compositions.['#
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Figure 7 (a) VAP states observed in Ge shown for under- and over- coordinated Ge atoms in
aGezoSero. The corresponding coordination configurations are depicted for (b) tetragens, (c)
pnictogens and (d) chalcogens. Reprinted from 11, Copyright (2019), with permission from
Elsevier

Since we deal with disordered materials, there are an infinite number of possible atomic
morphologies of the modeled system, hence we need a statistical evaluation of the mobility
gaps, extracted from the density of states (DOS). Figure 8a presents the DOS for 10 different

models that were aligned at the valence edge of the mobility gap, whereas in Figure 8b the

statistical boxes for several Ge:Se stoichiometries (10 models each) are shown.
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Figure 8 (a) Density of States for 10 models of 2x2x2nm aGesoSeso (b) Mobility gaps (statistical
boxes for 10 models each) for aGexSey (x:y=30:70,40:60,50:50,60:40,70:30)

With Ge approaching 60%, the mobility gap of the GeSe chalcogenide approaches the gap of
pure Ge: Ge-related states are omnipresent and define the mobility edges and gap traps.
Photoconductivity experiments on similar stoichiometries (Ge 40-60%) show that the mobility

gap is similar in all cases and close to the direct gap of Ge - 1.05eV (Figure 9).
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Figure 9 (a) Experimental determination of GeSe bandgap in aGessSess layers from the onset
of photoconductivity current.

The mobility edges we extracted from IPR analysis (detailed in Supporting Information)
represent the electrically conducting states within the valence/conduction bands, which could
be the source of discrepancy with photoconductivity measurements, where an optical

absorption precedes the conductivity. The mobility gap of the Se-rich compositions (1.2-1.6 eV

Figure 8b) approaches the band gap of the perfect crystalline GeSe, (Figure 4b).
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Electric field: the interaction of the electric field with the electronic states can reveal how much
of the purely electronic component in the OTS mechanism is effective — the ionic component
(upon atomic relaxation ) can have a great impact on the electronic wavefunction of the system,
therefore we isolate any ionic/polaronic relaxation effects by keeping the atoms fixed. To
illustrate the effect, we applied a uniform electric field across a 2x2x5nm model of aGesoSeso.
The electric field interaction (change in energy and degree of localization) is show in Figure
10. For some states there is a stronger Stark effect?? and their energy drops/raise in energy
faster than for other states (Figure 10a), resulting in wider conduction/valence tails at high fields,
effectively shrinking the mobility gap.F! In high electric fields (0.8V/nm) the tails become so
close that electronic excitation from valence to conduction states occurs and that leads co
convergence issues. Electric field interaction is not uniform in space neither: some regions are
more readily to intermix with tail states than other regions in space, which illustrates the

electronic structure inhomogeneities in the disordered chalcogenide materials.

IPR/ DOS
Figure 10. (a) Influence of the electric field on the DOS for a 2x2x5nm aGesoSeso sample. (b)
Illustration of qualitative changes of one valence and one conduction tail states, under applied
electric field of the same sample. Arrows indicate electronic occupation; ovals highlight the
delocalization to other regions of the model. Reprinted, with permission, from B Copyright
2017, IEEE.
Figure 10b illustrates state delocalization to an island of atoms in the neighborhood and the
corresponding electronic excitation. These changes (tail/mobility gap states (de)localization in
space change the spatial span of the electronic gap states) will result in changes of the electric

conductivity of the material. This is consistent with the field-induced edge state delocalization

model.[®!
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Figure 11. (a) Gap/tail state evolution upon varying electric field from IPE spectroscopy on a
Si\SiO2\aGeSe\Au device.

The experimental evolution of the tail states under applied electric field was measured on a thin
film of aGesoSeso, deposited on SiO: (Figure 11). The slope of the onset of the Internal Photo-
emission (IPE) spectra evolves upon increased bias,?®l indicating a “spill out” of the band tail
states into the mobility gap with increasing electric field, as predicted by the theoretical
calculations (Figure 10a). However, since in the experimental measurement the ionic/polaronic
relaxation effects are included, the contribution from purely electronic component is not

quantifiable.
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Figure 12 (a) Amorphous phase locked in a local minimum can drift downwards during ageing
or upwards during melting (b) AIMD simulations of a 2x2x2nm aGeSe sample show different
slopes at different temperatures for the potential energy trajectory of the material. Reprinted
from (261 Copyright (2019), with permission from Elsevier

Ageing: if the crystalline materials are stable in time and the atoms only vibrate around a certain
equilibrium position, in disordered materials the atomic conformations are kinetically arrested

in a high-energy local minimum. This high potential energy of the atomic configuration,
12



WILEY-VCH

compared to the crystalline counterpart, is intrinsic to the amorphous materials. The potential
energy surface is very rich in local minima and there is a thermodynamic driving force towards
lower-energy conformations. If the system does not exceed the melting threshold (glass-
transition temperature for aGeSe is 568K[?4 ), the thermal energy is just large enough to
promote atomic movements over small kinetic barriers. The system continuously rearranges the
atomic bonding, the material’s morphology evolves in time towards an energetically more
stable atomic configuration. The rate of this energy relaxation process (ageing), depends on the
kinetic energy speedup. On excess Kinetic energy, the material is melting (Figure 12a).

To obtain a qualitative insight into the ageing/melting processes, we performed AIMD
simulations of the aGesoSeso system at different temperatures (Figure 12b). Low Kinetic energy
(300K) conditions show a rather fast equilibration of the atomic configuration and not much of
energy drift (flat average slope). Increasing the vibrational kinetic energy to 600K allows for
jumps over larger barriers and further stabilization of the system, which can be observed as a
negative average slope of the potential energy trajectory. Increasing the kinetic energy to 800K,
the system seems to be capable to jump over larger barriers to reach the thermal equilibrium. A
positive average slope of the trajectory would point towards material melting. Ignoring the
melting regime, a greater interest is what happens with the disordered material during the ageing.
As evidenced in the previous sections, the Ge “chains” or clusters are responsible for the
electrical behavior of this material. Therefore, we considered the Ge-Ge bond concentration as
an indirect metric for the evolution of the mobility-gap charge traps and monitored its evolution
during the span of the Ab Initio Molecular Dynamics (AIMD) simulation. In Figure 13 we
monitor the amount of Ge-Ge bonds in time. Starting at a level of 23%, the amount of Ge-Ge
bonds quickly drops below 15% after 50ps at 600K. Of course, this relaxation time depends on
the simulated temperature; at room-temperature the Ge-Ge bond reduction evolves much slower

than at higher temperatures and we speculate that this mechanism is the main contributor to the

13



WILEY-VCH

ageing of the intrinsic electrical signature (drift of Vi in Figure 3) of the aGesoSeso selector.[2°]
The decrease of Ge-Ge homopolar bonds happens because the bonds like Ge-Ge or Se-Se are
thermodynamically less stable/exothermic than Ge-Se bonds in aGeSe (in other words non-
preferred) as illustrated by the evolution of the short-range order coefficient, which represents
the departure from the complete chemical disorder in the amorphous materials ( Figure 13b).12%!
Therefore, they have the tendency to disappear or at least to reduce their concentration,

compensated by an increase of heteropolar (more exothermic) Ge-Se bonds.
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Figure 13 (a) AIMD evolution of Ge-Ge bond % in time with ageing at different temperatures
for the 2x2x2nm sample. (b) Short range order coefficients computed on the atomic trajectory
at 600K for the same 2x2x2nm sample— amount of Ge-Ge bonds is reduced.

This mechanism represents the thermodynamic driving force for ageing of the material. A
decrease in Ge-Ge-derived trap states would increase the mobility gap of the material, as
illustrated on few potential-energy-minimum points on the AIMD trajectory (Figure 14):
ageing of the material results in a decrease of Ge-Ge bonds and an increase of the mobility gap.
The exact same mechanism was shown to be responsible for the ageing in GeTe,['"] hence it is

general for disordered Ge chalcogenides. If during the first-fire event the required

amount/configuration of traps and the mobility gap is defined with the initial Vin of OTS, their
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further evolution in time with two opposite mechanisms (ageing or melting, depending on the

energy injected in the material) will determine the Vi, to drift upwards or downwards.
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Figure 14 a) Mobility gap E, increases in time, which correlates with b) a decrease in Ge-Ge
bonds in the 2x2x2nm aGesoSeso sample.

This type of ageing was also observed in other 1V-VI compounds. 11618211 |n other words, the
Ge-Ge bond temporal instability constitutes a reliability issue and is the most probable cause
for the threshold voltage drift. However, the proposed model does not preclude other possible
contributions such as the extent to which the trap relaxation depends on the captured charge
and its impact on the resulting threshold switching process.

Si/N doping: Doping with atoms that introduce strong bonds in the system strengthens the
atomic matrix against element diffusion. This increases the thermal robustness of the selector
materials in excess of 400°C, as shown by in-situ XRD measurements on Si/N:aGesoSeso
(Figure 15).5%1 The impact of Si doping on the crystallization temperature is weaker, compared
to N doping. Thermal properties improvement upon N doping have been shown for Se-rich

aGeSe as well.[?°]

15



WILEY-VCH

0%N 5% N 10% N 15% N

600

= m GeSe:Si
© 550
— 500 mGeSe:N
C
2 50
N
= 400
L]
g 350

250

0 5 10 15

Dopant content (%)

Figure 15: In-situ XRD thermal stability of Si/N:aGesoSeso shows increase of the crystallization
temperature with the dopant content. Reprinted, with permission, from B Copyright 2017, IEEE.

Considering the different nature of the Si and N atoms, it is interesting to see what type of
changes in terms of bonding are induced into aGeSe material by Si or N doping. In that respect,
Si, Ge are less electronegative and N, Se are more electronegative elements. As a result, Ge
coordination analysis shows that Ge-N bonds replace both Ge-Ge and Ge-Se bonds, whereas
Si-Ge bonds replace mostly Ge-Se bonds (Figure 16).
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Figure 16: Amount of Ge coordination with Ge, Se, N or Si in small (~1x1x1nm-sized models)
of Si/N:aGesoSeso. Reprinted, with permission, from B! Copyright 2017, IEEE.
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Since the Ge-Ge homopolar bonds were found to constitute mobility-gap states, reducing their
amount by N doping results in fewer traps and wider/cleaner mobility-gap, as shown in Figure
17a for a set of 10 small 100-atoms models. This leads to the conclusion that N doping can
reduce the leakage, which was also witnessed in other chalcogen materials.’’l Indeed,
experimental I-V measurements on increasing N concentration in splits with similar Ge:Se
composition shows leakage reduction in large area MIM capacitors (Figure 17b). Therefore, a
low concentration of gap states reduces the lorr leakage/increases the half-bias nonlinearity at
the expense of increased mobility-gap, therefore of threshold voltage. A negative consequence
is that during switching cycling, the N-doped material undergoes higher energy stress compared
to the undoped one and a larger drift of threshold voltage. While the N-doping strategy was
shown to bring electrical, stability improvements in many chalcogen materials/devices,?® it

does not alleviate the Vi drift issue in GeSe selector device.[?!
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Figure 17: (a) Density of States for 10 amorphous models of undoped and N:aGesoSeso (small
~1x1x1nm samples) (b) Current-Voltage traces for 0-15% N doping levels. Reprinted, with
permission, from B! Copyright 2017, IEEE.

Conclusions: We show that the nature of the mobility gap conductive defects in GeSe-based
(Ge-rich) selector materials is predominantly of Ge nature (Ge-Ge ““chains”/clusters), whereas

in Se-rich compositions, the electronic structure of aGeSe show the possibility to have Valence

Alternating Pairs of Ge states. We found that next to a more accurate hybrid DFT approach, a
17
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minimum sized atomistic model is required to detect an accurate mobility gap of amorphous
chalcogenides. The sole effect of electric field is enough to promote both an electronic re-
population and state intermixing, therefore changing the electrical conduction (the localization
length of the gap states/the inter-trap distance/ electron mobility) of the material. The observed
modulation of the electronic structure with the applied electric field is supported by
photoemission spectra measurements. AIMD simulations show that the thermodynamically
unfavorable Ge-Ge bonds are not stable in time, also confirmed with RAMAN experiments.
Hence the trap concentration in the mobility gap have the tendency to change in time. This can
explain the long-term evolution of the threshold voltage in Ge-rich GeSe selector materials. To
increase the melting/glass transition temperature, admixture with strong covalent-bonding
elements is required. N-doped devices show a two-fold improvement: an increase in thermal
stability, at the same time lorr leakage current drops, as expected from first-principles

simulations results. Doping, however, did not improve on the Vi drift.

Experimental Section

Experimental samples preparation: integration performed in a 300nm process flow as Metal-
Insulator-Metal selector devices with amorphous chalcogenide films with thickness varying
from 5 to 20 nm, that have been deposited by physical vapor deposition (PVD) technique."!

Amorphous GeSe films are prepared by room temperature physical vapor deposition (PVD).
TiN/aGeSe/TiN selector devices were integrated in a 300nm process flow, using a pillar (TiN)
bottom electrode, passivated with a low-temperature BEOL process scheme. A GeSe
chalcogenide films control down to 5nm thickness has been achieved. N-dopants have been
introduced by turning on a N2 flow in the PVVD chamber during the deposition process. Dynamic
I-V characteristics were collected with an oscilloscope, monitoring the device response to a
triangular pulse (equal fall/rise time of 100ns). Photoemission measurements under high

applied electric field were performed on aGeSe films deposited on SiO2 with evaporated Au
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dots on top. Thermal stability in-situ XRD measurements were performed with a rate of 0.2
degree/s.

Computational methodology: Theoretical (Density Functional Theory) simulations were
carried out in CP2K,®Y employing Goedecker, Teter and Hutter pseudo-potentialst®? and
localized basis sets (of Double-Zeta-Valence-Polarization quality) in the Generalized Gradient
Approximation (Perdew-Burke-Ernzerhof exchange-correlation functional®®) for the melt-
and-quench algorithm to generate the amorphous models. Several sizes were used for different
purposes, ranging from 1nm to 5nm large models (Figure 5a): small (1nm) models we use to
illustrate the minimum requirements on the model size for gquantitative electronic structure
simulations, long (5nm) models were used in electric field simulations, whereas the 2-3nm
models are optimal to investigate the electronic properties. For the melt-and-quench protocol,
a 3-temperature steps algorithm was employed, in which the models were melted at 1200K ,
then quenched at 800K and 400K with a fast pressure-release step (3 iterations of cell
relaxation) between quenching steps. Computational time was determined, based on the total
energy evolution of the system - every 3ps the average total energy compared to the previous
run and the temperature step run stopped when the average total energy difference fell under
3eV. With such an algorithm, the melting time for 2x2x2nm models was 15-24ps, quenching at
800K and 400K typically lasted 6ps each for a total melt-and-quench time of 27-36ps. The
small 1x1x1nm models reached the given threshold faster, total time typically 12-15ps. As a
final step , a full system relaxation was performed. With an Ab-Initio Molecular Dynamics
(AIMD) approach, we investigated the time evolution in a 2x2x2nm model — ageing, material
relaxation / drift of the bonding. For the AIMD simulations, a Nosé thermostat was used.?* A
hybrid method (HSE functional®) in combination with the Auxiliary Density Matrix Method
(ADMM) was used to quantify the electronic structure on 10 samples of 2x2x2nm size,®!

results were similar on a 3x3x3nm sized model. IPR for each state in the amorphous model was
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used to define the edges for the mobility gap (see Supporting Information for details). A
subsequent hybrid HSE functional relaxation on a sample system showed insignificant
structural changes in the atomic model. Computations with a finite periodic electric field were

performed by using the Berry-phase approach."]
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