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PREFACE 

 

The discovery of graphene in 2004 opened a door of a completely new playground of two-

dimensional nanomaterials, which features atomic-level thickness, super high surface-to-

volume ratio, and tunable electronic properties. Among them, single- and few-layer transition 

metal oxides have received relatively little attention compared to other families of atomically 

thin-layered transition metal dichalcogenides, even though they are more chemically stable and 

environmental friendly as well as easier to be prepared. 2D transition metal oxides can be 

fabricated by a variety of methods, including “top-down” and “bottom-up” approaches. In our 

work, 2D α-MoO3 and WO3 nanofilms with the controlled thickness were developed by an 

atomic layer deposition technique, due to the advantages of deposition of large-scale, 

conformal, dense nanofilms with precise thickness, and their applications in sensors were also 

investigated at the same time. 

Since, in some cases, the properties of bare 2D transition metal oxides unable to meet 

most of the commercial requirements, 2D transition metal oxides-based heterostructures 

provide the strategies to improve their performances and broaden the scope of their 

applications. Based on the research survey about the methods of surface functionalization on 

2D transition metal oxides and dichalcogenides, functionalization of 2D WO3 nanofilms with 

different kinds and amounts of noble metals was developed for the electrochemical sensing 

application. The functionalization of Ga2O3 on the surface of 2D WO3 nanofilms to form p-n 

heterojunction for the improvement of gas sensing properties was also investigated. 
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1. Chapter 1 
INTRODUCTION 

 

1.1 Background 

It is well-known that the development of material science is the driving force of technological 

progress, so advanced materials play essential roles in our daily lives. Since the 1980s, 

dimensionality has entered the horizons of material science and triggered rapid developments 

of low-dimensional materials. Low dimensional materials are the materials that have a 

nanoscale size at least in one dimension and can be divided into three categories: two-

dimensional (2D), one-dimensional (1D), and zero-dimensional (0D) [1]. Low dimensional 

materials can exhibit unique properties from the quantum confinement effect of their nanoscale 

size. Among three types of low dimensional materials, 2D materials have been the most 

extensively studied materials [2]. First, the quantum confinement in the direction perpendicular 

to the 2D plane leads to novel electronic and optical properties, which make them appealing 

candidates for fundamental condensed matter study and electronic device applications [3]. 

Second, the atomic thickness offers them maximum mechanical flexibility and optical 

transparency, making them promising for the fabrication of highly flexible and transparent 

electronic/optoelectronic devices [3]. Third, the large lateral size and ultrathin thickness endow 

them with ultrahigh specific surface area, making them highly favourable for surface active 

applications, due to their unique large surface-to-volume ratio and confined thickness on the 

atomic scale [3]. 

As a representative 2D material, graphene, being one-atom-thick carbon nanosheets, 

features various unprecedented properties, such as large theoretical specific surface area (2630 

m2/g), superior electrical conductivity (200 S/m), ultrahigh carrier mobility at room 

temperature (~10000 cm2·V-1·s-1), remarkable mechanical strength with Young’s modulus (~1.0 

TPa), outstanding optical transmittance (~97.7%) and high thermal conductivity (3080-5150 

W/mK) [3, 4]. However, graphene has its disadvantages, such as the lack of intrinsic band gap, 

its susceptibility to oxidative environments, which limit its applications, for example, field-
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effect transistors (FETs) made from graphene cannot be effectively switched off and have low 

on/off switching ratios. Fortunately, graphene’s invention has aroused enormous interest to 

explore other 2D materials, which possess similar layered structure features but possibly have 

more superior properties, such as hexagonal boron nitride (h-BN), transition metal 

dichalcogenides, graphitic carbon nitride (g-C3N4), layered metal oxides, and layered double 

hydroxides (LDHs). The common feature of these layered materials is that the bulk 3D crystals 

are stacked structures. They involve van der Waals interactions between adjacent sheets with 

strong covalent bonding within each sheet. 

1.2 2D transition metal oxides and dichalcogenides (TMO&Ds) 

1.2.1 2D transition metal oxides (TMOs) 

Over the past few years, 2D TMO&Ds have attracted extensive attention in the research 

communities, as they showed some properties superior to those of graphene [5]. Compared 

with transition metal dichalcogenides (TMDs), TMOs are more chemically stable and 

environmental friendly as well as easier to be prepared. As functional materials, TMOs in the 

form of 0D (nanodots and fine nanoparticles), 1D (nanowires and nanotubes), and three 

dimensional (3D) mesoporous structures have been widely studied. In contrast, 2D structures, 

especially those with confined thickness, have remained conspicuously absent [6]. In nature, 

many-layered transition metal oxides are composed of negatively charged slabs with alkaline 

cations filling the interlayer spacing. These slabs are commonly made up of corner‐ or edge‐

shared octahedral units of MO6 (M = Ti, Nb, Mn, W, Ta, Ru, Mo, etc.) [7-11], which can form 

ionic bonds with the surrounding alkaline cations, and the structures of some layered metal 

oxides were shown in Figure 1.1 (a-e) [12]. For this kind of material, the cation exchange–

assisted liquid exfoliation can be applied to reduce these materials into 2D nanosheets, which 

will elaborate in the following part. In addition, some layered transition metal oxides are also 

found to be bonded by the weak Van der Waals force, such as α‐MoO3 and V2O5 [13, 14], and 

the structures can be seen in Figure 1.1 (e, f) [12]. For this kind of layered metal oxides, 

micromechanical cleavage or liquid exfoliation techniques have been developed to produce the 

2D monolayers in these oxides. Transition metal oxides exhibit different polymorphs. For 

example, as one of the two main transition metal oxides were investigated in our work, MoO3 

has the  α-MoO3 (orthorhombic phase) to β-MoO3 (monoclinic phase) and h-MoO3 (hexagonal 
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phase), depending on the arrangement of the building blocks of MoO6 octahedra. Of these, α-

MoO3 is thermodynamically stable, while the other two phases are metastable. Generally, used 

2D MoO3 has the thermodynamically stable orthorhombic phase (α phase). WO3 crystals consist 

of WO6 octahedra linked by corner and edge sharing. The corner-sharing phases account for 

most of the tungsten trioxide phases, such as monoclinic II (ε-WO3), triclinic (δ-WO3), 

monoclinic I (γ-WO3), orthorhombic (β-WO3), tetragonal (α-WO3), and cubic WO3. The different 

phases can be mutually transformed under different temperatures, while γ-WO3 appears to be 

the most common and stable phase at room temperature. 

 

1.2.2 2D TMDs 

TMDs are made of stacking of graphene-like layers of the general formula TMX2 in which M is 

the transition metal forming hexagonal layers sandwiched between two sheets of X, where X is 

a chalcogen (X = S, Se, Te) [15], as shown in Figure 1.2 (a). Commonly studied polymorphs of 

TMX2 compounds are tetragonal 1T-TMX2, hexagonal 2H-TMX2, and rhombohedral 3R-TMX2, 

respectively, which are different in stacking sequence in their unit cell and metal atom 

coordination [16], as shown in Figure 1.2 (b). Phase transition is possible in some TMDs by 

intercalation with alkali metals [17-19]. For example, 2H-MoS2 to 1T-MoS2 transition by lithium 

intercalation [18] and reverse scenario of 1T-TaS2 to 2H-TaS2 change on lithium intercalation 

[19]. Moreover, as the 1T phase of some TMDs, such as 1T-MoS2 and 1T-WS2 exhibits metal 

character, partial phase transformation can be controlled, producing a 2H-1T structure to 

achieve a metal-semiconductor hybrid structure [20-22]. The layer-dependent properties of 

TMDs have recently been in the intensive investigation for their transition from an indirect 

Figure 1.1. Representative structures of some layered metal oxides (a) 𝑇𝑖0.91𝑂2
0.36− , (b) Mn𝑂2

0.4− , (c) 
𝑁𝑏6𝑂17

4−, (d)Ta𝑂3
−, (e) MoO3, and (f) V2O5 [12]. 
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bandgap in bulk to a direct gap in the monolayer [23, 24]. This tunable bandgap in TMDs is 

accompanied by strong photoluminescence (PL) and large exciton energy, which make them 

highly attractive for optoelectronic devices [25]. Besides, the distinct features of weak Van der 

Waals force between each layer and the large specific surface area also make 2D TMDs become 

promising candidates for capacitive energy storage and sensing applications [26, 27]. 

 

1.3 Fabrication method 

Following the success of graphene, many strategies have recently been developed for the 

fabrication of 2D TMO&Ds, which can broadly be classified into two major categories: top-

down and bottom-up methods [5, 28]. The top-down approach relies on the processes to whittle 

down the size and dimension of layered bulk crystals or other forms to single- or few-layer 

nanosheets by mechanical cleavage or exfoliation. The bottom-up method is the opposite 

process, where 2D TMO&Ds are directly grown from different precursors via chemical 

reactions at certain experimental conditions by techniques of molecular self-assembly, layer-

by-layer assembly, vapor deposition, and so on. Compared with top-down approach wafer-

scale and high-quality 2D materials can be developed by bottom-up method, especially vapor-

phase growth strategies,  since scalable production of high-quality wafer-scale 2D materials has 

become significantly essential to bring us closer to practical industrial applications. 

Figure 1.2. (a) Schematic structure of a typical TMX2 structure, with the chalcogen atoms (X) in yellow 
and the metal atoms (M) in grey [15]. (b) Schematics of the structural polytypes: 2H (hexagonal 
symmetry, two layers per repeat unit, trigonal prismatic coordination), 3R (rhombohedral symmetry, 
three layers per repeat unit, trigonal prismatic coordination) and 1T (tetragonal symmetry, one layer per 
repeat unit, octahedral coordination) [16]. 
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1.3.1 Mechanical cleavage 

Mechanical cleavage, as a traditional and efficient method, also known as the Scotch-tape 

method, can yield pristine, clean, and high-quality single- and few-layer 2D nanosheets. In a 

typical process, the bulk crystal is first attached to a piece of Scotch tape, and the other piece of 

Scotch tape is adhered to the other crystal surface. After that, one of the Scotch tape pieces is 

detached from the crystal. This process can be repeated several times in order to obtain flakes 

that are thin enough and can be transferred onto a target substrate. Then, the Scotch tape with 

the thin flake is attached onto a target substrate under gentle pressure. Finally, the Scotch tape 

is peeled off from the substrate and single- or few-layer nanosheets can be easily found on the 

substrate using an optical microscope [2]. Since Novoselov, Geim, and co-workers successfully 

produce single-layer graphene from graphite by this method in 2004 [29], many 2D TMDs such 

as MoS2, TiS2, TaS2, WS2, WSe2, TaSe2 with single- or few-layer nanosheets have been prepared 

[30-32]. A typical mechanical cleavage process of few-layered MoS2 nanosheets is shown in 

Figure 1.3 [33]. However, the reports of the development of 2D transition metal oxides using 

this method are relatively less, as the problems of this method are the low yield, difficulties to 

control the thickness, scale-up and the size of the as-obtained nanosheets, and requirement of 

the huge amount of bulk materials [34]. 

Figure 1.3. Schematic diagram of the preparation process for the mechanical cleavage MoS2 nanosheets 
[33]. 
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1.3.2 Liquid Exfoliation 

For TMO&Ds bonded by the weak Van der Waals force, liquid exfoliation technique has been 

widely used to produce large scale and few-layered nanosheets in the organic solvents, such as 

N-methyl pyrrolidone (NMP) and dimethylformamide (DMF) [35]. In this process, the 

sonication can break the weak Van der Waals interaction between layers, but cannot destroy 

the covalent bonding in each layer. It was found that proper matching of the surface tension 

between the layered crystal and the solvent is the critical factor in minimizing the energy and 

increasing the efficiency of exfoliation. Moreover, the solvent is also vital in stabilizing the 

exfoliated nanosheets and prohibiting their restacking and aggregating. Few layer TMDs, MoO3, 

and V2O5 nanosheets have been produced by this method [34, 36,37, 13, 14], and as an example, 

the step-by-step synthesis process from bulk α-MoO3 to nanosheets was illustrated in Figure 

1.4 [13]. As mentioned above, for some layered TMOs composed of negatively charged slabs 

with alkaline cations, the cation exchange–assisted liquid exfoliation has been developed to 

reduce these materials into 2D nanosheets [1]. By treatment with an acid solution, the interlayer 

alkaline cations can be exchanged with H+ cations to form hydrated protonic compounds. In 

this reaction, a massive volume of water can be formed, which leads to a drastic decrease in the 

interlayer electrostatic interaction and the interlayer expansion. Subsequent mechanical 

shaking or sonication treatments can easily exfoliate the expanded materials into nanosheets. 

1.3.3 Chemical vapor deposition (CVD) 

The CVD method is one typical bottom-up process used to prepare ultrathin 2D nanomaterials 

on the substrate. In a typical procedure, the given substrate is exposed to reactive precursors at 

high temperature and high vacuum, in which the precursors react and/or decompose on the 

Figure 1.4. A schematic diagram of the step-by-step synthesis process from bulk α-MoO3 to nanosheets 
[13]. 
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surface of the substrate to form ultrathin 2D flakes or large-area ultrathin films. As is known, 

in the growth process, parameters including precursor, temperature, pressure, and type of 

substrate have effects on the size, morphology, and phase of 2D TMO&Ds [38], which are 

essential for the properties of 2D TMO&Ds. 

 

Precursor, serving as the reactants in the CVD process, can be gaseous or solid, and 

compared to the solid precursor, gaseous precursor is more convenient for the CVD process 

due to the easy and accurate control of the gas flow rate over a wide range, allowing to precisely 

control the structure, morphology, and size of 2D materials [39, 40]. 

The temperature in a CVD system plays an even more critical role in the development 

of 2D materials because it can affect the flow of the carrier gas, chemical reactions of precursors 

in the gas phase, which suggests that temperature can determine the composition and 

uniformity of the products [1]. Generally, high-quality products can usually be obtained at 

relatively high temperatures. 

Pressure, varying over a wide range from a few atmospheres to several millitorrs, has a 

tremendous effect on the gas flow behavior. Based on the ideal gas equation PV = nRT, for the 

same molar flow, at low pressure, the volume flow and the velocity of gas are much increased. 

In contrast, the precursor concentration decreases, which means the low concentration and high 

velocity of the mass feed of the precursor can make the reaction more controllable [1, 41, 42]. 

Substrate, used for the deposition of 2D materials in the CVD process, is important for 

morphology and crystal lattice control of 2D materials [43]. In addition, different substrates 

Figure 1.5. Schematic of TMDs in a CVD process [52]. 
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were chosen for various applications of 2D materials, for example, because of the catalytic 

abilities, nickel and copper can be used as substrates for catalytic applications, and for electronic 

and optoelectronic applications, inert Si/SiO2, mica, and polyimide are commonly used [44-46]. 

So rational design and careful tuning of the CVD growth parameters are important for 

developing high-quality 2D materials. So far, this method has been successfully utilized to 

develop many 2D TMO&Ds, MoO3, WO3, TiO2, MoS2, WS2, and so on [47-51]. Figure 1.5 

illustrated the schematic diagram of the development of 2D TMDs using the CVD method [52]. 

However, the growth of 2D TMO&Ds usually involves solid precursors, and their 

concentrations are not easy to control precisely. Defects are inevitable in current CVD-grown 

2D TMO&Ds, which limited their applications in electronic and optoelectronic fields. The high 

temperature generally used in the CVD growth process limited their use in the flexible device. 

Great efforts have been paid to the low-temperature growth of 2D materials, but the 

temperature is still too high for most polymeric flexible substrates. In addition, wafer-scale and 

continuous 2D films are essential for practical uses, and new approaches in the CVD growth 

process has to be developed. 

1.3.4 Atomic layer deposition (ALD) 

ALD technique is a special variant of CVD. However, in the CVD process, the precursors can 

react at the same time in the surface, and the precursors can decompose, while in the ALD 

process the precursors are not introduced into the reactor simultaneously, and are typically 

separated in time by inert gas purges without self-decomposition [53]. In addition, ALD is a 

surface controlled layer-by-layer process rather than process parameter controlled as in the case 

of CVD [26]. As depicted of a schematic illustration of the ALD process in Figure 1.6, each cycle 

of the ALD process consists of four essential steps [53, 54]: 

(1) Expose of the substrate surface to the pulse of the first gaseous precursor, typically of a 

metal reactant, and chemisorption of the first precursor happens onto the substrate. 

(2) Purge inert gas to remove the unreacted precursor and gaseous by-products from the 

chamber.  

(3) Expose of the second precursor, typically of non-metal reactant, and the surface reaction 

happens to produce the thin film. 
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(4) Again purge inert gas to remove the unreacted precursor and gaseous by-products from 

the chamber. 

For the ALD process, the choice of the precursor is strict. Gaseous precursor or 

vaporizable processor at a temperature lower than ALD reaction temperature is required to 

enable transport in the gas phase, and the formed by-product should be inert and not interfere 

with the ALD growth. Moreover, the precursor should not decompose thermally during the 

storage at the vaporization temperature or the growth temperature [53]. Compared to the CVD 

method, there are some advantages of materials developed from the ALD method. 

(1) The deposition rate in ALD is rather low, one cycle requiring a few seconds typically, 

and the film of ALD is deposited in a full monolayer or a fraction of one monolayer, so 

the materials can be controlled down to a nanometer level and in the ideal case even to 

an atomic level. 

(2) The self-limiting growth mechanism makes each cycle deposit precisely the same 

amount of materials, and thus the film thickness may be accurately controlled by the 

number of deposition cycles. 

(3) Since in ALD, each layer reaction step is given enough time to reach completion while 

in other methods the new deposition materials may be covered by unreacted species 

because of the continuous growth process, the films from ALD often exhibit superior 

quality. 

(4) ALD processes are weak temperature dependency and can be performed at a relatively 

low temperature. CVD processes, in general, are strongly temperature-dependent. 

Therefore, a typical growth temperature can be found for different materials, which 

make it possible to deposit multilayer structures in a continuous process. In addition, 

2D materials on the flexible polymer substrate can also be developed. 

 

Figure 1.6. Schematic of one cycle of ALD-growth process [2]. 
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1.3.5 Liquid phase techniques 

Liquid phase techniques as different bottom-up approaches include many promising 

methods, for example, electrodeposition, solvothermal method and hydrothermal method [55-

57]. It is used to synthesize target materials from specific precursors via chemical reactions in 

solution, in which surfactants are generally used to control the size, shape, and morphology as 

well as to stabilize the synthesized materials. Some widely used wet-chemical methods for 

nanomaterials include template synthesis, hydro/solvothermal synthesis, self-assembly of 

nanocrystals, and soft colloidal synthesis. Wet-chemical methods have been demonstrated to 

be effective for the synthesis of numerous ultrathin 2D nanomaterials. Importantly, the liquid 

phase techniques synthesis enables the realization of high-yield and massive production of 

ultrathin 2D nanomaterials in liquid at relatively low cost, which is potentially applicable for 

industrial production. However, it is hard to obtain single-layer nanosheets for most of the 

nanomaterials synthesized by wet-chemical methods, because the synthesis is easily affected 

by reaction parameters, including reaction temperature, reaction time, concentration of 

precursors, and solvents [2]. 

1.4 Properties and Applications 

1.4.1 Electrocatalysts 

Electrocatalysis is one of the most promising applications for 2D TMO&Ds, especially for the 

hydrogen evolution reactions (HERs), due to the large surface area, active edge site effect and 

semiconducting to metallic phase transformation [58]. Electrochemical HER is a highly efficient 

way for hydrogen generation under the presence of Pt, Pd, or Rh catalysts [59]. However, the 

scarcity and the cost of noble metals limit their commercialization and hence shift the research 

interests on looking for alternative cheaper HER catalysts. Specifically, 2D TMDs, as a member 

of the group of 2D nanomaterials, with their unique optical, mechanical, electronic and catalytic 

features have recently been explored as an alternative HER catalyst owing to its active edge site 

effects and the semiconducting (2H) to metallic (1T) phase transformation [17, 60]. It means the 

number of active sites can be increased, and the conductivity also can be improved in some 2D 

TMDs, which are the main parameters to improve the HER catalytic performance of 2D TMDs. 

As shown in Figure 1.7, the as-synthesized 2D 1T/2H-MoS2 nanosheets through a facile 

hydrothermal method exhibit remarkable achievement for the HER with a small overpotential 
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of 220 mV at 10 mA/cm2, a low Tafel slope of 61 mV/dec and robust stability. It is ascribed to 

that the locally introduced 1T phase MoS2 can not only contribute more active sites but also 

markedly promote the electronic conductivity [61]. 

 

1.4.2 Photocatalysts 

Due to their low cost, earth abundance, and nontoxicity, TMO&Ds have been the most popular 

photocatalysis candidates in the past decades. Among different forms, 2D TMO&Ds are proven 

to be more promising for photocatalytic applications than the form of 0D, 1D, and 3D structures 

[62, 57]. Obviously, their large surface area can provide an increased number of active sites for 

catalytic redox reactions with surface adsorbed species, while also minimizing the necessary 

catalyst loading. Additionally, charge migration across both interfaces (catalyst–electrolyte and 

catalyst–charge collector) is also promoted, which leads to the reduction of interfacial charge 

transfer resistance and the improvement of photocatalytic reaction kinetics [63]. More 

importantly, the 2D planar configuration allows the dominant exposure of one particular facet 

with a distinct atomic arrangement, which is more suitable for the separation of photogenerated 

Figure 1.7. (a) Typical FESEM and (b) TEM images of 2D 1T/2H-MoS2 nanosheets. Electrocatalytic 
performance of 1T/2H-MoS2 and 2H-MoS2, (c) Polarization curves, (d) corresponding Tafel slopes [61]. 
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charge pairs and the utilization of photons [64, 65]. It is well known that the bandgap energies 

and band positions of certain 2D TMO&Ds are strongly dependent on their thickness and 

lateral dimensions. In many cases, the CB edge will shift toward H2 reduction potential, or the 

VB edge will shift toward O2 oxidation potential, or both happen simultaneously. For example, 

bulk MoS2 material possesses an indirect bandgap of 1.2 eV, which is unsuitable for 

photocatalytic reactions because of the insufficient oxidation/reduction potential for activating 

the photocatalytic process. However, 2D MoS2 nanosheet has been found to have a direct 

bandgap of ∼1.96 eV owing to the quantum confinement effect, which endows MoS2 

nanosheets with proper band positions and the ability for visible-light absorption [57].  

1.4.3 Photodetectors 

Photodetectors represent a light sensor that can transduce the incident radiation into an 

electrical signal. Photodetectors have been widely used in various fields including military 

applications and commercial products for everyday life [66]. So far, photodetectors based on 

graphene have reported responsivity as high as 107 A·W−1 through the enhanced light 

absorption with covering semiconductor quantum dots [67]. However, the gapless graphene 

structure determines the large dark current and the unsatisfactory photo-responsivity, which 

is critical for the device to detect weak signals [67, 68]. In contrast to graphene, 2D MT&Ds have 

also been widely explored for photodetector applications owing to their high transparency, 

flexibility and tunable bandgap [69].  

Gallium oxide (β-Ga2O3), an especially important III–VI semiconductor with a wide band-gap 

of 4.9 eV, is a potential material for application in solar blind photodectectors. A solar blind 

photodetector based on 2D Ga2O3 fabricated from the corresponding GaSe nanosheets was 

reported and show a sensitive, fast and stable photoresponse to ultraviolet radiation (254 nm). 

The responsivity, detectivity and external quantum efficiency of the photodetector are 3.3 A·W-

1, 4.0 ×1012 Jones and 1600%, respectively, as shown in Figure 1.8 [70]. The photodetector based 

on monolayer WO3 developed by atomic layer deposition exhibited high responsivity of 71.6 

A·W-1, wide-range photoresponse, extremely fast response time of ∼2.5–2.7 ms and superior 

long-term stability over more than 250 cycles [71]. 
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1.4.4 Batteries 

The lithium-ion batteries (LIBs) are one of the most important rechargeable energy storage 

technologies. They can be used for a variety of mobile equipment, including cell phones, laptop 

computers, and power tools [72-74]. They also can be considered as a valuable candidate for 

potential green applications in electric vehicles (EVs) and hybrid electric vehicles (HEVs). When 

the battery is charging up, the positive electrode gives up some of its lithium ions, which move 

through the electrolyte to the negative, 2D materials electrode and remain there. The battery 

takes in and stores energy during this process. When the battery is discharging, the lithium ions 

move back across the electrolyte to the positive electrode, producing the energy that powers 

the battery. However, the commercially used anode material in LIBs, graphite, with a 

theoretical specific capacity of only 372 mA·h·g-1 and a relatively poor rate capability cannot 

meet the increasing demand for reliable EVs and HEVs [75]. As an alternative, nanostructure 

2D TMO&Ds can be utilized in updated, improved LIBs. For 2D TMDs, their layered structure 

and the weak Van der Waals interaction between layers enable the easy intercalation of Li+ ions 

without a significant increase in volume. For example, MoS2 exhibited high Li storage capacities 

of ∼670 mA·h·g-1 with 4 mol of Li+ insertion per formula [76]. For 2D TMOs, because of their 

chemical stability, environmental friendly and higher theoretical lithium-storage capacity, have 

also been used as electrode materials for LIBs. For example, the theoretical lithium storage 

capacity value of α-MoO3 is very high (1117 mA·h·g-1) being three times higher than that of 

graphite [77]. Compared with bulk materials, the well-designed 2D TMO&Ds improve the 

Figure 1.8. (a) Schematic of back-gate 2D β-Ga2O3 solar blind photodetector, (b) responsivity and 
detectivity dependent light intensity at constant drain-source voltage (Vds=10V). 
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interaction interfaces with electrolytes and in-plane carrier-transport kinetics, which greatly 

enhance the storage behavior of Li+ and other ions. 

Moreover, the 2D nanostructure provides a large specific surface area, which is 

beneficial to creating an increased number of active sites, achieving a better charge distribution, 

and speeding up the insertion–extraction or redox reaction rates. Thirdly, the unique 2D 

features of the metal oxide nanosheets are effective for suppressing or moderating the volume 

expansion that arises in the charging-discharging cycles. Figure 1.9 shows the electrochemical 

performance of as-prepared 2D MoO3 nanosheets and bulk MoO3 by galvanostatic charge-

discharge measurements. The reversible capacity starting from the 2nd cycle around 1100 

mA·h·g-1 was achieved for the MoO3 nanosheets electrode, close to the theoretical reversible 

capacity of α-MoO3 (corresponding to 6 Li per Mo atom), which is much higher than that of 

bulk MoO3 [78]. 

1.4.5 Supercapacitors 

Supercapacitors combine the advantages of traditional capacitors, and rechargeable batteries 

have also attracted tremendous attention owing to their excellent electrical properties of fast 

Figure 1.9. (a) Typical FE-SEM and (b, c) TEM and (d) HRTEM images and diffraction pattern of 
exfoliated MoO3 nanosheets. Charge–discharge curves of (e) bulk MoO3 and (f) MoO3 nanosheets (0.01–
3.0 V) [78]. 
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charging, high power density, and long cycling life. There are two types of electrochemical 

capacitors, electrochemical double-layer capacitors (EDLCs) and pseudo-capacitors, and TMOs, 

hydroxide, and conducting polymers were employed as electrode materials [79]. The charge 

storage mechanism in EDLCs is according to the electrosorption of ions and formation of an 

electrochemical double layer (EDL); however, the pseudocapacitors store the charges through 

the faradic reactions (redox reactions). Among these materials, TMOs have the highest 

theoretical specific capacitance. The bulk forms of TMOs have intrinsically low electronic 

conductivities, limiting fast ion diffusions, which makes them incompetent for high rate 

performances [80]. However, similar like what mentioned for the battery, developing TMOs in 

the form of 2D structures can provide a large surface area due to complete exposure of the 

surface atoms, more chemically reactive sites in the edge sites of 2D nanosheets than basal 

planes and high mechanical strength and flexibility at atomic electronics [81]. Therefore, 

nowadays, various 2D layered TMOs have been investigated as electrode materials of 

supercapacitors, such as MoO3, V2O5, Co3O4, RuO2, MnO2, and so on [81-84]. In addition, 2D 

TMDs, such as MoS2, have been investigated for employment in the electrochemical storage. 

The use of the metallic 1T phase of MoS2 obtained from the semiconducting 2H phase of MoS2 

during chemical exfoliation of the bulk material can achieve higher electrochemical energy 

storage performance for the supercapacitor because the 1T MoS2 phase is hydrophilic and 107 

times more conductive than the semiconducting 2H phase [27, 85, 86]. It was shown that 

chemically exfoliated nanosheets of MoS2 containing a high concentration of the metallic 1T 

phase could be electrochemically intercalated by ions such as H+, Li+, Na+ and K+ with 

extraordinary efficiency and ultimately achieve capacitance values ranging from ∼400 to ∼700 

F·cm-3 in a variety of aqueous electrolytes [27]. For example, as shown in Figure 1.10, a 100-fold 

capacitance increasing in MoS2-based supercapacitors was achieved via optimizing the in-plane 

1T-2H phase hybridization of the monolayers with 40% of the 1T phase, which exhibited 

outstanding performance with a specific capacitance of 366.9 F·g-1 and retention ratio of 92.2% 

after 1000 cycles at current densities of 0.5 A·g-1 [87]. A mechanism transition from the electric 

double-layer capacitance behavior to pseudo-capacitive behavior was observed as the 2D WO3 

film thickness decreased from 6.5 nm to monolayer. Considerable improvement of the specific 

capacitance from 225.4 to 650.3 F·g−1 was also obtained with the 2D film becoming thinner, 

whereas its rate capability decayed from 83.9% to 65.4% [88]. 

https://www.sciencedirect.com/topics/chemistry/electric-double-layer
https://www.sciencedirect.com/topics/chemistry/electric-double-layer
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1.4.6 Sensors 

2D materials with the atomic scale thickness magnify the surface to volume ratio, which 

provides excellent reactive adsorption sites for gaseous molecules, making them become 

outstanding candidates for gas sensors [89, 90]. Among these 2D materials, 2D TMO&Ds have 

gained significant interest in the development of a different range of highly sensitive, selective, 

reliable, and low-cost sensors, and it is worth noting that most 2D TMO&Ds follow surface 

adsorbed oxygen ions mechanism  [91, 92]. Different from the widely researched graphene and 

other carbon-based materials, 2D TMO&Ds have the semiconducting properties with an 

appropriate bandgap, which is attractive for modulating the transport characteristics to 

improve the sensing performance. For example, it was reported that the gas response of 2D 

MoO3–based sensing electrode to 100 ppm ethanol increases from 7 to 33 at the operating 

temperature of 300°C compared to the bulk MoO3 (Figure 1.11) [92]. 

Figure 1.10. (a, b) Charge/discharge curves at a current density of 0.5 A·g-1. (c) Specific capacitance vs. 
the number of charge/discharge cycles of supercapacitor based on MoS2 monolayers with 40% of the 1T 
phase and their comparison with supercapacitor based on 2H-hybridized MoS2 micro-powder and based 
on few layer MoS2 nanosheets [87]. 
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In addition to the determination of different gases, recent works report that 2D 

TMO&Ds could be the potential materials for the electrochemical sensors, since 2D 2D 

TMO&Ds could improve the analytical performances of electrochemical sensors by increasing 

their electrochemically active surface area and electrical conductivity and /or by providing new 

ways of interacting with the targeted analytes [4, 93]. Electrochemical sensors have been used 

for decades for the detection of various chemical species due to simplicity, low cost, high 

sensitivity, and selectivity. Since the first discovery that the electrochemically reduced single‐

layer MoS2 nanosheets can be utilized for glucose detection and selectively measure dopamine 

at the presence of ascorbic acid (AA) and uric acid (UA) [94], 2D TMO&Ds-based 

nanostructures have become an excellent electrode material for various electrochemical sensors. 

Due to the existence of a suitable bandgap, the overall sensitivity of devices based on 2D 

TMO&Ds is much larger than that of graphene and graphene oxides, which have either no or 

small bandgap [95]. Owning to the high isoelectric points (IEP), 2D transition metal oxides 

Figure 1.11. (a) Representative TEM image of MoO3 nanosheets. (b) Representative HRTEM image 
showing the layered nature of the MoO3 nanosheets. (c) Representative AFM image of the MoO3 
nanosheet. (d) The results of the sensor response using bulk MoO3 and MoO3 nanosheets toward 100 
ppm alcohol vapor at different operating temperatures [92]. 
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generally have high isoelectric points (IEP), which can potentially be used for immobilizing a 

wide range of biomolecules with relatively lower IEPs via electrostatic interactions that also 

facilitate charge transfer between them [96]. 

1.5 Approaches to functionalization of 2D TMO&Ds 

Although so much attention and efforts have been dedicated to this developing research area 

and outstanding physical and chemical properties have been reported for 2D TMO&Ds, a lot 

of challenges still remain for the commercial requirements. For example, the intrinsic low 

electric conductivity and limited accessibility of active catalytic sites severely hinder their 

catalytic performance [97], the high operating temperature of TMOs-based sensing devices and 

inadequate stability of the TMDs-based sensing devices hinder their gas sensing application 

[98, 94], and so on. Thus, in order to improve their performances and broaden the scope of their 

applications, research on 2D TMO&Ds -based heterostructures have been attracted more and 

more attention during the last few years [84, 99]. In the preparation of 2D nanocomposites, due 

to their ultrathin thickness and large special surface area, 2D TMO&Ds could be used as the 

universal template for the fabrication of hybrid nanostructures with a lot of materials, including 

the noble metals, metal oxides and chalcogenides [100-102]. Other materials, such as 

carbonaceous nanomaterials and metal-organic frameworks (MOFs), could also be 

incorporated with 2D TMO&Ds owing to their high conductivity and unique physic-chemical 

properties [103, 104]. Moreover, doping and intercalation of other elements into 2D TMO&Ds 

have been widely accepted for regulating their intrinsic properties without changing their 

structured features [105, 106]. Specifically, due to the same honeycomb structure with a closely 

matched lattice constant, TMDs can form the in-plane alloys with some other TMDs, which are 

particularly useful for some applications [107]. 

1.5.1 Noble metals 

The approach of using noble metal nanostructures for functionalization of different 

nanostructures has been used in various applications such as catalysis, electronics, sensors and 

biomedicine [108-111]. Even though the scarcity and expensiveness of noble metals limit their 

widespread commercialization, it is still a big challenge to find materials that can fully 

functionally replace the noble metals for specific applications [112-114]. Recent studies on the 

2D TMO&Ds decorated by the noble metal nanoparticles have demonstrated that these 2D 
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nanostructures possess much better properties compared to their undecorated counterparts 

[115, 116, 59]. 

 

In fact, 2D TMO&Ds have been considered as promising templates for direct growth of 

the noble metal nanostructures due to their large specific surface area, strong adsorption ability, 

and excellent thermal stability. For example, the solution-processable MoS2 nanosheets were 

employed to direct the epitaxial growth of Pd, Pt, and Ag nanostructures at the ambient 

conditions via wet chemical syntheses. Specifically, Pd nanoparticles (NPs) (5 nm), Pt NPs (1-3 

nm) and Silver triangular nanoplates were epitaxially grown on MoS2 nanosheets using 

poly(vinylpyrrolidone) (PVP), sodium citrate and cetyltrimethyl ammonium bromide (CTAB) 

or PVP as the surfactants, respectively. Compared to the commercial Pt catalysts with the same 

Pt loading, 1-3 nm Pt nanostructures on the surface of 2D MoS2 nanosheets (Figure 1.12(a-c)) 

have demonstrated much higher electrocatalytic activity towards the HER with a negligible 

overpotential and a low Tafel slope of 30 mV/decade (Figure 1.12 (d, e)) [115]. Combination of 

Figure 1.12. (a) TEM image of Pt NPs synthesized on a MoS2 nanosheet (scale bar, 100 nm). (b) The 
magnified TEM image of Pt NPs with a size of 1–3 nm on MoS2 nanosheet (scale bar, 5 nm). (c) SAED 
pattern of a Pt–MoS2 hybrid nanosheet with the electron beam perpendicular to the basal plane of the 
MoS2 nanosheet. (d) Polarisation curves and (e) the corresponding Tafel plots of Pt–MoS2, Pt–C, and 
MoS2, respectively [115]. 
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microwave-assisted hydrothermal method and oil-bath method for the synthesis of Au– MoS2, 

Pt–MoS2, and Au@Pt–MoS2 nanocomposites was reported. Au– MoS2, Pt–MoS2, and Au@Pt–

MoS2 modified electrodes exhibited better catechol detection performances than the pure MoS2 

nanosheet, and metallic nanoparticles modified electrodes due to their synergistic effect. As 

expected, the Au@Pt–MoS2 nanocomposites modified electrode exhibited the linear range of 2–

1000 mM and the detection limit of 0.44 mM for catechol, which was better than all MoS2-based 

nanomaterials [117]. In addition, bimetallic nanohybrids that often display enhanced properties 

than their monometallic counterparts have recently attracted more and more researchers’ 

attention [118-120]. In this regard, MoS2-PtAg nanohybrids were fabricated by decorating 

ultrathin MoS2 nanosheets with octahedral Pt74Ag26 alloy nanoparticles [118]. 

1.5.2 Metal oxides/chalcogenides 

During last few years, constructing heterojunction of 2D TMO&Ds with other semiconductor 

materials such as metal oxides (e.g., MoO3, Co3O4, SnO2, Fe3O4) [121-125] and metal 

chalcogenides (e.g. MoS2, WS2, Bi2S3, Ag2S, CdS) has also been considered as interesting 

research direction, owing to the ability of fabrication of p-n heterojunctions, changing 

semiconducting behavior from n-type to p-type, or altering band structures [126-128]. 

Metal oxides and chalcogenides can also be modified on the surface of 2D TMO&Ds 

using different approaches. A facile and straightforward chemical deposition method was used 

for the development of MoS2 nanosheets decorated with p-type Cu2O nanoparticles as co-

catalyst for the efficient solar hydrogen production under the visible light. Results confirmed 

that 1.0 wt % MoS2 nanosheets decorated Cu2O nanoparticles represent the maximum 

reduction photocurrent density of 0.17 mA·cm-2, which is about 7-fold higher than that of 

pristine Cu2O, as shown in Figure 1.13 (a-c) [123]. The excellent performance of MoS2@Cu2O is 

caused by the introduction of the active sites of MoS2 nanosheets as co-catalyst to the surface of 

Cu2O nanoparticles, which promoted the dissociation of water, photocurrent density and the 

production of hydrogen by lowering the electrochemical proton reduction overpotential and 

inhibited photo-induced corrosion during the measurement. A novel nano-hybrid of SnO2 

nanocrystal (NC)-decorated MoS2 nanosheet (MoS2/SnO2) was facilely prepared through a wet 

chemistry method, and its outstanding stable sensing performance for the room temperature 

NO2 detection in a dry air environment are reported, as shown in Figure 1.13 (d-f) [121]. SnO2 
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NCs not only significantly enhanced the stability of MoS2 nanosheets in dry air by increasing 

their work function and creating a passivation layer to prevent the interaction between the 

oxygen and the MoS2 but also served as strong p-type dopants for MoS2, leading to p-type 

channels in the MoS2 nanosheets. A novel Fe3O4/MoS2 composite by decorating ultra-small 

Fe3O4 NPs (∼3.5 nm) on the surface of graphene-like MoS2 nanosheets was developed, where 

MoS2 nanosheets were synthesized through a facile one‐ step hydrothermal process, and 

ultrasmall Fe3O4 NPs decorated on the surface of MoS2 nanosheets via another hydrothermal 

method [122]. These composites demonstrated superior cyclic and rate performances with 

delivering 1033 and 224 mA·h·g-1 at the current densities of 2000 and 10 000 mA·g-1, 

respectively. Here, Fe3O4 NPs primarily acted as spacers to prevent the restacking of 2D MoS2 

nanosheets, making the active surfaces of MoS2 nanosheets accessible for electrolyte 

penetration during charge/discharge processes and thus improving the cyclic performance of 

composites. 

 

1.5.3 Carbonaceous nanomaterials 

Loading of 2D TMO&Ds on the surface of carbonaceous materials, such as graphene, carbon 

nanotube, conductive polymer, and porous carbon, has exhibited various potential applications 

Figure 1.13. (a) TEM image of MoS2@Cu2O composite. (b) Mechanism and (c) transient photocurrent-
time profiles at a bias of -0.1 V versus SCE for MoS2@Cu2O composite and pristine Cu2O nanoparticles 
[123]. (d) High-resolution SEM images showing that SnO2 NCs decorate on the MoS2 nanosheets. (e) The 
room temperature dynamic sensing response of MoS2 nanosheets with and without SnO2 NC decoration 
against 10 ppm NO2 in a dry air environment. (f) Band diagram of the MoS2/SnO2 nanohybrid [121]. 
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due to their high electronic conductivity, high charger mobility, large surface area, excellent 

flexibility and high chemical stability [129-134]. Therefore, the hierarchical nanostructures of 

2D TMO&Ds on carbonaceous materials could be a feasible and promising way to improve 

their performance. 

Among these carbon materials, chemically treated graphene-based materials, like 

graphene oxide (GO) and reduced graphene oxide (rGO), have been considered as very 

effective templates for the nucleation and subsequent growth of nanoparticles owing to the 

coupling interactions between the nanoparticle precursors and oxygen-containing functional 

groups on the surface of GO or rGO [135, 136]. Various methods for the preparation of the 

composites have recently been developed, and the most popular strategy commonly used 

nowadays is the hydrothermal method [137]. For example, MoSe2/rGO hybrids developed by 

a facile hydrothermal approach showed superior HER activity with the small onset potentials 

of 50 mV, about 20–30 mV lower than those of MoS2 and its graphene hybrids reported 

previously, and a Tafel slope of 69 mV/decade [137]. Better performance is attributed to the 

fact that the Gibbs free energy for atomic hydrogen adsorption on MoSe2 edges is closer to the 

thermos-neutral than that of MoS2. These results indicate that MoSe2 has a valuable potential 

to be a better HER catalyst than MoS2. A flexible gas sensor for detection of formaldehyde 

(HCHO) at room temperature based on rGO/MoS2 hybrid films was fabricated on polyethylene 

naphthalate substrates by a simple self-assembly method [138]. The sensing test results 

indicated that the rGO/MoS2 sensors showed higher sensitivities than rGO sensors. 

Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis 

(HT) or chemical exfoliation (CE) and were compared for their detection of HCHO, which 

revealed that the hydrothermally produced MoS2 nanosheets with abundant defects led to 

enhanced sensitivity of the rGO/MoS2 sensors, as shown in Figure 1.14 (a-d). For example, the 

sensing response of the rGO/MoS2-HT sensor to 10.0 ppm HCHO was 4.8%, about 1.7 and 2.2 

times higher than those of rGO/MoS2-CE and rGO sensors. MoS2-rGO heterostructures were 

synthesized by a simple hydrothermal method under the optimized condition, and their 

binder-free electrode has been fabricated with a high specific capacitance (387.6 F·g-1 at 1.2 A·g-

1) and impressive cycling stability (virtually no loss up to 1000 cycles). The synergistic interplay 

between layered MoS2 and rGO in the MoS2-rGO hybrid leads to a superior supercapacitor 

performance [139]. 
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Moreover, in addition to the chemically treated graphene-based materials, carbon 

nanotubes (CNTs), carbon fibers, and amorphous carbon have also been utilized to form the 

hybridization with 2D TMO&Ds [140-142]. Directly growing ultrathin MoS2 nanosheets on the 

surface of activated carbon fiber (ACF) cloth to attain the hierarchical MoS2/ACF cloth 

composite was reported (Figure 1.14 (e-h)) [143]. More importantly, the ACF cloth here acts as 

both the template and the conductivity framework, and the MoS2/ACF cloth can be used 

directly as a free-standing and binder-free electrode, which showed a high specific capacity and 

excellent reversibility. A discharge capacity as high as 971 mA·h·g-1 is obtained at a current 

density of 0.1 A·g-1 with a fading rate of 0.15% per cycle within 90 cycles. The composite still 

displayed capacity of 418 mA·h·g-1 even after 200 cycles at a high current density of 0.5 A·g-1. 

It is the robust structure and the synergistic effects of ultrathin MoS2 nanosheets and ACF that 

leads to the superior electrochemical performance of MoS2/ACF. As the other typical example, 

amorphous carbon-supported MoS2 with unique morphology of MoS2 nanosheets vertically on 

the carbon nanosphere was prepared, and consequently, the optimized catalyst employing 

amorphous carbon substrate exhibited enhanced catalyst activity for electrocatalytic HER with 

an onset potential as low as 80 mV and a Tafel slope of 40 mV/decade, which are comparable 

Figure 1.14. SEM images of the devices after loading (a) rGO/MoS2-HT and (b) rGO/MoS2-CE hybrid 
films. (c) Schematic illustration of the flexible device based on rGO/MoS2 hybrid film in the bending 
state. (d) Real-time sensing response curves of the rGO/ MoS2-CE sensors to 2.5–15.0 ppm HCHO [138]. 
SEM images of (e) the original ACF cloth and (f) the as-obtained hierarchical MoS2/ACF cloth. (g) 
Cycling performance of the MoS2/ACF cloth at current densities of 0.1 A·g1, 0.2 A·g1, and 0.5 A·g1. (h) 
Rate performance of the MoS2/ACF cloth under various current densities ranging from 0.1 to 1.5 A·g-1 
[143]. 
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to platinum [134]. In this structure, amorphous carbon acts as the substrate, which can not only 

disperse the MoS2 nanosheets to warrant the exposure of active edge sites but also facilitate the 

electrons transfer during the electro-catalysis and ensure highly improved conductivity of the 

composite as exhibited. 

1.5.4 Metal-Organic Frameworks (MOFs) 

MOFs are very versatile nanomaterials in which the metal ions are linked by coordinating 

organic species with high surface area and large pore volume. They have been in the focus of 

many researchers during the last two decades due to their rich surface chemistry, structural 

versatility, and tunable pore size [144]. It is expected that embedding 2D TMO&Ds and their 

hybrids into the MOFs can further broaden their potential applications. 

There are two ways to develop the hybrids of 2D TMO&Ds and MOFs. One is physical 

mixing of MOFs and 2D TMO&Ds. The other is the in-situ growth of MOFs on the surface of 

2D TMO&Ds. A facile two-step method was developed for the synthesis of MoO3@ZIF-8 core-

shell nanorod photocatalysts (Figure 1.15 (a-c)), which demonstrated excellent stability and 

activity for chromium degradation from Cr(VI) to Cr(III)[ 145]. The enhanced photocatalytic 

activity is mainly derived from the synergistic effect and the new bond between MoO3 and ZIF-

8 that enhances the efficiency of separation of the photo-induced electron−hole. However, the 

combination of 2D TMOs and MOFs has not been thoroughly investigated. Other researchers 

have generated single layers of metallic octahedral phase (1T) MoS2 that contain excess negative 

charge on the sulphur atoms of the basal-plane for the coordination modulation with the ZIF-8 

metal precursors by lithium-ion intercalation, followed by the reaction of the 1T- MoS2 

nanosheets with the precursors of ZIF-8 indicated that there is an interaction between the 

individual components. For example, it was recently reported that ZIF-8 MOF could be easily 

coated on MoS2 nanosheets by a facial process [146]. 2D MoS2@ZIF-8 core-shell structures based 

on functional MoS2 as a core and MOFs as shells were fabricated by mixing an aqueous solution 

of 2-methylimidazole and Zn(OAc)2 with mild shaking and followed by the reaction at room 

temperature for 2 h. More importantly, this facial and general method is also feasible to coat 

ZIF-8 on other 2D materials. As the other example, a novel and highly efficient MoS2/UiO-

66/CdS photocatalyst for H2 evolution under the visible light irradiation [146]. It demonstrated 

in Figure 1.15 (d-f) that under the same reaction conditions, its photocatalytic activity was 
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nearly 60 times higher than the H2 evolution rate with pure CdS. The enhanced photocatalytic 

activity of Pt/UiO-66/CdS was ascribed to the larger surface area of UiO-66/CdS composites 

provided by the introduction of UiO-66 efficiently hinders with the aggregation of CdS during 

the synthesis. Moreover, the synergic action of MoS2 and UiO-66 stipulated the efficient 

separation of the photo-generated charge carriers and simultaneously provided a more 

significant number of reactive sites. 

 

1.5.5 Doping  

Nano-doping is a viral approach for modification properties of nanostructured semiconductors. 

It has been widely used to potentially regulate their intrinsic properties, such as changing 

Figure 1.15. (a) TEM of MoO3@ZIF-8 core-shell nanorods. (b) HRTEM images of MoO3@ZIF-8 core-shell 
nanorods. (c) Elemental mapping patterns of MoO3@ZIF-8 core-shell nanorods [145]. (d) TEM image of 
MoS2/UiO66–CdS. (e) Schematic illustration of the charge transfer in the MoS2/UiO66–CdS composite 

and (f) photocurrent spectra of the pure CdS, UiO66–CdS and MoS2/UiO66–CdS under visible light 

irradiation ( ≥ 420 nm) [146]. 
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conductivity type of semiconductor from n to p by using a lower valence cation as acceptor 

dopants to produce a hole and increase hole concentration, achieving tuneable p–n junction, 

modifying band structure, tailoring the electronic characteristics and so on [147, 148]. In relation 

to 2D TMO&Ds, this approach can also keep their morphology, topology, and crystalline 

feature without phase separation of 2D TMO&Ds. The main doping methods can be classified 

as follows: (1) substitution of the transition metal or oxide/dichalcogenides of 2D TMO&Ds 

with appropriate elements [149], (2) incorporation of surface adatoms or layers of another 

material [150], (3) surface transfer doping [151] and (4) plasma-based doping [152]. 

Up to now, several types of metals, including Er, Mn, Nb, Fe, Pt, Re, and Au, have been 

demonstrated as dopant atoms to substitute the transition metal atoms in 2D TMO&Ds [148, 

149, 151]. Among them, by using the potential reduction difference between the Au precursor 

and MoS2 work functions, Au nanoparticles were incorporated into chemically exfoliated MoS2 

layers through a simple solution-mixing method. The charge concentration of MoS2 can be 

modulated by changing the ratio of Au precursor to MoS2. By changing the carrier type in MoS2 

using the Au dopant, an Au-doped MoS2 sensor positively responding to hydrocarbon 

molecules lacking oxygen groups (namely, hexane and toluene) and negatively responding 

with the oxygen-functionalized reducing gases (namely, ethanol, acetaldehyde, and acetone) 

was developed, exhibited in Figure 1.16 (a-d) [153]. The change in gas response in volatile 

organic chemical (VOC) chemisorption behavior is due to the n-doping of MoS2 with Au 

nanoparticles, which facilitates the electron charge transfer and also leads to tuneable sensing 

of MoS2, enabling it to distinguish between hydrocarbon-based and oxygen-functionalized 

VOCs. This study has thus made a significant step toward solving the limitations imposed by 

present MoS2-based sensors, which mostly exhibit a single response to various VOC analytes. 

As a typical example of non-metal dopants with small atomic size to replace 

oxide/dichalcogenides atoms, different amounts of P atom doped few-layer MoS2 nanosheets 

are successfully prepared via a one-pot chemical reaction. It was demonstrated that the P 

dopants not only could be the new active sites in the basal plane of MoS2 and help improve the 

intrinsic electronic conductivity but also show enlarged interlayer spacing that can facilitate 

hydrogen adsorption and release progress [154]. As shown in Figure 1.16 (e-h), the P-doped 

MoS2 nanosheets exhibited a significantly improved activity for hydrogen evolution with a 
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small Tafel slope of 34 mV/decade and an extremely low overpotential of 43 mV at current 

benchmark density of 10 mA/cm2.  

 

1.5.6 Intercalation 

Generally speaking, intercalation investigates the insertion/extraction of the small guest 

species like ions into host materials, while retaining their structural features. Intercalation in 

2D TMO&Ds could alter the crystal phases and band structures of these few-layered 

nanomaterials, leading to further enhancement of their electronic, optical, and other various 

physicochemical properties [155]. The essential prerequisite for guest species to intercalate into 

2D host materials is the relative scale between the intercalant and the Van der Waals gap of the 

2D host. Specifically, besides the typical ionic intercalants such as H+, Li+, Na+, K+, and Mg2+, 

small molecules like H2 and ammonia could also be employed for intercalation of 2D transition 

metal oxides and dichalcogenides [156, 157]. 

The phase transition from 2H-MoS2 to 1T-MoS2, due to the Na+ ion intercalation is 

confirmed at the atomic scale with the intercalation partially staged process. The structure of 

2D MoS2 can be partially recovered to 1T-MoS2 if intercalation depth is less than 1.5 Na+ ions 

[158]. Otherwise, the composition of NaxS and metallic Mo was obtained. MoO3 is an indirect 

Figure 1.16. (a) SEM images of the Au-doped MoS2 films. (b) Band diagrams of MoS2 and Au, showing 
electron transfer from Au nanoparticles to the MoS2 channel resulting in n doping effects. (c) Schematic 
illustration of the mechanism of tuning of VOC sensing using Au in n doping. (d) Real-time resistance 
of the pristine MoS2 and Au-doped MoS2 sensors exposed to various VOCs [153]. (e) SEM of P-doped 
MoS2 nanosheets. (f) The partial charge density of the P-doped MoS2 monolayer with 0−3 dopants for 
the bands within 0.3 eV below the Fermi level. (g) Polarization curves and (h) corresponding Tafel plots 
of pure and P-doped MoS2 nanosheets [154].  
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wide bandgap semiconductor, and it is well known that MoO3 can be reduced to sub-

stoichiometric MoO(3–x), and increasing x can lower the bandgap. In one example, the bandgap 

tunability is achieved by hydrogen intercalation into the crystal lattice. Upon exposure to H2 

gas, the absorbed H atoms form HyMoO3, which loses H2O to ambient producing the desired 

sub-stoichiometry MoO(3–x). The MoO3 bandgap was reduced from 3.25 to 2.65 eV upon 

exposure to H2 gas 40 minutes [159]. Similar to MoO3, there are also reports on the chemical 

intercalation of MoS2 using such ion as Li+ to reduce its bandgap [154]. As the other different 

example, Ag3PO4/WS2 composite was synthesized by controlling the growth of Ag3PO4 

nanoparticles within the interlayers of WS2 nanosheets via WS2 pre-absorbing silver-ion 

intercalants, which exhibited excellent photocatalytic degradation of Rhodamine B (RhB) under 

the visible light irradiation (Figure 1.17) [160]. 

 

1.5.7 In-plane alloy 

Alloying has been demonstrated to be an effective way to manipulate the bandgap 

continuously, modulate the carrier type and phase transition of 2D TMDs [161-163]. Previous 

Figure 1.17. (a) Diagram of space-confined growth of Ag3PO4 nanoparticles within WS2 sheets. FESEM 
images of (b) bare WS2 sheets and (c) Ag3PO4/WS2. (d) Schematic of band structure and expected charge 
separation of Ag3PO4/WS2 composites under visible- light irradiation. (e) Photocatalytic degradation of 
RhB solution over the as-prepared Ag3PO4/WS2 composite, bare WS2 sheets, and pure Ag3PO4. (f) 
Photocatalytic degradation of RhB solution over Ag3PO4/WS2 prepared six months earlier [160]. 
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calculations have shown that monolayer alloys are thermodynamically stable at room 

temperature for all compositions [164, 165]. 

 

Ultrathin ternary MoxW1–xS2 nanosheets with excellent stability and a high metallic 

phase concentration on a gram-scale level were developed using a simple one-step and bottom-

up wet-chemistry method. the Mo0.75W0.25S2 nanosheets, with the most significant interlayer 

spacing of ~10.35Å, exhibited the most efficient HER performance with the lowest 

overpotential of 155 mV and the smallest Tafel slope of 67 mV/decade, as shown in Figure 1.18 

[166]. It was reported that in-plane 2D TMDs alloy could be a new class of electrode material 

for lithium-ion batteries, as Li can be adsorbed on the surface of 2D TMDs alloy monolayer, 

maintaining the metallic nature of the system and their layered nature shows higher adsorption 

energy for Li ion and a negligible Li diffusion barrier [167]. As an example, Mo1-xWxS2 (0 ≤ x 

≤  1) alloy composites developed by effective microwave-assisted solvothermal method 

Figure 1.18. (a) HRTEM images of metallic ultrathin Mo1–xWxS2 nanosheets with enlarged interlayer 
spacing. (b) A structural model of the Mo1–xWxS2 layers with the intercalation of ammonium ions. (c) 
Polarization curves and (d) corresponding Tafel slopes of several Mo1–xWxS2 nanosheets prepared with 
different atomic ratios, and of commercial 20% Pt/C catalyst [160]. 
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exhibited superior rate performance and improved specific capacity [168]. Typically, the 

Mo0.6W0.4S2 alloy electrode delivered the capabilities of 847.3 and 428.4 mA·h·g-1 at the current 

densities of 0.1 and 1 A·g-1, respectively. In addition, Mo1-xWxS2 alloys improve the cycling 

stability of the transition metal oxides anode materials compared to pure MoS2 and WS2 for 

lithium storage, which can be explained by the larger interlayer spacing of the Mo1-xWxS2 alloys. 

The intrinsic expanded interlayer spacing of the alloy composites provides sufficient and stable 

crystal host lattice structures, which is beneficial for the Li+ diffusion and volume 

accommodation. 

1.6 Thesis outline 

In this chapter, strategies for the development of 2D TMO&Ds -based heterojunctions have 

been introduced, especially for TMDs-based heterojunctions. However, 2D TMOs have 

attracted less attention compared to 2D TMDs due to their generally wider bandgap energies 

and low carrier concentrations in their stoichiometric states. As is known, TMOs are more 

chemically stable and environmental friendly as well as easier to be prepared than TMDs, 

especially for some selected TMOs. In this thesis, we focus on the development of some selected 

2D TMOs (α-MoO3, WO3) and their heterojunctions fabricated by the ALD technique combing 

with other methods. Moreover, their electrochemical or gas sensing properties were 

investigated at the same time. 

1. To investigate the electrochemical sensing properties of 2D TMOs, Chapter 2 presents 

of wafer-scale 2D α-MoO3 nanofilms with the thickness of 4.9 nm developed on Au- 

SiO2/Si substrates by ALD technique, and were for the first time used for superior 

electrochemical sensing to H2O2. 

2. To study the effect of the thickness on electrochemical sensing properties of 2D TMOs, 

Chapter 3 illustrated that the wafer-scale 2D WO3 films with the different thicknesses 

from monolayer to 6.5 nm were successfully deposited on Au- SiO2/Si substrates by 

ALD technique and were utilized for the first time for accurate, sustainable, sensitive, 

selective and fast N2H4 detection.  

3. In order to research the effect of the noble metal on the electrochemical sensing 

properties of 2D TMOs, Chapter 4 provides the different noble metal (Ag, Pt, Pd) 

nanoparticles functionalized 2D WO3 (NM-WO3) films for the sensitive and selective 
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H2O2 determination developed by ALD, followed by electrodeposition. At the same 

time, the effect of different amounts of noble metal nanoparticles onto the surface of 2D 

WO3 films on the electrochemical sensing properties was also studied. 

4. In order to investigate the effect of 2D TMOs functionalized with metal oxides on the 

gas sensing properties. Chapter 5 presents the wafer-scale ultra-thin WO3, Ga2O3 

nanofilms, and Ga2O3-WO3 heterostructures with a thickness of approximately ~8.0 nm 

fabricated on the SiO2/Si substrates by atomic ALD technique for their subsequent 

usage as sensing materials for the ethanol detection. 

5. Chapter 6 summarizes the work on 2D TMOs heterojunctions. 
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2. Chapter 2 
ALD-DEVELOPED 2D α-MoO3 WINDOWS SUPERIOR 
HYDROGEN PEROXIDE ELECTROCHEMICAL SENSING 
CAPABILITIES 

2.1 Abstract 

2D α-MoO3 nanofilms with a thickness of 4.9 nm were fabricated via the ALD technique for the 

first time on the wafer-scale and were subsequently annealed at 200°C. The developed MoO3 

nanofilms were composed of flat nanoparticles with an average size of about 35 nm and 

possessed a layered orthorhombic phase (α-MoO3). The electrochemical sensor based on these 

2D α-MoO3 nanofilms exhibited high sensitivity of 168.72 µA·mM-1·cm-2 to hydrogen peroxide 

(H2O2) and presented extremely wide linear detection range of 0.4 µM – 57.6 mM with the 

lowest detection limit of 0.076 µM at the signal to noise ratio of 3. Furthermore, due to the 

extremely thin nature of 2D α-MoO3 nanofilms, an ultra-fast response/recovery time of ~2.0 s 

was achieved under the wide linear H2O2 detection range. Additionally, the sensor based on 

2D α-MoO3 nanofilms was also demonstrated great long-term stability, excellent selectivity, 

and high reproducibility. The 2D α-MoO3 nanofilms fabricated via the ALD technique in this 

work represent a unique opportunity for the development of high-performance electrochemical 

sensors based on 2D transition metal oxides. 

2.2 Introduction 

MoO3, as an n-type and wide-bandgap semiconductor, has a high dielectric constant (k ~ 500) 

[1]. Owing to its high dielectric constant, enhanced carrier mobilities and tunable bandgap have 

been observed in 2D MoO3 in contrast to other transition metal oxides and transition metal 

dichalcogenides [2, 3]. Thus, 2D MoO3 has been established as an ideal material for electronic 

applications such as resistive memory devices [4], field-effect biosensors [5], and electronic ink 

based printable transistors [6]. Especially, unlike the phases of monoclinic β and hexagonal h, 

orthorhombic MoO3 (α-MoO3) possesses the well-known layered crystal structure, in which 

MoO6 octahedra establish planes that are held together by weak Van der Waals forces [7]. Due 

to the strong interlayer chemical bonds (Mo-O) and weak vdW interlayer interactions, α-MoO3 
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can be exfoliated or deposited as two-dimensional films or sheets with considerable surface-to-

volume ratios [8, 9]. As is known, α-MoO3 can be reduced to form MoO(3–x) and increasing x can 

lower the bandgap, so intercalation method can be used to manipulate the stoichiometry and 

band structure of 2D α-MoO3, which is also a vital factor for the improvement of some 

properties [10, 11]. For example, chromium in 2D α-MoO3 is achieved upon the intercalation of 

ions that change the bandgap value. By reducing the bandgap, the appearance of MoO3 changes 

from transparent to Prussian blue, and this aspect can be utilized in optical applications [12]. 

Even though 2D MoO3 possesses various interesting properties and it is widely used in many 

aspects, to the best of our knowledge, the utilization of 2D MoO3 for the fabrication of 

electrochemical sensor has rarely reported in the literature. 

Up to now, a wide range of approaches has been developed for the synthesis of 2D 

MoO3 nanomaterial, such as chemical vapor deposition, atomic layer deposition, hydrothermal 

and mechanical exfoliation [2, 13-16]. As we mentioned in Chapter 1, the critical challenge of 

the exfoliation method is the difficulties of controlling the thickness, scale-up, and the size of 

nanosheets. For the hydrothermal method, the production of the synthesized 2D MoO3 is still 

very small. In these strategies, the ALD technique, due to the relative growth rate and surface 

controlled layer-by-layer process based on self-limiting chemical reactions, large-scale 

conformal, dense nanofilms with precise thickness, and component control can be developed 

at the relatively low temperatures [17, 18]. 

Hydrogen peroxide (H2O2) has been widely used in pharmaceutical, clinic, 

environmental, mining, textile, paper, food manufacturing, and chemical industries due to its 

strong oxidizing and reducing properties [19, 20]. Highly sensitive hydrogen peroxide 

determination is of prime importance in quality control for the food, chemical, and 

pharmaceutical industries. On the other hand, in living organisms, hydrogen peroxide is a by-

product of the enzymatic reactions, such as glucose oxidase, cholesterol oxidase, glutamate 

oxidase, urate oxidase, lactate oxidase, alcohol oxidase, D-amino acid oxidase, lysine oxidase 

and oxalate oxidase [21]. Nevertheless, the excessive amount of hydrogen peroxide 

accumulation in cells could lead to a series of cell damage and cause aging and disease, 

including cardiovascular disease, Alzheimer’s disease, and cancer [22-24]. Hence, it is closely 

bound up with people's health and safety. Therefore, selective and accurate measurements of 

hydrogen peroxide with high convenience and precise are essential. Up to date, different 
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electrochemical detection methods for hydrogen peroxide, including enzymatic and non-

enzymatic methods, have been created and applied in numerous fields, owing to their unique 

merits like real-time detection, high sensitivity and low cost [25, 26]. At present, most of the 

hydrogen peroxide sensors that are widely used in commercial use are electrochemical enzyme 

sensors. Although enzyme sensors have the advantages of high sensitivity, good selectivity, 

and low detection limit, they are difficult to prepare and purify enzymes, and are easily 

deactivated and easy to inactivate. Compared to the enzymatic electrochemical method, the 

non-enzymatic electrochemical detection has a few obvious advantages such as simplicity, high 

stability, and long lifetime according to the previous studies [27, 28]. Therefore, the applications 

of non-enzymatic electrochemical detection have attracted increasing attention in recent years. 

In this Chapter, 2D α-MoO3 nanostructures were developed by the ALD technique 

using (NtBuN)2(NMe2)2Mo as a molybdenum precursor and plasma oxygen gases as oxygen 

precursor. The morphology, chemical component, and crystalline phases characterization 

results demonstrated that 2D α-MoO3 nanofilms were successfully deposited over a large scale 

area on the substrate. More importantly, the electrochemical measurements, including CV, 

electrochemical impedance spectroscopy (EIS) and chronoamperometry, were carried out and 

analyzed to investigate the electrochemical behaviors of 2D α-MoO3 nanofilms for H2O2 

detection. The high sensitivity, excellent selectivity, good long-term stability, ultra-fast 

response/recovery time, and especially the broad wide linear range with a low detection limit 

indicated the potential utility for the determination of hydrogen peroxide in the real application. 

2.3 Experimental 

2.3.1 Chemicals 

Bis(ter-butylimido)bis(dimethylamido)molybdenum precursor, also known as 

(NtBuN)2(NMe2)2Mo, was purchased from the Strem Chemicals Inc. USA and was used for the 

ALD development of 2D MoO3 on the wafer scale. All other chemicals were obtained from the 

Sigma-Aldrich, USA, and were used without further purification. 

2.3.2 Sample fabrication 

Ultra-thin α-MoO3 films were deposited on the 4-inch SiO2/Si wafers (1 kΩ cm) by ALD 

technique using the cross-flow reactor of Savannah S100 (Ultratech/Cambridge Nanotech) 
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with (NtBuN)2(NMe2)2Mo and oxygen plasma gases as the molybdenum precursor and oxygen 

precursor, respectively, and the machine is shown in Figure 2.1. Prior to the deposition of α-

MoO3 films, the additional SiO2 insulating layer with a thickness of 110 nm was deposited on 

Si wafer by plasma-enhanced chemical vapor deposition (Oxford Instruments PLASMALAB 

100). After that, in order to make the SiO2/Si wafers electrically conductive to facilitate the 

subsequent investigation of the properties, Au films were deposited on SiO2/Si wafers using 

an Electron Beam Evaporator method [Nanochrome II (Intivac, USA)]] with the thickness of 

150 nm. A 200 µm-wide surface space at the center of the wafer was intentionally left at the 

same time for the characterization of the developed α-MoO3 nanofilms, due to the roughness 

of Au films. During the process of developing ultra-thin α-MoO3 films, the loading of 

precursors was performed in the glove-box to avoid oxygen and moisture contamination, and 

argon as the precursor carrier gas was used with the flow rate of 30 standard cubic centimeters 

per minute (sccm). Then, various deposition temperatures ranging from 100 to 350 °C and 

different pulse duration and purge time were used to establish the best recipe parameter for 

ultra-thin α-MoO3 film deposition. In doing so, the precursor saturation time and O2 plasma 

saturation time were optimized at each deposition temperature. Accordingly, the 

(NtBuN)2(NMe2)2Mo with the flow rate of 80 sccm was pulsed into the reaction chamber for 

0.75 s in 4 consecutive cycles with 2 s interval between each precursor pulse to ensure complete 

monolayer coverage, but also to prevent significant precursor over-saturation which could lead 

to precursor condensation inside the reaction chamber. Then, the reaction products were 

purged out of the chamber during 15 s. In the case of plasma exposure, the flow rate of 20 sccm 

Figure 2.1. (a) The photo of the ALD instrument, (b) Schematic diagram of one ALD cycle for the 
deposition of 2D MoO3 nanofilms 
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was selected for O2 plasma delivery to create the laminar flow for precursor over the substrate 

surface, and to assure the complete oxidation and ligand combustion and to prevent the 

incorporation of hydrocarbons and nitrogen in nanofilms. One ALD cycle for the deposition of 

2D MoO3 nanofilms was presented in Figure 2.1 (b). 

Consequently, the optimum growth conditions for the development of MoO3 nanofilms 

were designed, and the final recipe is presented in Table 2.1. Finally, the wafer-scale ALD-

fabricated 2D α-MoO3 nanofilms with a thickness of 4.9 nm were developed. After the 

deposition, the wafers were diced into 1.0 x 1.0 cm pieces, and the fabrication process together  

Figure 2.2. Graphical scheme of the development of 2D α-MoO3 nanofilms. 

Figure 2.3. The map thickness (color bar in nm) vs. position extracted from the spectral ellipsometry for 
(a) CVD SiO2 and (b) ALD MoO3 ultra-thin nanofilms. 
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Table 2.1. The detailed ALD recipe for development of wafer-scaled MoO3 ultra-thin nanofilms. 

Step Instruction Value Component 

0 Flow 0 sccm ( cm3/min) Residual Flow 

1 Flow 0 sccm Residual Flow 

2 APC 100% Confirm APC open 

3 Heater 
250 C  

Chamber temperature 

4 Heater 
250 C  

Chamber temperature 

5 Heater 
250 C  

Chamber temperature 

6 Heater 
250 C  

Chamber temperature 

7 Heater 
150 C  

Precursor delivery temperature 

8 Heater 
150 C  

ALD valves temperature 

9 Heater 
150 C  

Temperature of APC valve 

10 Stabilize - Stabilize heater 

11 Stabilize - Stabilize heater 

12 Stabilize - Stabilize heater 

13 Stabilize - Stabilize heater 

14 Stabilize - Stabilize heater 

15 Stabilize - Stabilize heater 

16 Stabilize - Stabilize heater 

17 Heater 
60 C  

Temperature of Mo precursor 

18 Stabilize 60 sec Stabilize heater 

19 MFC Valve 1/0 Oxygen mass flow controller 

20 Flow 30 sccm Manifold process flow 

21 Flow 80  sccm Main chamber process flow 

22 Flow 0  sccm Oxygen flow 

23 Wait 600 sec Wait for substrate to reach temperature 

24 APC 0% APC closed 

25 Wait 2 sec Wait for pressure increase 

26 Pulse  0.25 sec Ar precursor boost, Mo precursor cycle 
start 

27 Wait 0.5 sec Boost stabilize 

28 Pulse 0.75 sec Mo precursor dose 

29 Wait 2 sec Mo precursor reaction time 

30 Go to 26 4 cycles Mo precursor cycle end 

31 APC 100 % APC open 

32 Wait 15 sec Mo purge 

33 Flow 20 sccm O2 flow on 

34 Wait 5 sec Wait for conformal flow 

35 Plasma 300 W Plasma on 

36 Wait 20 sec O* Reaction 

37 Plasma 0 W Plasma off 

38 Flow 0 sccm O2 flow off 

39 Wait 8 sec O2 purge 

40 Go to 24 38 cycles Deposition cycles 

41 heater 0 oC Mo precursor heater off 

42 Flow 20 sccm Residual flow 

43 Flow 40 sccm Residual flow 

44 Flow 0 sccm Oxygen flow 

45 MFCV valve 0 Oxygen mass flow controller off 

46 APC 100% Confirm APC open 
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with H2O2 measurements, as schematically presented in Figure 2.2. Finally, the samples were 

annealed in air at 200 °C for 1 h, with the heating rate of 0.5 °C/min.  

Following the successful deposition of ultrathin MoO3 nanofilms, the ellipsometry 

technique was employed to verify the thickness of the deposited materials. The variations of 

the thickness (nm) are depicted by the color bar adjacent to the graphs. The ellipsometry map 

analysis of the CVD-deposited SiO2 insulating layer and ALD-deposited MoO3 nanofilms are 

demonstrated in Figure 2.3(a) and (b), respectively, with the incident angle of 65°. The average 

thickness of the CVD-deposited SiO2 insulating layer was 110 nm, and ALD-deposited MoO3 

nanofilms were 4.6 nm, respectively. 

2.3.3 Characterization 

The surface morphology of the ALD-developed α-MoO3 sample was characterized by Field 

Emission Scanning Electron Microscope (FE-SEM, JEOL 7800F) and Atomic Force Microscopy 

(AFM, JPK System, Nano Wizard). X-ray Photoelectron Spectroscopy (Rigakudenki model 

XPS-7000) with monochromatic Mg-Kα radiation at 300 W was employed to study the surface 

composition and chemical state. Raman spectroscopy of the MoO3 sample was performed on a 

spectrometer (Lab Ram ARAMIS, Horiba Jobin-Yvon, Edison, NJ, USA) using λ= 532.2 nm 

argon-ion lasers. 

2.3.4 Electrochemical testing 

Electrochemical performances of 2D α-MoO3 nanofilms were evaluated on the Autolab 

PGSTAT204 (Metrohm Autolab. B.V., Netherlands) with a conventional three-electrode system, 

which includes the Pt wire as the counter electrode, Ag/AgCl (3.0 M KCl) as the reference 

electrode and 2D α-MoO3 nanofilms on Au/Cr deposited SiO2/Si substrate with the area of 1 

cm × 0.5 cm as the working electrodes (Figure 2.4), and all the electrochemical experiments 

were conducted at the room temperature (20 ℃) unless it was stated. The electrochemical 

characterization of 2D α-MoO3 nanofilms was performed in 5 mM K4Fe(CN)6 solution 

containing 0.1 M KCl under the CV measurement in the potential range of -0.2 V to 0.6 V at a 

scan rate of 10 mV/s and EIS measurements within the frequency ranging from 105 to 0.1 Hz at 

an AC amplitude of 5 mV under the open-circuit potential conditions. For the experiments on 

the detection of hydrogen peroxide, all of the tests were accomplished in 0.1 M phosphate-

buffered saline (PBS, pH 7.0). The CVs of the samples were measured in the potential range 
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from 0 to 0.7 V. Chronoamperometry was tested at an applied potential of 0.5 V under 330 rpm 

magnetic stirring. The response/recovery time was defined as the time to achieve 90% of the 

total current change.  

 

2.4 Results and discussion 

2.4.1 Characterization of 2D α-MoO3 nanofilms 

 

Figure 2.4. Electrochemical properties testing system. 

Figure 2.5. (a) SEM, (b) AFM, and (c) 3D topographical AFM images of MoO3 films. (d) Film thickness 
versus distance. 
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SEM and AFM techniques were employed to examine the surface morphology and the 

thickness of ALD-fabricated 2D α-MoO3 nanofilms. Figure 2.5(a) displays the typical high-

resolution SEM image of the surface morphology of annealed MoO3 films. The relative 

smoothly and uniformly distributed films can be observed over a large scale area of SiO2/Si 

substrate. The thin films were aggregated with MoO3 nanoparticles, and the average diameter 

of the nanoparticles is 35 nm measured by the SEM apparatus. Similar characterization results 

can be seen from the AFM image of the MoO3 films in Figure 2.5(b) and its corresponding 3D 

image in Figure 2-5(c). The variation of the film thickness measured by AFM across 200 nm of 

the sample surface was shown in Figure 2.5(d). As it is depicted, the measured average 

thickness of MoO3 films was 4.9 nm, indicating that the dense and smooth 4.9 nm 2D MoO3 

nanofilms were successfully fabricated by the ALD method. 

 

Figure 2.6. (a) XPS spectrum of the 2D MoO3 nanofilms and high-resolution XPS scan of (b) Mo 3d region 
and (c) O 1s region. 
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The chemical state and composition of the deposited 2D MoO3 nanofilms were 

investigated by XPS analysis, and the results are shown in Figure 2.6. The signals for elements 

of molybdenum, silicon, carbon, and oxygen can be observed from the survey scan spectrum 

in Figure 2.6(a), where the peaks of silicon originated from the SiO2/Si substrate and C 1s peak 

of graphite carbon (284.6 eV) was used as a reference to calibrate the binding energies of the 

peaks. In the narrow scan spectrum of Mo 3d in Figure 2.6(b), a spin-orbit doublet with peaks 

at 232.7 eV and 235.8 eV are attributed to the Mo 3d5/2 and Mo 3d3/2, respectively [29]. The 

energy separation between Mo 3d5/2 and Mo 3d3/2 peak is 3.1 eV, and the peak ratio of Mo 3d5/2  

and Mo 3d3/2 is 1.25, which is in good harmony with the previous reports on MoO3 [30]. The O 

1s peak in the XPS spectrum can be decomposed with Gaussian distribution, as shown in Figure 

2.6(c). The low binding energy component located at 530.8 eV is originated from the lattice 

oxygen in MoO3 [31], and the peak at 532.7 eV is due to the substrate of SiO2 [29, 32].  

 

FTIR spectroscopy was performed to investigate the chemical bonding states between 

the molybdenum and oxygen atoms in ALD-developed 2D MoO3 nanofilms. Figure 2.7 shows 

the FTIR spectra (measured in the 550–4000 cm-1 range) for the commercial MoO3 powder and 

2D MoO3 nanofilms annealed at 200°C. The commercial MoO3 powder exhibited two main 

vibrational modes at 982 cm-1 and 846 cm-1 due to the symmetric stretching mode (νs) of Mo=O 

and asymmetric stretch mode (νas) of Mo-O-Mo. However, both two peaks in the 2D MoO3 

nanofilms shift towards the lower bands [33-35] and were located at 942 cm-1 and 841 cm-1, 

respectively, which specifies a layered orthorhombic α-MoO3 phase. Additionally, a new peak 

Figure 2.7. FTIR spectra of (a) commercial MoO3 powder and (b) 2D α-MoO3 nanofilms. 
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at 709 cm-1 appeared in te 2D MoO3 nanofilms, due to (νMo–O) and (δMo–O) vibrations, which 

was the reason of the low annealed temperature [36]. 

 

Raman spectroscopy, as a powerful technique for characterizing crystalline structures 

of fabricated materials, was performed using a 532.2 nm excitation and the comparition of 

Raman between commercial MoO3 powder and 2D MoO3 nanofilms in the range of 100-1200 

cm-1 was shown in Figure 2.8. A main band at 520 cm-1 is assigned to the Si peak from SiO2/Si 

substrate. The strong and typical peaks at 973, 817, 666, 299 and 154 cm-1 are observed from the 

spectrum of 2D MoO3 nanofilms and compared with those of the commercial powder material, 

the peaks were broadened and had the tendency to shift, which might due to the phonon 

confinement resulted from the decrease in the particle dimensions of 2D MoO3 to the nanometer 

scale, which has been observed with many semiconductor and oxide materials [37]. The band 

in the lower-frequency of 154 and 299 cm-1 originates from the translation of the rigid chains 

and bending mode for the double bond (Mo=O) vibration [38], respectively. A band at 666 cm-

1 is assigned to Mo-O stretching mode of triply coordinated oxygen, which results from edge-

shared oxygen in common with three octahedra [39]. The intense Raman band at 817 cm-1 is the 

doubly coordinated bridge-oxygen Mo-O-Mo, which results from corner-shared oxygen in 

Figure 2.8. Raman spectra of commercial MoO3 powder and 2D α-MoO3 nanofilms. 
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common with two octahedra [40]. The Raman-active band at 973 cm-1 is a asymmetric strech of 

the terminal oxygen atom (Mo6+=O) mode, which results from unshared oxygen, and it is 

responsible for the structure of α-MoO3 [36]. These peak positions indicated the orthorhombic 

α-MoO3 crystalline phase was formed in this work. Interestingly, new bands appeared at 432 

and 614 cm-1, and the peaks in the range of 300-400 cm-1, 160-280 cm-1 and lower than 150 cm-1 

of 2D α-MoO3 nanofilms become weaker and even disappeared, which are similar with other 

2D MoO3 when the films become much thinner, illustrating the ultra-thin nature of ALD-

developed 2D α-MoO3 nanofilms [38, 431, 42]. 

 

The CV and EIS measurements of potassium ferricyanide could be used as valuable and 

convenient tools to monitor the surface state and charge transfer properties of the 2D α-MoO3 

nanofilms. As shown in Figure 2.9(a), compared with the blank substrate, the anodic and 

cathodic peaks are decreased for α-MoO3 nanofilms, due to the high conductive native nature 

of Au and low conductivity properties of MoO3 that hindered the charge transfer, which can 

also illustrate that 2D MoO3 nanofilms were successfully deposited on the substrate. The 

capacity of electron transfer of MoO3 nanofilms was investigated by EIS. There were a linear 

portion and a semicircle portion in the impedance spectra (Figure 2.9(b)). The elongated portion 

at lower frequencies reflected the diffusion process, and the semicircle portion at high-

frequency regions corresponds to the electron transfer resistance (Rct), which controls the 

Figure 2.9. (a) CV curves of the blank substrate and 2D α-MoO3 nanofilms with 5mM [Fe(CN)6]3-/4- in 
0.1M KCl at the scanning rate of 10mV/s. (b) Nyquist plots of the blank substrate and 2D α-MoO3 films 
with 5mM [Fe(CN)6]3-/4- in 0.1M KCl from 100kHz to 0.1Hz at an AC amplitude of 5mV under open-
circuit potential condition. 
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electron-transfer kinetics of the redox probe. According to the obtained data in Table 2.2 fitted 

with the Randles equivalent circuit model (inset of Figure 2.9(b)), the Rct of 2D MoO3 nanofilms 

was 360.6 Ω, which was higher than that of the blank electrode (280.6 Ω). These results 

confirmed the results obtained by CVs. 

Table 2.2. The EIS parameters (Rs, Rct, and Cdl) comparison of 2D α-MoO3 and blank substrate 

Material Rs (Ω) Rct (Ω) Cdl (µF) 

4.9 nm 2D α-MoO3  39.1 360.6 78.7 

Blank substrate 43.2 280.6 58.1 

 

2.4.2 Electrochemical performance of H2O2 sensor based on 2D α-MoO3 nanofilms  

 

The electrocatalytic activity of the sensor based on ALD-developed 2D α-MoO3 nanofilms 

towards H2O2 was investigated in 0.1M PBS solutions at a scan rate of 10 mV/s. Figure 2.10(a) 

shows the CV curves of the blank electrode and ALD-fabricated 2D α-MoO3 nanofilms in the 

absence and presence of 5 mM H2O2  in 0.1 M PBS solution, respectively. As can be seen, the 

blank electrode and 2D α-MoO3 nanofilms show almost no electrochemical response in the 

absence of H2O2. However, a visible oxidation peak was observed during the anodic scanning 

for α-MoO3 nanofilms at 0.5V with the current value of 0.37 mA when 5 mM H2O2 was added 

into the solution. Although there also has the oxidation of hydrogen peroxide for the blank 

electrode, its oxidation current was apparently weak. Additionally, there is no cathodic current  

Figure 2.10. (a) CV curves of the blank substrate and ALD-developed 2D α-MoO3 nanofilms at the 
absence and presence of 5 mM H2O2 in 0.1 M PBS (pH=7.0) at a scan rate of 10 mV/s. (b) CV curves of 
2D α-MoO3 nanofilms with the different concentrations of H2O2 in 0.1 M PBS (pH=7.0) at a scan rate of 
10 mV/s. 
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Table 2.3. Performance comparison of the H2O2 sensor based on ALD-developed 2D α-MoO3 nanofilms 
to other H2O2 sensors based on nanostructured and hetero-structured materials reported to date. 

Electrode material Potential work 

(V)  

Sensitivity 

(μA·mM−1 
cm-2) 

Linear range 

(μM) 

LOD 

(μM) 

Response 
time (s) 

Refs 

4.9 nm 2D α-MoO3 
nanofilms 

0.5 (vs Ag/AgCl) 168.72 0.4 -57600 0.076 <1.5 this work 

Co3N NW/TM -0.2 (vs SCE) 139.3 2-28000 1 <5 [43] 

RGO-Pt/GCE -0.08 (vs Ag/AgCl) 459 0.5-3.47 0.2 / [44] 

MnO2-Co3O4/GP 0.5 (vs SCE) 53.5 5-1200 0.8 <3 [45] 

ox-SWCNHs@CeO2 -0.2 (vs Ag/AgCl) 160 10-1400 2.7 / [46] 

AuNPs-N-GQDs -0.3 (vs Ag/AgCl) 186.22 0.25-13327 0.12 <5 [24] 

Au/MnO2/ERGO/CF -0.4 (vs SCE) 167 50-1400 2 <3 [47] 

Au-MnO2-rGO -0.2 (vs SCE) 980 0.1-0.022 0.05 <5 [48] 

RGO-AgNPs -0.2 (vs. SCE) 99.5 5-16370 2 <3 [49] 

V2O5/GCE -0.4 (vs Ag/AgCl) 9.87 0.1-408 0.06 / [50] 

Au/Cu2O/GCE 0.45 (vs SCE) 2.72 0-1400 1.42 / [51] 

Nafion/Pt NPs/RGO -0.5 (vs Ag/AgCl) 132.8 5-3000 0.4 <6 [52] 

CQDs/octahedral Cu2O 
NPs 

-0.2 (vs Ag/AgCl) 130 5-53000 2.8 10 [53] 

AuEPG films 0.5 (vs Ag/AgCl) 75.9 0.5-4900 0.1 <3 [54] 

RGO-PMS@AuNPs -0.75 (vs Ag/AgCl) 39.2 0.5-50000 0.06 <2 [23] 

Ag/FeOOH/Au -0.2 (vs SCE) 8.07 30-15000 22.8 <3 [55] 

Fe2O3/CP -0.75 (vs SCE) 0.032 200-5000 0.13 <1 [56] 

Ag–Fe2O3–RGO -0.2 (vs. SCE) 50.8 1.6-57000 0.5 <3 [57] 

Cu2O/grapheme -0.4 (vs Ag/AgCl) / 300-7800 20.8 <9 [28] 

f-MWCNTs/MnO2 NFs -0.4 (vs Ag/AgCl) 219.05 5-4530 0.952 <4 [58] 

CuO/Cu2O-NWs/PVA -0.2 (vs SCE) 39.5 1-3000 0.35 <5 [59] 

MnO2-ERGO paper -0.5 (vs SCE) 59 100-45400 10 <3 [60] 

CuO/rGO/Cu2O -0.3 (vs SCE) 366.2 0.5-9700 0.05 0.5 [61] 

 

peak corresponding to reducing reaction observed during the reverse sweep, as shown in 

Figure 2.11. The measured results indicated that α-MoO3 nanofilms have a high electrocatalytic 

performance towards H2O2. Consequently, ALD-fabricated 2D α-MoO3 nanofilms are suitable 
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as a mediator to transfer electron between H2O2 and working electrode and make possible 

electrochemical regeneration following electron exchange with H2O2. 

 

In addition, the electrocatalytic activity of 2D α-MoO3 nanofilms to different 

concentrations of H2O2 was evaluated using CV and chronoamperometric measurements. 

Figure 2.10(b) displays the CV curves obtained from α-MoO3 nanofilms in the presence of 

different H2O2 concentrations from 500 µM to 15 mM. It is clear that with the rising of hydrogen 

peroxide concentration, the catalytic current also gradually increases, and the peak potential 

located at 0.5V keeps almost stable, which makes the quantitative assessment of hydrogen 

peroxide in the amperometric experiment possible. The typical steady-state current-time (i-t) 

response plot with continuous addition of different concentrations into the stirring PBS solution 

approximately every 50 s at the applied potential of 0.5 V using the chronoamperometry 

method is shown in Figure 2.12(a). As expected, a well-defined stepwise increment in the 

current responses was observed upon the addition of hydrogen peroxide. The linear detection 

to hydrogen peroxide range from 0.4 µM to 57.6 mM (correlation coefficient = 0.9991) of α-

MoO3 nanofilms calculated from the calibration curve (current versus concentration) was 

obtained, which is a wide linear detection scale range from nanomolar to several millimolar. 

Moreover, the calibration curve has been divided into three parts, which were shown as an 

Figure 2.11. CV curves of the ALD-developed 2D α-MoO3 nanofilms at the absence of H2O2 in 0.1 M PBS at a 
scan rate of 10 mV/s. 
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inset in Figure 2.12(b, c, d). It is clearly seen that the slops of the three parts are close with each 

other, illustrating the excellent linearity in the range from 0.4 µM to 57.6 mM. Besides, according 

to the equation of “sensitivity=slope/surface of the electrode” and “low detection limit=3Sb/sensitivity” 

[9], where Sb is the standard deviation of the blank signal. The 2D α-MoO3 nanofilms showed 

the remarkable sensitivity of 168.72 µA·mM-1·cm-2 with a low limit of detection (LOD) of 0.076 

µM at the signal to noise ratio of 3. The error bars in the inset of Figure 2.12(b), representing the 

standard deviation, are relatively small, suggesting a high accuracy of results. There were many 

reports dedicated to the development of the H2O2 sensor. Their typical characteristics, including 

sensitivity, linear response range, response time and the LOD, are summarized in Table 2.3. It 

is worth noting that the sensitivity of 2D α-MoO3 nanofilms is lower than that of some 

composites of specific graphene, due to their larger specific area and the synergy effect between 

Figure 2.12. (a) Chronoamperometric current response of 2D α-MoO3 nanofilms to the changes H2O2 
concentration from 0.4 μM to 57.6 mM in 0.1 M PBS (pH=7.0); Inset: chronoamperometric current 
response to lower concentration range from 0.4 µM to 1200 µM. (b) Corresponding linear plot of the 
current versus H2O2 concentration; Inset: Corresponding linear plot of the current at H2O2 concentration 
of 0.4 µM to 100 µM. Corresponding linear plot of the current at H2O2 concentration of (c) 100 µM to 10 
mM and (d) 10 mM to 57.6 mM. 
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the composite materials. However, the synthesis of the specific graphene is much more 

complicated, and the ALD method can deposit large-scale conformal, dense oxide nanofilms 

with precise thickness, which is the critical parameter for tuning the electrochemical 

performances. Moreover, the wide linear range of the ALD-developed 2D α-MoO3 nanofilms is 

superior, which makes 2D α-MoO3 nanofilms based sensor qualified for the possible H2O2 

detection released from the living cells both in the normal physiological condition (10-8-10-7 M) 

and at the emergency (about 10-4 M) [22]. These excellent electrochemical performances have 

demonstrated that the ALD-fabricated 2D α-MoO3 nanofilms in this work are suitable for 

sensitive H2O2 detection. 

 

In order to gain further insight into the electrochemical oxidation mechanism of 2D α-

MoO3 nanofilms on the detection of hydrogen peroxide, CV measurements for 5 mM H2O2 in 

0.1M PBS solution were recorded at different scan rates and the summarized results are in 

Figure 2.13(a). The obtained CV curves obviously confirmed that the oxidation peak currents 

gradually increase with the rising of the scan rates from 5 to 100 mV/s. Due to the background, 

current responses at the different scan rates are so much lower than that of the current response 

to 5 mM H2O2 (Figure 2.14), the effect of current background responses is negligible. 

Furthermore, a good linear relationship was observed between the peak currents and square 

root of the scan rates (Inset of Figure 2.13(a)), proving diffusion-controlled rather than surface 

controlled electron transfer kinetics. The corresponding linear regression equation can be 

Figure 2.13. (a) CV curves of 2D MoO3 nanofilms in the presence of 5 mM H2O2 at the different scan rates 
in 0.1 M PBS (pH=7.0). Inset: plot peak currents versus square root of scan rates. (b) Plot of oxidation 
peak potentials versus logarithm of scan rates. 
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expressed as 𝐼𝑝 = 2.21563𝑒−3𝜈1/2 + 1.5394𝑒−3 (where 𝐼𝑝 is in A and ν is in V/s), for which R2 

= 0.9925. Additionally, the peak potentials shift positively with increasing scanning rates and a 

plot of peak potential 𝐸𝑃 versus logν  in Figure 2.13(b) exhibits a linear relationship, which 

indicated that the hydrogen peroxide oxidation on 2D α-MoO3 nanofilms is an irreversible 

process. The corresponding linear regression equation can be expressed as 𝐸𝑃(𝑉) =

0.0929𝑙𝑜𝑔𝜈 + 0.704. For an irreversible diffusion-controlled process, 𝐸𝑃 can be represented by 

the Tafel equation based on the equation of 𝐸𝑃(𝑉) = b/2𝑙𝑜𝑔𝜈 + constant, and the Tafel slope of 

b was found to be 185.8 mV/decade. The value of the Tafel slope indicates a transfer coefficient 

of α = 0.68 for a one-electron transfer in the rate-determining step. 

 

The response-recovery characteristic is an important parameter that determines the 

electrochemical sensing performance of the fabricated materials since it emphasizes the abilities 

of the reaction to the detection substance and the recovery to the previous state, which is related 

to the repeatability and reusability of the electrochemical sensors. Figure 2.14(a) depicts the 

response and recovery time plots of α-MoO3 nanofilms with 5 mM hydrogen peroxide at the 

applied potential of 0.5 V using the chronoamperometric method. As can be seen, the current 

increased rapidly when the H2O2 was added into the solution, and 90% of the steady-state 

Figure 2.14. CV curves of 2D MoO3 nanofilms in the absence of 5 mM H2O2 at the different scan rates in 
0.1 M PBS (pH=7.0). 
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current value was achieved within 0.8 seconds. Then after the fast-dilution method was used, 

the current decreased abruptly, and it only needs 1.65 seconds to reach 10% of the baseline. The 

measured results illustrated the biosensor of 2D α-MoO3 nanofilms has ultra-fast response and 

recovery time, and the thickness of α-MoO3 nanofilms (4.9 nm) enabled such fast response and 

recovery time.  

 

In order to investigate the response/recovery time of 2D α-MoO3 nanofilms towards 

the different H2O2 concentrations in the wide linear range, a similar method to the method 

mentioned above was employed, and the corresponding curves were presented in Figure 

2.15(a). Clearly, the current increases with the increasing of H2O2 concentration, and the current 

value at every concentration is similar to the results in Figure 2.12(c). Besides, the detailed 

response/recovery time for ALD-developed 2D α-MoO3 nanofilms to the different H2O2 

concentrations is presented in Figure 2.15(b). The response/recovery time of 0.45/0.50 s can be 

seen under the H2O2 concentration of 0.4 µM. While increasing the H2O2 concentration, the 

response/recovery time becomes lager within the range of 0.45/0.50 s - 1.50/1.95 s under the 

H2O2 concentration range of 0.4 µM - 50 mM. Thus, the obtained ultra-fast response/recovery 

ability towards the different H2O2 concentrations revealed outstanding capabilities of 2D α-

MoO3 nanofilms. 

Figure 2.15. (a) The dynamic current response of 2D α-MoO3 films to H2O2 under the different 
concentrations. (b) Current response/recovery time measured at different H2O2 concentrations. 
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The influence of temperature on the response/recovery time of 2D α-MoO3 nanofilms 

based sensor was also investigated using 5 mM by chronoamperometric measurements. The 

results depicted in Figure 2.15(b) showed that α-MoO3 nanofilms could work well in the 

temperature range of 20-50 °C, and the response/recovery time decreased from 0.8/1.65 s to 

0.55/1 s as the temperature increasing from 20 to 50 °C. Moreover, the current response also 

increased with the rising of temperature. Because electrochemical detection towards hydrogen 

peroxide of 2D α-MoO3 nanofilms is a diffusion-controlled process, the higher temperature can 

facilitate the diffusion process, resulting in the higher current response, and shorter 

response/recovery time. The results also illustrated 2D α-MoO3 nanofilms can be used for 

hydrogen peroxide detection in a wide range of temperatures. 

 

The influence of temperature on the response/recovery time of 2D α-MoO3 nanofilms 

based sensor was also investigated using 5 mM by chronoamperometric measurements. The 

results depicted in Figure 2.16(b) showed that α-MoO3 nanofilms could work well in the 

temperature range of 20-50 °C, and the response/recovery time decreased from 0.8/1.65 s to 

0.55/1 s as the temperature increasing from 20 to 50 °C. Moreover, the current response also 

increased with the rising of temperature. Because electrochemical detection towards hydrogen 

peroxide of 2D α-MoO3 nanofilms is a diffusion-controlled process, the higher temperature can 

facilitate the diffusion process, resulting in the higher current response, and shorter 

response/recovery time. The results also illustrated 2D α-MoO3 nanofilms can be used for 

hydrogen peroxide detection in a wide range of temperatures. 

 

Figure 2.16. (a) Response and recovery time of 2D α-MoO3 films to 5 mM H2O2. (b) Current 
response/recovery time of the sensor based on 2D α-MoO3 films to 5 mM H2O2 at the different 
temperatures. 
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When the fabricated materials were used for the practical measurements, there are a 

variety of interferences present in the real environment. Therefore, interference experiments 

were performed to investigate the selectivity of the sensors based on ALD-developed 2D α-

MoO3 nanofilms towards the H2O2 detection at the presence of common chemicals such as 

NaNO3, KCl, glucose, ascorbic acid (AA) and uric acid (UA). Figure 2.17(a) shows the 

amperometric responses of 2D α-MoO3 nanofilms with the successive addition of 10 µM H2O2 

and 100-fold higher concentration (1mM) of the different interfering species. Quick and stable 

response was observed, and there were no apparent subsequent responses due to the successive 

addition of various interferences. In addition, amperometric H2O2 detection at various 

concentrations in the presence of 1 mM interfering substances was also conducted. As shown 

in Figure 2.18, sensors based on 2D α-MoO3 nanofilms showed excellent linearity under the 

interfering condition and exhibited a sensitivity of 158.40 μA·mM−1 cm-2, which is much closer 

to the sensitivity of 168.72 μA·mM−1 cm-2 under no interference conditions. These results 

demonstrate and reaffirm that the sensors based on 2D α-MoO3 nanofilms have excellent 

selectivity towards H2O2 detection. The selectivity against UA and AA at 0.5 V may be related 

to the repelling effect occurring on the 2D MoO3 nanofilms. The isoelectric point of MoO3 is 

close to 2 [64], which means that the surface of MoO3 films would be negatively charged in the 

PBS (pH=7). The interfering reagents (UA and AA) are also negatively charged at this pH. 

Consequently, the negatively charged 2D MoO3 nanofilms surface could strongly repel the 

negatively-charged molecules, reducing the electrooxidation of interfering reagents on the 

Figure 2.17. (a) Interference study for 2D α-MoO3 nano-films in the presence of 10 μM H2O2 and 1 mM 
interfering chemicals (NaNO3, KCl, glucose, ascorbic acid and uric acid) in 0.1 M PBS (pH = 7.0). (b) The 
chronoamperometric current of 2D α-MoO3 nano-films with different concentration of H2O2. 
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surface of MoO3 nanofilms and resulting in an improved selectivity. Furthermore, the long-

time stability is also a crucial practical parameter of any H2O2 sensors. Thus, the H2O2 sensors 

based on the ALD-developed 2D α-MoO3 nanofilms were tested by conducting amperometric 

experiments every 6 days, and the detailed results are presented in Figure 2.17(b). The relative 

standard deviation (RSD) of the sensitivity can be calculated from Figure 2.19(a), and the result 

of 5.9 % can un-doubly prove that the sensors based on ALD-fabricated 2D α-MoO3 nanofilms 

have excellent long-term stability. In addition, the reproducibility was also investigated from 

six electrodes prepared at the same condition, and the RSD of the amperometric responses 

calculated from the results of Figure 2.19(b) was found to be 2.1 %. Consequently, considering 

all the results obtained, the H2O2 electrochemical sensors based on ALD-developed 2D α-MoO3 

nanofilms have demonstrated excellent repeatability and reproducibility throughout the 

detection of H2O2. 

 

Table 2.4. Determination of H2O2 concentration in the milk sample (n=3). 

Sample Added (µM) measured (µM) Recovery (%) RSD (%, n=3) 

1 25 26.14 104.56 2.6 

2 50 48.96 97.92 3.1 

3 100 101.35 101.35 3.5 

Figure 2.18. Amperometric current response in the presence of 1 mM interfering substances in 0.1 M PBS 
(pH=7.0); Inset: Corresponding linear plot of current vs. H2O2 concentration. 
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In order to validate the sensor, the determination of H2O2 in milk was performed. For 

this purpose, 10 µL of milk was added into 10 mL of 0.1 mol/L PBS (pH 7.0), as H2O2 is widely 

used as a preservative in milk, due to its potential to inhibit microbial proliferation and milk 

spoilage [46]. Subsequently, three known concentrations of H2O2 were added, and their 

chronoamperometric responses of the sensor were recorded at 0.5 V. All of the measurements 

were performed four times (n=3), and the results were summarized in Table 2.4. The RSD and 

mean recovery values were well acceptable, suggesting that the developed sensor based on 2D 

α-MoO3 nanofilms could be actually applied for the H2O2 detection in the real samples. 

2.5 Conclusions 

In summary, smoothly and uniformly distributed ultra-thin 2D α-MoO3 nano-films have 

developed on the substrate as high-performance electrocatalysts towards hydrogen peroxide 

at various conditions. 2D α-MoO3 nanofilms were successfully fabricated by the ALD technique 

using (NtBuN)2(NMe2)2Mo and oxygen plasma gas as the molybdenum precursor and oxygen 

precursor, respectively. To the best knowledge of us, it is the first time to report the utilization 

of 2D α-MoO3 nanofilms for the electrochemical detection of hydrogen peroxide. 

Electrochemical measurements confirmed that 2D α-MoO3 nanofilms biosensor possessed a 

superior capacity towards the detection of hydrogen peroxide with relatively high sensitivity 

(168.72 µA·mM-1·cm-2), an extensive linear range (0.4 µM to 57.6 mM) with a low detection limit 

(0.076 µM). The response/recovery time at different hydrogen peroxide concentration and the 

Figure 2.19. (a) The corresponding sensitivity obtained every six days. (b) Reproducibility studies of 2D 
α-MoO3 nano-films towards 5 mM H2O2. 
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different working temperature was studied thoroughly, and ultra-fast response/recovery time 

(within 1.5/2 s) was obtained compared with the previous reports. Furthermore, 2D α-MoO3 

nanofilms biosensor also exhibited excellent repeatability, reproducibility, anti-interfering 

ability, and long-time stability (30 days). 
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3. Chapter 3 
ALD DEVELOPED 2D WO3 NANOFILMS WITH DIFFERENT 
THICKNESS AND THEIR ELECTROCHEMICAL HYDRAZINE 
DETECTION 

3.1 Abstract 

Wafer-scale two-dimensional (2D) WO3 films with different thickness of 0.78, 1.4, 3.6, 

and 6.5 nm were fabricated on Au-SiO2/Si substrates using an atomic layer deposition 

technique. Their surface morphologies and chemical components were examined by 

field-emission scanning electron microscopy, atomic force microscopy, and X-ray 

photoelectron spectroscopy. Cyclic voltammetry, chronoamperometry, and 

electrochemical impedance spectroscopy were utilized for the analysis of the 

electrochemical behavior of 2D WO3 films towards hydrazine detection under various 

conditions. The effect of the thickness of 2D WO3 on the electrochemical performance 

was also analyzed. Significant improvement in hydrazine sensing capabilities was 

obtained for monolayer 2D WO3 (0.78 nm), demonstrating a high sensitivity of 1.24 

μA·μM-1·cm-2, a linear hydrazine concentration detection ranging from 0.2 to 2100 μM, 

high long-term stability, excellent selectivity and the lowest limit of detection of 0.015 

μM reported to date, which provides a great potential method for materials fabrication 

in the development of high-performance hydrazine detection. 

3.2 Introduction 

WO3 possesses a widely tunable optical bandgap of ca. 2.5–3.7 eV and is also generally 

constructed by corner and edge-sharing WO6 octahedra with many transformable 

phases such as monoclinic, triclinic, orthorhombic, and tetragonal phases, which have 

led to the intensive investigation of WO3 for the various applications [1-6]. Like other 

transition metal oxides, tungsten oxide can be synthesized into many different 

morphologies. Among these morphologies, 2D WO3 has a high specific surface area and 

great potential for tuning electronic structures [7, 8]. As an example, it was reported that 

the specific surface area of 2D nanosheets could be 157 m2·g-1 [9]. In addition, the 
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ultraviolet-visible (UV-vis) absorption spectra of 2D WO3 showed an apparent blue shift, 

which results from a larger bandgap and more positive conduction and valence band 

edges of 2D WO3 due to the significant quantum confinement effect in the thinnest 

dimension [9, 10]. Owing to high surface area and tunable electronic properties, 2D WO3 

has shown more attractive in the application of electrochromic devices, gas sensors, 

lithium-ion batteries, photovoltaics, and catalysts [11-15]. Even though 2D WO3 

possesses various interesting properties and is widely used in many aspects, to the best 

of our knowledge, the utilization of 2D WO3 for the fabrication of electrochemical sensor 

has not yet been reported. 

For the electrochemical sensor based on 2D WO3, the thickness should be an 

essential parameter to be considered for the design of applicable devices, since 

depending on the different thickness, 2D nanomaterials exhibit different properties [15-

19]. For example, semiconductor → half-metal → metal transition with nonmagnetic → 

magnetic transfer can be achieved for AlN nanosheets by surface hydrogenation and 

increasing nanosheet thickness [19]. As the other example, graphene films with a higher 

content of multilayer graphene flakes are more conductive, and their resistance is more 

easily reduced by thermal annealing, making them suitable as transparent conducting 

films. Graphene films with a higher content of bilayer graphene flakes show instead 

higher capacitance when used as an electrode in a supercapacitor [16]. It was also 

reported that the thickness of 2D materials influences the charge transfer and transport 

versus charge trapping and recombination, thus affecting the electrochemical 

performances [18]. Besides, it is well known that the electro-catalytic activity of 

nanostructured materials is significantly dependent on their distribution on the 

substrate. However, the methods of top-down strategies and hydrothermal synthesis 

have no reasonable control over the distribution of the material on the electrodes. They 

have difficulty in maintaining the long-term stability because of the gradual detachment 

and dissolution of the catalyst from the substrate [20].  

In order to solve the problem mentioned above and investigate the effect of 

thickness on the electrochemical performance, the atomic layer deposition technique 

was utilized as a valuable alternative to other technologies in the development of 
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different thicknesses of 2D WO3. Compared to other thin film deposition methods, such 

as CVD and PVD, ALD can make uniform distribution of atomically thin nanofilms on 

the substrate because of the milder process conditions, which is necessary for the 

development of electrochemical sensors with the excellent performance [21]. In addition, 

due to the self-limiting character of the ALD reactions and its slow growth rate, the 

thickness of the as-deposited WO3 nanofilms with high-quality atomically thin level is 

simply controlled by the number of cycles with precision at the angstrom level under 

the set deposition temperature[22]. 

Hydrazine, as a colorless flammable liquid with an ammonia-like odor, has been 

widely used in many fields, such as fuel cells, rocket fuels, polymerization catalysts, 

corrosion inhibitors, and antioxidants, emulsifiers, pesticides, plant-growth regulators, 

dyes stuff and explosives [23-25]. As of 2000, approximately 120,000 tons of hydrazine 

hydrate (corresponding to a 64% solution of hydrazine in water by weight) was 

manufactured worldwide per year [26]. However, hydrazine has also been recognized 

as a carcinogenic, hepatotoxic substance, which has adverse effects on the liver and brain 

and can cause DNA damage, blood abnormalities, and irreversible deterioration of the 

nervous system [27-29]. According to the World Health Organization and 

Environmental Protection Agency (EPA), hydrazine has been classified as a B2 group 

human carcinogenic agent [30]. The permissible exposure limit (PEL) for N2H4 in the air 

is 1.0 ppm, and its concentration in the workplace should be below 0.03 mg/mL for a 2 

h period [31, 32]. Notably, the US Environmental Protection Agency defined HZ as one 

of the potent carcinogens, which would limit the threshold in the drinking water to 

below 10 ppb (0.3 μmol L−1). Therefore, fast and accurate hydrazine detection at low 

concentrations is especially vital for the aqueous environment. The cmmercial hydrzine 

detection method needs complicated equipment and instrumentation, and are expensive, 

so electrochemical sensors provide a convient and cheap way. 

In this part, WO3 nanostructures, prepared by the ALD technique with different 

thickness, were utilized for the first time for accurate, sustainable, sensitive, selective, 

and fast hydrazine detection. The thickness of 2D WO3 varied from ~0.78 nm (monolayer) 

up to ~6.5 nm (a few layers of WO3). The effect of thickness of 2D WO3 on the hydrazine 
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detection was comprehensively studied using the cyclic voltammetry (CV), 

electrochemical impedance spectroscopy (EIS), and chronoamperometry methods, 

which confirmed the impact of changes in nano-thickness of WO3 on their sensing 

performance. The results obtained unambiguously showed that the monolayer WO3 

exhibited the highest sensitivity and excellent selectivity to hydrazine in a wide 

concentration range (0.2–2100 μM) with a fast response time (less than 2 s) and the lowest 

limit of detection (LOD) of 0.015 μM reported to date. 

3.3 Experimental section 

3.3.1 Materials 

Bis(tertbutylimino)bis(dimethylamino)tungsten(VI) precursor, also known as 

(tBuN)2(Me2N)2W, was purchased from the Strem Chemicals Inc. USA and was used for 

the ALD development of 2D WO3 with the different thickness on the wafer scale. 

Hydrazine hydrate (N2H4·H2O, 80%), sodium dihydrogen phosphate (NaH2PO4), 

disodium hydrogen phosphate (Na2HPO4), hydrogen peroxide (H2O2) and glucose were 

obtained from the Sigma-Aldrich, USA. All these reagents and chemicals were used 

without further purification. Deionized water (> 18 MW) was from a Milli-Q water 

purification system (Millipore, France). Phosphate buffers solution (PBS) used as the 

supporting electrolyte was prepared with 0.1 M NaH2PO4/Na2HPO4. High resistivity (1 

KW cm) 4’’ SiO2/Si wafers were utilized for the fabrication of ALD-deposited 2D WO3 

films using (tBuN)2(Me2N)2 W and H2O precursors. 

3.3.2 Sample Preparation 

All 2D WO3 films were synthesized on SiO2/Si wafers by the ALD technique using the 

cross-flow reactor of Savannah S100 (Ultratech/Cambridge Nanotech) and specifically 

developed the recipe for this precursor. In this deposition process, (tBuN)2(Me2N)2W was 

employed as the metal ALD precursor along with H2O vapor as a source of oxygen. Prior 

the deposition, in order to make the SiO2/Si wafers electrically conductive to facilitate 

the subsequent investigation of 2D -WO3 films properties, Au/Cr films were deposited 

on the SiO2/Si wafers using an Electron Beam Evaporator method [Nanochrome II 

(Intivac, USA)]] with the thickness of ∼150 nm. A 200 µm-wide gap at the center of the 
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wafer was intentionally left at the same time for the characterization of the developed 

nanofilms, due to the roughness of Au/Cr films. Then the wafer-scale ALD deposition 

of WO3 ultra-thin films with the target thickness of ∼0.78 nm, ∼1.4 nm,  ∼3.6 nm, and 

∼6.5 nm was performed. The recently developed recipe provided the following ALD 

growth conditions at a deposition temperature of 350⁰C: (tBuN)2(Me2N)2W pulse 2 s, N2 

purge 10 s, H2O pulse 50 ms, N2 flow 5 s without pumping (exposure mode) and then 

10 s with pumping as the purge/evacuation step. After deposition, all wafers were 

subsequently diced into 1.0×1.0 cm pieces for further annealing and characterization. 2D 

WO3 samples were annealed in air at 200⁰C for 1 h with the heating rate of 0.58⁰C/min. 

The fabrication process, together with N2H4 measurements, was schematically presented in 

Figure 3.1. 

 

3.3.3 Characterization 

Variable Angle Spectroscopic Ellipsometry (M2000-DI model, JA Woollam) was used for 

the thickness measurement of the ALD developed 2D WO3 films. The reproducibility of 

Figure 3.1. Graphical scheme of the development of 2D WO3 nanofilms for electrochemical N2H4 
detection. 
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all deposited 2D WO3 samples was high. The surface morphology of all samples was 

characterized by FE-SEM (JEOL 7800F) and AFM (JPK System, Nano Wizard). The 

surface composition and the chemical state of 2D WO3 films were characterized using 

XPS. A Rigakudenki model XPS-7000 X-ray photoelectron spectrometer with 

monochromatic Mg-Kα radiation at 300 W is used for the XPS analysis, and the takeoff 

angle of the instrument was 90⁰. 

3.3.4 Electrochemical Testing 

The electrochemical performance of the developed 2D WO3 films with different 

thicknesses was evaluated on Autolab PGSTAT204 (Metrohm Autolab. B.V., 

Netherlands) at the room temperature. A conventional three-electrode system consists 

of fabricated 2D WO3 samples with an area of 1×0.5 cm as working electrodes, Pt wire 

as the counter electrode, and Ag/AgCl (3.0 M KCl) as the reference electrode was 

employed to carry out the electrochemical measurements. For the experiments on 

oxidation of hydrazine, all of the tests were performed in 0.1 M PBS, which can change 

the value of pH by varying the ratio of NaH2PO4 and Na2HPO4. The CVs of all samples 

were measured in the potential range from 0.2 to 0.6 V. Chronoamperometry was 

performed at an applied potential of 0.14 V under 330 rpm magnetic stirring with 

hydrazine added stepwise. In addition, EIS measurements were conducted in 1 mM 

K4Fe(CN)6 solution containing 0.1 M KCl within the frequency ranging from 105 to 0.1 

Hz at an AC amplitude of 5 mV under the open-circuit potential conditions.  

3.4 Results and Discussion 

The surface morphologies of ALD-developed 2D WO3 with different thicknesses on the 

top of the Au electrodes were characterized by field-emission scanning electron 

microscopy (FE-SEM) and atomic force microscopy (AFM). Figure 3.2(a) shows the SEM 

image of nanostructured Au films deposited on the SiO2/Si wafers. It exhibits a 

relatively rough surface of the Au grains with the average size ranged from 70 to 100 

nm. No open porosity was observed. The surface morphology of ALD developed 

monolayer WO3 on the Au films deposited SiO2/Si wafers was depicted in Figure 3.2(b). 

WO3 films were aggregated with nanoparticles, and the nanoparticles with the average 
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measured particle diameter of ~40 nm were dense and uniformly distributed on the top 

of Au electrodes. In addition, it was clearly observed that with increasing the thickness 

of WO3 films, there was no noticeable change in their morphologies. The surface 

morphology of Au films was also characterized by AFM, as displayed in Figure 3.2(c). 

Figure 3.2. SEM images of (a) nanostructured Au films and (b) monolayer WO3 deposited on the top of 
Au films. AFM images of (c) the surface of Au films and (d) the surface morphology of monolayer WO3 

Figure 3.3. Ellipsometry measurement data for the monolayer WO3 films. 
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The surface of Au films was observed to be relatively rough, which is in accordance with 

the SEM results. Due to rough surface of Au films, the thickness measurement of 

monolayer WO3 films was conducted on the 200 mm-wide surface space of SiO2/Si 

substrate using spectroscopic ellipsometry, and the surface morphology of monolayer 

WO3 films can be seen from Figure 3.2(d) that the films were very smooth and uniform. 

The ellipsometry analysis results showed that the average 0.78 nm of monolayer WO3 

films were obtained (Figure 3.3). 

 

 

The successful development of monolayer WO3 on the top of Au electrodes was 

also confirmed by X-ray photoelectron spectroscopy (XPS) in Figure 3.4. The survey of 

those spectra identified W4f as the major constituent of the WO3 monolayer. In the high-

resolution XPS spectra, two strong doublets were present at 35.6 and 37.8 eV in the W4f 

region, corresponding to W 4f7/2 and W 4f5/2, respectively. The binding energies were 

Figure 3.4. (a) XPS spectrum of the monolayer 2D WO3 films and high-resolution XPS scan of (b) W 4f 
region and (c) O 1s region. 
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consistent with those for tungsten (VI) in the surface-bound species (Figure 3.4(b)) and 

confirmed the existence of the W-O bond, which was reported in the previous works 

[33]. According to the XPS results, the peaks for O 1s could be deconvoluted in two peaks 

centered at 530.1 and 531.7 eV. The main binding energy component located at 530.1 eV 

can be the characteristic of the lattice oxygen of WO3, and the minor binding energy at 

531.7 eV is assigned to oxygen-deficient sub-oxides [34,35]. 

 

EIS and CV were used for investigation of electron transfer kinetics and effective 

surface area of each ALD-developed 2D WO3. It was clear from the results obtained in 

Figure 3.5(a) that monolayer WO3 films have the smallest semicircle. As the thickness of 

WO3 films increase, the semicircle also increases, which illustrated that monolayer WO3 

films have the lowest electron transfer resistance (about 800 W) and suggested the best 

conductivity of monolayer WO3 films among all fabricated 2D WO3 films. Moreover, 

results of CV measurements in Figure 3.5(b) showed that the redox peak currents of 

monolayer WO3 films are higher than those of 1.4, 3.6 and 6.5 nm WO3 films, owning to 

the largest active surface area of monolayer WO3, which resulted in an increase in 

current density and surface charge. The effective surface area of different thicknesses of 

2D WO3 films was calculated to form CVs in Figure 3.6 at the different scanning rates. 

The effective surface area of different thickness WO3 films can be calculated using a 

Figure 3.5. (a) Nyquist plots of different thickness 2D WO3 films with 1mM [Fe(CN)6]3-/4- in 0.1M KCl 
from 100kHz to 0.1Hz at an AC amplitude of 5mV under open-circuit potential condition. (b) CVs of 
different thickness 2D WO3 films with 1mM [Fe(CN)6]3-/4- in 0.1M KCl at the scanning rate of 
10mV/s. 
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known concentration of K4Fe(CN)6 as the electrolyte based on the Randles-Sevcik 

Figure 3.6. (a, c, e, g) CVs of different thickness of WO3 films with 1mM [Fe(CN)6]3-/4- in 0.1M KCl at the 
different scanning rates. (b, d, f, h) The corresponding linear plot of currents versus scanning rates. 
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equation [36]: 

𝐼𝑃 = 2.69 × 105𝐴𝐷1/2𝑛3/2𝜈1/2𝐶,                                                          (3.1) 

where 𝐼𝑃  refers to the anodic peak current (A), ν is the scanning rate (V/s), n is the 

electron transfer number (𝑛 = 1), A is the surface area of the electrode (cm2), C is the 

concentration (mol/cm3), and D is the diffusion coefficient of K4Fe(CN)6 which is 7.6 ×

10−6𝑐𝑚𝑠−1  [37]. The slope of the 𝐼𝑝  and 𝜈1/2  relations of different thickness 2D WO3 

films were shown in Figure 3.6. The effective surface area of 0.78 nm WO3 films was 

calculated to 1.77 cm2, and the values of other thicknesses were 1.45, 1.04, and 0.8 cm2 

for 1.4, 3.6, and 6.5 nm WO3 films, respectively. Results demonstrated that monolayer 

WO3 films have the maximum effective surface area. 

 

The electrochemical performance towards hydrazine was carried out in a three-

electrode system, as described in the experimental section. In order to investigate the 

electrocatalytic activity of the ALD-fabricated 2D WO3 films with different thicknesses, 

their electrochemical characteristics were studied in 0.1 M PBS. It is well known that the 

pH value of the solution is critical to the electro-catalytic oxidation reactions of 

hydrazine. The results illustrated that the oxidation peak potential in CV curves for all 

2D WO3 films shifted toward the negative direction when the pH of PBS increased from 

Figure 3.7. CVs of Au electrodes and 2D WO3 with different thicknesses in 0.1 M PBS at a scanning rate 
of 10 mV/s. 
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5.8 to 7.8, consistent with the previous report [36,38]. In addition, the peak current is also 

influenced by the value of pH, and the highest current response is exhibited in 7.4. 

Therefore, unless it stated otherwise, all following tests were conducted in PBS with a 

pH value of 7.4. 

 

Figure 3.7 depicts the CVs of ALD-fabricated 2D WO3 films with different 

thicknesses and bare Au electrodes in 0.1 M PBS overpotential of 0.35 V, due to its 

sluggish electrocatalytic behavior towards electro-oxidation hydrazine. The measured 

results indicated that compared with bare Au electrodes, 2D WO3 films possessed lower 

oxidation potential and higher oxidation peak current for hydrazine electro-oxidation, 

and the oxidation current values increased with the decreasing of WO3 films thickness. 

These results were due to the increased effective surface area. They decreased charge 

transfer resistance with the decreasing of WO3 film thickness, which suggested that the 

thinner WO3 films provide lower interfacial resistance in the path of charge transport 

and make the charge transfer between hydrazine and working electrode much faster. 

Figure 3.8. CVs of 2D WO3 with different thickness in the presence of different hydrazine concentrations 
at a scan rate of 10 mV/s: (a) 0.78 nm, (b) 1.4 nm, (c) 3.6 nm, (d) 6.5 nm. Inset: corresponding linear plot 
of current versus hydrazine concentration. 
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Consequently, the thinner WO3 films showed better electrocatalytic capability. 

Moreover, all 2D WO3 films do not display any characteristic response in the absence of 

hydrazine as well as bare Au electrodes. 

As improvement in the electro-catalytic property towards hydrazine for the ALD-

developed 2D WO3 was evident, in order to understand it further, current responses to 

the different hydrazine concentrations were investigated for the 2D WO3 films with the 

different thickness, as shown in Figure 3.8(a–d). It was observed that with the increase 

of the hydrazine concentration, all ALD-fabricated 2D WO3 films exhibited higher 

oxidation currents. The oxidation peak currents were found to be linearly proportional 

to the rise of hydrazine concentration, which indicated the efficient electro-catalytic 

activity of 2D WO3 films without any fouling effect and reflected the fast electron 

transfer reactions on the surface of WO3 films. Moreover, the highest sensitivity to 

hydrazine detection was obtained for the monolayer WO3 (0.78 nm) compared to the 

other thicker WO3 films. 

 

As the changes in the scanning rates may affect the sensing performance of 2D 

WO3 films, the electrochemical response of monolayer WO3 to 500 µM hydrazine in 0.1 

M PBS solution was investigated when the scanning rates changed from 2.5 to 400 mV/s 

Figure 3.9. CVs of monolayer WO3 in the presence of 500 µM hydrazine at the different scanning rates. 
Inset: (I) plot peak currents versus square root of scanning rates and (II) plot of oxidation peak potentials 
versus the logarithm of scanning rates. 
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and the summarized results are in Figure 3.9. The obtained CV curves confirmed that 

the anodic peak currents increase with the rise of the scanning rates and grow linearly 

with the square root of the scanning rates (Inset I of Figure 3.9), suggesting a diffusion-

controlled electrochemical process. The corresponding linear regression equation can be 

expressed as 𝐼𝑝 = 0.00164𝜈1/2 + 5.4745𝑒−5(where 𝐼𝑝 is in A and ν is in V/s), for which 

R2= 0.9928. In addition, the anodic peak potentials tend to shift to more positive direction 

with increasing scanning rates, and a plot (Inset II of Figure 3.9) of anodic peak potential 

𝐸𝑝  versus logν  exhibits a linear relationship, which indicated that the hydrazine 

oxidation on monolayer WO3 is an irreversible process. The corresponding linear 

regression equation can be expressed as 𝐸𝑃(𝑉) = 0.0671𝑙𝑜𝑔𝜈 + 0.278. For an irreversible 

diffusion-controlled process, 𝐸𝑝  can be represented by the Tafel equation based on 

Equation [39,40]: 

𝐸𝑝 = [2.303𝑅𝑇/2(1 − 𝛼)𝑛𝛼𝐹]𝑙𝑜𝑔𝜈 + 𝐾                                                (3.2) 

where R, T, and F are constant values (R = 8.314 JK-1·mol-1, T = 298 K and F = 9.65 × 104 

C·mol-1), α is the electron transfer coefficient, 𝑛𝛼  is the number of electron transfers 

involved in the rate determining step and K is a constant. The Tafel slope was obtained 

134 mV/decade, which is nearly equal to the theoretical value of 120 mV/decade for the 

one electron reaction ( 𝑛𝛼 = 1 ). Therefore, the rate-determining step of hydrazine 

oxidation involves the one-electron transfer, and α was found to be 0.55. As a result, the 

oxidation of unprotonated forms of hydrazine involves one electron transfer in the first 

rate-determining step, followed by the three electron transfer in a fast second step [27]. 

The corresponding oxidation reactions have been reported as Equations below: 

𝑁2𝐻4 + 𝐻2O → 𝑁2𝐻3 + 𝐻3𝑂+ + 𝑒− (𝑠𝑙𝑜𝑤)                                            (3.3) 

𝑁2𝐻3 + 3𝐻2𝑂 → 𝑁2 + 3𝐻3𝑂+ + 3𝑒− (𝑓𝑎𝑠𝑡)                                            (3.4) 

and the overall reaction of hydrazine oxidation can be expressed as the following 

equation: 

                                               𝑁2𝐻4 → 𝑁2 + 4𝐻+ + 4𝑒−                                                                      (3.5) 
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In order to evaluate the linear response range, sensitivity, and the LOD of 

hydrazine, chronoamperometric measurements at various hydrazine concentrations 

were carried out for 2D WO3 films. Figure 3.10(a) shows typical current time dynamic 

response for 0.78 nm, 1.4 nm, 3.6 nm, and 6.5 nm WO3 films toward hydrazine with 

successive addition of hydrazine approximately every 50 s at an applied potential of 0.14 

V from 0.2 μM to 2100 µM, and the inset image displays the lower concentration range 

from 0.2 μM to 200 µM. From the i-t curves, the response time to different hydrazine 

concentrations for all 2D WO3 films was found. In fact, all of the 2D WO3 showed a fast 

response, and all steady-states were achieved within 2 seconds. As expected, the 

monolayer WO3 films exhibited the largest catalytic current in response to hydrazine 

concentration changes compared to the other thickness WO3 films. 

Table 3.1. Characteristics of 2D WO3 films with different thickness to hydrazine detection 

Material Sensitivity 
(μA·μM−1·cm-2) 

Linear range 
 (μM) 

LOD (μM) Response time 
(s) 

0.78 nm WO3 films   1.24 0.2 - 2100 0.015 <2 
1.4 nm WO3 films   1.18 0.2 - 2100 0.022 <2 
3.6 nm WO3 -films   0.74 0.2 - 2100 0.035 <2 
6.5 nm WO3 films   0.48 0.2 - 2100 0.07 <2 

 

 

 

Figure 3.10. (a) Chronoamperometric current response of 2D WO3 with different thickness to changes 
hydrazine concentration from 0.2 μM to 2100 μM in 0.1 M PBS (pH=7.4); Inset: Chronoamperometric 
current response to a lower concentration range of 0.2-20 Μm. (b) Corresponding linear plot of the 
current versus hydrazine concentration. 
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Table 3.2. Comparison of characteristics of the present work to the typical characteristics of other 
nanostructured materials and heterostructures reported to date towards hydrazine.  

Electrode 
material 

Sensitivity 

(μA·mM−1·cm-2) 

Linear range 

(μM) 

LOD 

(μM) 

Response 
time 

(s) 

Stability Refs 

WO3 (0.78 nm) 

WO3 NPs 

1.24 

0.185 

0.2 -2100 

100–1000 

0.015 

144.7 

< 2 

/ 

30 this work 

[43] / 

Hierarchical ZnO 0.51 0.8-200 0.25 < 3 / [44] 

ZnO nanorods 0.386 0.1-60 59.18 / 56 [45] 

CuO spheres 0.007 5-10000 1.9 / / [46] 

Cu-CuO 0.156 100-1800 / / / [47] 

AuNPs/graphite / 25-1000 3.07 / / [48] 

MnO2/ graphite 1.007 3-1120 0.16 / 7 [49] 

Graphene/GCE / 3-300 1 < 3 2 [50] 

Au/Hap NRs 0.5 0.5-1429 0.017 < 2 10 [42] 

Co-Graphene 0.562 0.25-370 0.1 < 3 60 [51] 

Ag/CB-GCE 0.3 50-800 3.47 / / [52] 

CNT-PdPt 0.6 0.55-1200 0.28 < 5 20 [53] 

 

The corresponding calibration curves for hydrazine detection by 2D WO3 films 

are presented in Figure 3.10(b). All 2D WO3 films demonstrated great linearity in 

chronoamperometric responses to the changes of hydrazine concentration from 0.2 μM 

to 2100 μM, with the correlation coefficient higher than 0.99. According to the equation 

of “sensitivity= slope/surface of the electrode” and “low detection limit= 3Sb/sensitivity” 

[41,42], where Sb is the standard deviation of the blank signal. The 0.78 nm WO3 films 

showed the highest sensitivity of 1.24 μA·μM-1·cm-2 with a low detection limit of 0.015 

μM at the signal to noise ratio of 3. As for 1.4 nm, 3.6 nm and 6.5 nm WO3 films, the 

sensitivity was 1.18 μA·µM-1·cm-2 with a detection limit of 0.022 μM, 0.74 µA µM-1·cm-2 

with a detection limit of 0.035 µM and 0.48 µA·µM-1·cm-2 with a detection limit of 0.07 

µM, respectively. All characteristics of 2D WO3 films with different thickness towards 

hydrazine detection were combined into Table 3.1. From the results obtained, it is 

evident that the monolayer WO3 exhibited the highest sensitivity and lowest LOD 
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among all 2D WO3 samples. Table 3.2 summarizes and provides the comparison of the 

typical characteristics of hydrazine detection, including LOD, sensitivity, long-term 

stability, linear response and the response time for other nanostructured materials and 

heterostructures reported to date. The obtained measured results for the ALD-fabricated 

monolayer WO3 films confirmed that this nanomaterial possesses superior sensing 

capabilities towards lower concentration of hydrazine compared to other nano-materials 

within the wide linear range of the measured concentrations. 

 

To get further insights into the properties of the ALD-developed monolayer WO3 

films, long-terms stability testing was performed. Monolayer WO3 films were tested by 

conducting amperometric experiments every 6 days, varying the hydrazine 

concentration from 1 μM to 600 μM at the room temperature, as shown in Figure 3.11(a). 

The measured results (Figure 3.11(b)) indicate that the standard deviation of the 

sensitivity is calculated to be 0.12, which proved the fabricated monolayer WO3 films 

have excellent long-term stability. 

Chronoamperometry was also utilized for investigation of the anti-interfering 

ability of fabricated monolayer WO3 films when the interfering chemicals were added 

to the aqueous environment containing 10 μM hydrazine. Figure 3.12(a) shows that the 

amperometric response to hydrazine of monolayer WO3 films did not change upon 

introduction of 1000 μM of KCl, NaNO3 and NaNO2, additional 500 mM of glucose and 

Figure 3.11. Long-term stability test of monolayer WO3. (a) The changes in amperometric current 
obtained every six days and (b) the changes in sensitivity during the 30-day test. 
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H2O2 into the 0.1 M PBS solution at the detection potential of 0.14 V. Only small spike in 

current was recorded for glucose. Thus, it was evident that the response of monolayer 

WO3 films to 10 mM hydrazine was not affected by the addition of a 100-fold 

concentration of inorganic substances and 50-fold of biological substances. Furthermore, 

the amperometric hydrazine detection at various concentrations was performed in the 

presence of 50 μM concentration of interfering substances mentioned above. Figure 

3.12(b) clearly illustrates that the monolayer WO3 showed excellent linearity under the 

interfering conditions and exhibited a sensitivity of 1.23, which is much closed to the 

sensitivity of 1.24 under no interference present. All these results indicated that the 

sensor has excellent anti-interference capability toward the detection of hydrazine. 

 

3.5 Conclusions 

Wafer-scale 2D WO3 films with the different thicknesses from monolayer to ∼6.5 nm 

were successfully deposited on Au-SiO2/Si substrates by the ALD technique, and their 

electro-catalytic behaviors toward the hydrazine oxidation were comprehensively 

investigated. The ALD-fabricated 2D WO3 films have demonstrated excellent 

electrocatalytic activity with a notable decrease in over-potential and enhanced 

oxidation current peaks compared to the bare Au electrode. Among those 2D WO3 

samples, the monolayer WO3 films with the thickness of ~0.78 nm showed superior 

Figure 3.12. (a) Interference study for monolayer WO3 in the presence of hydrazine and interfering 
chemicals. (b) Amperometric current response in the presence of 50 μM interfering substances; Inset: 
Corresponding linear plot of current vs. hydrazine concentration. 
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sensing capabilities towards the electrochemical hydrazine detection, including the 

lowest LOD of 0.015 μM reported to date, the wide linear range of 0.2–2100 μM and high 

sensitivity. These improved capabilities of monolayer WO3 could be attributed to the 

larger effective surface area and smaller charge transfer resistance. In addition, studies 

on the long-term stability illustrated that the monolayer WO3 films exhibited sustainable 

measurement and great long-term stability for 30-day testing. Monolayer WO3 also 

showed enhanced anti-interfering performance in the presence of a 100-fold 

concentration of inorganic substances and 50-fold of biological substances. Thus, ALD-

developed 2D WO3 films can be considered as highly promising nano-materials for 

sensitive sustainable and selective hydrazine detection in practical applications. 
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4. Chapter 4 
SURFACE FUNCTIONALIZATION OF WAFER-SCALE 2D WO3  
NANOFILMS BY NM ELECTRODEPOSITION (NM=AG, PT, PD) 
FOR ELECTROCHEMICAL H2O2 REDUCTION IMPROVEMENT 

4.1 Abstract 

Surface functionalization of two-dimensional WO3 nanofilms by noble metal (NM) 

nanoparticles (NM = Ag, Pt, and Pd) was successfully achieved via a combination of the 

atomic layer deposition process and electrochemical deposition method. Deposited NM 

nanoparticles were uniformly in the particle size and homogeneously dispersed on the 

surface of 2D WO3. They represented electrochemically active metal-semiconductor 

hybrid nanocomposites with the larger electroactive area, and consequently, 

substantially enhanced the electrochemical H2O2 detection of the device based on 

functionalized 2D WO3 nanofilms. Functionalization by Ag nanoparticles was found to 

be more efficient compared to the same functionalization by Pt and Pd nanoparticles. 

Particularly, Ag200-WO3 nanofilms exhibited the best electrochemical performance with 

a high sensitivity of 282 μA·mM-1·cm-2, extremely wide linear H2O2 concentrations range 

from 0.2 μM to 33.6 mM, a low detection limit of 0.1 μM, a fast response time of 2 s and 

an excellent selectivity and long-term stability. Surface functionalization by NM 

nanoparticles approach has demonstrated the great potential in the development of a 

hybrid nanostructured electrode for various devices with enhanced electrochemical 

capabilities. 

4.2 Introduction  

In order to further improve the performance of 2D TMOs for the electrochemical sensing 

applications, a lot of strategies have been engaged in many cases [1-4]. Since the surface 

area of electrode materials plays a vital role in the development of electrochemical 

sensor devices, functionalization is verified an efficient way to modify the surface of 2D 

TMOs to improve the sensing properties, which enabled the development of the 

combination of two or more dissimilar nanomaterials to form the hybrid 
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nanocomposites. Carbon nanomaterial-based 2D metal transition oxides composites are 

also gaining attention in sensing applications since carbon nanomaterials can be used as 

highly porous and conductive platforms [5, 6]. When they are functionalized with 2D 

metal transition oxides nanosheets, their electrocatalytic performances are significantly 

improved. Loading of 2D TMOs on the surface of carbonaceous materials, such as 

graphene, carbon nanotube, and porous carbon, has exhibited various potential 

applications due to their high electronic conductivity, excellent flexibility, high charge 

carriers mobility, large surface area, and high chemical stability [7-9]. Conducting 

polymers have obtained tremendous attention in the development of sensing devices 

[10, 11]. The electrically conducting polymers can be used as excellent electrode 

materials for the immobilization of biomolecules and accelerating electron transfer 

kinetics. NMs emerged as a new class of materials, are particularly interesting for 

materials science due to their unique electronic, optical, magnetic, and catalytic 

properties [12-14]. Forming the hybrid nanocomposites, especially metal-semiconductor 

hybrids, is considered as one of the most effective strategies to enhance the intrinsic 

properties of the individual components and generate other novel functions and 

properties [2-4]. 2D semiconductor nanomaterials with the thickness of just a few nm 

are also a novel template for fabrication of the functional composites owing to their high 

specific surface area [15]. 

On the other hand, NM nanoparticles, as 0D functional nanoparticles, exhibit a 

large percentage of active surface atoms and extraordinary electronic structure and 

hence have generally been used to improve the electrochemical capabilities of various 

devices [16-19]. In this regard, it is also established that the size and distribution of NM 

nanoparticles play a vital role in the electrocatalytic ability of the functionalized 

materials [20, 21]. Therefore, the strategies for surface modification and 

functionalization of the 2D semiconductor nanomaterials by NM nanoparticles to form 

the metal-semiconductor hybrids on the 2D surface were investigated in many 

developed ways, including photochemical synthesis, electrochemical deposition and 

electrostatic deposition [22-24]. Among these techniques, the electrochemical deposition 

has clear advantages of controlling the distribution, shape, and the size of nanoparticles 
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and forming nanoparticles directly on the 2D surface owing to its simplicity, low cost, 

and convenient approach [25]. 

Herein, different NM (Ag, Pt, Pd) nanoparticles functionalized wafer-scale 2D 

WO3 (NM-WO3) nanofilms for the sensitive and selective H2O2 determination were 

developed by ALD, followed by electrodeposition of the different amount of NM 

nanoparticles onto the surface of 2D WO3 nanofilms as a function of various 

electrodeposition time. The deposited NM nanoparticles are uniform in the particle size 

and were homogeneously dispersed on the surface of 2D WO3 nanofilms. Subsequent 

electrochemical studies and optimization of the electro-catalytic abilities of NM 

nanoparticles functionalized 2D WO3 nanofilms for the H2O2 reduction have 

demonstrated the superior electrochemical capabilities of functionalized 2D NM-WO3 

towards the significant improvement in H2O2 reduction. This work confirmed that the 

functionalized 2D NM-WO3 nanofilms exhibited a considerable advancement in 

facilitating the excellent potential for the practical, highly sensitive H2O2 detection. 

4.3 Experimental section 

4.3.1 Wafer-scale development of 2D WO3 nanofilms 

The details of ALD fabrication of ultra-thin 2D WO3 nanofilms and the optimal recipe 

parameters for the ultra-thin 2D WO3 nanofilms were established in Chapter 3. Prior to 

2D WO3 deposition, Au/Cr films with the thickness of approximately ~150 nm were 

fabricated on SiO2/Si substrate by the Electron Beam Evaporator method (Nanochrome 

II (Intivac, USA)) to develop conductive electrodes for subsequent investigation of the 

electrochemical performance. The optimal recipe parameters for the ultra-thin 2D WO3 

nanofilms were established in Chapter 3. Variable angle in-situ spectroscopic 

ellipsometry measurements (J.A. Woollam M2000 DI) were conducted at different 

angles over the wavelengths of 250-1690 nm to measure the thickness of the ALD-

deposited 2D WO3 films. It was established that all ALD-fabricated 2D WO3 samples 

have an average thickness of ~6.5 nm over the wafer, as being confirmed by ellipsometry 

measurements (see Figure 4.1). Consequently, unless it stated otherwise, 2D WO3 

samples in this investigation had an average thickness of 6.5 nm. Finally, all 2D WO3 
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samples were subsequently annealed in air at 250 ⁰C for 1 h, with the average 

heating/cooling rate of 0.5 ⁰C per minute. 

 

4.3.2 Fabrication of 2D NM-WO3 nanofilms (NM=Ag, Pt and Pd) 

For Ag-modified WO3 nanofilms, the electrolyte of 0.1 M KNO3 solution containing 1.0 

mM AgNO3 was prepared, and then 2D WO3 samples were immersed into it. The 

electrochemical deposition process was conducted at 0.2 V (vs. Ag/AgCl), and the 

deposition time was varied from 50 to 400 s in order to obtain the different amounts of 

Ag-modified 2D WO3 nanofilms as a function of the different electrodeposition time. 

The same approach was undertaken for the electrochemical deposition of other NMs, 

only changing the electrolyte 0.1 M KNO3 with 1.0 mM AgNO3 into 0.1 M KCl with 1.0 

mM H2PtCl6·6H2O and 0.1 M KCl with 1.0 mM PdCl2, respectively. For comparison, a 

different amount of NM-modified Au (NM-Au) electrodes were also prepared. The 

obtained samples at the different deposition times were appropriately designated as 

Agt-WO3, Agt-Au, Ptt-WO3, Ptt-Au, Pdt-WO3 and Pdt-Au. All NM-functionalized 

samples were dried at 60⁰C overnight in a vacuum. 

 

Figure 4.1. Ellipsometry measurement data for the developed 2D WO3 nanofilms. 
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4.4 Results and discussion 

4.4.1. Characterization of 2D NM200-WO3 nanofilms 

 

The morphology and structure of 2D WO3 and 2D NM200-WO3 nanofilms were studied 

by SEM characterization. As shown in Figure 4.2(a), 2D WO3 nanofilms were relatively 

Figure 4.2. SEM images and EDS analysis of (a, c) 2D WO3, (b, d) Ag200-WO3, (e, f) Pt200-WO3, and (g, h) 
Pd200-WO3 nanofilms, respectively. 
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smooth and uniformly distributed on the surface of the Au/Cr electrode on a large scale. 

The EDS measurement of 2D WO3 nanofilms in Figure 4.2(b) displays signals of tungsten 

and oxygen (signals related to the substrate were omitted), indicating that the developed 

2D films had no impurities. Figure 4.2(c, e, g) depict SEM images of the surface 

morphology of 2D WO3 nanofilms on which the Ag, Pt, and Pd nanoparticles were 

electrodeposited for 200 s. It could be clearly seen that nanoparticles were 

homogeneously distributed on the surface of 2D WO3 nanofilms. Among them, the Ag 

nanoparticles possess denser distribution with the average diameters of about ~150 nm. 

Pt nanoparticles have an average diameter of about ~200 nm, and Pd nanoparticles have 

the largest average diameter of about ~300 nm. However, as the diameter of 

nanoparticles increased their density on the surface of 2D WO3 is decreased. Moreover, 

the formation of Ag, Pt, and Pd nanoparticles on the surface of 2D WO3 nanofilms has 

been confirmed by EDS analysis with the emergency of Ag, Pt, and Pd elemental peaks, 

as shown in Figure 4.2 (d, f, h). In addition, the atomic concentration of the elements of 

interest has been done based on the obtained EDS experimental results. However, 

authors must admit that due to extremely thin thickness of the ALD-deposited WO3 

samples, the EDS measurements used for atomic concentrations were very challenging 

and not very precise. Specifically, Ag200-WO3, Pt200-WO3, and Pd200-WO3 are ~15.7%, 

~10.2%, and ~12.3%, respectively. 

XPS was carried out to investigate the composition of 2D WO3, and NM200-WO3 

nanofilms, and the chemical state of the metal in NM200-WO3 nanofilms could also be 

examined. As shown in Figure 4.3(a), the doublets of W 4f7/2 and W 4f5/2 were centered 

at 35.6 eV and 37.8 eV with the spin-orbit splitting of the doublet of 2.2 eV and the peak 

ratio of 4:3, while a third broad peak of W 5p3/2 was located at 41.7 eV, revealing W 

atoms with an oxidation state of WO3 [26]. The O 1s peak in the XPS spectrum (Figure 

4.3(b)) could be deconvoluted into two peaks. The main binding energy component 

centered at 530.1 eV can be characteristic of the lattice oxygen of WO3 [27], and the 

second binding energy at 531.7 eV is attributed to oxygen vacancies [28]. Figure 4.3(c-h) 

provides the binding energies of the three different NMs in 2D NM200-WO3 nanofilms. 

The clear XPS peaks of NM species confirmed their presence. For 2D Ag200-WO3 and 2D 

Pt200-WO3 nanofilms, two peaks are observed, and no other peaks can be deconvoluted. 
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Peaks located at 374.1 eV and 368.1 eV belong to Ag 3d3/2 and Ag 3d5/2, respectively, and 

Figure 4.3. XPS spectra of 2D WO3 nanofilms (a, b) and the NM200-WO3 nanofilms ((c, d) for Ag200-WO3, 
(e, f) for Pt200-WO3, (g, h) for Pd200-WO3. 
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the splitting distance of the doublet is 6.0 eV, which could be assigned to the metallic Ag 

[29]. Peaks representing Pt 4f5/2 and Pt 4f7/2 are near 74.3 eV and 71.0 eV, which correlate 

to those peaks reported for metallic Pt [30]. For 2D Pd200-WO3 nanofilms, two peaks at 

340.6 eV and 335.4 eV corresponding respectively to 3d3/2 and 3d5/2 of the metallic Pd 

were clearly detected. In addition, two weak peaks at 342.6 eV and 336.7 eV assigned to 

3d3/2 and 3d5/2 of Pd2+ appeared in the XPS spectrum [31]. Since the peak intensities of 

Pd2+ are significantly weaker than those of the metallic Pd, indicating that the metallic 

Pd is the dominant species. These results indicate that the electrochemical reduction has 

decreased the ionic metals into the metallic states. In other words, different NM 

nanoparticles have been successfully deposited onto the surface of 2D WO3 nanofilms. 

4.4.2. Electrochemical characterization of 2D NM200-WO3 nanofilms 

 

CV and EIS were used to characterize the interfacial electrochemical properties 

of all functionalized 2D WO3 electrodes in 0.1 M KCl solutions containing 5 mM 

ferrocene carboxylic acid. As presented in Figure 4.4(a), the reversible redox peaks of 2D 

WO3 nanofilms were relatively broad with the peak potential separation ((∆𝐸𝑝) of about 

216 mV. In contrast, the peak potential separation of 2D NM200-WO3 nanofilms 

decreased significantly with 110 mV, 150 mV, and 170 mV for Ag200-WO3, Pt200-WO3, and 

Figure 4.4. (a) CV curves of 2D WO3 and NM200-modified WO3 nanofilms in 0.1 M KCl containing 5 mM 
K4Fe(CN)6 at a scan rate of 10 mV/s. (b) Nyquist plots of 2D WO3 and NM200-modified WO3 nanofilms 
in 0.1 M KCl containing 5 mM K4Fe(CN)6 from 100 kHz to 0.1 Hz at an AC amplitude of 5 mV under 
open-circuit potential condition. 
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Pd200-WO3 nanofilms, respectively. The redox peak currents also increased, and the 

order is coinciding with the sequence. These results suggested that the structure of NM 

nanoparticles provides a more conductive interlayer for the electrons transfer. In 

addition, the Ag200-WO3 nanofilms possess the lowest ∆𝐸𝑝  value, indicating that 

electrons transfer is more facilitated at the surface of Ag200-WO3 nanofilms. 

Figure 4.4(b) expresses the Nyquist plots of each NM200-WO3 nanofilms along 

with the corresponding Randles equivalent circuit model as the insert. Nyquist plots 

include a semicircle portion at high frequency, corresponding to the electron-transfer 

process and a linear portion at the low frequency, corresponding to the diffusion process. 

Based on the equivalent electric circuit, the charge transfer resistance (Rct) of the 

[Fe(CN)6]3-/4- redox couple at the 2D WO3 nanofilms substrate was 510 Ω. It decreased 

down to 183, 289, and 418 Ω for Ag200-WO3, Pt200-WO3, and Pd200-WO3, respectively, 

indicating improved electron transfer rate between the redox probe and the electrode 

surface. The decrease of the charge transfer resistances at the 2D NM200-WO3 nanofilms 

substrates, especially at Ag200-WO3 nanofilms substrate, illustrated the enhancement of 

charge transfer, which is in good agreement with obtained CVs results. 2D Ag-WO3 

nanofilms exhibited the smallest electron transfer resistance (Rct) in Figure 4.4(b), due to 

uniformly distributed, relatively smaller size and the larger amount of Ag nanoparticles 

on the surface of 2D WO3 nanofilms compared to Pt and Pd nanoparticles 

electrodeposited deposited at the same time. Moreover, these results have also 

confirmed the fact that these NM nanoparticles have been successfully modified on the 

surface of 2D WO3 nanofilms. 

4.4.3 Electrochemical performance of 2D NM200-WO3 nanofilms towards H2O2 

In order to evaluate the electrocatalytic performance of NM-WO3 nanofilms, CV was carried 

out in 0.1 M PBS (pH=7.0) at the scan rate of 10 mV/s, and the active electrocatalytic behavior 

of Ag200-WO3, Pt200-WO3 and Pd200-WO3 nanofilms for the reduction of 5 mM H2O2 is illustrated 

in Figure 4.5. It can be seen from Figure 4. 5(a), there were no peaks in the potential range from 

-0.6 to +0.3 V for the bare Au/Cr electrode and 2D WO3 nanofilms. However, compared with 

the bare Au/Cr electrode, the CV current of 2D WO3 nanofilms slightly increased due to the 

larger surface area of 2D WO3 nanofilms. After the electrodeposition of Ag nanoparticles, 
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current peak values of -180.4 µA at -0.398 V and -499.8 µA at -0.419 V were recorded for the 

Ag200-Au electrode and Ag200-WO3 nanofilms, respectively. Figure 4.5(c, e) shows that similar 

results were also observed for Pt200-WO3 nanofilms and Pd200-WO3 nanofilms within the 

potential range from -0.2 to +0.6 V with the current peak values of -418.2 µA at -0.046 V and -

333.1 µA at 0.006 V, respectively. 

 

Figure 4.5. CV curves of Au/Cr bare electrode, 2D WO3 nanofilms, NM200-Au electrodes, and NM200-
WO3 nanofilms ((a) Ag; (c) Pt; (e) Pd) at the presence of 5 mM H2O2 in 0.1 M PBS (pH=7.0) at a scan rate 
of 10 mV/s. CV curves of NM200-WO3 nanofilms ((b) Ag; (d) Pt; (f) Pd) with the different 
concentration of H2O2 in 0.1 M PBS (pH=7.0) at a scan rate of 10 mV/s. 
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Furthermore, CV was also performed for 2D NM200-WO3 nanofilms in 0.1 M PBS 

without H2O2 in order to obtain the reduction peak current. The reduction peak currents in 5 

mM H2O2 were calculated by subtracting the background current from the peak current 

without H2O2, and the reduction peak current for Ag200-WO3 nanofilms is 458.6 µA, which is 

higher than that of reduction current for both Pt200-WO3 nanofilms (385.7 µA) and Pd200-WO3 

nanofilms (302.3 µA). Therefore, Ag200-WO3 nanofilms exhibited excellent electrocatalytic 

performance and the lowest potential for H2O2 reduction. Furthermore, the electrocatalytic 

activity measurements of 2D NM200-WO3 nanofilms to the different H2O2 concentrations 

ranging from 0.5 mM to 10 mM were conducted, and the experimental results (Figure 4.5(b, d, 

f)) displayed that the reduction peak current increased with the rising of H2O2 concentration, 

proving that the 2D NM200-WO3 nanofilms could effectively determine different H2O2 

concentrations.  

 

Figure 4.6(a) displays the amperometric measurements for NM200-WO3 nanofilms upon 

successive addition of the different H2O2 concentrations from 0.2 µM to 33.6 mM into the 

stirring PBS solution at the peak potential of -0.419, -0.046 and 0.006 V, respectively. The inset 

image represents the amperometric current responses at the lower concentrations range of 0.2 

to 400 µM. NM200-WO3 nanofilms displayed rapid and sensitive response to the addition of 

H2O2, and the response could achieve 95 % of the steady-state value within 2 s. Among all 

functionalized NM200-WO3 nanofilms, the Ag200-WO3 nanofilms exhibited the highest current 

Figure 4.6. (a) Chronoamperometric current response of 2D NM200-WO3 nanofilms (Ag, Pt, and Pd) to 
the different H2O2 concentrations ranging from 0.2 µM to 33.6 mM in 0.1 M PBS (pH=7.0). Inset: 
chronoamperometric current response to the lower concentrations range of 0.2 µM to 400 µM. (b) 
Corresponding linear plot of the current versus H2O2 concentration. 
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response at all H2O2 concentrations, implying that Ag200-WO3 nanofilms possessed the efficient 

electrocatalytic ability towards H2O2. 

 

The corresponding calibration curves for NM200-WO3 nanofilms are shown in Figure 

4.6(b). Ag200-WO3 nanofilms demonstrated a wide linear detection range from 0.2 µM to 33.6 

mM, which is wider than that of Pt200-WO3 nanofilms (0.2 µM to 21.6 mM) and Pd200-WO3 

nanofilms (1 µM to 21.6 mM), respectively. Similar calibration curves for the different 

concentration ranges are illustrated in Figure 4.7. The slops of different parts are very close, 

proving the excellent linearity of NM200-WO3 nanofilms. The linear equation of Ag200-WO3 

nanofilms can be written as 𝐼𝑝𝑎 = −0.191𝑐 − 0.00964 with the correlation coefficient R2=0.9991. 

Thus, the sensitivity for Ag200-WO3 nanofilms is 282 µA·mM-1·cm-2 with a low detection limit 

of 0.1 µM at the signal to noise ratio of 3. Meanwhile, the sensitivity for Pt200-WO3 nanofilms 

and Pd200-WO3 nanofilms was calculated to be 202 µA·mM-1·cm-2 and 142 µA·mM-1·cm-2, 

respectively. It is evident from the results obtained that the Ag200-WO3 nanofilms exhibited the 

highest sensitivity, lowest detection limit, and the largest linear range among the functionalized 

2D WO3 nanofilms. In order to compare the performance of functionalized Ag200-WO3 

nanofilms, our main results were compared with the previously reported Ag-based H2O2 

electrochemical devices in Table 4.1. Form the data presented in Table 4.1, a wide linear 

detection range with a low detection limit of Ag200-WO3 nanofilms for the H2O2 detection could 

be observed compared with other Ag-based H2O2 devices, which makes Ag200-WO3 nanofilms 

great potential candidate for the practical H2O2 determination. Moreover, the functionalized 

Figure 4.7. Corresponding linear plot of the current versus H2O2 concentration of (a) 0.2 µM to 200 µM 
and (b) 250 µM to 33.6 mM. 
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H2O2 device also possesses a relatively high sensitivity because of the hybrid nanocomposite 

structure. Therefore, Ag200-functionalized 2D WO3 nanofilms have clearly demonstrated the 

most distinguishable electrochemical characteristics for the H2O2 determination among the 

other devices listed in Table 4.1. 

Table 4.1. Comparison of Ag200-WO3 nanofilms with various Ag-based electrochemical H2O2 devices.  

Electrode material Potential work 

(V)  

Sensitivity 

(μA·mM−1·cm-2) 

Linear range 

(μM) 

LOD 

(μM) 

Refs 

Ag200-WO3 nanofilms -0.4 (vs Ag/AgCl) 282 0.2 -33600 0.1 this work 

AgNPs-CNT-rGO -0.3 (vs Ag/AgCl) / 10-10000 1 [32] 

AgNPs/N-G -0.3 (vs Ag/AgCl) 44.6 100-126400 1.2 [33] 

AgNPs-MWCNT-
rGO/GCE 

-0.35 (vs Ag/AgCl) 53.5 100-100000 0.9 [34] 

Ag/FeOOH/Au -0.2 (vs SCE) 8.07 30-15000 22.8 [35] 

Ag–Fe2O3–RGO -0.2 (vs. SCE) 50.8 1.6-57000 0.5 [36] 

TiO2NTs/r-GO/AgNPs -0.6 (vs SCE) 1151.98 50-15500 2.2 [37] 

Nafion/Gr-CCS-
AgNPs/GCE 

-0.2 (vs SCE) 14.9 

17.6 

20-5020 

5020-34100 

2.49 

9.51 

[38] 

Gel/AgNPs-FHLC -0.4 (vs SCE) 16.7 200-12300 0.6 [39] 

GC/rGO-Nf@Ag6 -0.65 (vs SCE) 450.8 1-10 0.535 [40] 

Ag@SiO2@Ag/GCE -0.2 (vs SCE) 56.07 5-24000 1.7 [41] 

AgNPs-Zn-MOF -0.8 (vs Ag/AgCl) / 1-5000 0.067 [42] 

Ag/boehmite 
nanotubes/rGO/GCE 

-0.2 (vs SCE) 80.14 0.5-10000 0.17 [43] 

 

4.4.4. Effect of the amount of Ag nanoparticles on H2O2 detection 

The diameter, amount as well as the distribution of the NM nanoparticles on the surface 

of 2D WO3 nanofilms have a significant influence on the electrochemical capabilities of the 

device based on these functionalized nanomaterials. Therefore, it is necessary to investigate 

what the role the different amounts of Ag nanoparticles play on the electrochemical 

performance and to find the optimal electrodeposition conditions for Ag nanoparticles. Figure 

4.8(a) shows the CVs to 5 mM H2O2 for all Agt-WO3 nanofilms functionalized with the different 
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electrodeposition time (50, 100, 200, 300, and 400 s, respectively). The current value increased 

with the rising of the electrodeposition time and reached its maximum at 200 s. Then as the 

electrodeposition time continues growing, the response current value is gradually decreased. 

Similar results were obtained for the amperometric testing with the successive addition of the 

different H2O2 concentrations (Figure 4.8(b)). It can be explained that with the increase of the 

electrodeposition time, more Ag nanoparticles will be loaded on the surface of 2D WO3 

nanofilms, whereas the Ag nanoparticles’ electroactive area of the electrode is increased, and 

Figure 4.8. (a) CV curves of Agt-WO3 nanofilms (t = 0, 50, 100, 200, 300 and 400s) at the presence of 5 mM 
H2O2 in 0.1 M PBS (pH=7.0) at a scan rate of 10 mV/s. (b) Amperometric responses of Agt-WO3 nanofilms 
(t = 0, 50, 100, 200, 300 and 400 s) with different electrodeposition for successive addition of H2O2 (1-1000 
μM) in 0.1 M PBS (pH=7.0) at the potential of 0.4 V. 

 

Figure 4.9. SEM images of Agt-WO3 nanofilms at different electrodeposition time; (a) 0 s, (b) 50 s, (c) 100 
s, (d) 200 s, (e) 300 s, (f) 400 s. 
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consequently, the electrochemical behavior is also enhanced. However, a longer 

electrodeposition time will coherently lead to the slight increase of the size of Ag nanoparticles 

and the aggregation of Ag nanoparticles on the 2D WO3 surface, especially at 400 s (Figure 4.9), 

which can result in the counteractive effect on the electrocatalytic performance. Therefore, the 

best electrochemical performance was achieved on Ag200-WO3 nanofilms. 

4.4.5. Scan rate dependence investigation 

 

To assess the kinetic of the H2O2 determination by functionalized Ag200-WO3 nanofilms, 

CV responses of Ag200-WO3 nanofilms in 5 mM H2O2 solution were measured at the different 

scan rates from 5 mV/s to 100 mV/s, as demonstrated in Figure 4.10(a). It can be observed that 

the current reduction values increased with the increasing scan rate, and a linear relationship 

between the cathodic peak current values and square of the scan rates was obtained in the inset 

of Figure 4.10(a), demonstrating the diffusion-controlled electrochemical process. It should also 

be noted that the inset of Figure 4.10(a) is adequately plotted by subtracting background at the 

different scan rates. In addition, as peak current was increased with the increasing of scan rate, 

the peak potential value shifted towards the more negative direction with the corresponding 

linear regression equation of𝐸𝑝 = −0.09612𝑙𝑜𝑔𝜈 − 0.6116, as shown in Figure 4.10(b), proving 

the irreversible electrochemical process. Ep can be expressed by the Tafel equation of 𝐸𝑝 =

[2.303𝑅𝑇 2(1 − 𝛼)⁄ 𝑛𝛼𝐹]𝑙𝑜𝑔𝜈 + 𝐾  for an irreversible diffusion-controlled electrochemical 

Figure 4.10. (a) CV curves of Ag200-WO3 nanofilms at the presence of 5 mM H2O2 in 0.1 M PBS (pH=7.0) 
at the different scan rates. Inset: Plot peak currents versus square of the scan rates. (b) The plot of 
oxidation peak potentials vs. logarithm of the scan rates. 
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process [44], the transfer coefficient of α=0.69 was obtained, demonstrating one-electron 

transfer in the rate-determining step. 

4.4.6. The selectivity and long-time stability study 

 

The anti-interference ability is an essential and essential parameter for evaluation of the 

performance of functionalized Ag200-WO3 nanofilms towards practical applications. Hence, the 

influence of some common chemicals such as NaNO3, KCl, glucose, ascorbic acid, and uric acid 

was investigated on the H2O2 determination. The amperometric response of Ag200-WO3 

nanofilms to the successive addition of such chemicals was carried out at -0.4 V in 0.1 M PBS 

solution, and the results are summarized in Figure 4.11(a). There was no significant fluctuation 

observed, indicating that functionalized Ag200-WO3 nanofilms have the high selectivity towards 

unipolar H2O2 detection. The high selectivity could be attributed to the relatively low potential 

applied for the H2O2 detection that minimized the response of interfering chemicals. In addition, 

long-term stability is also a vital requirement for the performance evaluation of electrochemical 

devices. Thus, the amperometric current responses of functionalized Ag200-WO3 nanofilms to 

the different H2O2 concentrations ranged from 10 µM to 6.6 mM were successfully detected 

every 6 days during the test period of 30 days and the obtained results are presented in Figure 

4.11(b). It is evident from the presented results that the relative standard deviation of the 

sensitivity was only ~7.8 % indicating the excellent long-term stability of functionalized Ag200-

WO3 nanofilms. 

Figure 4.11. (a) Interference study for Ag200-WO3 nanofilms at the presence of 100 µM H2O2 and 1 mM 
interfering chemicals (NaNO3, KCl, glucose, ascorbic acid, and uric acid) in 0.1 M PBS (pH=7.0). (b) The 
chronoamperometric current of Ag200-WO3 nanofilms at the different H2O2 concentrations and their 
corresponding sensitivity (inset) obtained every six days of the test period. 
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4.5 Conclusions 

NM-functionalized 2D WO3 nanofilms have been developed by a combination of ALD and 

electrochemical deposition methods with the subsequent investigation of their electrochemical 

capabilities towards the electrochemical H2O2 reduction. It was found that NM nanoparticles 

were uniformly deposited on the surface of 2D WO3 nanofilms, which represented the 

electrochemically active metal-semiconductor hybrid nanocomposites. They provided larger 

electroactive area, and consequently, substantially improved the electrochemical performance 

of the device based on functionalized 2D WO3 nanofilms for the sensitive and selective H2O2 

detection within the wide measuring concentrations range. It was also found that 

functionalization by Ag nanoparticles is much more effective compared to the same 

functionalization by Pt and Pd nanoparticles. Consequently, the optimization of the electro-

deposition time for the Ag-functionalized 2D WO3 nanofilms revealed that the deposition time 

of 200 s resulted in the best electrochemical performance of 2D WO3 electrode. It should be 

stressed that among those NMt-WO3 nanofilms, functionalized Ag200-WO3 nanofilms exhibited 

the superior sensing capabilities towards the H2O2 detection with high sensitivity of 282 

µA·mM-1·cm-2, extremely wide linear range from 0.2 µM to 33.6 mM and a lower detection limit 

of 0.1 µM. The work provides an alternative route for improvement of the ALD-developed 2D 

nanofilms. Surface functionalization of the 2D semiconductor oxides by NM nanoparticles can 

be applied as a very effective way of enhancement of the electro-catalytic performance for 

various electrochemical devices. 
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5. Chapter 5 
SUB-10 NM Ga2O3-WO3 HETEROSTRUCTURES DEVELOPED BY 
ALD FOR SENSITIVE AND SELECTIVE C2H5OH DETECTION 
ON PPM LEVEL 

5.1 Abstract 

Wafer-scale ultra-thin WO3, Ga2O3 nanofilms, and Ga2O3-WO3 heterostructures with the 

thickness of approximately ~8.0 nm were fabricated on the SiO2/Si substrates by atomic layer 

deposition (ALD) technique for their subsequent usage as sensing materials for the ethanol 

detection. Structure and morphology of the developed ultra-thin samples were characterized 

by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman 

spectroscopy, etc. Sensing properties of the developed ultra-thin nanostructures were 

investigated at the different temperatures and ethanol concentrations. The results showed that 

the Ga2O3-WO3 heterostructures based gas sensor exhibited about 4 and a 10-fold improvement 

in response to ethanol compared to that of WO3 and Ga2O3 nanofilms at 275°C. Furthermore, 

ethanol sensors based on Ga2O3-WO3 heterostructures exhibited shorter response/recover time 

and excellent selectivity towards ethanol. The improvement of sensing capabilities of Ga2O3-

WO3 heterostructures provides a superb material fabrication method in the development of a 

high-performance gas sensor. 

5.2 Introduction 

2D materials with the atomic scale thickness magnify the surface to volume ratio, which 

provides excellent reactive adsorption sites for gaseous molecules, making them become 

outstanding candidates for gas sensors [1, 2]. Among these 2D materials, 2D TMOs have gained 

significant interest in the development of a different range of highly sensitive, selective, reliable, 

and low-cost sensors [3, 4]. Layer-structured TMOs, including TiO2, MoO3, and WO3, is the most 

studied for the application of chemical gas sensors, due to their stability at elevated temperature 

in the air [4]. For example, the gas response of two-dimensional MoO3 nanosheet to 100 ppm 

ethanol increases from 7 to 33 at the operating temperature of 300°C, compared with bulk MoO3 

[5]. It was found that ultra-thin WO3 nanosheets exhibit an extraordinary response factor of ~30 
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to ultralow 40 ppb NO2 at a relatively low operating temperature of 150°C [6]. Moreover, the 

previous investigation illustrated that the thickness of ultra-thin layered transition metal oxides 

plays an important role in determining the gas sensing performance, particularly when that 

thickness is on the order of the Debye length [6-8]. Besides, it was reported that ultra-thin layer-

structured transition metal oxides are the best candidates in chemical sensors for volatile 

organic compounds (VOC) [9, 10], and the utilization of ultra-thin WO3 for the fabrication of 

VOC sensor has not yet been reported. 

With the development of technology and industrialization, the application of VOC 

becomes more and more widespread, and they bring great convenience to our daily life. 

However, because of their high volatility and strong excitant, human health has been 

threatened by them gravely like dizziness, headaches, nausea, choking sensation in the chest, 

muzziness, and even death [11]. Among them, ethanol is one of the most extensively used in 

biochemical, health & safety, chemical, food, and transportation industries. Moreover, one of 

the main reasons for car accidents in the world is due to ethanol consumption. Thus, the 

demand for miniature, rapid, and accurate C2H5OH detection at ppm level is very high, indeed 

[12]. The commercial semiconductor based breath ethanol detector generally uses tin oxide 

materials. However, according to the gas sensing mechanism, pristine metal oxide 

semiconductors usually exhibits a comparable response to those gases with similar surface 

chemophysical properties [8]. Therefore, improving the selectivity for the practical application 

becomes essential.  

Up to now, many efforts have been made to improve the selectivity of metal oxide 

semiconductors further to meet the practical application in the complex and harsh environment. 

It has been reported that defects play an important role in metal oxides based gas sensors [13], 

and element doping is an effective means to increase defect concentration since the doped ions 

not only cause lattice distortion but also generate different types of defects to ensure charge 

conservation [14]. Hence element doping is expected to improve the gas sensing performances 

of metal oxides significantly. Functionalization 2D transition metal oxides with noble metals 

are the other way to improve the gas sensing properties. Since noble metals, as the catalysts, 

can affect the contact region between 2D metal transition oxides and noble metals in two ways 

and hence affect the resistance of 2D metal transition oxides. One is Fermi energy control 



Chapter 5. SUB-10 NM GA2O3-WO3 HETEROSTRUCTURES DEVELOPED BY ALD… 

120 
 

(electronic sensitization) and the other is the spillover mechanism (chemical sensitization) [15, 

16]. However, the development of heterojunctions has been proven the most simple and 

cheapest in achieving enhanced sensing performance in the gas sensor by organizing a 

heterojunction at the interface between the two materials with the creation of either an n/p-

type nanostructure or an n/n-(p/p-) type structure [17-19]. Among the metal oxides, 

monoclinic Ga2O3 (β-Ga2O3), as an energy bandgap of approximately 4.8 eV (direct) at room 

temperature, is one of the promising wide bandgap semiconductor materials for next-

generation high-power electronics, an excellent candidate for solar‐blind photodetection, a 

sensitive materials for detection of VOC, such as acetone, isopropyl alcohol, ethanol and ethyl 

acetate [20-22].  Its performance can even be improved by means of Schotttky juctions, p-n 

junctions and heterojuctions. Many efforts have been made to find out the best suitable 

technologies of Ga2O3 deposition at the nanoscale. As more tightly contacted interfaces can 

facilitate the improvement of the sensing performance, two-dimensional heteronanostructures 

in the planar form can satisfy this requirement better compared to zero and one-dimensional 

heteronanostructures [8]. ALD technology is distinguished for developing the planar structure 

of heteronanostructures, among other approaches such as sol-gel, CVD, and RF sputtering, due 

to the fabrication of large-scale conformal, dense nanofilms with precise thickness control [23-

25]. To the best of our knowledge, such a planar form of Ga2O3-WO3 heteronanostructures has 

not yet been synthesized for high-performance gas sensors.  

In this work, Ga2O3-WO3 heterostructures have been fabricated by ALD on the wafer-

scale for the first time with the thickness of less than 10 nm using (tBuN)2(Me2N)2W) and 

Ga(TMHD)3 as WO3 and Ga2O3 precursors, respectively. The thickness of WO3 and Ga2O3 is 6.5 

nm and 1.5 nm, respectively, which are less than Debye length for WO3 and Ga2O3, so the 

electrical conductivity of Ga2O3-WO3 heterostructures should be modulated dramatically by 

oxygen vacancies, or ions sorbed oxygen species [7]. Their sensing performance towards 

sensitive and selective ethanol detection at ppm level was subsequently investigated. The 

developed sub-10 nm Ga2O3-WO3 heteronanostructures utilized as sensing electrodes in 

miniature ethanol chemical sensors have demonstrated substantial enhancement of their main 

sensing characteristics compared to WO3 and Ga2O3 counterparts, which provides a 

tremendous potential method for material fabrication in the development of high-performance 

gas sensor.  



Chapter 5. SUB-10 NM GA2O3-WO3 HETEROSTRUCTURES DEVELOPED BY ALD… 

121 
 

5.3 Experimental  

5.3.1 Fabrication of Ga2O3-WO3 heterostructures 

 

The four-inch Si/SiO2 wafers (12 Ω/cm) were utilized as substrates, where the thickness of the 

native oxide was ~1.78-1.9 nm. Ga2O3-WO3 heterostructures were fabricated on these SiO2/ Si 

substrates via a two-step ALD process, and all solvents and reagents involved in their 

development were purchased from the chemical suppliers and represented analytical grade. 

Prior to the deposition, in order to reduce the influence of Si wafer on electrical measurements, 

additional ~100 nm thick SiO2 insulating layer was applied on the Si wafers CVD (Oxford 

Instruments PLASMALAB 100). After that, approximately 150 nm-thick nanostructured Au/Cr 

films were deposited on SiO2/Si substrate using a custom made optical photomask by the 

Figure 5.1. (a) the graphical scheme of chemical formula of WN4C12H30 precursor. (b) The graphical 
scheme of chemical formula of C3H57GaO6 precursors. (c) The graph of thickness versus ALD cycle 
number of WO3 with the average growth rate of 0.7 Å/cycle (Inset), (d) and graph of thickness versus 
ALD cycle of Ga2O3 films with the average growth rate of 0.16 Å/cycle (Inset). 
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Electron Beam Evaporator method (Nanochrome II (Intivac, USA)) to develop a conductive 

testing electrode for the subsequent gas sensing performance investigation. For the WO3 

nanofilms deposition (tBuN)2(Me2N)2W (Strem Chemicals Inc., USA) and H2O vapor were 

employed as precursors, and the graphical interpretation of tungsten precursor was presented 

in Figure 5.1(a). The details of ALD fabrication of ultra-thin 2D WO3 nanofilms and the 

optimal recipe parameters for the ultra-thin 2D WO3 nanofilms were established in 

Chapter 3. After each deposition cycle, the variable angle in-situ spectroscopic ellipsometry 

measurements (J.A. Woollam M2000 DI) was carried out at the different angles over the 

wavelengths of 250-1690 nm to monitor the uniformity and to measure the thickness of the 

deposited WO3 films. Some of the samples were used for the fabrication of Ga2O3-WO3 

heterostructures, and some WO3 samples were used for comparison in the chemical gas sensors.  

The second step was to fabricate Ga2O3 films on the top of WO3 nanofilms using tris 

(2,2,6,6-tetramethyl-3,5-heptanedionato) gallium (III), [Ga(TMHD)3] (Strem Chemicals, 99%) 

and O2 plasma as the metal and oxygen precursors, respectively. Figure 5.1(b) shows the 

graphical interpretation of Ga(TMHD)3 precursor used for Ga2O3 ALD deposition. The 

depositions were carried out in a home-built pump type ALD reactor [26] with an operating 

base pressure of below 5 x 10-6 mbar. The details of the process can be found elsewhere [27]. A 

pulse time of 5 s was used for both the Ga(TMHD)3 and O2 plasma, at a pressure of 3 x 10-3 

mbar. At the same time, some Ga2O3 samples were also developed for the subsequent study. 

Since the thickness measurements were found difficult on the heterostructure, the Ga2O3 film 

growth was followed, using in-situ spectroscopic ellipsometry measurement, on a native 

SiO2/Si substrate that was placed on the heater block, together with the sample. After the 

deposition, the Ga2O3 film thickness on the heterostructure was confirmed by comparing the 

amount of material deposited on it, and the reference SiO2/Si using X-ray fluorescence (XRF) 

measurements [28]. The developed Ga2O3 nanofilms had an average thickness of ~ 1.5 nm after 

90-deposited cycles, which resulted in the total thickness of developed Ga2O3-WO3 

heterostructures to be about ~8.0 nm. All of the fabricated samples were subsequently annealed 

in the air for 1 h at 250°C with the heating rate of 0.5°C/min.  

In order to determine the growth per cycle of WO3 and Ga2O3 nanofilms, different 

thickness of samples were deposited under the same deposition conditions, and the relations 
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between the thicknesses of ALD-developed WO3 and Ga2O3 and the number of ALD cycles 

were depicted in Figure 5.1(c, d). The growth curves were linear without any nucleation delay 

for both of the samples, implying that the self-limited property of the ALD growth process and 

the film thickness could be developed precisely by varying the number of ALD cycles. The 

growth per cycle (GPC) yielded from the slopes of growth curves shown in the inset of Figure 

5.1(c, d) were calculated to be around 0.7 Å/cycle and 0.16 Å/cycle for deposition of WO3 and 

Ga2O3 nanofilms, respectively. The lower growth per cycle of Ga2O3 nanofilms makes its 

applications on the doping and modification possible [27].  

5.3.2 Apparatus and Instruments 

The morphology and surface elemental analysis of the samples were characterized by field 

emission scanning electron microscopy (FE-SEM, JEOL 7800F) along with energy dispersive 

spectroscopy (EDS, JEOL). X-ray photoelectron spectroscope (XPS, Rigakudenki model, 7000) 

with monochromatic Mg-Kα radiation at 300 W was used to investigate the surface composition 

and chemical state of ALD-developed heterostructures. The reported binding energy values 

were corrected for charging effects by assigning binding energy of 284.6 eV to the C1s signal. 

Raman spectroscopy measurements were conducted on the laser Raman spectrometer (Lab 

Ram ARAMIS, Horiba Jobin-Yvon, Edison, NJ, USA) with λ=532.2 nm argon-ion laser to 

identify the crystallinity of heterostructures. Hall Effect measurement systems (HMS3000) was 

used at room temperature to measure the Hall coefficient of Ga2O3 thin films by using 0.55T 

Magnet. Finally, the gas sensing properties of the sensors based on ALD-developed ultra-thin 

samples were measured by CGS-ITP (Chemical gas sensor-1 temperature pressure) intelligent 

gas sensing analysis system (Beijing Elite Tech Co., Ltd, China) under the relative humidity 

Figure 5.2. The intelligent gas sensing analysis system of gas sensor. 
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(HR) of 25%, shown in Figure 5.2. The gas response was defined as S=Ra/Rg, where Ra and Rg 

are the resistances of the sensor in air and target gas, respectively. 

5.4 Results and discussion 

5.4.1 Characterization of Ga2O3-WO3 heterostructures 

 

Figure 5.3 depicts SEM and EDS analysis of the surface morphology of ALD-developed WO3 

with a thickness of 6.5 nm and Ga2O3 with a thickness of ~1.5 nm deposited on the top of WO3 

nanofilms. As WO3 films were not annealed prior to Ga2O3 deposition, the SEM picture of WO3 

films in Figure 5.3(a) presents that flat nanoparticles with the average measured diameter of 

~50 nm were uniformly and smoothly distributed on the surface of the substrate and represent 

not fully crystalline structure [29]. On the contrary, the SEM picture of Ga2O3 deposited on the 

top of WO3 films annealed at 250°C shows a slightly rougher surface compared to that of WO3 

films. It is visible that Ga2O3-WO3 heterostructures were aggregated with small particles with 

an average size of ~40 nm. Meanwhile, the chemical compositions of WO3 and Ga2O3-WO3 

heterostructures were determined by EDS, and the measured result of WO3 shows signals for 

tungsten and oxygen (Signals related to the substrate were omitted). In addition, the EDS result 

Figure 5.3. SEM images of the ALD-deposited (a) WO3 and (b) Ga2O3–WO3 heterostructures with their 
EDS analysis (c) and (d). 
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of Ga2O3-WO3 heterostructures portrays the signals of tungsten, oxygen, and gallium. The 

existence of a gallium signal along with tungsten and oxygen proved that Ga2O3 nanofilms 

might successfully be deposited on the surface of WO3 nanofilms. It has to be stressed that 

unfortunately, due to extreme thin nature of ALD deposited Ga2O3-WO3 heterostructures, 

investigation of their crystallinity by the X-ray diffraction technique was not possible. 

 

In order to gain insight into the structure of 2D Ga2O3-WO3 heterostructures, the 

functional groups in the sample were analyzed by Raman spectrum in the range from 100 to 

900 cm-1, as displayed in Figure 5.4. Eight leading vibrational bands can be identified from the 

spectrum. As has been reported in previous literature, three Raman bands appeared at 253, 302 

and 803 cm-1, which are characteristic features of monoclinic WO3 [30]. The two peaks at 253 

and 302 cm-1 are assigned to W-O-W bending vibration, while the peak of 803 cm-1 is ascribed 

to stretching modes of the bridging oxygen of WO6 octahedra. Moreover, four Raman modes 

at 146, 371, 437, 606, and 766 cm-1 are also visible in the spectrum. The low-frequency mode 146 

cm-1 is assigned to the translation and libration of tetrahedraoctahedra chain. The mild 

frequency modes of 371 and 437 cm-1 are associated with the deformation of Ga2O6 octahedra. 

Figure 5.4. Raman spectra of Ga2O3-WO3 heterostructures. 
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The high-frequency modes of 606 and 766 cm-1 are assigned to bending and stretching of GaO4 

tetrahedra. The experimental Raman modes correspond well to β-Ga2O3 [31]. In addition, it was 

observed that the Raman modes of Ga2O3-WO3 heterostructures are 0.4-40 cm-1 red-shift 

compared to the bulk WO3 and Ga2O3 powder Raman modes reported in the literature, which 

might be due to the phonon confinement resulted from the decrease in the particle dimension 

to the nanometer scale [32, 19]. 

 

Figure 5.5. XPS spectra of Ga2O3-WO3 heterostructures, (a) full survey scan spectrum, (b) W 4f region, 
(c) Ga 2p region, (d) Ga 3d region and (e) O 1s region. 
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Chemical composition and bonding states of the developed Ga2O3-WO3 heterostructures 

were studied by XPS. The charge shift spectrum was calibrated using the fortuitous C 1s peak 

at 284.8 eV. Figure 5.5(a) shows the survey scan of Ga2O3-WO3 heterostructures collected for 

the films deposited on the SiO2/Si substrates. Three main elements of W, O, and Ga can be 

clearly observed. Besides, the peaks of Au 4d and C 1s were also presented in the survey, which 

originated from the Au electrode and the reference to calibrate the binding energies of the peaks, 

respectively. Figure 5.5(b) displayed the high-resolution scan of W 4f. The doublets of W 4f7/2 

and W 4f5/2 were centered at 37.8 eV and 35.6 eV with the spin-orbit splitting of the doublet of 

2.2 and the peak ratio of 4:3, while a third broad peak of W 5p3/2 was located at 41.7 eV, 

revealing W atoms with an oxidation state of WO3 [33]. It should be noted that the obtained 

XPS results in this investigation are slightly different from our previous report on the 

development of WO3 monolayer by ALD (36.2 and 35.2 eV for W 4f7/2 and W 4f5/2, respectively) 

[25]. This difference is reasonable considering the amount of W in the samples.  

Figure 5.5(c) depicts two quasi-symmetrical Ga 2p1/2, and Ga 2p3/2 peaks for Ga-O 

bonding at 1145.2 eV and 1118.4 eV with a separation distance of 26.8 eV, which is consistent 

with the binding energy of Ga 2p for doped β-Ga2O3 [34, 35], and β-Ga2O3 has also been verified 

by Raman measurements presented in Figure 5.4. The energy peak for Ga 3d is centered at 21.1 

eV (Figure 5.5(d)), which is caused by the presence of Ga-O bond reported for p-type β-Ga2O3 

films [36], but not observed for the n-type β-Ga2O3 structures [37]. The Ga 3d peak is 

asymmetrical with the shoulder, which was ascribed to the hybridization of Ga 3d and O 2s 

states near the valence band [38]. 

The O 1s peak in the measured XPS spectrum (Figure 5.5(e)) could be deconvoluted into 

three significant peaks. The main binding energy component centered at 530.1 eV can be 

characteristic of the lattice oxygen in the of Ga2O3-WO3 ultra-thin films, the second binding 

energy at 531.7 eV is attributed to oxygen vacancies or OH- adsorbed species on the surface [37]. 

The peak at 532.5 eV might due to the chemically absorbed oxygen. More importantly, this 

shoulder (532.5 eV) has not been observed in the reported O 1s region for the n-type β-Ga2O3 

[37, 39, 40], indirectly confirming the development of p-type β-Ga2O3 in the heterostructure. 

Very relevant to this investigation was our previous study on ALD fabrication of WO3 

monolayer, proving the influence of SiO2 substrate, where the bottom oxygen of WO3 is shared 
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with SiO2 making WO3 slightly non-stoichiometric [25]. Therefore, this non-stoichiometry plays 

a critical role in the development of Ga2O3-WO3 heterostructure, while the thickness of the ALD 

deposited Ga2O3 on the top of WO3 is only ~1.5 nm. 

 

For further investigation of the conductivity type of β-Ga2O3, Ga2O3 samples with a 

thickness of 4.8 nm were subjected to the Hall coefficient measurements at a temperature of 

20°C, and the results are presented in Figure 5.6. The applied magnetic field was 0.55 T. The 

positive value of the Hall coefficient decreased considerably when the applied current 

increased from 1 nA to 100 nA. However, its value changed slightly over a long range of applied 

current from 100 nA to 900 nA. These results further confirm the stable p-type performance of 

the ALD-developed Ga2O3 nanofilms.  

5.4.2 Gas sensing properties 

As the working temperature governs the mobility of the electrons and the electrical 

conductivity of semiconductor metal oxides, the gas sensing properties of semiconductor metal 

oxides are greatly influenced by their working temperature. In order to find the optimal 

working temperature, the gas responses of WO3, Ga2O3, and Ga2O3-WO3 heterostructures to 100 

ppm ethanol were measured at the different temperatures from 175 to 325C and the obtained 

results are summarized in Figure 5.7. The responses of samples increase with the rising of the 

Figure 5.6. The variation of average Hall coefficient vs applied current for 4.8 nm thick Ga2O3 nanofilms. 
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operating temperature. WO3 nanofilms and Ga2O3-WO3 heterostructures reach the maximum 

at 275C, while for Ga2O3 nanofilms, the highest response appeared at 225C. As the operating 

temperature continues to increase, the responses gradually decrease. It is also well known that 

the response of the gas sensor relies on a delicate balance between the speed of chemical 

reaction and the speed of gas diffusion on the surface of materials [41-43]. The increase of 

working temperature favors target gas molecules chemisorption, and the reaction rate 

occurring on the materials’ surface leads to an enhanced gas response. However, the diffusion 

speed of target gas molecules is accelerated at a high temperature. Thus, the two processes will 

tend to balance at a specific temperature, at which temperature the sensitivity of the gas sensor 

attains the maximum. The gas response of Ga2O3-WO3 heterostructures to 100 ppm ethanol at 

the optimal temperature of 275°C is about 14, which is about 4 times and 10 times higher than 

that of WO3 and Ga2O3 nanofilms, indicating that functionalized Ga2O3 on the surface of WO3 

nanofilms can enhance the sensitivity significantly.  

The response/recovery times are significant parameters to assess the suitability of 

sensing material for utilization in the chemical sensors, and the response/recovery time of the 

sensor is defined as the time taken by the sensor to achieve 90 % of the total resistance change. 

Figure 5.8 (a-c) depict typical response/recovery resistance transients of WO3, Ga2O3, and 

Figure 5.7. Responses of WO3, Ga2O3, and Ga2O3-WO3 heterostructures to 100 ppm ethanol under the 
different working temperatures. 
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Ga2O3-WO3 heterostructures, respectively towards 100 ppm ethanol under 275°C. For the 

sensor based on Ga2O3 nanofilms, the resistances increase in the presence of ethanol, typical 

behavior for p-type semiconductors. While the resistances significantly decrease after exposure 

to ethanol for WO3 and Ga2O3-WO3 heterostructures based sensors, exhibiting the n-type 

behavior for both sensors. Furthermore the large resistance increase of Ga2O3-WO3 

heterostructures (6.5 MΩ) than WO3 nanofilms (1.7 MΩ) demonstrated that p-n heterojunction 

was successfully incorporated. When the ethanol is removed, the sensor’s resistance increased 

and fully recovered to their initial values. The measured response/recovery times of Ga2O3-

WO3 heterostructures are 5/3 s, which is shorter than that of WO3 (9/6 s) and Ga2O3 (5/9 s) 

nanofilms. 

 

Figure 5.8. Response and recovery curves of (a) WO3, (b) Ga2O3, and (c) Ga2O3-WO3 heterostructures to 

100 ppm ethanol at 275C. 

Figure 5.9. (a) Dynamic responses of WO3, Ga2O3 nanofilms, and Ga2O3-WO3 heterostructures to the 
different ethanol concentration and (b) corresponding logarithm plots of the gas responses versus 

ethanol concentration at 275C. 
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The dynamic response and recovery curves of sensors based on WO3, Ga2O3 nanofilms 

and Ga2O3-WO3 heterostructures towards the different concentrations of ethanol at 275C were 

presented in Figure 5.9(a). It is obvious that Ga2O3 nanofilms exhibit no response when the 

concentration of ethanol is lower than 50 ppm, while for WO3 and Ga2O3-WO3 heterostructures, 

the corresponding responses of the sensors increased with increasing of ethanol concentration 

from 1 to 600 ppm and both sensors have demonstrated good reversibility and reproducibility 

to ethanol. In addition, Ga2O3-WO3 heterostructures exhibited quite enhanced responses under 

the same concentration compared to WO3 and Ga2O3 nanofilms. Corresponding plots of gas 

response versus ethanol concentration are shown as an inset of Figure 5.9(a). The response of 

Ga2O3-WO3 heterostructures to 1 ppm ethanol is found to reach a value of 1.75, highlighting 

the excellent sensing performance to the low concentration. In fact, the response of the 

semiconducting oxide gas sensor can usually be empirically represented as S=A[C]N+1 [40], 

where A is constant and [C] is the concentration of the target gas. N usually as a value 0.5 and 

1.0, depending on the charge of the surface species and the stoichiometry reaction on the surface. 

According to the previous report, when b is 0.5, the absorbed surface oxygen ion is O2- and 

when b is 1, the adsorbed surface oxygen is O- [44]. Then the equation of S=A[C]N+1 also can 

be rewritten as log(S-1)=Nlog[C]+logA. From Figure 5.9(b), we can find that the responses of 

WO3 nanofilms and Ga2O3-WO3 heterostructures based sensors have a good linear relationship 

with the ethanol concentrations varied from 1 to 600 ppm on the logarithmic scale, keeping 

with the theory of power laws for the metal oxide semiconductors. The slope values are 0.5442 

and 0.6479 for WO3 nanofilms and Ga2O3-WO3 heterostructures, respectively, indicating that 

the adsorbed surface oxygen species are mainly O2-. 

Figure 5.10. Plots of (a) response and (b) recovery time versus different concentrations of ethanol for 

Ga2O3-WO3 heterostructures at 275C. 
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Furthermore, the response/recovery time of Ga2O3-WO3 heterostructures based sensors 

under different ethanol concentration at 275C was also investigated. Figure 5.10(a, b) 

illustrated the variations in response/recovery time with ethanol concentration change from 1 

to 600 ppm. As can be clearly seen, the response/recovery time of Ga2O3-WO3 heterostructures 

is shorter than that of WO3 and Ga2O3 nanofilms at all measured ethanol concentration, which 

can be ascribed to the faster adsorption, reactions and desorption of ethanol gas on the surface 

of Ga2O3-WO3 heterostructures. 

Selectivity is another critical parameter in the evaluation of gas sensor performance. 

Specifically, sensor-based on Ga2O3-WO3 heterostructures was tested with reducing gases 

under the concentration of 100 ppm at the optimal working temperature for investigation of its 

selectivity. The responses of Ga2O3-WO3 heterostructures to the different reducing gases, 

including acetone, isopropanol, hydrogen, carbon monoxide, nitrogen dioxide, and ammonia, 

were clearly displayed in Figure 5.11. It is evident that the response to ethanol is much higher 

than that of acetone, isopropanol, and the sensor is almost insensitive to hydrogen, carbon  

 

 

Figure 5.11. Responses of Ga2O3-WO3 heterostructures to 100 ppm various gases at 275C. 
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Table 5.1. Comparison of gas sensing performances to ethanol based on different types of nanostructured 
materials reported recently.  

Sensing material C (ppm) T (C) R τres/τrec(s) LOD (ppm) Refs 

Ga2O3-WO3 heterostructures 100  275 14 5/3 1 this work 

WO3 nanobricks 100 300 6.5 3/5 20 [45] 

WO3 nanofibers 100 250 3.43 -/- - [46] 

Flower-like WO3 architectures 100 300 7 1/6 0.9 [47] 

Ga2O3 nanowires 200 200 ~2 ~30/~200 - [48] 

Cr2O3-functionalized WO3 
nanorods 

100  300 4.23 51.35/48.65 1 [49] 

La2O3-WO3 nanofibers 100 350 5.1 -/- - [50] 

WO3/3% SnO2 composite 100 300 2.5 -/- - [51] 

0.6 at% Co-doped WO3 FNPs 50 350. 10 -/- - [52] 

Pt NPs-functionalized WO3 
nanorods 

50 220 3 9/- 1 [53] 

C-doped WO3 fibers 100 350 12 -/- - [54] 

1.5% In2O3-WO3 heterojuction 
nanofiers 

100 275 6.3 -/- - [55] 

Au/SnO2 microstructures 100 340 18 5/10 5 [56] 

MoS2-TiO2 composites 100 150 14.2  50 [57] 

α-Fe2O3/g-C3N4 
nanocomposites 

100 340 7.76 7/30 - [58] 

α-Fe2O3 nanoporous network 100 400 9.5 3/138 - [59] 

CdO/ZnO heterostructure 
composites 

100 250 65.5 2/136 0.5 [60] 

NiO/SnO2 heterojuction thin 
film 

100 250 7.9 15/100 0.1 [61] 

ZnO@In2O3 CSNFs 100 225 31.8 -/- 5 [62] 

2D CeO2-SnO2 nanosheets 100 340 44 25/6 5 [63] 

SnO2/Fe2O3 microspheres 100 260 41.7 3/4 0.1 [64] 

 

monoxide, ammonia, and even nitrogen dioxide, as the testing temperature is far beyond the 

optimal working temperature for nitrogen dioxide. These obtained results indicated that the 

sensor based on Ga2O3-WO3 heterostructures is highly specific for ethanol detection at the 

optimal working temperature of 275C. In addition, a comparison of ethanol sensing 
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performances between Ga2O3-WO3 heterostructures prepared in this work and other types of 

materials reported recently are summarized in Table 5.1. It can be observed that Ga2O3-WO3 

heterostructures exhibit superior performance among pristine and functionalized-WO3 

materials except of SnO2/Fe2O3 microspheres. However, SnO2/Fe2O3 microspheres based gas 

sensor still show relatively high response to formaldehyde. Those results illustrate that this 

fabrication methods could be extended to other metal oxides for the application in various 

fields. The results have also confirmed that the comparable response, faster response/recovery 

time at relatively low working temperature, and lower detection limit among all the materials 

make Ga2O3-WO3 heterostructures more attractive for possible ethanol detection. 

5.4 Conclusions 

In this work, wafer-scale Ga2O3-WO3 heterostructures with the average thickness of ~8.0 nm 

were successfully fabricated via a two-step ALD process by using modern plasma-enhanced 

ALD apparatus and appropriate precursors. The ALD-developed Ga2O3-WO3 heterostructures 

were subsequently annealed at 250°C and utilized as sensing electrodes for ethanol detection. 

They achieved their optimum sensitivity at the temperature of 275C. The Ga2O3-WO3 

heterostructures have clearly demonstrated high performance towards ethanol detection, 

especially at ppm concentration level and unique sensing capabilities. Specifically, the sensor 

based on Ga2O3-WO3 heterostructure exhibited not only enhanced response (14-100 ppm) but 

also rapid response/recovery time (5/3s) and excellent selectivity compared with the sensors 

based on WO3 and Ga2O3 nanofilms. Furthermore, as low as 1 ppm of ethanol can be determined 

when Ga2O3-WO3 heterostructures are used as sensing electrode material. Therefore, sub-10 nm 

heterostructures can be potentially exploited as promising sensing electrode materials for 

practical ethanol sensing at low concentrations. 
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6. Chapter 6 
SUMMARY 

 

Research dedicated to the development of efficient fabrication methods of 2D TMO&Ds has 

grown explosively and gained impressive progress during the last few years. ALD method was 

distinguished from other techniques due to the excellent thickness control, good homogeneity, 

and conformity. From the survey of the latest research work, compared to 2D TMDs, 2D TMOs 

have attracted less attention. However, TMOs are more chemically stable and environmental 

friendly as well as easier to be prepared than TMDs, especially for some selected TMOs. In the 

present dissertation, two kinds of TMOs (α-MoO3 and WO3 nanofilms) with the controlled 

thickness were developed by the ALD technique towards their application in various 

environmental sensors.  

2D α-MoO3 nanofilms with a thickness of 4.9 nm were successfully fabricated by the ALD 

technique using (NtBuN)2(NMe2)2Mo and oxygen plasma gas as the molybdenum precursor and 

oxygen precursor, respectively to be utilized as a high-performance electrocatalysts towards 

hydrogen peroxide at various conditions. To the best of our knowledge, this is the first report of 

the employment of 2D α-MoO3 nanofilms for the electrochemical detection of hydrogen peroxide. 

The high sensitivity (168.72 µA·mM-1·cm-2) and an extremely wide linear range (0.4 µM to 57.6 

mM) with the low detection limit (0.076 µM) provide an excellent opportunity for this 2D 

materials to be used in high-performance electrochemical sensors. 

In this regard, the thickness of 2D nanostructure is a vital parameter to be 

considered for the design of applicable devices. 2D WO3 nanofilms with the different 

thicknesses from a monolayer (∼0.78 nm) to ∼6.5 nm were successfully deposited on Au-

SiO2/Si substrates by the ALD technique, and their electro-catalytic behaviors toward the 

hydrazine oxidation were comprehensively investigated. Among those 2D WO3 samples, 

the monolayer WO3 films with demonstrated the superior performance of 1.24 μA·μM-

1·cm-2 with a low detection limit of 0.015 μM due to the larger effective surface area and 

smaller charge transfer resistance.  
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Notwithstanding many outstanding physical and chemical properties obtained for 

2D TMOs, a lot of challenges still remain, such as finding an effective synthetic method 

which is simple and can be scaled up, low yield production of atomically thin 2D TMOs, 

and the intrinsic low electric conductivity, which presently unable these 2D 

nanostructures to meet most of the commercial requirements. At this point, the 

functionalization of 2D TMOs with other nanomaterials has been considered as a very 

promising technique for enhancement of various properties of 2D TMOs. 

Noble metal nanoparticles are particularly interesting for materials science due to 

their unique electronic, optical, magnetic, and catalytic properties, which are not easily 

replaced by other materials. Thus, surface functionalization of 2D  WO3 nanofilms by NM 

nanoparticles (NM = Ag, Pt, and Pd) was successfully achieved for the first time via a 

combination of the ALD process and electrochemical deposition method. The impacts of 

different kinds and various amounts of NM nanoparticles on the performance of 2D WO3 

nanofilms were investigated towards H2O2 detections. Ag200-WO3 nanofilms exhibited the 

best electrochemical performance with the high sensitivity of 282 μA·mM-1·cm-2, 

extremely wide linear H2O2 concentrations range from 0.2 μM to 33.6 mM and the low 

detection limit of 0.1 mM. These results may indicate that choosing the proper kind and 

amount of NM enables the substantial improvement of the 2D TMOs properties. 

In addition, for the application of 2D TMOs in gas sensor, the development of 

heterojunctions has also been proven to be the most simple and cheapest way in achieving 

enhanced sensing performance by the development of heterojunction at the interface between the 

two nanomaterials with the creation of either an n/p-type nanostructure or an n/n-(p/p-) type 

structure. In this work, wafer-scale Ga2O3-WO3 heterostructures with an average thickness of ~8.0 

nm were successfully fabricated via a two-step ALD process. The gas sensors based on these 

Ga2O3-WO3 n/p heterostructures exhibited about 4 and a 10-fold improvement in response to 

ethanol compared to that of WO3 and Ga2O3 nanofilms at 275°C. 
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HOOFDSTUK 6 
SAMENVATTING 

 

Het onderzoek naar de ontwikkeling van efficiënte productiemethodes van 2D 

transitiemetaaloxides and dichalcogenides (TMO&Ds) is in de laatste jaren exponentieel 

toegenomen  en  heeft een indrukwekkende vooruitgang geboekt. Atomische laagdepositie (ALD) 

onderscheidde zich van andere technieken door een uitstekende controle van de dikte, een goede 

homogeniteit en conformiteit. Echter, vergeleken met 2D TMDs hebben 2D TMO minder 

aandacht gekregen. Echter, TMOs zijn chemisch meer stabiel en milieuvriendelijker, en zijn 

bovendien gemakkelijker te bereiden, zeker voor bepaalde soorten. In de onderliggende thesis 

werden twee soorten TMOs ontwikkeld (α-MoO3 and WO3 nanofilms) door ALD met controle 

van de dikte, en hun toepassingen als milieusensoren werden toegelicht. 

2D α-MoO3 nanofilms met een dikte van 4.9 nm werden succesvol ontwikkeld door ALD en het 

gebruik van (NtBuN)2(NMe2)2Mo and zuurstof plasmagas als molybdeen precursor en zuurstof 

precursor, respectievelijk, en werden gebruikt als hoogwaardige elektrokatalysatoren voor 

waterstofperoxide onder verschillende omstandigheden. Tot voor zover bij ons gekend, is dit het 

eerste rapport dat 2D α-MoO3 nanofilms gebruikt voor de elektrochemische detective van 

waterstofperoxide. De hoge gevoeligheid (168.72 µA·mM-1·cm-2) en het zeer grote lineaire bereik 

(0.4 µM to 57.6 mM), gecombineerd met een extreem lage detectielimiet (0.076 µM) maken deze 

2D materialen uitermate geschikt voor dergelijk onderzoek. Voor de ontwikelingen van 

toepassingen en apparatuur hierop gebaseerd, is de dikte van de 2D nanostructuur een 

cruciale paramter. 2D WO3 nanofilms met verschillende diktes (variërend van een 

enkelvoudige laag (∼0.78 nm) to ∼6.5 nm) werden succesvol gedeponeerd op Au-SiO2/Si 

substraten door ALD en hun electro-catalytisch gedrag tegenover hydraze oxidatie 

werden uitvoerig omderzocht. Van al deze 2D WO3 stalen, bleek de monolayer WO3 film  

superieur met 1.24 μA·μM-1·cm-2 én een detectielimiet  van 0.015 μM door de grotere 

effectieve oppervlakte én een lagere ladingtransfer weerstand. 
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Niettegenstaande de vele uitstekende fysische en chemische eigenschappen van 2D 

TMOs, blijven er veen uitdagingen zoals het vinden van een efficiënte synthesemethode, 

die eenvoudig en schaalbaar is, productie vanatmisch dunne 2D TMOs met lage opbrengst, 

en de intrinsieke lage elektrische conductiviteit, die ervoor zorgen dat dergelijke 2D 

nanostructuren commercieel niet inzetbaar zijn. Verdere functionalisering van 2D TMOs 

met andere nanomaterialen kan dus worden beschouwd als een beloftevolle techniek om 

2D TMOs verder te optimalizeren.  

Nanopartikels van edele metalen zijn zeer interessant voor materiaalkunde, 

wegens hun unieke elektrische, optische, magnetische en katalytische eigenschappen, een 

kunnen niet eenvoudig vervangen worden door andere materialen. Oppervlakte 

functionalizering van 2D 2D  WO3 nanofilms door edele metaal nanopartikels (edele 

metalen = Ag, Pt, en Pd) werd hier voor het eerst betracht, via een combinatie van ALD 

en elektrochemische depositie. De impact van verschillende (en verschillende 

hoeveelheden) van deze edele metaalnanopartikels op de 2D WO3 nanofilms werd 

onderzocht in het kader van H2O2 detectie. Ag200-WO3 nanofilms vertoonden de beste 

elektrochemische capaciteit, met een hoge gevoeligheid van 282 μA·mM-1·cm-2, een zeer 

groot lineair bereik van H2O2 concentraties (van 0.2 μM tot 33.6 mM) en een detectielimiet 

van 0.1 mM. Deze resultaten tonen aan dat de keuze van het edele metaal en de 

hoeveelheid ervan 2D TMOs gevoelig kunnen verbeteren.  

Voor de toepassing van 2D TMOs als gassensoren bleek de ontwikkeling van 

heterojuncties de meest eenvoudige en goedkope oplossing om de detectie te verbeteren, 

door de heterojunctie tussen twee nanomaterialen te ontwikkelen met de creatie van ofwel 

een n/p-type nanostructuur of een/n-(p/p-) type structuur. In dit werk werden wafer- Ga2O3-

WO3 heterostructuren met een gemiddelde dikte van ~8.0 nm succesvol ontwikkeld via een twee-

staps ALD proces. De ontwikkelde gassensoren vertoonden een 4 tot 10-voudige verbetering in 

response tegenover ethanol, vergeleken met deze van WO3 en Ga2O3 nanofilms bij 275°C. 

 


