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Abstract. This paper introduces an evaluation to consider the convergence rate of a polygonal 

finite element (PFE) to solve two-dimensional (2D) incompressible steady Stokes flows on 

different mesh families. For this purpose, a numerical example of 2D incompressible steady 

Stokes flows programmed and coded by MATLAB is deployed. Furthermore, the mixed equal-

order PFE, i.e., Pe1Pe1, is utilised for this research. Additionally, five different mesh families, 

i.e., triangular, quadrilateral, hexagonal, random Voronoi, centroidal Voronoi meshes, are 

applied for this research. Moreover, an interesting evaluation of the CPU time for the 

performance of our proposed PFE in this research is employed as well. From these tests, 

differences in convergence rate, as well as CPU time of using Pe1Pe1 on different mesh 

families, are indicated. 

Keywords: Fluid flow computations, polygonal finite elements, Stokes equations, convergence 

rate, mixed-method. 

1.  Introduction 

Nowadays, among many potential numerical methods, e.g., finite volume method, smooth particle 

hydrodynamics, finite difference method, or finite element method (see Refs. [1-4]); polygonal finite 

element method (PFEM) is emerging as the most interesting method for fluid flow computations 

because of its special benefits in the good accuracy and high flexibility. Notably, it can be performed 

on almost mesh families, i.e., triangular, quadrilateral, random Voronoi mesh, etc. Additionally, this 

method has a desirable advantage of applying the properties of Voronoi diagrams mesh generation 

algorithms of arbitrary polygonal meshes [5, 6]. Moreover, one of the PFEM’s advantages is the better 

accuracy comparing to the quadrilateral and triangular counterparts without the high request of the 

overall mesh size [7-9]. Furthermore, this research applies the study of Wachspress [10-12] to generate 

the polygonal basis shape functions for equal-order polygonal finite element, Pe1Pe1. Besides, to deal 

with a significant bottleneck of mesh quality in using PFEM, the advanced techniques proposed in Ref. 

[6] are applied. 

mailto:truongvh.ctt@vimaru.edu.vn
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In recent years, several interesting researches successfully proposed new PFEs for fluid flow 

computations. Particularly, Talischi et al. introduce a low-order mixed PFE, Pe1Pe0, in 2014 [13]. 

Then, in 2019, T. Vu-Huu et al. proposed two new polygonal finite elements, i.e., the equal-order 

polygonal finite element, Pe1Pe1, [14, 15] and a high-order polygonal finite element, MINIPe [16]. The 

proposed elements of T. Vu-Huu et al. accept the performance on all kinds of mesh families, e.g., 

triangular, quadrilateral, hexagonal, random Voronoi (RV), centroidal Voronoi (CVT) meshes instead 

of only hexagonal, RV and CVT mesh of Pe1Pe0. Therefore, this research is to evaluate the differences 

in convergence rates of Pe1Pe1 on five different mesh families. For this purpose, three kinds of error 

norms, i.e., the error of velocity, 𝑒𝐮
𝐿2

, error of pressure, 𝑒𝑝
𝐿2

, in the approximation space 𝐿2-norm and 

the velocity gradient error, 𝑒𝑢
𝐻1

, in the approximation space 𝐻1 -norm are deployed to assess the 

convergence rate of Pe1Pe1. Finally, another interested evaluation of the CPU time of the proposed 

PFE is executed as well. For this aim, simulations with the similar of numbers of elements and the 

same of total degree freedoms (DOFs) are created to consider the difference of CPU time of Pe1Pe1 on 

the five different mesh families. 

This paper is set up as follows: the governing Stokes equations of incompressible steady flows are 

presented in Section 2. Then, Section 3 briefly shows the polygonal discretisation system of the Stokes 

equations. Section 4 presents the results and discussions of the numerical test. Finally, Section 5.   

reports the conclusions.  

2.  Stoke governing equation system 

The strong form of the Stokes equations for incompressible steady flows is [17]: 

∇𝑝 − 𝜈∇2𝐮 = 𝟎
∇ ∙ 𝐮 = 0

   in 𝛺, 
(1) 

(2) 

In which modified pressure (after dividing by water density 𝜌) is denoted by p; fluid velocity is 𝐮, 

and the constant positive kinematic viscosity is  𝜈. Then, on the boundary, 𝛤𝛺, including the Dirichlet 

boundary, 𝛤𝛺𝐷, and the Neumann boundary, 𝛤𝛺𝑁, the boundary conditions are as follow: 

𝐮 = 𝐰 on 𝛤𝛺𝐷 ,

𝜈
𝜕𝐮

𝜕𝑛
− 𝐧𝑝 = 𝐬 on 𝛤𝛺𝑁 ,

   

(3) 

(4) 

In which the outward-pointing normal is denoted by 𝐧. Then, 𝜕𝐮 𝜕𝑛⁄  denotes the derivative in the 

normal direction. The weak form of Eqs. (1)-(4) becomes: 

∫ 𝐯 ∙ (−𝜈∇2𝐮 + ∇𝑝)d𝛺
𝛺

= 0 ∀ 𝐯 ∈ 𝐇0
1(𝛺),

∫ 𝑞∇ ∙ 𝐮d𝛺
𝛺

= 0 ∀ 𝑞 ∈ 𝐿0
2 (𝛺),

 

(5) 

(6) 

where 𝐯 and 𝑞 are the basis shape functions representing for velocity and pressure, respectively. Hence, 

the weak form becomes: 

𝜈 ∫ ∇𝐮: ∇𝐯d𝛺
𝛺

− ∫ 𝑝(∇ ∙ 𝐯)d𝛺
𝛺

= ∫ 𝐬 ∙ 𝐯d𝛤𝛺
𝛤𝛺𝑁

,

∫ 𝑞(∇ ∙ 𝐮)
𝛺

d𝛺 = 0,
 

(7) 

(8) 

in which the diffusion and convection term are denoted by 𝜈 ∫ ∇𝐮
𝛺

: ∇𝐯d𝛺  and ∫ (𝐮 ∙ ∇𝐮) ∙ 𝐯d𝛺
𝛺

, 

respectively.  
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3.  Polygonal discretisation system 

In this research, the equal-order mixed PFE, i.e. Pe1Pe1, is applied by a similar set of basis functions 

for both velocity {𝛟𝑗} and pressure field {𝜓𝑘} as follows: 

𝐮ℎ = ∑ 𝐮𝑗𝛟𝑗

𝑛𝑢

𝑗=1

+ ∑ 𝐮𝑗𝛟𝑗

𝑛𝑢+𝑛Γ

𝑗=𝑛𝑢+1

, (9) 

𝑝ℎ = ∑ 𝐩𝑘𝜓𝑘

𝑛𝑝

𝑘=1

, (10) 

where ∑ 𝑢𝑗𝜙𝑗
𝑛𝑢
𝑗=1 ∈ 𝐗0

ℎ . Then, the DOFs 𝐮𝑗: 𝑗 =  𝑛𝑢 + 1, . . . , 𝑛𝑢 + 𝑛𝛤   is set for the second term on 

𝛤𝛺𝐷.  

 

Figure 1. The mixed equal-order PFE: Pe1Pe1 [7, 16, 18-20]. 

In this research, the test functions, i.e. {𝛟𝑗} and {𝜓𝑘} are the product of the set of Wachspress 

shape functions of an arbitrary interior point 𝐯 ∈ Ω𝑒 as [6]: 

𝜙𝑖
𝑒 =

𝜑𝑖

∑ 𝜑𝑗
𝑛𝑛𝑒
𝑗=1

=
𝜑𝑖

𝜓
  with  𝜑𝑖 =

𝑆(𝐱𝑖−1, 𝐱𝑖, 𝐱𝑖+1)

𝑆(𝐯, 𝐱𝑖−1, 𝐱𝑖)𝑆(𝐯, 𝐱𝑖, 𝐱𝑖+1)
 (11) 

where the area of the triangle [𝐱𝑎 , 𝐱𝑏 , 𝐱𝑐] is 𝑆(𝐱𝑎 , 𝐱𝑏 , 𝐱𝑐), see Figure 2. (a).  

In addition, an adaption is the perpendicular Wachspress coordinates of the distances, ℎ𝑖(𝐱) , 

between point 𝐯 and sides of 𝛺𝑒  (see  Figure 2 (b)). Then, the 𝐩𝑖(𝐱) is the ratio between 𝐧𝑖  (the 

outward unit normal vector) and the distance ℎ𝑖(𝐱) to the side 𝐞𝑖 = [𝐱𝑖, 𝐱𝑖+1] of an element with 

vertices indexed cyclically 𝐱𝑛+1 = 𝐱1.  

 

 

 

(a) (b) (c) 

Figure 2. Sample of Wachspress shape functions on a hexagonal element: a) Triangles definition, b) 

Perpendicular distances, c) 3D representative sample [11, 12, 21]. 

Then, the polygonal shape functions based on the Wachspress definition become: 

𝜙𝑖
𝑒 =

𝜑𝑖

𝜑
=

𝜑𝑖̃

∑ 𝜑̃𝑖
𝑛𝑛𝑒
𝑗=1

 with 𝜑̃𝑖 = 𝑑𝑒𝑡(𝐩𝑖−1, 𝐩𝑖) (12) 

and their gradients are: 
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∇𝜙𝑖
𝑒 = 𝜙𝑖

𝑒 [𝜗𝑖 − ∑ 𝜙𝑗
𝑒𝜗𝑗

𝑛𝑛𝑒

𝑗=1
]  where 𝜗𝑖 = 𝐩𝑖−1 + 𝐩𝑖. (13) 

Because of using the equal-order mixed PFE, Pe1Pe1, causes instability problem, a special 

treatment introduced in Refs. [16, 18-20] is applied to eliminate the instability problem of  Pe1Pe1. For 

this technique, the local stabilisation matrix of a polygonal finite element with 𝑛𝑛𝑒  𝑐𝑒 is: 

𝑐𝑒(𝑝ℎ , 𝑞ℎ) = ∫ (𝑝ℎ − ∏𝑝ℎ)(𝑞ℎ − ∏𝑞ℎ)
𝛺𝑒

d𝛺

= ∑ 𝑞𝑖 ∫ (𝜓𝑖 −
1

𝑛𝑛𝑒
) (𝜓𝑗 −

1

𝑛𝑛𝑒
)

𝛺𝑒

d𝛺 𝑞𝑗

𝑛𝑛𝑒

𝑖,𝑗=1

        ∀𝛺𝑒 ∈ ℑℎ , (14) 

where the indices 𝑖 and 𝑗 of the basis functions 𝜓𝑖 and 𝜓𝑗 is get values on the element 𝛺𝑒. Then, the 

global stabilization matrix 𝐂 for polygonal mesh is: 

𝐂 = A
1

e
n

e=

∑ ∫ (𝜓𝑖 −
1

𝑛𝑛𝑒
) (𝜓𝑗 −

1

𝑛𝑛𝑒
)

Ωe

d𝛺,

𝑛𝑛𝑒

𝑖,𝑗=1

 (15) 

Finally, the discretisation Stokes system Eqs. (7) - (8) becomes: 

[𝐀 𝐁𝑇

𝐁 −𝐂
] [

𝐮
𝐩] = [

𝐟
𝐠

]. (16) 

In which, the vector-Laplacian 𝐀 is: 

𝐀 = [𝐚𝑖𝑗], 𝐚𝑖𝑗 = ∫ ∇𝛟𝑖: ∇𝛟𝑗d𝛺
𝛺

, (17) 

Then, the divergence matrix 𝐁 is: 

𝐁 = [𝑏𝑘𝑗], 𝑏𝑘𝑗 = − ∫ 𝜓𝑘∇. 𝛟𝑗d𝛺
𝛺

, (18) 

with 𝑘 = 1, . . . , 𝑛𝑝; 𝑖 and 𝑗 = 1, . . . , 𝑛𝑢. Additionally, the right-hand side terms are defined as: 

𝐟 = [𝐟𝑖], 𝐟𝑖 = ∫ 𝐬. 𝛟𝑖d𝛤𝛺
𝛤𝛺𝑁 

− ∑ 𝐮𝑗 

𝑛𝑢+𝑛𝛤

𝑗=𝑛𝑢+1

∫ ∇𝛟𝑖: ∇𝛟𝑗d𝛺
𝛺

,

𝐠 = [𝐠𝑘], 𝐠𝑘 = ∑ 𝐮𝑗  

𝑛𝑢+𝑛𝛤

𝑗=𝑛𝑢+1

∫ 𝜓𝑘∇. 𝛟𝑗d𝛺
𝛺

.

 

(19) 

(20) 

4.  Numerical tests 

In this research, a numerical example showing the incompressible steady Stokes flow is applied to 

evaluate the accuracy of the equal-order PFE on different mesh families. This example shows a two 

dimensional (2D) laminar flow in a standard square domain  𝛺 = (−1,1)2. For this test, the following 

conditions are deployed: (1) the kinematic viscosity is set by one on the whole domain; (2) the 

velocities on top (𝑦 = 1) and bottom (𝑦 = −1) of the boundary are set to zero; (3) the inflow is set as 

𝑢𝑥 = 1 − 𝑦2and 𝑢𝑦 = 0 at 𝑥 = −1; and (4) the outflow is controlled by a natural boundary condition 

at 𝑥 =  1 and −1 < 𝑦 <  1, as follows: 

−𝑝 +
𝜕𝑢𝑥

𝜕𝑥
= 0,

𝜕𝑢𝑦

𝜕𝑥
= 0.

 (21) 
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This test is generally called Poiseuille flow - an exact solution of the Navier–Stokes (N-S) 

problems. For more discussions, readers can refer to Refs. [16, 18-20, 22]. In this paper, three error 

norms are applied to assess the accuracy as well as the convergence rate of Pe1Pe1 [15, 23]: 

𝑒𝑢
𝐿2

= ‖𝐮0 − 𝐮ℎ‖0 = (∑ ∫ (𝐮0  − 𝐮ℎ) (𝐮0 − 𝐮ℎ)d𝛺
𝛺𝑒

𝑛𝑒

𝑖=1

)

1
2

, (22) 

𝑒𝑢
𝐻1

= ‖𝐮0 − 𝐮ℎ‖1 = (∑ ∫ (∇𝐮0  − ∇𝐮ℎ). (∇𝐮0  − ∇𝐮ℎ)d𝛺
𝛺𝑒

𝑛𝑒

𝑖=1

)

1
2

, (23) 

𝑒𝑝
𝐿2

= ‖𝑝0 − 𝑝ℎ‖0 = (∑ ∫ (𝑝0  − 𝑝ℎ) (𝑝0 − 𝑝ℎ)d𝛺
𝛺𝑒

𝑛𝑒

𝑖=1

)

1
2

, (24) 

in which (𝐮ℎ , 𝑝ℎ) and (𝐮0, 𝑝0) respectively are the approximation and exact solutions. Then, 𝑒𝐮
𝐿2

 and 

𝑒𝑝
𝐿2

 are the error of velocity and pressure in 𝐿2 -norm, respectively. Besides, 𝑒𝑢
𝐻1

 is the velocity 

gradient error in 𝐻1-norm. Moreover, five mesh families (see Figure 3) are generated for this test: 

   
(a) Triangular mesh. (b) Quadrilateral mesh. (c) Hexagonal mesh. 

  
(d) Random Voronoi mesh (RV). (e) Centroid Voronoi mesh (CV). 

Figure 3. Five samples of polygonal mesh families [16, 18-20]. 

 

The results of this test are firstly presented in Figure 4 that show the error norms of velocity, 

velocity gradient, pressure fields on five different mesh families. Additionally, for each mesh family, 

the computation is employed on seven progressively finer meshes to assess the convergence rate of the 

current technique. The results of error norms presented in Figure 4 shows the accuracy that is the 

function of mesh size ℎ. All convergence rates are close to the optimal values of the respective error 

norms. Even the convergence rate of pressure is faster than the expected convergence rate. For 

example, the convergence rate of pressure on triangular and quadrilateral meshes is 1.8, and on 

hexagonal, CV, RV meshes is 1.2. Moreover, the next results of convergence rates of this test are 

shown in Figure 5, which is the function of DOFs.  
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(a) 𝑒𝒖
𝐿2

− error norm of velocity. 
(b) 𝑒𝒖

𝐻1
−

 error norm of velocity gradient. 

(c) 

𝑒𝑝
𝐿2

−  error norm of pressure. 

Figure 4. Errors versus mesh size ℎ of Pe1Pe1 (the horizontal axis is set reversely). 

 

   

(a) 𝑒𝒖
𝐿2

− error norm of velocity. 
(b) 𝑒𝒖

𝐻1
−

 error norm of velocity gradient. 

(c) 

𝑒𝑝
𝐿2

−  error norm of pressure. 

Figure 5. Errors versus DOFs of Pe1Pe1. 

 

As Figure 4 and Figure 5 of this test, they show a trend of the better convergence rate in the 

triangular and quadrilateral mesh. Particularly, both mesh families provide similar convergence rates, 

i.e., 2.0 for velocity, 1.8 for pressure. However, because this example is only tested on a standard 

square domain with a horizontal laminar Stokes flow, the result could be different in the tests of more 

complicated domains and flows.  

The next aim of this research is to consider the CPU time of Pe1Pe1 for this test in the five different 

mesh families at a similar number of DOFs and the same numbers of elements, respectively, see 

Chapter 11.1a.Fig. 1.Table 1 and 0. 

Table 1. CPU time on different mesh families with the similar DOFs. 

Mesh No. Elements No. Nodes DOFs CPU Time (s) 

Triangular 9800 5041 15123 34.5032 

Quadrilateral 4900 5041 15123 20.4431 

Hexagonal 2565 5132 15369 19.6857 

RV 2600 5031 15093 18.5640 

CV 2550 5101 15303 18.9633 

 

As seen in Table 1, which shows the CPU time at similar DOFs, it is clear that triangular mesh 

need the highest CPU time for computations, then quadrilateral mesh and the other ones, e.g. 

hexagonal, RV, and CV. It causes by the much higher numbers of elements on triangular and 
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quadrilateral meshes than the others, e.g. hexagonal, CV, RV. As known, the computational cost 

depends on the number of Gauss points of the quadrature rule; the greater number of elements of 

triangular mesh leads to the higher CPU time. Furthermore, another noticeable thing in Table 1 is the 

not much difference of CPU time between quadrilateral mesh with the other ones, e.g. hexagonal, RV 

and CV, even the numbers of elements of quadrilateral mesh is double of hexagonal, RV and CV. 

Therefore, to have a deeper evaluation of this perspective, the comparison of CPU time on different 

mesh families with the similar numbers of elements is provided in Table 2 as follows.  

Table 2. CPU time on different mesh families with the similar numbers of elements. 

Mesh No. Elements No. Nodes DOFs CPU Time (s) 

Triangular 5000 2601 7803 13.9138 

Quadrilateral 5041 5184 15552 29.0871 

Hexagonal 5092 10186 30558 46.5223 

RV 5000 9595 28785 46.8393 

CV 5000 10001 30003 48.2422 

 

As see in Table 2, now we see the highest CPU time on the hexagonal, RV, CV mesh. As 

mentioned before, the computational cost depends on the number of Gauss points of the quadrature 

rule. In this research, because of using the technique introduced in Refs. [24, 25], the number of Gauss 

points on the triangle and quadrilateral is lowest. In conclusion, we can see that at the same of 

numbers of elements, the mesh of triangles spends less CPU time than the other of mesh families. 

Meanwhile, with the same numbers of DOFs, the triangular mesh needs the highest CPU time for 

computations. 

5.  Conclusion 

In this research, an evaluation to present differences in the convergence rate as well as CPU time of an 

equal-order PFE on five different mesh families. This research bases on the mixed equal-order scheme 

on polygons, Pe1Pe1 [18, 19]. As this research, we can see that the better in accuracy and convergence 

rates of Pe1Pe1 on the triangular and quadrilateral mesh. Particularly, the results on triangular and 

quadrilateral meshes provide faster convergence rates than the other mesh families, e.g., hexagonal 

mesh, RV, CVT. Moreover, as the tests of CPU time in this research, with the same of DOFs, the 

triangular mesh needs more CPU time than the other mesh families. In addition, for the same numbers 

of elements, the triangular mesh needs the lowest CPU time for computations. However, because this 

research is limited to only one numerical example, this research could be extended with the other tests 

with more complex domains and complicated flows to get more general conclusions. 
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