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Abstract: A variety of mechanisms can induce distortions in the output signals of a homodyne
laser Doppler vibrometer (LDV). In this paper, the nonlinear LDV distortions caused by a strong
second-order ghost reflection originating from lens flares are theoretically explained and analyzed.
We propose a simple compensation method to mitigate this distortion. The performance and
limitations of this method are also explained both in simulation and in experiment.
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1. Introduction

Laser Doppler vibrometry (LDV) is a non-contact vibration measurement method with picometer
or even sub-picometer displacement resolution over a large frequency range [1], by taking
advantage of the Doppler effect of a coherent light beam generated from a laser source. LDV
has been used in many applications, such as aerospace [2], hearing [3], cardiology [4], rock
fall risk evaluation [5], photo-acoustic imaging [6] etc. Nowadays, the most commonly used
LDVs are based on discrete optics and fiber optics. These systems are usually not very compact.
However, compactness is important for many applications that have a constrained space (e.g.
implanted hearing aid) or require a limited weight (e.g. LDV carried by a drone). Based on
this motivation, we have developed several compact LDV systems on a silicon-based photonic
integrated circuit (PIC) [7,8]. For example, a packaged 6-beam LDV core with a laser source
and an optical isolator has a footprint of 2.5×5 mm2 [8]. Additionally, the cost of the PIC-based
LDV sensors may also be strongly reduced for moderate or high volume productions thanks
to the use of the CMOS compatible technologies [9]. A major difference between the current
PIC-based LDV and conventional LDV is that the PIC LDVs are working in a homodyne mode
while conventional LDVs usually use a frequency shifter to realize a heterodyne detection [10].
The frequency shifter is usually an acousto-optic modulator (AOM), and it is placed in one arm
of the optical interferometer in the LDV to ensure a constant frequency difference between the
measurement and reference signals. The frequency shift is often around tens of megahertz. The
use of the frequency shifter can avoid the impact of low-frequency electronic noise (e.g. 1/f
noise) and hence improve the sensitivity. However, the AOM is bulky and power-hungry, which
is not compatible with applications that require very compact size and low power consumption.
The frequency shifter also sets a boundary of the detection bandwidth in the heterodyne system.
On the contrary, homodyne detection doesn’t have such a carrier frequency, therefore it is much
simpler and less power-hungry.

It is known that many factors, such as imperfect quadrature detectors, can cause nonlinear
signal errors (quadrature fringes) in optical interferometry techniques such as LDV [11–13].
These distortions can be corrected with well-chosen post-processing algorithms. One common
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correction method, reported by Heydemann [11], can correct most nonlinear errors originating
from within the LDV itself (not related to the condition of the target). In this paper, we will
discuss a different distortion mechanism induced by a ghost reflection from the lens that cannot
be solved by the Heydemann correction. This distortion happens because some of the sensing
optical beams travel between the lens and the device under test (DUT) multiple times before
reaching the LDV receiver. As a result, the main reflection signal that is only reflected once by
the DUT will be mixed with light beams that have reflected twice (second-order), three times
(third-order) or more times from the DUT. Since the high-order ghost reflections have twice or
more times the Doppler frequency shift in the main reflection, the corresponding errors in LDV
signals will behave differently from the nonlinear errors handled by Heydemann correction. The
nonlinear errors caused by these ghost reflections have been studied by Hu et al. [14–16], both
in heterodyne and homodyne interferometers. They have developed several models to analyze
the periodic nonlinearities originated from different orders of the ghost reflections. Based on
these models, they analyzed the impacts of the ghost reflections on ultra-precision displacement
measurement interferometers. In these systems, the ghost reflections are typically very weak.
But there has been no report about the compensation algorithms to these errors.

In this paper, we will focus on the impacts of strong second-order ghost reflection on the
homodyne PIC LDVs as well as on the compensation method to mitigate the problem. By
"strong" second-order reflection, we mean that the optical powers of the second-order reflections
are strong enough to distort the LDV signal significantly, but are still moderately lower than those
of the main reflection (between 1% and 70%). These reflections usually appear when the DUT
is not aligned to the image plane so that the main reflection is much weaker than the optimal
value. One typical situation happens when the DUT is not fixed well. As the measurement time
increases, the loose DUT may move away from the best-aligned location. When the second-order
ghost reflection is directed to the sensor as a result of the DUT movement, the strength of the
major reflection is usually also considerably reduced. In this case, the LDV signal will be
distorted by the second-order ghost reflection. Based on the experience of the authors, this
is not a rare phenomenon, but it may be ignored if the operators don’t check the updated IQ
circles frequently. Our method can compensate for these distortions after the measurements,
so as to avoid the repetition of some measurements which are difficult or time-consuming to
realize. Theoretically, the compensation method can work for very weak second-order ghost
reflections (<1%). However, deviations can be introduced by some algorithms used in the
current compensation code, which makes it not practical for compensating signals with very
weak reflections.

In most cases, especially when the DUT surface diffuses light, the strengths of third- and
higher-order ghost reflections are much weaker than the second-order ghost reflection, since
higher-order ghost reflections experience more times of diffusing. As we will explain later in
this paper, the distortion phenomena of the second-order ghost reflection are different from
those of the higher-order ghost reflections. Based on the difference, we can tell that most
non-linear deviations in our measurements are mainly associated with the second-order ghost
reflection. Therefore, compensation algorithms for higher-order reflections, which are generally
more complicated, are not required in these cases.

We will briefly introduce the working principle of the homodyne PIC LDV and the impact of a
strong second-order ghost reflection in section 2. In section 3, the compensation method will be
introduced and the corresponding performance will be theoretically studied. In Section 4, an
experiment that demonstrates the existence of the second-order reflection and the performance of
the compensation method will be explained. The final part is the conclusion.
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2. Working principle of the homodyne LDV and different distortion mechanism

The basic configuration of a homodyne PIC LDV is a laser interferometer (typically a Mach-
Zehnder interferometer) with one arm used for vibration signal retrieval (see Fig. 1(a)). Light
generated from the laser source is sent to the interferometer fabricated in the PIC and is split into
two parts by an optical splitter. One part is the measurement signal which is sent to the DUT
and which retrieves its movement information according to the Doppler effect, while the other
part is the reference signal, which is mixed with the reflected measurement signal to generate an
intensity change (beating effect) via an optical combiner. The photocurrent of the photodiode
(PD) that receives the combined optical signal is expressed as

Ipd(t) =
η

4

(︂
|a|2 + µ2 |b|2 + 2µab · cos(θ(t) + θ0)

)︂
,

where η represents the responsivity of the PD, a and b represent the phasor amplitudes of the
reference signal and measurement signal (before sending out from the LDV), respectively, µb is
the amplitude of the reflected signal collected by the LDV receive antenna, θ(t) is the Doppler
phase shift introduced by the movement of the target, and θ0 is the constant phase difference
between the reference and measurement signals. In the on-chip homodyne LDV, the optical
combiner for the reflection and reference signals is usually realized by a 90-degree optical hybrid
[17] with four unique PDs connected to its four outputs [7]. With this combiner, one can obtain
four signals, with θ0 = θconst + kπ/2, k = 1, 2, 3, 4. By obtaining the difference of the two PDs
with opposite phases (i.e. pair 1: k = 1 and k = 3, pair 2: k = 2 and k = 4), one can get two
signals which are called I and Q signals:

I(t) = ηµab · cos (θ(t) + θconst) ,
Q(t) = ηµab · sin (θ(t) + θconst) .

Fig. 1. (a). The configuration of a typical homodyne PIC LDV. (b) the Lissajous curve of I
and Q signals with different distortions. Blue: no distortion; red: with DC drift; orange:
with phase errors and imbalanced responsivities in PDs.

The Lissajous curve of the IQ signals is an important tool to understand the performance of
a homodyne LDV. An ideal IQ curve is a circle with the center on the origin of the coordinate
system (blue curve in Fig. 1(b)). The phase of each point of the IQ curve is θ(t) + θconst, which
corresponds to the Doppler phase change in the measurement arm. The radius of the IQ circle
equals ηµab, which can be used to estimate the measurement signal reflection strength (µb)2.

Many distortions can be directly seen in the IQ circle. For example, the spurious reflection
from on-chip antennas or lenses or imbalance in the PD responsivities can cause a DC drift of
the IQ curve. The red curve in Fig. 1(b) shows an IQ curve with a spurious reflection that has
the same amplitude as the reflection signal (the phase of the spurious reflection is set as π/4).
Another common problem is that the IQ circle is an ellipse instead of a circle. This is generally
caused by the phase errors in the 90-degree optical hybrid or uneven responsivities of PDs. The
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orange curve in Fig. 1(b) shows an IQ curve with 5◦ phase errors in both I and Q channels and
1% responsivity change in one of the PDs. In these plots, we assume µb = 0.01 × a. These
errors can be compensated with the Heydemann correction. Generally speaking, the Heydemann
correction uses a least-square fitting algorithm to find the eccentricity, center, and rotation angle
of the ellipse. With these parameters, we can calculate the corrected I and Q signals without
distortions [7]. Note that the change of laser wavelength can also impact the phase errors of the
optical hybrid [17]. Therefore, if the wavelength changes during the measurement, one needs to
redo the Heydemann correction frequently for long signal recovery.

However, in some measurements, e.g. when the target a diffusing aluminum surface, it is found
that the IQ curve is not a circle, but a cardioid (see Fig. 2(a)). As a result, the demodulated signal
of the LDV will have extra errors because of this IQ shape [15]. It is also found that the shape of
the IQ curve changes as the location of the DUT and the rotation angle of the lens change, which
means it is not a phenomenon that is only associated with the LDV circuit itself. This effect is
actually caused by the reflections that travel twice between the sensor and the DUT (second-order
ghost reflection). The optical lens that is used to focus light on the target may not be perfectly
anti-reflective. Additionally, the boundaries of the lens also scatter light reflectively. As a result,
some part of the light that has been reflected by the DUT once can be sent back to the DUT again
(see Fig. 2(b)) and is then sent to the LDV receiving antenna. The second-order ghost reflection
carries a phase shift of 2θ(t) and is mixed with the main reflection. Similarly, there are also third-
and higher-order ghost reflections. The ghost reflections are not significant when the DUT is at
the image plane of the antenna, in which case the main reflection is very strong and dominant.
But they become much stronger and clearer when the DUT moves away from the best reflection
location, being the image plane.

Fig. 2. (a) A measured IQ curve that looks like a cardioid. (b) The cause of the cardioid IQ
curve: second-order ghost reflection by the lens-air interface.

Now we only consider the second-order reflection, the phasor of the reflection signal can be
described as

I(t) + j · Q(t) = ηµ1ab · exp(jθ(t)) + ηµ2ab · exp(j2θ(t) + jθ2) (1)

where µ1b and µ2b are the phasor amplitudes of the main reflection and second-order ghost
reflection, respectively, and θ2 is the phase difference between the second-order ghost and main
reflections. Depending on the ratio between the second-order and the main reflections, the shape
of the IQ curve varies (Fig. 3(a)). The rotations of the IQ curves are determined by the phase
difference θ2 (Fig. 3(b)).

The IQ curve can be fully described by a shifted Limaçon curve. Like a Limaçon, the shape
of the IQ curve has different types: when µ2/µ1 is between 0 and 0.25, the shape is a dimpled
Limaçon (purple plot in Fig. 3(a)); when µ2/µ1 is between 0.25 and 0.5, the shape becomes a
cusp (orange plot in Fig. 3(a)); it is a cardioid when µ2/µ1 = 0.5; when µ2/µ1 is larger than 0.5,
the shapes will become looped and hence have a crossing point (blue and red plots in Fig. 3(a)).
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Fig. 3. Plots of the IQ curves based on the Eq. (1). (a) The IQ curves of LDV signals with a
second-order ghost reflection with different strengths (b) The IQ curves of LDV signals with
different phases (θ2) between the main reflection and the second-order ghost reflection when
µ2/µ1 = 0.8. In all plots, it is assumed that µ1b/a = 0.01.

We can see that it is difficult to notice the impact of the second-order ghost reflection when µ2/µ1
is less than 0.25. When the main reflection is weak because of defocusing, the second-order
ghost reflection can be relatively strong. All these shapes can easily be found in real experiments.

The demodulated signals with different µ2/µ1 values are shown in Fig. 4(a). It can be seen
that the error values are different for different displacements. The impact of the second-order
ghost reflection can be estimated by the root-mean-square (rms) error of the demodulated signal
w.r.t. the original signal, which is defined as dev = rms(θdemo(t) − θ(t)), where θdemo(t) is the
demodulated phase of the signal and θ(t) is the actual phase caused by the movement of the target.
In Fig. 4(b), we show the error values for different µ2/µ1 ratios for a 50 Hz sinusoidal vibration
signal with different amplitudes (half-amplitude Ah = 2 µm, 4 µm, 6 µm, 8 µm and 10 µm.).
The wavelength used for sensing is λ = 1550nm. The internal LDV errors are assumed to be
absent in these simulations. It can be seen that the phase error increases with the µ2/µ1 value.
From the data in Fig. 4(b), we estimate that the standard deviation of the error values, in this
case, is less than 1.5% for different vibration amplitudes, providing that the vibration amplitudes
are much larger than half of the laser wavelength. For vibrations with small amplitudes, the
error values will depend on the constant phase difference θconst. Currently, the errors are shown

Fig. 4. Simulated signal errors caused by the second-order ghost reflection based on Eq. (1).
(a) Demodulated signal error for two different µ2/µ1 ratios. (b) The phase errors of the
demodulated signal as a function of the µ2/µ1 ratio, for vibrations with half-amplitude
Ah = 2 µm, 4 µm, 6 µm, 8 µm and 10 µm. The wavelength of the sensing signal is 1550 nm.
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as phase errors with the unit of rad. To convert them to displacement errors, one can use the
formula derived from the Doppler effect d(t) = λθ(t)/4π. For example, a phase error of 0.1
rad corresponds to a displacement error of 12.3 nm.Besides the second-order ghost reflection,
there can also be third- or high-order reflections. Compared to the second-order reflection, a
third-order reflection leads to a different and more complicated shape in the IQ curve. Several
examples are shown in Fig. 5(a), where the phasor amplitudes of the third-order ghost reflection
are represented by µ3b. When the target is a mirror, there is a great chance to find strong third- or
high-order ghost reflections. However, if the target is a diffuse reflector, which is the case in a lot
of LDV applications, the loss of each round trip between the lens and the DUT is much higher.
As a result, the strengths of the third- or higher order-reflections will be much weaker than that of
second-order reflection. We will focus on the situation where only second-order ghost reflections
are dominant, so the third and high-order ghost reflections will not be discussed further in this
paper.

Fig. 5. Plots of the IQ curves calculated based Eq. (1). (a) The IQ curves with both second-
and third-order ghost reflections. A third-order reflection ηµ3ab · exp(j3θ(t)) is added to
Eq. (1). It is assumed that µ3/µ1 = 0.5. (b) The IQ curves when the ratio of the second-order
ghost reflection and the main reflection becomes stronger while µ2 is kept constant.

One thing to notice is that the strength of the second-order reflection can be much stronger
than the main reflection in some special cases. That usually happens in a situation that the main
reflection is strongly defocused and thus becomes quite weak. As is seen in Fig. 5(b), the region
encircled by the crossed part of the IQ curve becomes larger as µ2/µ1 ratio increases. When
µ2/µ1>5, we may mistakenly calculate the Doppler phase change to be twice the expected value.
It is difficult to notice this error if it exists during the entire period of the measurement. However,
if a good alignment is made at the beginning of the measurement, it is possible to identify the
evolution of this error and remove its corresponding impact.

The zero-order reflection is the reflection directly reflected from the optics back to the LDV
circuit, so it doesn’t have any Doppler frequency shift. Therefore, the zero-order reflection is
considered as a part of the spurious reflection, and it can be compensated with Heydemann
correction.

3. Compensation algorithm for a strong second-order ghost reflection

To compensate for the errors caused by a strong second-order ghost reflection, one needs to figure
out the values of b1 = ηµ1ab and b2 = ηµ2ab. The IQ signals are usually not able to be expressed
as Eq. (1) because of various problems, such as the difference in PD responsivities, spurious
reflections (zero-order ghost reflection), and phase errors in the 90-degree optical hybrid. These
problems will lead to DC drifts and zero-order shape distortions of the IQ curve similar to what
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is shown in Fig. 1(b). When there is no DC drift and zero-order shape distortions in the IQ
curve, the IQ signals that are distorted by the second-order ghost reflection can be expressed as
in Eq. (1). Then, it is possible to retrieve the values of b1, b2 and θ2 by solving the following
equation using the measured I and Q data

R4 − R2 · (b2
1 + 2b2

2) − 2b2b2
1I cos(θ2) − 2b2b2

1Q sin(θ2) + (b2
2 − b2

1)b
2
2 = 0 (2)

In this equation, R2 = I2 + Q2. This equation can be solved using numerical methods, such
as linear fitting. However, if there is an unknown DC drift or shape distortion, solving the
aforementioned equation is not an easy task. We propose a different method, based on the fact that
the IQ curve is axisymmetric. Note that the IQ shape in Fig. 2(a) is not completely axisymmetric,
which is caused by zero-order shape distortion originated from the internal phase errors in the
LDV. So we use the Heydemann correction to correct the IQ curve first. Then we need to find the
symmetric axis of the IQ curve. This can be done by measuring the width of the IQ curve (see
Fig. 6(a)) as a function of the rotation angle. The rotation is realized by multiplying the IQ data
with a series of rotation matrices

Mr(α) =

⎡⎢⎢⎢⎢⎣
cos(α) −sin(α)

sin(α) cos(α)

⎤⎥⎥⎥⎥⎦ (3)

with different rotation angles α ranging from 0 to 2π. One example of the width versus the
rotation angle is seen in Fig. 6(b). In this simulation, the value of θ2 is set as 50◦.

Fig. 6. Plots based on mathematical calculations. (a) The width and gap of an IQ curve
deviated by the second-order ghost reflection. (b) The width of the IQ curve as a function of
rotation angle for different µ2/µ1 values with θ2 = 50◦ for all signals.

It can be seen from Fig. 6(b) that the width has a minimum at the rotation angle of 50◦
(Fig. 6(b)) and a maximum value at 140◦. The minimal width values are the same as the gap when
µ2/µ1<0.25. These are the cases when the IQ curve is a dimpled Limaçon curve. According to
Eq. (1), the gap value equals I(0) − I(π) = 2b1. When µ2/µ1>0.25, the shape of the IQ curve
starts to become like a cardioid, therefore the minimum width will be larger than 2b1.

After obtaining the rotation angle, we will rotate the curve back to the normal direction
(θ2 = 0) by using a proper rotation matrix. As a result, the symmetric axis of the rotated curve is
Q = (max(Q(t)) + min(Q(t))/2, where max(Q(t)) and min(Q(t)) are the maximal and minimal
values of the Q values, respectively. Then the entire IQ curve is moved so as to be symmetric to
the axis Q = 0. This is done by subtracting all Q values with (max(Q(t)) + min(Q(t)))/2. In this
new curve, the value gap can be easily retrieved. Therefore, we can obtain the value of b1.
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To obtain the values of b2 and Ic, we will take advantage of two special points on the IQ curve
(Fig. 7),

[I(π/2), Q(π/2)] = [Ic − b2, b1]

[I(π), Q(π)] = [Ic − (b1 − b2), 0].

The coordinates of these two positions can be retrieved from the IQ curve since their Q values
are already known. Then we have

Ic =
b1 + I(π) + I(π/2)

2
,

b2 =
b1 + I(π) − I(π/2)

2
.

To retrieve the undistorted Doppler phase shift, we can form a vector based on the obtained
parameters

(I(t) − Ic) + j(Q(t) − Qc) = (b1 + 2b2 cos(θ(t))) · exp(jθ(t)), (4)

where Qc = 0. The value of θ(t) can be derived from the angle of this vector. However, when
b2>b1/2, the magnitude of the vector |b1 + 2b2 cos(θ(t))| can become zero when cos(θ(t)) =
−b1/2b2. This situation corresponds to the location where the IQ curve crosses (see Fig. 7). To
retrieve the right phase θ(t), one needs to change the sign of the demodulated signal when the IQ
signal crosses this point. However, it is still easy to have a phase jump in the demodulated signal
at this spot, especially when noise is present. We remove the distortion from these crossing points
by deleting the demodulated values at these positions and regenerate the signal by extrapolating
from the adjacent data.

Fig. 7. The two special points in a typical IQ curve corrupted by second-order reflections
and the crossing point of the curve when µ2/µ1>0.5.

The effects of signal compensation are simulated for two cases (µ2/µ1 = 0.4, µ2/µ1 = 0.8)
and shown in Fig. 8. It can be seen that the compensation algorithm works well when there is
no noise. Nevertheless, for the case with µ2/µ1 = 0.8, we still see several sharp spikes in the
demodulated signal with compensation algorithm (e.g. red curve at t = 0.004s). These spikes
are caused by the errors associated with the crossing points of the IQ curves. The error of the
demodulated signal with compensation as a function of µ2/µ1 is shown in Fig. 9(a). It can be
seen that the compensation works well when µ2/µ1is between 0.04 and 0.84. When µ2/µ1<0.04,
the IQ curve is very similar to a circle and our proposed demodulation may introduce errors in
these situations. For µ2/µ1>0.84, the distortions associated with the big inner-loops of the IQ
curves are not well corrected. A better algorithm to remove those distortions is required. For the
region between 0.04 and 0.84, the compensation works well and it can suppress the phase error
less than 0.05 rad (6 nm).
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Fig. 8. Simulation of the demodulated signal with/without compensations. (a) Comparison
of the demodulated signals between with and without compensations, for µ2/µ1 = 0.4.
(b) Comparison of the demodulated signals between with and without compensations, for
µ2/µ1 = 0.8. The original vibration is a sinusoidal signal with a frequency of 50 Hz and a
half-amplitude of 2 µm.

Fig. 9. Simulated rms phase deviations. (a) The phase error of the demodulated signal w.r.t.
the original signal for the case with and without compensation (without noise). (b) the phase
error of the demodulated signal w.r.t. the original signal with different noise levels.

The compensation method, however, can be impacted by noise. In Fig. 9(b) we plotted the
error of the demodulated signals with different levels of noise. It can be seen that for all simulated
cases, the compensation works when the average noise amplitude is less than 1.5% (-36dB) of the
amplitude of µ1b. When the noise gets stronger, the phase jumps in the compensation method is
the dominant factor for the nonlinear error.

4. Experiment

To show the presence of the second-order reflection in the measurement and the performance of
the compensation method, we did experiments with our on-chip homodyne LDVs [8]. The LDV
PIC has six LDV channels with an antenna spacing of 0.3 mm. We only use two of the LDV
channels (Fig. 10(a)). We use one plano-aspheric lens with anti-reflective coatings (A220-TMC,
the plano surface facing the DUT) to focus the output beam to a gold mirror with an optical
magnification of around 2 (Fig. 10(b)). Since the two measurement locations on the mirror are
quite close to each other (approximately 0.6 mm), we can assume that their received signals are
very similar. However, the amplitudes of the second-order ghost reflections to these two LDVs
can be different. We can adjust the system and enable a case in which there is strong second-order
ghost reflection to LDV 2 while the second-order ghost reflection to LDV 1 is very weak. The
laser source is a distributed-feedback (DFB) laser working at 1550 nm, with an output power of
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around 5.5 mW shared by the six LDVs. The vibration is generated by a piezoelectric (PZT)
stack glued to the back of the mirror. The peak-to-peak driving voltage is 20 V across the PZT,
and the frequency is 1 kHz. The sampling rate of the LDVs is 100 ksps.

Fig. 10. (a) The antennas of the dual LDV design, red curves stand for outgoing light and
blue curves stand for reflection light. (b) Schematic of the measurement setup to show the
second-order ghost reflection. (c) A picture of the measurement setup.

By adjusting the direction and the position of the mirror, one can change the reflection
conditions to both of the LDV antennas. It can be seen that when the reflection is strong (large IQ
curve), both IQ curves look like ellipses without the distortions induced by ghost reflections. One
such example is seen in Fig. 11(a). The IQ shape is not distorted by ghost reflections because
the system is well focused and the main reflections are dominant. The ellipse shape is caused
by the internal LDV distortions, as mentioned earlier. We registered the information of the two
ellipses and use them to correct the internal phase errors for the other cases. When the reflection
is weaker (small IQ curve), we noticed that the shapes of the IQ circles change easily as the
rotation of the mirror changes. One example is seen in Fig. 11(b), which is from the same beam.
Note that the size of IQ circle in Fig. 11(b) is smaller than that in Fig. 11(a). From the shapes
of these IQ plots we can tell that many distortions are caused by the second-order reflection.
After careful adjustment, we can find one situation in which the IQ curve for LDV 1 has an
ellipse shape (very weak second-order ghost reflection) while the one for LDV 2 has a Limaçon
shape (strong second-order ghost reflection). Both IQ curves are then phase-error corrected with
Heydemann correction by using the information obtained from the undistorted large IQ ellipses.
The corrected IQ curves are shown in Fig. 11(c) and Fig. 11(d), respectively. The Limaçon shape
in Fig. 11(c) corresponds to the one shown in Fig. 11(b). It can be noticed that the shape of
Fig. 11(c) is more symmetric than the one shown in Fig. 11(b) since it has been corrected by
using the Heydemann correction. All the IQ plots are for a time slot of 0.05 s. Within this time
slot, the IQ data travel around the center of the curve more than 100 times. Since the reflection
strength may change during the period of measurement, the thickness of the IQ curve can be
broadened as a result.

Then we used our proposed compensation method to recover the original signal of the distorted
shape. Note that we measured the signal from LDV 1 and LDV 2 at the same time, while
the signal from LDV 1 should be undistorted judging from the ellipse shape of the IQ curve.
Therefore, we assume that the demodulated signal of LDV 1 is the same as the undistorted signal
of the LDV 2. In Fig. 11(e), we plot the difference of the demodulated displacements between
LDV 2 (for the cases with and without compensation) and LDV 1 (without compensation). It can
be seen that the displacement error of the demodulated signal from LDV 2 to that of LDV 1 in the
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Fig. 11. Measurement results showing the impact of ghost reflections and compensations.
(a) The IQ curve for LDV 2 when there is a strong main reflection and a weak second-order
ghost reflection. (b) The distorted IQ curve for LDV 2 when there is a relatively weak
main reflection and a strong second-order reflection. (c) The Heydemann corrected IQ
curve for LDV 2 data shown in figure b. (d) The Heydemann corrected the IQ curve for
LDV 1, which should have a very weak second-order reflection. (e) The deviations of the
demodulated displacements for LDV 1 (without compensation) and LDV 2 (with and without
compensation)

case of without compensation is around 107 nm, while this error value becomes approximately
20 nm when we use the compensation method for LDV 2. Impact of noise may be the reason
why the compensated LDV 2 is not perfectly matched to that of LDV 1. These results show that
the compensation method works for these strong second-order ghost reflections.

The estimated deviation values of a series of experimental results with different µ2/µ1 ratios are
converted to phase deviations and are shown in Fig. 12. Since we cannot always find undistorted
signals (e.g. LDV1 data shown in Fig. 11) to compare for all these measurements, we use the
root-mean-square phase fluctuations corresponding to the high-order harmonics (except the
fundamental harmonic) in the demodulated signals. These estimated deviations are similar to the

Fig. 12. Estimated deviations for compensated measurement data and simulation data as a
function of µ2/µ1 ratio.
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real deviations when the original vibration signal has negligible power in high-order harmonics,
which is the case for these measurements. The simulated deviations obtained using the same
estimated method are also shown in the same figure. It can be seen that the deviations caused by
the second-order ghost reflections can be reduced by using our proposed compensation method
when µ2/µ1>0.1. The working range of µ2/µ1 is different from the result in Fig. 9(a) because
the half-amplitude of the vibration in this simulation is reduced to 0.6 µm, which is set to be
similar to the measured values. Since this amplitude is very close to the laser wavelength, the
error of algorithms (especially the one used to find the symmetric axis) in the compensation code
increases dramatically when µ2/µ1 becomes small (becomes more like a circle). It is also seen
that the compensated values for the experimental results are not as good as the simulated values,
that’s because the simulation doesn’t consider the impact of noise. Noise can increase the errors
of various algorithms in the code, which makes the compensation code less effective.

5. Summary and discussion

In this paper, we have analyzed the nonlinear signal errors introduced by the second-order ghost
reflection from the DUT. Though some papers have analyzed the impacts of these ghost reflections,
no compensation method has been reported, especially for relatively strong second-order ghost
reflections. A simple compensation method is proposed in this paper. The compensation
algorithm works in a situation where the second-order ghost reflection is relatively strong but
still moderately weaker than the main reflection, while other orders are negligible. In most cases
when the target is a diffuse reflector, the third- and higher-order ghost reflections are usually
very weak. Therefore, the proposed method can help to recover the signal distortions in a lot of
situations.

When no noise is considered, our current algorithm works well for signals with the µ2/µ1 ratio
lying between 0.1 and 0.84. Currently, the upper limit of the µ2/µ1 is caused by algorithms used
to search for the special points in the IQ curves (see Fig. 7), which don’t work well for IQ curves
with a big inner loop. The lower limit may be associate with the symmetric-axis finding algorithm,
which will be less accurate when the IQ curve approaches a nice circle. When noise exists, the
performance of this method can deteriorate, but it still improves the signal quality. Another
challenge with this method is that relatively strong phase jumps can happen at the crossing points
of the IQ curves, which exist when µ2/µ1>0.5. These jumps can be partially removed with
simple algorithms, but not completely. We believe better algorithms can be developed in the
future to further reduce the impacts of those jumps.

In conclusion, the current compensation method can effectively reduce nonlinear errors
introduced by second-order reflections within a certain power range. Some of the algorithms in
the compensation method should be further improved so that this method can be less sensitive to
noise and work for an even larger reflection range.
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