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Theoretical analysis of the liquid thermal structure in a pool fire 

Tarek Beji 

 

Abstract  

The paper presents a theoretical work on liquid heat-up in the case of a pool fire. It is assumed 

that the convective currents occurring within the upper layer of the liquid are induced by 

Rayleigh-Bénard instabilities that are caused by in-depth radiation. The upper layer depth has 

been estimated based on the analytical solution of a 1-D Fourier’s equation for the temperature 

with a source term for in-depth radiation. The model has been assessed against experimental data 

for a 9 cm – diameter methanol steady-state pool fire and three different liquid depths (18, 12 

and 6 mm). The general trend, i.e., increase in the upper layer depth as the bottom boundary 

temperature increases, is well captured. In order to ensure that the well-mixed upper layer is at a 

temperature near the boiling point (as suggested by the experimental data), an improvement is 

proposed based on a radiative heat balance integral method. In addition to the above, a novel 

methodology is developed for the calculation of the ‘effective’ thermal conductivity as a means 

to circumvent detailed calculations of heat transfer within the liquid.  
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1. Introduction 

Quite extensive research is carried out on the numerical modelling of liquid pool fires, given the 

potential hazard induced by these types of fires. More specifically, Computational Fluid 

Dynamics (CFD) is an advanced technique that is extensively being used for the simulation of 

pool fires. However, the current developments and applications are mostly devoted to gas phase 

aspects, e.g., combustion and thermal radiation modelling [1]. In this case, the burning 

(evaporation) rate is prescribed according to an experimentally measured value or an estimate 

based on a semi-empirical correlation. In reality, the burning rate is strongly coupled to the heat 

feedback from the flame (and, eventually, other ‘external sources’ such as the smoke layer, 

ceiling and walls in an enclosure fire). The higher the heat feedback, the higher the burning rate 

(because of a more intense liquid heat-up and evaporation) and vice versa. Therefore, in order to 

perform fully predictive simulations of liquid pool fires, the coupling liquid phase-gas phase   

must be considered. The most advanced approach would be to solve the full set of Navier-Stokes 

equations for the liquid phase (as it is the case for the gas phase), as recently attempted in [2]. 

However, a more thorough and extensive assessment of this approach is still required. 

Furthermore, such approach is believed to require prohibitive amounts of computational 

resources for ‘practical’ fire dynamics simulations, considering the resources that would have 

been already allocated for the gas phase. A significantly simpler approach consists of solely 

solving the heat-up of the liquid layer, and not the momentum equation therein, using a 1-D 

Fourier’s equation, as if it were a thermally-thick solid. By doing so, the convective currents in 

liquid fuels during pool burning, as pointed out in [2 – 3], are neglected. The idea is then to 

model ‘indirectly’ the convective currents, keeping the 1-D Fourier’s equation as a general 

framework. This has been mainly developed in [3] where the main assumption is that ‘in large 

pool fires the main source of convective motions is buoyancy-generated by in-depth radiation 

absorption’. Therefore, the work presented in [3] is mainly centered around two aspects: (1) the 

modelling of a radiative source term in the heat conduction equation, including the estimation of 

the absorption coefficients of liquids, and (2) the modelling of an ‘effective thermal 

conductivity’, which has been referred to above as an ‘indirect’ modelling of convective currents 

that enhance heat transfer within the liquid. As opposed to [3], the purpose of the present work is 

not to implement the proposed sub-models in CFD simulations and assess the latter against 

transient profiles and steady-state values of the burning rate for a wide range of liquids and pan 
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diameters. The intent is rather to take a step back and focus specifically on the thermal structure 

of the liquid and the modelling of an ‘effective’ thermal conductivity coefficient. The assessment 

of the proposed work is based on the experimental profiles of liquid temperature provided in [4], 

bearing in mind that some of the profiles discussed in [3] were ‘clearly unphysical’.       

 

2. Experimental data  

To the best of the author’s knowledge, the most comprehensive experimental work on heat 

transfer within the liquid in a pool fire is described in [4] for a 9 cm – diameter methanol steady-

state pool fire and three different liquid depths (18, 12 and 6 mm), maintaining the bottom 

boundary temperature at several values between -10 and 50°C. More specifically, the velocity 

field within the liquid fuel was determined by Particle Image Velocimetry (PIV) and the 

temperature was measured by type K thermocouple probes. A distinct two-layer thermal 

structure was depicted and estimates of the thickness of the lower layer are provided in [4]. 

Given the fact that in [4] a steady fuel level was maintained in the pool, the thickness of the top 

layer can be easily retrieved from the data displayed therein. The uniform temperature within the 

vaporizing layer was attributed to two-counter rotating vortices. The first vortex, close to the 

pool wall, is explained by the ‘buoyancy force near the pool wall and shear stress forces at the 

liquid-gas interface’. Several potential reasons are provided for the development of the second 

vortex, e.g., ‘the liquid-gas interface shear force’ or the ‘non-uniformity of local evaporation rate 

at the pool surface’. In [5], it is stated that in-depth (radiation) absorption leads to ‘in-depth 

temperatures’ higher than the surface temperature, generating thus a convective current (due to 

Rayleigh convection) that drives the mixing within the boiling layer. This phenomenon causes 

the temperature profile across the vaporizing fuel layer to be uniform. Rayleigh convection has 

been confirmed experimentally in [5] using holographic interferometry for a toluene pool fire. 

Generally speaking, the two-layer thermal structure described in [4] is suitable for ‘thin’ pools. A 

more ‘complete’ description of the liquid thermal structure is provided in [6] where, for 

sufficiently ‘deep pools’, beneath the ‘preheating layer’, there is ‘bottom fuel layer’ where the 

fuel temperature does not vary substantially, see Fig. 1. 
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  Figure 1 – Thermal structure within the liquid in the case of a pool fire.  

Based on the thermal structure displayed in Fig. 1, for ‘thin’ pools (as in [4]) the upper layer is 

the vaporizing layer and the lower layer is the preheating layer.   

 

3. Numerical modelling  

The numerical simulation of in-depth radiation has been undertaken in [5, 7] by considering a 

source term in the governing energy equation (for the liquid) where the radiative flux at a given 

depth within the liquid is derived by applying the ‘classical attenuation law’, i.e., Beer – Lambert 

law, to the radiative heat flux at the fuel surface using a mean (spectrally-averaged) absorption 

coefficient. As explained in [7], this approach generally leads to a ‘temperature inversion layer’ 

that is not observed experimentally. This is explained in [7] by the fact that ‘the onset of 

convective currents (Rayleigh effect) generated by the radiation absorption near the surface [is] 

not considered in the theoretical model’. This has been one of the main modelling aspects 

addressed in [3] and which will be recalled in the following sub-section in order to put the 

present work into context and better highlight the novelties with respect to the developments 

proposed in [3].   

3.1 Approach of Sikanen and Hostikka [3] 

In [3], ‘the one-dimensional heat conduction equation for liquid temperature is applied in the x -

direction pointing into the liquid (the point x = 0 represents the surface)’ and it reads: 

Temperature

He
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du Vaporizing Layer

Preheating Layer
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                                                                         (1) 

where ρ, k, c and T are respectively the density, the thermal conductivity, the specific heat and 

the temperature of the liquid. The variables t and denote the time and the volumetric radiative 

heat source term within the liquid, respectively. The thermal boundary condition on the top 

surface of the liquid reads: 

                                                                                (2) 

where  and  are respectively the convective and radiative heat fluxes at the surface, Lv is 

the latent heat of vaporization and is the evaporation rate. In case of internal radiation, the net 

radiative heat flux at the surface should be set to zero, as pointed out in [3].  

The key parameters of interest here are k,  and .  

The volumetric radiative heat source term in the heat conduction equation is calculated in [3] by 

solving the transport of heat radiation inside the liquid layer using a ‘two-flux’ model based on 

the Schuster-Schwarzschild approximation.  

 

Figure 2 – A schematic of in-depth radiation treatment in pool fires in [3].  

 

In-depth radiation creates a ‘volumetric heat source evenly distributed over the liquid layer 

thickness’ (see Fig. 2) and which can be expressed as [3]: 
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 (3) 

where L is the liquid layer thickness. 

Such volumetric heat source will generate convective currents which will increase heat transfer 

within the liquid. This increase in heat transfer is ‘indirectly’ modeled by increasing the actual 

thermal conductivity of the liquid, k, to the so-called ‘effective thermal conductivity’, keff, 

according to the following equation:  

  (4) 

where Nui is the Nusselt number. It is important to mention at this level that we refer here to an 

‘internal’ Nusselt number (within the liquid) and not the Nusselt number used for convective 

heat transfer at the interface between the liquid and the surrounding gas. In [3], Nui is calculated 

from a correlation for internally heated horizontal plane layer (recall here the volumetric heat 

source in Eq. (1)) with isothermal top boundary and thermally insulated bottom boundary:    

 (5) 

The variable Rai denotes the internal Rayleigh number calculated in [3] as: 

 (6) 

where g is the gravitational acceleration, β, ν and α are respectively the coefficient of thermal 

expansion, the kinematic viscosity and the thermal diffusivity of the liquid. The variable is 

a normalization constant calculated as: 

 (7) 

and the variable η is a normalized length scale associated with the source distribution and 

calculated as: 

 (8) 
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where κ is the effective absorption coefficient of the liquid. The latter parameter is calculated using 

an elaborate algorithm described in detail in [3].  

A significant source of uncertainty in the above methodology (and pointed out in [3]) is that the 

effective thermal conductivity is calculated using the full depth, L, of the liquid as a 

characteristic length scale, see Eq. (6). Whilst this approach may be suitable for a ‘relatively thin 

layer of fuel’, it might not be appropriate for deep pools where the convective currents would be 

localized in the thin top layer of the liquid.  

In the next section we propose a novel treatment of in-depth radiation in liquid pool fires.  

3.2 Novel approach  

3.2.1 Definition of the Rayleigh and Nusselt numbers 

The main idea developed in this work (and originally proposed in [8]) is to use, instead of Eq. 

(6), the ‘classical’ definition of the Rayleigh number: 

 (9) 

where T1 and T2 are respectively the bottom and surface temperatures of the fluid layer and 

 is a length scale for in-depth radiation.  

The effective thermal conductivity in the liquid pool can be calculated using Eq. (4) considering 

the case of a ‘horizontal cavity heated from below’ for which the Nusselt number is calculated, 

instead of Eq. (5), as [9]:  

  (10) 

where Pr is the liquid Prandtl number. 

As described in [8], the use of Eq. (10) is justified by the fact that in-depth radiation heats up the 

liquid beneath the surface, leading to the top portion of the liquid (subjected to in-depth 

radiation) to be hotter at its bottom (i.e., heating from below). This is somewhat counter-

intuitive, given that the flame is heating the liquid from the top. More details will be provided 

hereafter. 
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In the remainder of the paper, the objective is to develop and explain two methods for the 

calculation for (1) the length scale and (2) the temperature difference that are used to estimate 

Rai and, consequently, Nui and keff.   

3.2.2 Analytical solution of the temperature profile 

In the proposed approach we seek to find an analytical solution for heat conduction within the 

liquid, including in-depth radiation in order to derive an explicit expression for the characteristic 

length scale that is needed for the calculation of Rai and thus, Nui and keff. 

The one-dimensional equation for heat conduction at steady state and including in-depth 

radiation reads [7]: 

   (11) 

where is the radiative flux at a given depth x. The assumption that the heat flow is 

unidirectional, in the direction normal to the fuel surface, is mainly based on experimental 

observations showing that heat loss to the walls is moderate, even for pool diameters as small as 

7.4 cm (e.g., [5, 10]). The 1D assumption is most likely to be valid for pool diameters larger than 

10 cm.  

Based on the classical attenuation law, i.e., Beer’s law, the radiative flux is expressed as [7]: 

   (12) 

where is the radiative flux at the surface and κ is the mean absorption coefficient of the 

liquid.  

Inserting Eq. (12) into Eq. (11) gives:  

   (13). 

When using the boundary conditions   and  , where L is the liquid 

depth and Ts and Tb are respectively the top and bottom surface temperatures of the liquid (see 

Fig. 3), the analytical solution of Eq. (13) reads: 
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 (14). 

 

 

Figure 3 – A schematic of in-depth radiation treatment in pool fires in this work.  

An illustration of the obtained liquid temperature profile for one of the cases examined 

experimentally in [4] is displayed in Fig. 4. As expected, the peak temperature does not occur at 

the surface but at a specific depth form the surface, yielding a so-called ‘inverse temperature 

profile’ under the effect of in-depth radiation.   

 

Figure 4 – Liquid temperature profile for a case examined in [4] with the following parameters: 

Ts = 21°C, Tb = 0°C, κ = 1000 m-1, 12 kW/m2, k = 0.2 W/(m.K) and L = 0.018 m.  
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3.2.3 Method 1 based on the locus of the peak temperature 

Assuming that the well-mixed layer spans across the liquid layer from the surface up to the 

location of the peak temperature within the liquid, the analytical expression of   is 

calculated as follows: 

 (15). 

Applying Eq. (15) for the temperature profile obtained in Eq. (14) gives: 

 (16). 

Note that at depths below  (i.e., x > ) the temperature may remain higher than the 

surface temperature, as illustrated for example in Fig. 4. Nevertheless, it is monotonically 

decreasing. Therefore, according to the analytical solution displayed in Eq. (16), at  x > , 

there are no instabilities that would generate convective currents which occur when a portion of a 

cold fluid is sitting on top of a hot fluid.  

The main aspects that have been developed so far can be visualized in Fig. 3, which gives an 

overall view of the thermal structure within the liquid and in which . As displayed in 

Fig. 3, there is an ‘added layer’ of complexity in comparison to Fig. 2 in that instead of 

considering the effect of in-depth radiation using a volumetric source term distributed across the 

full depth of the liquid, we limit this effect to an upper vaporizing layer whereas the bottom 

preheating layer will be mainly heated up by thermal conduction from the upper layer and will 

not be influenced by in-depth radiation. For the sake of completeness and clarity regarding the 

work described in [3], Fig. 2 refers only to the ‘global’ treatment of in-depth radiation and does 

not infer that the liquid is internally thin. In fact, as mentioned earlier, heat transfer is solved in 

[3] using a 1-D Fourier’s equation which is discretized over the full depth of the liquid.      

From a mathematical standpoint, it is important to note that Eq. (16) gives a solution to the 
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 (17) 

where ΔT = Ts – Tb. This is because the sum of the terms between brackets in Eq. (16) (and 

which is strictly higher than zero) should be strictly lower than 1 so that the natural logarithm 

gives a negative number and, consequently, , see Eq. (16). 

Let us examine now expression (17) from a physical standpoint. If, for given constant values of 

, L,  and κ, the thermal conductivity is ‘too high’ to satisfy condition (17), this implies 

that conductive heat transfer ‘dominates’ radiative heat transfer. Subsequently, there is no onset 

of instabilities induced by in-depth radiation. The same reasoning could be followed for a ‘too 

high’ value of  or ‘too low’ values of L (i.e., thin liquid layer) or . In fact, it is interesting 

to rewrite expression (17) as: 

 (18) 

where  

 (19) 

is a (so-called here) ‘modified’ Biot number which, as opposed to the ‘classical’ Biot number, does 

not compare the relative importance of convective to radiative heat transfer in terms of resistances, 

i.e., , but rather compares the relative importance of thermal radiation with 

respect to conduction in terms of heat fluxes.  

We note also that the condition  is always satisfied. 

Before moving to the assessment of the developed method against experimental data, it is very 

important to bear in mind two important aspects related to the methodology described above:  

1) As opposed to [8], the top surface temperature is not assumed to be the boiling 
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that the peak temperature at  is equal to Tboiling (see Fig. 4). The purpose is to 

avoid peak temperatures ‘unreasonably’ higher than the boiling point if Ts is set equal to 

Tboiling.   

2) Based on the above, the surface temperature becomes an unknown of the problem. In 

fact, Ts should not be regarded as a ‘true’ top boundary condition (BC). The latter is 

imposed by setting a constant radiative heat flux. This is because the main objective in 

this work is to calculate Rai (see Eq. (9)) in order to able to calculate the Nui and thus, the 

effective conductivity. This is done if one is able to estimate the length scale for in-depth 

radiation and the temperature difference (in the method described above that would be 

Tboiling – Ts). To sum up, the inputs are  , L, Tb and the liquid fuel properties and the 

outputs are Ts and , which are then used to calculate Rai, Nui and keff.  

Equation (16) (with ) is assessed against the experimental data displayed in [4]. The 

liquid depth, L, and the bottom temperature, Tb, are provided in [4]. The thermal conductivity of 

methanol is taken as k = 0.2 W/(m.K) [3]. The steady-state radiative heat flux incident on the 

pool surface has not been measured explicitly in [4], but has been estimated in [8] to be 

, based on the empirical correlation derived in [11]. The remaining unknown in 

Eq. (16) is the effective absorption coefficient, κ. Unfortunately, to the author’s best knowledge, 

there are no direct measurements of κ for methanol in the literature. Only measurements for 

toluene, crude oil, hexane and benzene are reported in [5]. According to [3], although the 

absorption coefficient spectra was available for methanol, the assumption of blackbody radiation 

is not applicable. Therefore, the absorption coefficient of ethanol has been used instead. The 

latter varies between 35 and 1236 m-1, depending on the calculation method (two methods were 

proposed in [3]) and the path length (which was taken to vary between 1 mm and 50 mm). Given 

this wide range of values, a sensitivity analysis has been performed on the effective absorption 

coefficient, κ. The other properties of methanol required for the calculation of Nui are displayed 

in Table 1.  
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Table 1 – Properties of methanol. 

Symbol Name Value 

k Thermal conductivity 0.20 W.m-1.K-1 

ρ Density 796 kg.m-3 

c Specific heat  2.48 kJ.kg-1.K-1 

α Thermal diffusivity 10-7 m2.s-1 

β Coefficient of thermal volume expansion 1.18 ×10-3 K-1 

ν Kinematic viscosity 13.9 × 10-7 m2.s-1 

Pr Prandtl number  6.83 

Tboiling Boiling temperature 64.8 °C 

 

The results displayed in Fig. 5 (left subfigures) for the non-dimensional upper layer depth, i.e., du 

/ L, show that the ‘nearly’ constant upper layer depth of about du = 0.28 ± 0.03 L for L = 18 mm 

is best captured with κ = 500 m-1. When the bottom temperature Tb is between 35 and 50°C, a 

value of κ = 1000 m-1 gives also a good agreement with the experimental data. In fact, the 

experimental data for L = 18 mm is well bounded by the calculations with κ between 500 and 

1000 m-1 (see Fig. 5a). For L = 12 mm (see Fig. 5c), a more ‘suitable’ range for κ spans from 300 

to 500 m-1. The experimental trend for L = 6 mm has been more difficult to capture (see Fig. 5e) 

in that a value of κ = 500 m-1 appears to be ‘suitable’ for a bottom temperature Tb above 30°C. 

For Tb < 30°C, higher values of κ (up to 2000 m-1) give a better agreement. Nevertheless, the fact 

that there is no well-mixed upper layer (i.e., du = 0 mm) at Tb = 4°C could not be captured. One 

explanation could be that surface tension-driven convection, which becomes important in thin 

pools, is not considered in the current modelling.  

If one performs a linear regression analysis for the experimental and model results for Tb 

between -5 and 50°C (as performed in [4] for the experimental lower layer depths) one can see in 

Table 2 that the ‘sensitivity’ of du / L  to the bottom temperature increases substantially as the 

liquid pool gets thinner. This is only ‘moderately’ captured by the model. It is important to note 

that Eq. (16) is not a linear but a logarthmic function. Nevertheless, the behaviour of the 

proposed expression for the range of values examined in this work is ‘nearly’ linear.       
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The results displayed in Fig. 5 (right subfigures) show that Nui increases with increasing bottom 

temperature, Tb, because of the increased upper layer depth (as shown on the left subfigures), 

which is directly proportional to Nui, as can be seen from the combination of Eqs. (9) and (10). 

Furthermore, the temperature difference (not shown here) used in Eq. (9) does also increase with 

increasing bottom temperature, Tb. The right subfigures in Fig. 5 show also that Nui increases 

with decreasing κ for similar reasons. Physically speaking, a lower κ corresponds to more in-

depth penetration and thus, more pronounced convective motion. Finally, it is important to 

mention that the thinner the pool the lower the value of Nui because of the reduced buoyancy-

induced instability, which is in line with the earlier observation that most likely another 

mechanism becomes dominant, i.e., surface tension-driven convection.        

 

 

Figure 5 – Results with method 1 for a 90 mm-diameter methanol pool fire as a function of the 

bottom layer temperature. A comparison between the experimental measurements [4] and 

numerical predictions of the non-dimensional upper layer depth (left). Predicted Nui (right). 
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Table 2 – Experimental and model results (with κ = 500 m-1)  of the slope  of the linear function 

du / L = f (Tbottom). 

 Exp. data Model 

L = 18 mm 5.8 × 10-4 (°C-1) 2.4 × 10-3 (°C-1) 

L = 12 mm 5.9 × 10-3 (°C-1) 3.2 × 10-3 (°C-1) 

L =  6 mm 1.2 × 10-2 (°C-1) 4.6 × 10-3 (°C-1) 

 

An attempt to ‘improve’ the current model results is provided in the following sub-section. 

3.2.4 Method 2 based on the radiative heat balance 

The development of the ‘radiative heat balance integral method’ has started from the observation 

that using the method illustrated in Fig. 4 for the determination of the upper layer depth, in 

combination with the constraint on the peak temperature does not exceed the boiling point, 

inevitably leads to an average upper layer temperature that is significantly below the boiling 

point. Therefore the idea is to still use the temperature profile provided by Eq. (14), and find the 

‘optimal’ combination of Ts  and du that gives and average upper layer temperature that is equal 

to the boiling point: 

                        (20). 

An example of the ‘transformation’ of an ‘inverse temperature profile’ into the thermal structure 

described earlier in the paper is given in Fig. 6.     

A graphical representation of the optimization procedure is displayed in Fig. 7. Such 

optimization procedure lies on a root-finding algorithm to find the values of du and Ts which 

make the curve of the function f (du) = I – Tboiling du tangent with f (du) = 0 at the depth of the 

vaporizing (boiling) layer. It is very important to recall here that, similarly to method 1, Ts is an 

unknown of the problem that does not represent the actual boundary condition at the liquid 

surface (which is the radiative heat flux). The difference with method 1 is that the peak 

temperature is not fixed to Tboiling but is an output of the algorithm. As shown in Fig. 6, the peak 

temperature exceeds the boiling temperature so that the average temperature across the upper 
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layer becomes equal to Tboiling.  To sum up, the inputs are  , L, Tb and the liquid fuel 

properties and the outputs are Ts, the peak temperature and du, which are then used to calculate 

Rai, Nui and keff.       

 

Figure 6 – Liquid temperature profile for a case examined in [4] with the following parameters: 

Ts = 29.1°C, Tb = 0°C, κ = 1000 m-1, 12 kW/m2, k = 0.2 W/(m.K) and L = 0.018 m. The 

thick blue line represents the profile from Eq. (14) and the thin red line represents the 

temperature profile obtained by applying the suggested ‘radiative heat balance integral method’.   

 

Figure 7 – A graphical representation of the optimization procedure used in method 2 for the 

same case displayed in Fig. 6. The parameter I in the y-axis represents the right-hand side in Eq. 

(20).    
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One can state, based on the argument developed in the first method, that below the locus of the 

peak temperature in the profile provided by Eq. (14) (see blue thick line in Fig. 6) there are no 

instabilities that would lead to convective motion and mixing. Nevertheless, it is important to 

bear in mind that the interface located at the position provided by , see Eq. (16), is not a 

rigid interface (boundary) and as such it is reasonable to assume that the convection motion and 

mixing extends below it. This is the first main difference between method 1 (Eq. (16)) and 

method 2 (Eq. (20)) for the determination of the upper layer depth. The second difference lies in 

the determination of the temperature difference in the expression of the Rayleigh number, Eq. 

(9). In the first method, Ts is an unknown and the peak temperature is set equal to the boiling 

temperature, whereas in the second method both temperatures are unknown. Furthermore, 

method 2 has the advantage of yielding, by definition, the thermal structure described earlier. 

However, method 1 has the advantage of giving an explicit expression (along with the constraint 

that the peak temperature is equal to the boiling point), as opposed to the iterative ‘optimization’ 

procedure required in method 2. 

Figures 8a, 8c and 8e show that a value of κ = 1000 m-1 gives an overall good agreement with the 

experimental data for the non-dimensional upper layer depth, du / L, particularly for L = 12 mm. 

For L = 18 mm, the upper layer depth is overpredicted with κ = 1000 m-1 for Tb > 30°C. For L = 

6 mm and Tb < 35°C, the absorption coefficient had to be increased to 2000 and even 5000 m-1 to 

have a good agreement with the experimental data. Nevertheless, as mentioned for method 1, this 

can be attributed to the fact that surface tension-driven convection, which becomes important in 

thin pools, is not considered in the current modelling. The main difference in the upper layer 

depth results between the two methods is in the value of κ which gives the overall best results: κ 

= 500 m-1 for method 1 and κ = 1000 m-1 for method 2.   

Regarding the predictions for Nui, the overall same trends are observed for method 2 as for 

method 1. A more detailed comparison is provided and discussed in the next section.   

 

in depth-!
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Figure 8 – Results with method 2 for a 90 mm-diameter methanol pool fire as a function of the 

bottom layer temperature. A comparison between the experimental measurements [4] and 

numerical predictions of the non-dimensional upper layer depth (left). Predicted Nui (right). 

Before comparing the method proposed in [4] with the two methods proposed in this work, a 

sensitivity analysis has been carried out on the radiative heat flux, which was taken in the 

calculations above as 12 kW/m2. In Fig. 9, the results are displayed (for L = 12 mm and κ 

= 1000 m-1 using method 2) with values that are 25% higher and lower. It appears that the 

predictions of the non-dimensional upper layer depth and Nui are not very sensitive to the 

considered variations in the radiative heat flux.      
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Figure 9 – Influence of the radiative heat flux on the predictions (using method 2) of (a) the non-

dimensional upper layer depth and (b) the Nusselt number, Nui, for the 90 mm – diameter 

methanol pool fire with L = 12 mm and κ = 1000 m-1. 

 

3.2.5 A comparative analysis 

In order to compare the two methods proposed here with the approach proposed in [3], let us 

consider the case of a methanol liquid fuel subjected to a radiative heat flux of 20 kW/m2 (at its 

upper surface) with depths ranging from 0.005 m to 0.200 m. The temperature at the bottom 

boundary is assumed to take the value of Tb = 20°C.   

The Nusselt numbers displayed in Fig. 10a show significant deviations between the method 

proposed in this work and the method developed in [3]. The deviations increase with increased 

liquid depth. This is caused by the difference in depth over which the in-depth radiative source 

term is distributed, as visualized by comparing Figs. 2 and 3. This is also shown in Fig. 10b 

where the upper layer depth, du, predicted by the two methods is significantly lower than the 

overall liquid depth, L, used as a length scale in Eq. (6). When comparing the results between 

method 1 and method 2, it is important to bear in mind that the same absorption coefficient of κ 

= 1000 m-1 has been used here. Based on the sensitivity analysis carried out earlier in this work 

on κ for the two methods, we recall here that for the same value of κ, method 1 predicts lower 
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values of du, as confirmed here in Fig. 10b. This is the main reason for the discrepancies between 

method 1 and method 2 in the values of Nui, the calculated temperature differences used in Eq. 

(9) (and not shown here) are rather similar.        

 

Figure 10 – A comparison between the approach proposed in [3] and the two methods developed 

in this work. The liquid fuel is methanol, Tb = 20°C, κ = 1000 m-1 and 20 kW/m2.  

At this stage, it is difficult to be assertive with respect to the ‘validity’ of the calculated Nusselt 

numbers or the ‘performance’ of one calculation procedure over the other. More detailed 

experimental measurements are needed for this matter. The same comment holds for an 

important fuel property used herein, namely the effective absorption coefficient, κ. Nevertheless, 

in the meantime, one could implement the theoretical approach described herein in the 

simulation of pool fires and assess its influence on global quantities such as the peak (and steady) 

heat release rate and the time to reach the peak (or the steady-state).  

 

4. Foreseen applications in numerical modelling   

It is envisioned that the theoretical and analytical work developed here can serve as a sub-model 

in the modelling of the liquid heat-up in the case of a pool fire. More specifically, the 1-D 

Fourier’s equation would read:  

''
,r sq =!
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 (21). 

Besides the calculation procedure of keff, there are two differences with the work described in [3]. 

The first one is that the radiative heat flux would exclusively be used as a boundary condition for 

the upper (thermally thin) layer and not as a source term in Eq. (1). The second difference 

between Eqs. (1) and (21) is related to the treatment of in-depth radiation as one can visualize by 

comparing Figs. (2) and (3). The increased conductivity in Eq. (21) is only applied to the upper 

layer. Equation (20) plays in this regard a key role in the calculation procedure.  

An alternative to solving Eq. (21) would be to use the concept of two-zone modelling for heat 

transfer in the liquid phase. In such two-zone modelling framework, the volume of the two 

‘control volumes’ would be known thanks to Eq. (16) or (20). A remaining aspect to be modeled 

(regarding heat transfer) is the heat exchange between the two zones (i.e., the upper and the 

lower layer), which is out of scope of the current paper.  

Both ways of liquid heat-up modelling described above (i.e., 1-D Fourier’s equation or two-zone 

modelling) can be coupled to gas phase modelling in CFD simulations with the intent of saving 

computational resources without compromising the accuracy of the simulations, which is, in any 

case, not ‘guaranteed’ even if the full Navier-Stokes equations in the liquid phase are solved.    

 

5. Conclusion  

Fully predictive numerical simulations of liquid pool fires require a full and accurate coupling 

between the gas phase and the liquid phase. Whilst extensive research work has been (and is still 

being) carried out on the gas phase, focusing on aspects such as combustion, soot and thermal 

radiation, an accurate treatment of the liquid heat-up is still lacking.  

The purpose of the current work has been to explore a methodology for the modelling of the 

liquid phase that would not require extensive and prohibitive computational resources to perform 

‘practical’ fire dynamics simulations.  

The theoretical and analytical work carried out herein is based on the assumption that in-depth 

radiation generates hydrodynamic (Rayleigh-Bénard) instabilities leading to enhanced 
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convective heat transfer over a limited upper layer depth of the liquid. The analytical expression 

that has been derived for the upper layer depth (under the aforementioned assumption) has been 

compared against available experimental data for a 9cm-diameter methanol steady-state pool fire 

and three different liquid depths (18, 12 and 6 mm), maintaining the bottom boundary 

temperature at several values between -10 and 50°C. Encouraging results have been obtained in 

terms of qualitative variation of du with the bottom layer temperature (or temperature difference 

between top and bottom) the overall liquid depth. However, this method does not ensure a well-

mixed upper layer at a temperature near the boiling point, as suggested by the experimental data. 

Subsequently, an improvement is proposed based on a radiative heat balance integral method. In 

addition to the above, a novel methodology is developed for the calculation of the ‘effective’ 

thermal conductivity as a means to circumvent detailed calculations of heat transfer within the 

liquid.  

The theoretical and analytical work presented in this paper requires further validation by 

considering a wider range of conditions (e.g., fuel type and pool diameter). It has the potential to 

strongly support CFD simulations that rely on (1) a 1-D heat transfer treatment of the liquid 

using a discretized Fourier’s equation (as in [3]) or (2) a novel treatment of the liquid heat-up 

using a two-zone modelling in an analogous way to what is commonly done about smoke 

stratification in the early stages of an enclosure fire.       
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