
PHYSICAL REVIEW B 103, 054439 (2021)
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The characteristics of confined magnetoelastic waves in nanoscale ferromagnetic magnetostrictive waveguides
have been investigated by a combination of analytical and numerical calculations. The presence of both
magnetostriction and inverse magnetostriction leads to the coupling between confined spin waves and elastic
Lamb waves. Numerical simulations of the coupled system have been used to extract the dispersion relations of
the magnetoelastic waves as well as their mode profiles.
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I. INTRODUCTION

In recent years, the coupling between elastic and mag-
netic degrees of freedom in magnetostrictive materials has
gained renewed interest due to emerging nanoscale spin-
tronic applications, such as magnetic memory cells [1–4],
logic devices [5–8], sensors [9,10], or compact microwave
antennas [11,12]. In magnetostrictive ferromagnets, the mag-
netoelastic coupling leads to an elastic response to a magnetic
excitation and vice versa. At microwave frequencies, this
mutual interaction manifests itself in a coupling between
spin waves—the fundamental magnetic excitations in this
frequency range—and (hypersonic) elastic waves, forming
magnetoelastic waves. While this behavior was studied for
plane waves in bulk materials decades ago [13–20], magne-
toelastic waves in nm-thin films have been studied only much
more recently. Most of these studies have focused on the
interaction between surface acoustic waves propagating at the
interface between a (piezoelectric) substrate and a thin mag-
netostrictive film with macroscopic dimensions [5,21–35].
In addition, also numerical and theoretical studies on mag-
netoelastic plane waves in bulk media have been reported
[36–40].

By contrast, many recent spin-wave-based informa-
tion processing applications employ nanoscale ferromag-
netic waveguides for information transfer and computation
[41–45]. The small dimensions of such waveguides, which are
required to enable high device densities, lead to wave confine-
ment effects when the wavelengths become comparable to the
waveguide width. In the presence of (inverse) magnetostric-
tion, this leads to the coupling between confined spin waves
and confined elastic waves, forming confined magnetoelastic
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waves. To date, studies have addressed the effect of confine-
ment on spin waves [46–51] as well as elastic waves [52–60].
Yet, besides recent investigations of the magnetoelastic cou-
pling in nanoscale resonators [61–65], a detailed study of
propagating magnetoelastic waves in nanoscale waveguides
is still lacking. It is clear that a detailed understanding of
confined propagating magnetoelastic waves is crucial for
emerging magnonic device applications, especially where
spin waves are excited by magnetoelectric means and used
for information transfer and processing [41,42,66,67].

In this work, we report on a combined analytical and
numerical description of the characteristics of confined
magnetoelastic waves in thin and narrow waveguides. The
numerical calculations employ a new mumax3 extension to
solve the magnetoelastodynamics and allow for the assess-
ment of confined magnetoelastic wave dynamics [68]. The
analytical model complements the numerical results and is
utilized to gain insight into the coupling between the dif-
ferent confined elastic and magnetic modes. Thus, this work
provides a key step toward the comprehensive understanding
of confined magnetoelastic waves in nanoscale ferromagnetic
waveguides.

II. THEORETICAL DESCRIPTION
OF MAGNETOELASTIC WAVES

A. Spin waves, Lamb waves, and magnetoelasticity

Our description of the magnetoelastic dynamics starts from
the total energy density, given by

Etot = EZ + Ed + Eex + Emel + Eel + Ekin. (1)

Here, EZ represents the Zeeman energy density, Ed is the
demagnetization energy density, Eex is the exchange energy
density, Emel is the magnetoelastic energy density, Eel is the
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elastic energy density, and Ekin is the kinetic energy density.
The magnetic energy densities can be expressed by [13–15]

EZ = −μ0Ms(m · Hext ), (2)

Ed = −μ0Ms

2
(m · Hd ), (3)

Eex = Aex[(∇mx )2 + (∇my)2 + (∇mz )2], (4)

with m = M/Ms the magnetization M normalized to the satu-
ration magnetization Ms, μ0 is the vacuum permeability, Hext

is the external magnetic field strength, Hd is the demagnetiza-
tion field strength, and Aex is the exchange stiffness constant.

The magnetoelastic energy density for a material with cu-
bic (or higher) crystal symmetry is given by [19,20]

Emel = B1

∑
i

m2
i εii + B2

∑
i �= j

mimjεi j . (5)

Here, ε̄ is the strain tensor with components εi j , and B1,2 are
the magnetoelastic coupling constants.

In the linear elastic regime, Hooke’s law is valid and the
elastic energy density is given by [69,70]

Eel = 1

2
σ̄ : ε̄ = 1

2

∑
i, j,k,l

Ci jklεklεi j, (6)

with σ̄ the mechanical stress tensor and Ci jkl the stiffness
constants. Finally, the kinetic energy density can be expressed
as [71,72]

Ekin = ρ||u̇||2
2

, (7)

with ρ the mass density and u the mechanical displacement.
The minimization of the total energy Etot, i.e., the mini-

mization of the volume integral of the energy density Etot, then
allows us to find the equilibrium state. Beyond equilibrium,
the magnetization dynamics and magnetic excitations in the
system are described by the Landau-Lifshitz-Gilbert (LLG)
equation [73,74]

ṁ = −γ0m × Heff + αm × ṁ, (8)

with γ0 = μ0γ , γ is the absolute value of the gyromagnetic
ratio, α is the phenomenological Gilbert damping constant,
and Heff is the effective magnetic field strength, which is
given by

Heff = − 1

μ0

δEtot

δM
with Etot =

∫
V
EtotdV. (9)

Here, δ represents a variational derivative, i.e., the derivative
of the functional Etot with respect to the function M, on
which it depends. In the absence of surface anisotropy or other
boundary fields, the boundary conditions for the magnetiza-
tion are

∇n · m = 0, (10)

with n the normal to the surface.
The elastodynamic equation of motion is given by [70,71]

ρü + ηu̇ = f tot, (11)

with η a phenomenological damping parameter and f tot the
total body force acting on the material. This body force is

given by [70,71]

ftot,i = ∂

∂x j

δEtot

δεi j
(12)

and has both elastic and magnetoelastic contributions. For
small values, the displacement is related to the strain by

ε̄ = 1
2 (∇u + (∇u)T ), (13)

which can be used to express the total body force as a function
of the displacement u. The mechanical boundary conditions at
the surface are

f s = σ̄ n, (14)

with f s the traction force per unit surface.

B. Linear magnetoelastic waves in thin waveguides

In this section, we discuss an analytical approach to the
above equations of motion following previous work on mag-
netoelastic waves in thin films [75]. Although the system is
not generally solvable for confined waves in a narrow waveg-
uide, the results provide useful insight into the underlying
physics and the dependence of the coupling on the symmetry
of the waves. They are therefore complementary to the numer-
ical results presented in the next section below.

In the analytical description, the waveguide is considered
to be infinitely long in the propagation direction x̂ with free
boundaries in the other two directions. The magnetic Neu-
mann boundary conditions in Eq. (10) are strictly satisfied
if the surrounding materials are nonmagnetic. By contrast,
the mechanical free boundary conditions σ̄ · n = 0 are satis-
fied if the waveguide is surrounded by vacuum. In practice,
a good approximation is already obtained when the waveg-
uide is surrounded by materials with much lower acoustic
impedances resulting in large impedance mismatches and
wave reflection at the interfaces. The acoustic impedance of
the elastic modes in the thin waveguide can be approximated
by Z0 = √

ρvph, with vph the phase velocity of the mode.
For a CoFeB waveguide, a lower limit of the impedance is
ZCoFeB ≈ 36 kg m−2 s−1 for the A0 mode. Potential substrates
with low density and Young’s modulus—leading to a large
acoustic impedance mismatch with CoFeB—include poly-
mers, silsesquioxanes, or nanoporous organosilicate glasses
that have been used as ultralow-permittivity dielectrics in
microelectronic applications and can be cointegrated with
CoFeB waveguides in potential experimental realizations.
Such materials can have densities down to 1 g/cm3 and
Young’s moduli of less than 1 GPa [76,77], which can lead
to acoustic reflection coefficients of R = [(1 − ZCoFeB/Zsub)/
(1 + ZCoFeB/Zsub)]2 > 0.9. Alternatively, experimental real-
izations of free boundary conditions could be based on
suspended waveguides.

The waveguide thickness d is considered to be much
smaller than the wavelength λ of the magnetoelastic wave,
i.e., kd � 1, with k = 2π/λ the wave number. As a result, the
dynamic magnetization and the displacement can be assumed
to be uniform over the thickness, and all partial derivatives
with respect to the direction normal to the waveguide, ẑ,
vanish (i.e., ∂/∂z = 0). For scaled waveguides, their width is,
however, of the same order as the magnetoelastic wavelength.
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FIG. 1. Schematic of the studied studied CoFeB waveguide
(10 μm long, 200 nm wide, 20 nm thick). The yellow area desig-
nates the excitation region in the waveguide center. A static external
magnetic field with an amplitude of μ0H0 = 5 mT is applied along
the waveguide in the x-direction.

Therefore, mode formation occurs due to confinement in the
lateral direction along ŷ.

A schematic of the waveguide geometry is shown in Fig. 1
with the propagation direction and static external field along
x̂. The state variable describing a propagating magnetoelastic
wave can be written as

wn(x, y, t ) = w̃n(y)ei(kxx+ωt ), (15)

with w̃n = [ũx,n, ũy,n, ũz,n, m̃y,n, m̃z,n]T , and n is the mode
number. Note that weak dynamic displacement and
magnetization components are assumed. Hence, higher-order
terms are neglected and mx = 1.

The amplitude and the profile w̃n as well as the dispersion
relation of magnetoelastic waves in the waveguide can be ob-
tained by solving the coupled differential equations of motion
(8) and (11). A major complication is, however, the analytical
self-consistent calculation of the demagnetization field. The
problem can be considerably simplified by assuming that the
confined spin-wave modes are not altered by the magnetoelas-
tic interaction. As shown below, the exact numerical solutions
of the coupled system indicate that this approximation is well
justified. Then, the magnetization components in w̃n can be
written as [47,48]

m̃i,n(y) = Ai,n

{
cos(κny) if n is odd,

sin(κny) if n is even,
(16)

with complex amplitudes Ai,n, i ∈ {y, z}, and κn the wave num-
ber along ŷ. In a waveguide, the transversal wave number κn of
the lowest-order mode can be approximated by κn = π/weff ,
with weff the effective waveguide width [48–51]. Note that no
corresponding assumptions for the displacement components
in w̃n need to be made.

Using this approximation, neglecting damping, and fur-
ther assuming small dynamic displacement and magnetization
components, the coupled differential Eqs. (8) and (11) can be
linearized. Detailed calculations can be found in Appendix,
which lead to a set of homogeneous partial differential equa-
tions

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v2
‖k2

x − v2
⊥∂2

y − ω2 −iv2
	kx∂y 0 iκnB2

ρMs
0

−iv2
	kx∂y v2

⊥k2
x − v2

‖∂
2
y − ω2 0 ikxB2

ρMs
0

0 0 v2
⊥
(
k2

x − ∂2
y

) − ω2 0 ikxB2
ρMs

γ B2∂y γ iB2kx 0 ωmy −iω
0 0 γ B2ikx iω ωmz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

w̃n(y) ≡ κ̄mel · w̃n(y) =

⎡
⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎦, (17)

with the velocities v2
‖ = C11/ρ, v2

⊥ = C44/ρ, and v2
	 = (C12 +

C44)/ρ, Ci j is the stiffness constants in Voigt notation, and
∂y = ∂/∂y. Moreover,

ωmy = ω0 + ωM

(
λexk2

tot + P
κ2

n

k2
tot

)
, (18)

ωmz = ω0 + ωM
(
λexk2

tot + 1 − P
)
, (19)

P = 1 − 1 − e−ktotd

ktotd
, (20)

k2
tot = k2

x + κ2
n , ω0 = γ0Hext, ωM = γ0Ms, λex = 2Aex

μ0M2
s
, and d

is the waveguide thickness.
Without magnetoelastic interactions, i.e., for B1 = B2 = 0,

Eq. (17) leads to an eigensystem of purely elastic and mag-
netic (spin) waves in an isotropic waveguide, which are
both well known [47,48,71]. For the geometry considered
here, the dynamic in-plane displacement components repre-
sent laterally confined Lamb waves (LCLWs), whereas the
out-of-plane displacement component corresponds to out-of-
plane-polarized laterally confined shear waves, also called P
waves. These P waves contain negligible in-plane displace-
ment components, as verified numerically.

For both wave types (LCLWs and P’s), an infinite amount
of modes exists with either symmetric or antisymmetric mode
profiles. For LCLWs, the symmetric (S) mode has symmetric
ux and antisymmetric uy displacement profiles over the waveg-
uide width, and vice versa for antisymmetric (A) modes. In
the magnetic system, the dynamic magnetization components
represent confined backward volume spin waves (CBVSWs)
as the static magnetic field is applied along the propagation
direction. The lateral confinement of these spin waves also
leads to modes with symmetric and antisymmetric profiles.
For these modes, both my and mz share the same symmetry
with odd and even modes corresponding to symmetric and
antisymmetric profiles, respectively. Note that this is in stark
contrast to isotropic bulk systems, which only have a single
spin wave mode in a given geometry [see Fig. 2(a)] [69–72].

When magnetoelastic coupling is present, the confined
elastic and spin waves mutually interact with each other. As
discussed in more detail below, the magnetoelastic interac-
tion, which is described by the off-diagonal terms in κ̄mel,
results in an anticrossing of the dispersion relations of the
elastic and magnetic waves [19,20]. Near the anticrossing, the
mutual interaction between the elastic and magnetic domain
is strongest and can be quantified by the amplitude of the
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FIG. 2. (a) Dispersion relations of magnetoelastic waves (red
solid lines) in bulk CoFeB. The longitudinal elastic wave (yellow)
is uncoupled from the spin wave (blue). The static external field has
amplitude of μ0H0 = 25 mT and is parallel to the static magneti-
zation. (b) Schematic of interactions between the different dynamic
components of a magnetoelastic wave. Solid arrows represent off-
diagonal interaction terms in κmel that are also present in bulk media
or thin films. Dotted lines represent additional interactions that arise
due to lateral confinement, as discussed in the text.

anticrossing gap, further called the magnetoelastic gap � f .
A larger magnetoelastic gap results in higher coupling rates
and thus faster magnetoelastic energy oscillation between the
magnetic and elastic domain during propagation [64]. Hence,
� f is an important parameter for the description of magne-
toelastic waves.

For plane waves in an infinitely extended thin film, κn

as well as the partial derivatives ∂y are zero, and Eq. (17)
reduces to a set of homogeneous linear equations. The system
is solvable and allows for the derivation of an approximate
analytical expression for the magnetoelastic gap based on the
off-diagonal components of κmel [19,20]. For example, the
magnetoelastic gap of a shear elastic wave interacting with
a backward volume spin wave is given by

2π� f =
√

2γ B2
2ωmz

C44Ms
. (21)

More details about magnetoelastic waves in extended thin
films can be found in Refs. [5,75].

By contrast, the mode formation in a waveguide results in
a spatial variation of w̃n across the waveguide width (along ŷ).
This leads to two additional coupling terms between mechan-
ical and magnetic components in κmel: (i) κ1,4 represents an
additional mechanical body force originating from the mode
profile of the magnetization components, and (ii) κ4,1 repre-
sents an action from the elastic on the magnetic system and
stems from the mode profile of the longitudinal displacement
component. Hence, the confinement also influences the mag-
netoelastic coupling itself, since both terms are absent for
plane waves in bulk systems of thin films. Furthermore, the
two additional terms depend on the shape of the mode profiles,
and thus every elastic or spin wave mode is expected to show
a different magnetoelastic coupling behavior.

The modification of the magnetoelastic coupling by lateral
confinement has several consequences. First, in a waveguide,
an infinite set of confined elastic and magnetic modes exist
and interact with each other. As a result, numerous cross-
ings of the dispersion relations exist, which may lead to the
formation of magnetoelastic gaps at various frequencies and
wave numbers. By contrast, only a single magnetoelastic gap
is formed in a bulk system, as shown in Fig. 2(a). Moreover,
the dispersion relation of the magnetoelastic waves as well as
the magnetoelastic gap for the different modes is hard or even
impossible to calculate analytically. Finally, the two addi-
tional components κ4,1 and κ1,4 result in interactions between
the dynamic magnetization and the longitudinal displacement
component. This is a specific effect of the confinement as the
longitudinal displacement component is uncoupled from the
magnetic system in bulk media [see Fig. 2(a)] or thin films
[19,75].

The magnetoelastic interactions between the different me-
chanical and magnetic components expressed by Eq. (17)
are illustrated in Fig. 2(b). Solid lines represent interaction
terms, which are present both in bulk and laterally confined
systems, whereas dotted lines represent additional interaction
terms, which arise due to confinement and lateral mode forma-
tion. The coupling between magnetization and displacement
is indicated by red and green lines: red lines correspond to
the Villari effect that describes the change in magnetization
due to strain (displacement gradient), whereas green lines
correspond to magnetostriction, which describes the change
in displacement due to a change of the magnetization.

Finally, we note that the κmel tensor in Eq. (17) depends
only on the B2 coupling constant. Terms depending on B1

are of second order in magnetization and displacement and
can thus be neglected in the linear regime considered here.
This means that shear strains couple much more strongly
to the magnetization than normal strains. This conclusion
is analogous to the results of spin wave excitation by local
magnetoelastic transducers [78].

III. NUMERICAL SIMULATIONS OF MAGNETOELASTIC
WAVES IN THIN WAVEGUIDES

A. Numerical approach

As discussed above, it is possible to find analytical solu-
tions of the two coupled differential equations of motion (8)
and (11) for bulk media and thin films, as they can be reduced
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to a homogeneous set of linear equations and therefore to an
eigenvalue problem. However, for thin waveguides, this is not
possible, and a set of coupled partial differential equations
remains. Even for simple geometries, such as a linear thin
waveguide, it is therefore more practicable to solve the equa-
tions numerically. This is even more the case for complex
geometries (and more complex boundary conditions), which
render analytical solutions impossible.

For this purpose, we have extended the micromagnetic
software package mumax3 [79] by complementing the al-
ready implemented description of magnetization dynamics
with the fundamental equations that describe the elasto-
dynamics and magnetoelasticity. These equations concern
Eqs. (5)–(7) and (11)–(14) and are implemented without fur-
ther approximations. This extension, therefore, allows us to
simulate magnetoelastic waves in arbitrary geometries in both
linear and nonlinear regimes [68] and is based on a finite-
difference approach to simultaneously solve the magneto- and
elastodynamic differential equations. Several different solver
algorithms have been implemented, such as the Euler, Heun,
fourth-order Runge-Kutta (RK4), and leapfrog methods. All
methods gave essentially identical results. However, the RK4
method provided the best performance in most cases and was
therefore used for the simulations below. Furthermore, all
mathematical operations have been implemented on GPUs,
which strongly reduces the computation time [80].

B. Simulation details

The simulated system is schematically represented in Fig. 1
and consists of a thin nanoscale CoFeB waveguide with a
thickness of d = 20 nm, a width of w = 200 nm, and a length
of � = 10 μm. The mesh cell size was set to 5×5×20 nm3,
which is much smaller than the wavelength of the studied
magnetoelastic waves and is of the same order as the magnetic
exchange length of CoFeB (∼4.5 nm). Along ẑ, the waveguide
was modeled by a single cell as the dynamic displacement and
magnetization components are approximately uniform over
the thickness.

The material parameters of CoFeB were extracted from
the literature: a saturation magnetization of Ms = 1.2 MA/m
[81], an exchange constant of Aex = 18 pJ/m [82], a Gilbert
damping constant of α = 0.004, a mass density of ρ = 8 ×
103 kg/m3 [83], magnetoelastic coupling constants of B1 =
B2 = −8.8 MJ/m3 [84], as well as the stiffness constants
C11 = 283 GPa, C12 = 166 GPa, and C44 = 58 GPa [84]. The
elastic damping was neglected in the simulations and there-
fore η = 0. We remark that nonzero elastic damping mainly
leads to a line broadening with weak expected effects on
the dispersion relations and mode profiles. At both ends of
the waveguide, the elastic and magnetic damping increased
exponentially to α = 0.5 and η = 5×1013 Ns/m4 over a 1-
μm-long region to avoid reflection of the waves. A static
external magnetic field of μ0Hext = 5 mT was applied along x̂,
i.e., along the waveguide. Together with the demagnetization
field due to the shape anisotropy, this was enough to saturate
the magnetization along the waveguide without magnetization
nonuniformities at the ends of the waveguide.

The magnetoelastic waves were magnetically excited by
applying a rectangular 20-ps-long magnetic field pulse in the

FIG. 3. Dispersion relations of magnetoelastic waves in a
200-nm-wide and 20-nm-thick CoFeB waveguide. (a) Numerically
calculated dispersion relations. The inset shows a magnification of a
region near a magnetoelastic gap. (b) Analytically calculated disper-
sion relations of uncoupled elastic and spin waves superimposed to
the numerically obtained results.

center of the waveguide, as shown in Fig. 1. The excitation
region spanned the full waveguide width and had a length
of 100 nm. The amplitude of the excitation field pulse was
μ0hex = 1 mT and the total duration of the simulations was
10 ns. Note that the calculated magnetoelastic gaps were
proportional to B2, in keeping with Eq. (21), indicating that
the simulations were carried out in the linear magnetoelastic
coupling regime.

C. Dispersion relations and mode profiles of confined
magnetoelastic waves

The dispersion relations of confined magnetoelastic waves
in the CoFeB waveguide were obtained by two-dimensional
temporal and spatial (along x̂) Fourier transforms of the differ-
ent magnetization and displacement components after pulsed
excitation, and they are depicted in Fig. 3(a). To identify the
different branches, the dispersion relations of the confined
elastic and magnetic waves without magnetoelastic interaction
were also analytically calculated and are plotted over the
numerically obtained magnetoelastic dispersion relations in
Fig. 3(b). Here, the green solid lines correspond to the first
two CBVSW width modes, given by ωn = √

ωmyωmz [85]. By
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FIG. 4. Profiles of magnetoelastic wave components in the “quasi” regimes. (a) Dispersion relation of magnetoelastic waves indicating the
frequencies and wave numbers of the different modes depicted in (b)–(f). Snapshots of displacement and magnetic component profiles of n1

and n2 quasimagnetic waves are shown in (b) and (c) for frequencies of 10.5 and 14.0 GHz (wave numbers of 17 and 46 rad/μm), respectively.
Parts (d), (e), and (f) show snapshots of displacement and magnetic component profile of S0, A0, and P1 quasielastic waves at 7.0 GHz and
wave numbers of 9, 15, and 19 rad/μm, respectively.

contrast, blue and red solid lines correspond to A- and S-type
LCLWs, respectively, which are described by the solutions
of [71]

tan(bd )

tan(ad )
= −

[
4k2

x ab(
k2

x − b2
)2

]±1

, (22)

with a2 = ( ω
v‖

)2 + k2
x and b2 = ( ω

v⊥
)2 + k2

x . Here, the plus sign
in the exponent describes S modes, whereas the minus sign
describes A modes. Finally, orange solid lines correspond to
P waves, whose dispersion relations are described by [71]

ω2
m = v⊥

[
k2

x +
(

(m − 1)π

w

)2]
, (23)

with w the waveguide width and m the mode number.
In Fig. 3, three different regimes can be identified. Far

from crossover points, the numerically calculated dispersion
relations of confined magnetoelastic waves coincide closely
with the analytical dispersion relations of uncoupled con-
fined elastic and magnetic modes. Small differences between
analytical CBVSW and numerical magnetoelastic dispersion
relations stem rather from the finite waveguide size, in which
the wavelength can become comparable to the waveguide
length, and the analytical treatment becomes less accurate
[47]. In addition, the data show that a multitude of magne-
toelastic gap regions exist when elastic and magnetic wave
dispersions cross. Note that the number of crossings is much
larger than that, e.g., for bulk systems [see Fig. 2(a)] or thin
films [19,75] due to the large number of distinct confined
elastic and magnetic modes.

We first discuss regions far from the interaction points,
where the dispersion relation can be considered as quasielastic
or quasimagnetic. They occur when the intrinsic elastic and
magnetic resonance frequencies are strongly mismatched for
a given wave number. As discussed in more detail below, the
energy of quasielastic or quasimagnetic waves is then almost
completely transported in the elastic or magnetic domains,
respectively [19,20].

The mode profiles of confined quasimagnetic and
quasielastic waves are shown in Fig. 4 for selected points
in the dispersion relations [Fig. 4(a)]. Figures 4(b) and 4(c)
depict snapshot images of the magnetization and displacement
components of two quasimagnetic waves at frequencies of
10.5 and 14.0 GHz, respectively. The magnetization dynamics
are characterized by wavelike my and mz components with
a relative phase shift of π/2. The mz component is weaker
than my due to the ellipticity of the magnetization precession
[19]. At 10.5 GHz, a single amplitude maximum is found
across the waveguide, as expected for a symmetric first-order
width mode (n1). By contrast, the mode at 14.0 GHz shows
two amplitude maxima and is therefore an antisymmetric
second-order width mode (n2). These mode profiles are
essentially identical to those of uncoupled CBVSWs obtained
for B1 = B2 = 0, which shows that the presence of the
magnetoelastic coupling does not affect CBVSWs in the
quasimagnetic regime.

Nonetheless, quasimagnetic waves also possess accompa-
nying elastic waves, as shown in Figs. 4(b) and 4(c). Note
that a symmetric (antisymmetric) spin wave mode leads to
symmetric (antisymmetric) uy and uz components, as well as
to an antisymmetric (symmetric) ux component. By contrast,
the uz component is typically very weak. The impact of the
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symmetry on the coupling of the different components will be
discussed further below.

Figures 4(d)–4(f) represent snapshot images of the mag-
netization and displacement components of three quasielastic
waves at 7.0 GHz and wave numbers as shown in Fig. 4(a).
The displacement components of the first mode [Fig. 4(d)]
correspond to those of an S-type LCLW, whereas the second
mode [Fig. 4(e)] corresponds to an A-type LCLW. Finally, the
third mode [Fig. 4(f)] can be linked to an elastic P wave. In
all cases, the mode displacement patterns are not significantly
affected by the magnetoelastic interaction. The accompanying
CBVSW modes are symmetric (n1) in all types of quasielastic
waves. Again, this will be discussed in further detail below.

We now turn to regions in reciprocal space where the
dispersion relations of confined spin waves and elastic waves
intersect. In these regions, strong magnetoelastic interactions
lead to an anticrossing behavior and the formation of a gap
in the dispersion relation. The resulting waves are confined
magnetoelastic waves, and the transported energy oscillates
between the elastic and magnetic domains during propagation
[19,20]. The magnetoelastic gap � f quantifies the interaction
strength between the different constituting modes. A detailed
look at Fig. 3(a) reveals that the magnitude of � f strongly
varies for the different anticrossing points, which means that
the coupling depends on elastic and spin wave modes. This
can be related to the symmetry and the spatial profiles of the
magnetic and elastic waves as well as the resulting interaction
terms, and it will be discussed in more detail in the next
section.

The transition between magnetoelastic and quasistatic or
quasimagnetic waves is illustrated in Fig. 5, which shows
the ratio of the magnetic (mx, my) and elastic (ux, uy) com-
ponents of magnetoelastic waves along an acousticlike [pink
dashed line in Fig. 5(a)] and spin-wave-like [red dashed
line in Fig. 5(a)] branch of the dispersion relation. The data
in Fig. 5(b) show that the relative amplitude of magnetic
(elastic) components along the acoustic (spin-wave) branch
of the dispersion relation decreases rapidly away from the
magnetoelastic gap. A strong decrease is already seen a few
100 MHz away from the gap. Further away, the relative in-
tensity becomes low and the energy is mainly transported in
the elastic (magnetic) domain. In this case, the waves can be
considered as quasielastic (quasimagnetic).

Near the anticrossing points, the dispersion relation of
magnetoelastic waves differs strongly from those of uncou-
pled elastic or magnetic waves, which also affects the group
velocity vg = ∂ω/∂k. As an illustrative example, Fig. 6 repre-
sents the calculated group velocity near the n1-A0 intersection
[see Fig. 3(a)], where the n1 CBVSW and A0 LCLW modes
cross. The blue and green solid lines correspond to uncoupled
A-type LCLWs and CBVSWs, respectively. The CBVSW is
characterized by a small negative group velocity, as typical for
spin waves in this geometry with the magnetization parallel to
the wave vector k in the dipolar regime. By contrast, the group
velocity of the magnetoelastic wave (red solid line) is strongly
modified near the gap (gray region). At small wave numbers,
the group velocity approximates the group velocity of the
elastic A0 LCLW mode, whereas at higher wave numbers,
the group velocity converges to the CBVSW group velocity.
This shows that magnetoelastic coupling can strongly increase

un
its
)

un
its
)

FIG. 5. Amplitude ratio of the displacement and magnetization
components of magnetoelastic waves along acousticlike quasielas-
tic A0 (red dashed line) and spin-wave-like quasimagnetic n1 (pink
dashed line) branches of the dispersion relation. Part (a) shows the
trajectories in frequency-wave-number space. (b) my/uy ratio along
the A0 dispersion branch (solid red line), as well as the ux/my ratio
along the quasimagnetic n1 (solid pink line) dispersion branches.
Near the magnetoelastic gap, the ratios peak and decay rapidly far-
ther away.

FIG. 6. Group velocities as a function of wave number for the A0

LCLW (blue solid line), the n1 CBVSW (green solid line), and the
coupled n1-A0 magnetoelastic wave mode (red solid line). The gray
area represents the anticrossing region.
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FIG. 7. Profiles of magnetoelastic wave components in the strongly coupled magnetoelastic regime. (a) Dispersion relation of magne-
toelastic waves indicating the frequencies and wave numbers of coupled n1 − A0 and n1 − A1 modes. Parts (c) and (f) show snapshots of
displacement and magnetization profiles of n1 − A0 and n1 − A1 magnetoelastic waves at frequencies of 9.8 and 10.9 GHz (wave numbers of
15 and 12 rad/μm), respectively. For comparison, the mode profiles of uncoupled elastic [(b) and (c)] and magnetic [(d) and (g)] waves are
also shown.

the group velocity of the waves in a specific frequency or
wave-number range. Moreover, the data show that even the
sign of the group velocity can be changed by magnetoelastic
interactions far from the magnetoelastic gap, which indicates
that magnetoelastic interactions can be crucial for tuning the
properties of CBVSWs in scaled waveguides.

We finally discuss the mode profiles of magnetoelastic
waves in the magnetoelastic gap region. Figure 7 shows
snapshot images of the magnetization and displacement com-
ponents of two magnetoelastic waves near the n1-A1 and n1-A0

intersections. For comparison, mode profiles are also shown
for uncoupled LCLWs (left side) and CBVSWs (right side).
While the mode profiles themselves change with frequency
and mode number, the data indicate that they are not quali-
tatively modified by the magnetoelastic interactions, and the
overall displacement and magnetization modes remain simi-
lar. However, two profile modifications can be observed: (i)
the magnetoelastic coupling leads to a large amplitude of the
uz component, which is not present in uncoupled LCLWs;
(ii) the ellipticity of the magnetization precession is reduced,
since the relative intensity of the mz component with respect to
the my component is increased, especially for the n1-A0 mode
at 10.9 GHz.

D. Symmetry of magnetic and elastic mode profiles
and the impact on the magnetoelastic coupling

In the previous section, we discussed dispersion relations
and mode profiles of confined magnetoelastic waves in narrow

CoFeB waveguides. A closer look at the dispersion relations
in Fig. 3 reveals that the magnitude of the magnetoelastic
gap strongly depends on the interacting elastic and magnetic
waves. To shed light on the influence of the mode profiles
of uncoupled waves on the magnetoelastic interaction, the
system can be decomposed into magnetic and elastic sub-
systems, which interact via the magnetoelastic field hmel and
the magnetoelastic force f mel. The magnetoelastic force f mel
originates from the spatial variation of the magnetization as
described by Eq. (A13) in Appendix. In the linear regime and
for a waveguide geometry, it is given by

fmel = B2

⎡
⎣ ∂my

∂y
ikxmy

ikxmz

⎤
⎦. (24)

Hence, fx ∝ ∂my/∂y and fy,z ∝ my,z with my,z of the form in
Eq. (16). The mode profiles are characterized by trigonometric
functions, and thus derivatives of even mode profiles lead to
odd mode profiles and vice versa. Moreover, a symmetric
(antisymmetric) fx component is complemented by antisym-
metric (symmetric) fy and fz components, which share the
symmetry of the dynamic magnetization.

The magnitude of the elastodynamics generated by a me-
chanical force is proportional to the overlap integral between
the resonant displacement mode profile and the applied force.
Hence, the generation efficiency of the jth elastic mode by the
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Large overlap

Large overlap

hy(A0)

my(n1)

fx(n1)

ux(A0)

uy(A0)

fy(n1)

uz(A0)

fz(n1)hz(A0)

mz(n1)

MEL coupling between A0 and n1

FIG. 8. Graphical explanation of the coupling between the magnetic n1 and elastic A0 modes. The profiles of the magnetization and
magnetoelastic force corresponding to the magnetic n1 mode are plotted as well as the profiles of the displacement and magnetoelastic field
corresponding to the elastic A0 mode.

ith spin wave mode is given by

ξ
mag→el
i, j ∝

∣∣∣∣
∫

V
u∗

j · f mel,idV

∣∣∣∣, (25)

where the asterisk denotes the complex conjugate, and V is
the volume of the system. As discussed in Sec. II A, A-type
LCLWs possess antisymmetric ux and symmetric uy com-
ponents, whereas S-type LCLWs possess symmetric ux and
antisymmetric uy components. Hence, odd magnetic modes
with symmetric magnetization profiles entail magnetoelastic
forces that strongly overlap with A-type LCLWs. This is il-
lustrated in Fig. 8, which shows profiles of the displacement
components of an A-type LCLW as well as the magnetoelastic
force f mel generated by an n1 CBVSW. The corresponding
profiles for S-type LCLWs are shown in Fig. 9.

Conversely, the elastodynamics generate a magnetoelas-
tic field that interacts with the magnetization. According to
Eq. (A12), the magnetoelastic field for a waveguide geometry
in the linear regime is given by

hmel = − 1

μ0Ms

⎡
⎣ 2B1ikxux

B2
(

∂ux
∂y + ikxuy

)
B2ikxuz

⎤
⎦. (26)

For a waveguide magnetized along x̂, hx has no influence
on the magnetization dynamics as it generates no magnetic
torque. By contrast, the hy and hz components exert a torque
on the magnetization and depend on the displacement profiles
(see Figs. 8 and 9 for A-type and S-type LCLWs, respectively).

More specifically, the hy component depends on both the ux

and uy components, whereas the hz component only depends
on uz. This indicates that LCLWs and P waves couple dif-
ferently to the magnetization. Whereas LCLWs generate an
hy component, P waves couple through the hz component.
The coupling to LCLWs is complicated by the two terms in
hy, which are proportional to ∂ux/∂y and uy, respectively.
For a symmetric (antisymmetric) ux displacement profile, the
derivative is antisymmetric (symmetric) and therefore shares
the symmetry of the uy component (see Sec. II B). Hence, hy

possesses the same symmetry as uy for a LCLW.
The same symmetry considerations mentioned above hold

thus for the magnetoelastic force excitation of elastodynam-
ics. The excitation efficiency of the ith spin wave mode by the
jth elastic mode is proportional to

ξ
el→mag
j,i ∝

∣∣∣∣
∫

V
m∗

i · hmel, jdV

∣∣∣∣. (27)

Again, hx does not contribute to the dynamics as the dynamic
magnetization along x̂ is zero. Hence, Eqs. (26) and (27)
indicate that A-type LCLWs couple to antisymmetric (even)
CBVSW modes, whereas S-type LCLWs couple to symmetric
(odd) CBVSW modes. By contrast, elastic P waves interact
with CBVSW modes with the same symmetry and mode
number as the P waves themselves.

Combining both elastic and magnetic subsystems demon-
strates that there are strong mutual interactions between pairs
of elastic and magnetic waves of a given symmetry: (i) S-type

hy(S0)

my(n1)

fx(n1)

ux(S0)

uy(S0)

fy(n1)

uz(S0)

fz(n1)hz(S0)

mz(n1)

No net overlap

No net overlap
No MEL coupling between S0 and n1

FIG. 9. Graphical explanation of the coupling between the magnetic n1 and elastic S0 modes. The profiles of the magnetization and
magnetoelastic force corresponding to the magnetic n1 mode are plotted as well as the profiles of the displacement and magnetoelastic field
corresponding to the elastic S0 mode.
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LCLWs and odd CBVSW modes; (ii) A-type LCLWs and
even CBVSW modes; as well as (iii) elastic P-wave modes
and CBVSW modes with the same symmetry. The symmetry
considerations explain well the numerical results in Fig. 3,
where a high magnetoelastic gap indicates strong interaction.

It is interesting to compare the calculated magnitudes
of the magnetoelastic gaps for waveguides to bulk systems
or thin films. The strongest coupling (largest gap) for the
studied CoFeB waveguide is observed for the interaction
of the A0 LCLW and n1 CBVSW modes with a gap of
� f = 0.9 GHz. By contrast, the magnetoelastic gap for a
bulk system with identical CoFeB material parameters is
� f = 1.0 GHz [cf. Fig. 2(a)]. Furthermore, the magnetoelas-
tic gap for higher-order modes (both elastic and spin wave)
consistently decreases with increasing mode numbers. These
results suggest that the magnetoelastic interaction is reduced
by confinement in waveguide structures and that the bulk gap
represents an upper limit for magnetoelastic gaps in confined
systems.

IV. CONCLUSIONS

In conclusion, we have presented a combined analytical
and numerical study of confined magnetoelastic waves in a
nanoscale CoFeB waveguide with the static magnetization
parallel to the propagation direction. The equations of motion
for magnetoelastic waves in this waveguide geometry differ
from those for bulk or thin film systems due to the lateral
nonuniformity of the mode profiles of uncoupled elastic and
spin waves. As a result, additional coupling terms appear,
and the magnetic system also couples to longitudinal dis-
placement components, unlike for bulk systems. In addition,
the linearized differential equations indicate that only the B2

coupling constant is of importance in the linear regime. This
means that only shear strains affect the coupling, whereas the
influence of normal strains is much weaker.

The equations of motions for confined magnetoelastic
waves consist of a system of partial differential equations,
which cannot be solved analytically, especially for complex
geometries. To gain more insight into the behavior of con-
fined magnetoelastic waves in waveguides, the micromagnetic
solver mumax3 was extended to include elastodynamics as
well as the magnetoelastic coupling. This approach allowed
for the calculation of the dispersion relations of magnetoe-
lastic waves in the CoFeB waveguide. The numerical results
demonstrate that the mode-dependent magnetoelastic cou-
pling can be understood by the mode profile symmetry of
uncoupled confined elastic and magnetic waves in the waveg-
uide. In addition, it was found that the mode profiles of the
elastic and magnetic components are only weakly affected by
the magnetoelastic coupling.

The results further show that the group velocities of con-
fined magnetoelastic waves can be much larger than those of
uncoupled CBVSWs and can even be of the opposite sign.
Moreover, the numerical procedure also allowed for the anal-
ysis of the eigenstates of the system. The results indicate a
very strong decay of the dynamic magnetization from the
magnetoelastic gap regime toward the quasielastic regime. An
analogous behavior was found for the elastic displacement,

which decreases rapidly from the magnetoelastic gap toward
the quasimagnetic regime.

This work presents additional perspectives for the us-
age of magnetoelastic waves for spintronic applications, in
which information is transported via waves in waveguides
[41–44]. Considering an isolated waveguide, approaches to
couple mechanical degrees of freedom to spin waves based on
(inverse) magnetostriction are expected to generate magnetoe-
lastic waves rather than pure spin waves in magnetostrictive
waveguides. The above results demonstrate differences as
well as similarities of the magnetoelastic and noninterac-
tion systems that can provide a better understanding of the
underlying wave properties in future magnonic experiments.
Moreover, the numerical approach of extending the mumax3
micromagnetic solver paves the way for more detailed studies
of confined magnetoelastic waves, including their nonlinear
dynamics.
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APPENDIX: LINEARIZED EQUATIONS OF MOTION
FOR A WAVEGUIDE GEOMETRY

In this Appendix, linearized equations of motion are
derived for magnetoelastic waves propagating in thin mag-
netostrictive waveguides with the static magnetization along
their long axis x̂. Starting with general expressions of effective
magnetic fields and mechanical body forces for a waveguide
geometry, the equations of motion are subsequently derived.
An ansatz of a propagating wave along the waveguide leads
to the coupled homogeneous system of partial differential
equations in Eq. (A15), which describes the eigenmodes of
the system.

The constitutive equations to describe magnetoelasticity
have been presented in Sec. II A in a general form. The
magnetization dynamics are described by Eq. (8), which
includes the effective magnetic field in Eq. (9). In this paper,
we consider an effective field that consists of one static and
three dynamic contributions: a uniform static Zeeman field H0

along x̂ as well as dynamic dipolar, exchange, and magnetoe-
lastic field contributions, which can vary both in space and
time.

The dipolar field is found by solving Maxwell’s equations.
At microwave frequencies, the magnetostatic approximation
can be applied since the wavelength of spin waves is typically
much smaller than that of an electromagnetic wave at the same
frequency. As a result, the generation of a magnetic field via
the time-varying electric field can be neglected, and the mag-
netic and electric fields become decoupled [19]. Within the
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magnetostatic approximation, and in the absence of electrical
currents, the dipolar field is the solution of

∇ · Hd = −∇ · M, (A1)

∇ × Hd = 0. (A2)

The solution can be written as [19]

Hd = 1

4π

∫
V ′

D̄(r − r′)M(r′)dV ′, (A3)

with V ′ the volume of the magnetic material, and D̄(r − r′)
the tensorial magnetostatic Green’s function given by

D̄(r − r′) = −∇r∇r′
1

|r − r′| . (A4)

The general form of the exchange field can be deduced from
Eqs. (4) and (9). It can be written as

Hex = 2Aex

μ0M2
s

�M = l2
ex�M ≡ λex�M, (A5)

with � the Laplace operator and lex the exchange length. For
the magnetoelastic field, Eqs. (5) and (9) result in

Hmel = − 1

μ0

δEmel

δM
= − 2

μ0Ms

⎡
⎣B1εxxmx + B2(εxymy + εzxmz )

B1εyymy + B2(εxymx + εyzmz )
B1εzzmz + B2(εzxmx + εyzmy)

⎤
⎦ , (A6)

with mi the normalized magnetization components.
The elastodynamics are determined by the mechanical body forces, which are given by Eq. (12). Here, the total body force is

the sum of the magnetoelastic and elastic forces. For materials with cubic (or higher, including isotropic) symmetry, these forces
are given by

Fmel = 2B1

⎡
⎢⎢⎣

mx
∂mx
∂x

my
∂my

∂y

mz
∂mz

∂z

⎤
⎥⎥⎦ + B2

⎡
⎢⎢⎢⎣

mx
( ∂my

∂y + ∂mz

∂z

) + my
∂mx
∂y + mz

∂mx
∂z

my
(

∂mx
∂x + ∂mz

∂z

) + mx
∂my

∂x + mz
∂my

∂z

mz
(

∂mx
∂x + ∂my

∂y

) + mx
∂mz

∂x + my
∂mz

∂y

⎤
⎥⎥⎥⎦ (A7)

and

Fel =

⎡
⎢⎢⎢⎣

C11
∂2ux
∂x2 + C44

(
∂2ux
∂y2 + ∂2ux

∂z2

) + (C12 + C44)
( ∂2uy

∂x∂y + ∂2uz

∂x∂z

)
C11

∂2uy

∂y2 + C44
( ∂2uy

∂x2 + ∂2uy

∂z2

) + (C12 + C44)
(

∂2ux
∂x∂y + ∂2uz

∂z∂y

)
C11

∂2uz

∂z2 + C44
(

∂2uz

∂x2 + ∂2uz

∂y2

) + (C12 + C44)
(

∂2ux
∂x∂z + ∂2uy

∂z∂y

)

⎤
⎥⎥⎥⎦, (A8)

where Cij are the components of the stiffness tensor.
For a waveguide with the static magnetization along the wave propagation direction, these fields and forces can be further

simplified. The geometry is represented in Fig. 1, with the propagation direction along x̂ and the out-of-plane direction along ẑ.
The ansatz for a propagating magnetoelastic wave is described in Eq. (15) for a known magnetization profile and an unknown
displacement profile. In this geometry and with this ansatz, the dynamic dipolar field can then be approximated by [86,87]

hd = −

⎡
⎢⎣

0

P κ2
n

k2
tot

1 − P

⎤
⎥⎦M, (A9)

with

P = 1 − 1 − e−ktotd

ktotd
, (A10)

k2
tot = k2

x + κ2
n , d is the waveguide thickness, and κn = nπ

weff
, with weff the effective waveguide width. The dynamic exchange field

is given by

hex = −λexk2
totM (A11)

and the dynamic magnetoelastic field becomes

hmel = − 1

μ0Ms

⎡
⎢⎣

2B1ikxuxmx + B2
[(

∂ux
∂y + ikxuy

)
my + ikxuzmz

]
2B1

∂uy

∂y my + B2
[(

∂ux
∂y + ikxuy

)
mx + ∂uz

∂y mz
]

B2
(
ikxuzmx + ∂uz

∂y my
)

⎤
⎥⎦. (A12)
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Analogously, the magnetoelastic and elastic body forces, respectively, can be written as

fmel = 2B1

⎡
⎢⎢⎣

mx
∂mx
∂x

my
∂my

∂y

0

⎤
⎥⎥⎦ + B2

⎡
⎢⎢⎣

mx
∂my

∂y + my
∂mx
∂y

my
∂mx
∂x + ikxmxmy

mz
(

∂mx
∂x + ∂my

∂y

) + ikxmxmz + my
∂mz

∂y

⎤
⎥⎥⎦ (A13)

and

f el =

⎡
⎢⎢⎣

−C11k2
x ux + C44

∂2ux
∂y2 + (C12 + C44)ikx

∂uy

∂y

C11
∂2uy

∂y2 + −C44k2
x uy + (C12 + C44)ikx

∂ux
∂y

C44
(−ikxuz + ∂2uz

∂y2

)
⎤
⎥⎥⎦. (A14)

Substituting these terms in the equations of motion (8) and (11) and neglecting damping as well as second-order terms results
in linearized equations of motion for the displacement and magnetization, which can be written as

−ρω2ux = −C11k2
x ux + C44∂

2
y ux + (C12 + C44)ikx∂yuy + B2

Ms
iκnmy,

−ρω2uy = C11∂
2
y uy − C44k2

x uy + (C12 + C44)ikx∂yux + B2

Ms
ikxmy,

−ρω2uz = −C44
(
k2

x uz − ∂2
y uz

) + B2

Ms
ikxmz,

iωmy = −ωmzmz − γ B2ikxuz,

iωmz = ωmymy + γ B2(ikxuy + ∂yux ). (A15)

Reordering the terms leads to⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v2
‖k2

x − v2
⊥∂2

y − ω2 −iv2
	kx∂y 0 iκnB2

ρMs
0

−iv2
	kx∂y v2

⊥k2
x − v2

‖∂
2
y − ω2 0 ikxB2

ρMs
0

0 0 v2
⊥
(
k2

x − ∂2
y

) − ω2 0 ikxB2
ρMs

γ B2∂y γ iB2kx 0 ωmy −iω
0 0 γ B2ikx iω ωmz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

wn(x, y, t ) =

⎡
⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎦, (A16)

with v2
‖ = C11/ρ, v2

⊥ = C44/ρ, v2
	 = (C12 + C44)/ρ, Ci j is the stiffness constants, ∂y = ∂/∂y,

ωmy = ω0 + ωM

(
λexk2

tot + P
κ2

n

k2
tot

)
, (A17)

ωmz = ω0 + ωM
(
λexk2

tot + 1 − P
)
. (A18)
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