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Abstract: For complex systems, it is not easy to obtain optimal designs for the hardware architecture
and control configurations. Every design aspect influences the final performance, and often the
interactions of the different components cannot be clearly determined in advance. In this work, a
novel co-design optimization method was applied that allows the optimal placement and selection
of actuators and sensors to be performed simultaneously with the determination of the control
architecture and associated controller tuning parameters. This novel co-design method was applied
to a state-space model of a downscaled active car suspension laboratory setup. This setup mimics a
car driving over a specific road surface while active components in the suspension have to increase
the driver’s comfort by counteracting unwanted vibrations. The result of this co-design optimization
methodology is a Pareto front that graphically represents the trade-off between the maximum perfor-
mance and the total implementation cost; the co-design results were validated with measurements of
the physical active car suspension setup. The obtained controller tuning parameters are compared
herein with existing controller tuning methods to demonstrate that the co-design method is able to
determine optimal controller tuning parameters.

Keywords: closed loop systems; evolutionary computation; control design; state-space methods

1. Introduction

Multi-domain engineering is becoming increasingly important in the development
of modern products and machines. The design of such complex systems has therefore
become a comprehensive design challenge. Conventionally, the different domains of
system design are addressed sequentially and thus separately. First, a mechanical engineer
makes decisions on the physical setup in accordance with properties regarding strength,
inertia, weight, etc. In addition, a choice is made on the location of actuators and sensors
and which parts of the system are correspondingly measured or controlled. Additionally,
selection of the types of actuators and sensors is done. The mechanical engineer will
try to make the correct choices of hardware components based on some assumptions
regarding the performance to be achieved and the total implementation costs. After that,
the control engineer designs a control configuration for the fixed hardware architecture. The
application of different control architecture features can be considered, while corresponding
controller tuning parameters must be determined. In contrast to the mechanical engineer,
the control engineer uses different objectives, such as system stability, reference tracking
properties, and disturbance rejection.

This sequential hardware architecture and control configuration design will cause
problems when designing complex and interacting systems, resulting in sub-optimal sys-
tem performance. First of all, in practice, the mechanical engineer and the control engineer
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almost completely ignore the tight interdependency between the hardware architecture
and the control configuration on the overall performance. For example, choices made by
the hardware engineer can already severely limit the design space of the control engineer.
On the other hand, it is not always clear what the influence of specific design choices
is on the final performance of the total system. Therefore, more and more attention is
being paid to resource-efficient system design with a growing demand for systematic and
comprehensive methods to obtain optimal co-designs of hardware architecture and control
configurations [1].

This co-designing of hardware architecture and control configuration has only been
applied to a limited extent. Examples of the co-designing of geometric properties and
controller tuning parameters for a four-bar system (using a Genetic Algorithm), parallel
robots (using a differential evolution), and machine tools (using a multilevel decomposition)
can be found in [2–4], respectively. Similarly, co-designing of controller tuning through
the use of a Linear Quadratic Regulator (LQR) method and the geometrical properties of
a pendulum system, a satellite altitude control, and an angular motor controlling a mass
position was detailed in [5–7], respectively. More recently, ref. [8] combined mechanical
design properties and the PD controller tuning for an airborne wind energy system. Other
controller tuning methods are also used in the co-designing of the controller tuning and
mechanical design variables. For example, refs. [9,10] used the H2/H∞ method to obtain
the controller tuning parameters. PID values can also be directly optimized, as shown
in [11] for a DC motor. In [12], an example is shown in which the co-design of mechanical
design variables and controller parameters was performed for a hybrid power train system
used in a hydraulic excavator.

The co-design examples mentioned so far succeed in the simultaneous optimization of
separate hardware parts and controller tuning for fixed and rather modest feedback loops.
In contrast, the author of this work recently proposed an optimization methodology to
perform a thorough co-design of the hardware architecture and control configuration [13].
The proposed methodology can perform a hardware architecture and control configuration
co-design in which more parts can be optimized at the same time, while considering more
extensive and also changing controller architectures. By doing so, a larger design space
is explored to obtain a system-level optimum. The optimization methodology does not
assume a fixed control architecture, but instead, a trade-off can be made between different
control architecture features, which has not been considered in current literature before.
Furthermore, the optimization methodology enables the inclusion of non-linear constraints
and (conflicting) objectives. These objectives will always be related to the trade-off between
implementation cost and system performance, represented in a Pareto front. This profound
level of co-design has not been applied in the current literature.

Earlier work by the author suggested using a Genetic Algorithm (GA) [14] to optimize
the proposed problem because it is one of the few algorithms that can satisfy the appli-
cable non-linear constraints and intended objectives [13]. These objectives can be freely
programmed according to, for instance, tracking error, vibrations, energy consumption,
or settling time requirements. Additionally, non-linear (mixed-integer) constraints on,
for example, maximum actuator output or hardware cost can be taken into account. A
disadvantage in applying a Genetic Algorithm is that a relatively long calculation time is
required. Genetic algorithms have previously been implemented for many applications, for
instance, to determine the optimal controller tuning parameters using a Linear Quadratic
Regulator (LQR) [15], H∞ control [16], or proportional integral (PI) control [17]. Another
field of application of Genetic Algorithms is the motion profile optimization for repetitive
machines [18].

In this paper, the novel co-design methodology is applied to a state-space model of
a downscaled active car suspension setup (see Figure 1). Over the past decades, active
suspension control technologies became an extensive research topic; hence, these systems
have a significant influence on the vehicle dynamics and the subjective driver comfort
impression [19]. An example of previous work using a Genetic Algorithm (GA) to optimize
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feedback controller values via the Linear Quadratic Regulator (LQR) method for a quarter-
car suspension can be found in [20]. Furthermore, refs. [16,21] used a Genetic Algorithm
to optimize a robust H∞ controller for a vehicle suspension control. These optimizations
were limited in the sense that only the controller tuning parameters were optimized.
Additionally, mechanical design parameters and their influences on vehicle dynamics
were optimized in [22,23]. More information on the theory and application of vehicle
dynamics can be found in [24]. The laboratory setup that was used for this study mimicked
the behavior of a car driving on a road surface while active suspension components
ensure the driver’s comfort. The test setup allowed examining a wide variety of hardware
architectures and control configurations. It is important to emphasize that the primary
goal of this setup was not to improve the current state-of-the-art in active car suspension
systems but rather to validate the presented model-based co-design methodology with
measurements on a physical setup.

The paper is organized as follows. Section 2 details the downscaled physical labora-
tory setup and the corresponding model description on which the co-design method was
validated. Subsequently, Section 3 describes the application of the co-design methodol-
ogy and its properties. The results of this model-based optimization and the validation
measurements on the laboratory setup are presented in Section 4. Finally, conclusions are
formulated in Section 5.

Linear slider
for vertical
guidance

Rear-right
spring-damper-actuator
system

Front-right
spring-damper-actuator
system

Rear-left
spring-damper-actuator

system

Front-left
spring-damper-actuator

system

Linear slider
for vertical

guidance

Figure 1. Picture of the physical full-car active suspension laboratory setup. The locations of the
sliders and the spring-damper-actuator systems are indicated in accordance with the diagram in
Figure 2. The linear slider systems for vertical guidance also had an actuator, but these were not
connected to use the laboratory setup as in an active car suspension. The springs are not present in
this picture, but were mounted to perform the mentioned tests.



Machines 2021, 9, 55 4 of 26

flf
flsK

flsB

frf frsK
frsB

frsz
rlf rlsK

rlsB

rlsz

rrsz

a

b

Y

Z

sm
θ

z

zs,fl

rrf
rrsK

rrsB

Figure 2. Full-car active suspension laboratory setup diagram.

2. Active Car Suspension Setup
2.1. Setup Properties

A full-car active suspension laboratory setup was built to emulate the behavior of the
widely available theoretical full-car suspension model [25–28]. The physical laboratory
setup is shown in Figure 1, with the corresponding laboratory setup model diagram shown
in Figure 2. The setup consisted of a central, hexagonal platform with mass ms supported
in four places by a spring, a damper, and an actuator system in parallel. The spring-damper
systems correspond to a classic car’s suspension, while the actuators represented an active
component to counteract the unwanted vibrations of the central platform. The lower sides
of the vertical rods could not translate but could rotate around their attachment points
through ball couplings. The upper sides of the vertical rods were also attached to the
central platform using ball couplings. Linear sliders were provided on the two opposite
sides of the central platform, allowing the central platform to translate along the z-axis
with a heave height z and rotate around the y-axis with an angular pitch rotation θ. This
makes it possible to emulate a car driving on a straight road.

The key parameters to represent a passenger car suspension model are not the same for
every car, but typical values can be found in previous work [19,23,25,27,29]. The laboratory
setup has a scaling factor of 1:2 compared to typical mid-size passenger car dimensions.
Therefore, the appropriate scaling laws must be applied for some fundamental parameters
(see Table 1) [30]. Although the laboratory setup parameters do not perfectly match the
downsized values of a typical passenger car, they are close enough so that the laboratory
setup will exhibit similar dynamic characteristics to a typical mid-size passenger car.

Table 1. Downscaling typical passenger car parameters to laboratory setup parameters with scaling
factor 1:2.

Downsized Value from a Lab Setup
Typical Passenger Car Parameter

Mass inertia (Iyy) [kgm2] 4000/25 = 125 104.45
Suspension stiffness (Ks) [N/m] 23,000/2 = 11,500 13,000
Damping coefficient (Bs) [Ns/m] 6000/22 = 1500 1800
Dimension front-rear (a + b) [m] 2.5/2 = 1.25 1
Body mass (ms) [kg] 1400/23 = 175 58.26
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2.2. State-Space Model Identification

The system has four inputs, namely, the four actuator forces u f r, u f l , urr, and url .
The subscripts f r, f l, rr, and rl represent the wheel location, being front-right, front-left,
rear-right, and rear-left, respectively. These system inputs are used for both the application
of the road profile disturbances d f r, d f l , drr, and drl (see Section 2.3) and the control effort
signals f f r, f f l , frr, and frl eliminating unwanted central platform vibrations. The applied
feedback control has no information on the road disturbance signals. The model inputs are
as follows:

u =


u f r
u f l
urr
url

, (1)

with u = f + d. The model states x are the horizontal position z, speed ż, acceleration z̈,
and angle θ of the central platform:

x =


z
ż
z̈
θ

, (2)

while the same system properties are used for the model output y for the identification
procedure:

y =


z
ż
z̈
θ

. (3)

As a result, the dimensions of the state-space system matrices are defined as A [4× 4],
B [4× 4], C [4× 4], and D [4× 4]. For the model identification, a multisine excitation with
sample frequency Fs = 1000 Hz containing sine frequencies from 0.01 Hz to 490 Hz [31] is
imposed on the system inputs, while the system response is measured. From the measured
input and output signals, the model matrices values are identified using the prediction
error minimization (PEM) method [32]. This model identification procedure is graphically
displayed in Figure 3.

System to be
identified

ufr

ufl

urr

url

imposed
excitation

signals

measured
response
signals

z

z

z

.

..

PEM

A
B
C
D

= [...]
= [...]
= [...]
= [...]

θ

Figure 3. Graphical representation of the model identification procedure using a prediction error
minimization (PEM) method to identify the system’s state-space matrix values based on the imposed
excitation signals and measured response signals.
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The resulting (rounded) matrix values are shown in Equations (4)–(7). Figure 4 depicts
the Bode plot of the identification measurements using the multisine signal and the Bode
plot of the identified PEM state-space model. It is important to emphasize that the model
will not perfectly match the actual setup. For example, it is known in advance that the
dampers have a non-linear character. This non-linear behavior (along with possibly other
phenomena such as static friction) is not explicitly modeled in the identified Linear time-
invariant (LTI) system.

Figure 4. Comparison of the Bode plots of the identification measurements (blue) and the identified prediction error
minimization (PEM) state-space system (red) from system inputs u to platform velocity ż (left) and system inputs u to
platform acceleration z̈ (right).

A =


−525.4 −286.7 31.40 20948

2773 4221 −462.6 −262133
27543 41914 −4603 −2603136
47.85 24.79 −2.672 −1831

 (4)

B =


−62.87 54.67 35.99 −44.83
539.0 −511.8 −529.7 585.6
5704 −5429 −5352 5825
4.168 −4.047 −3.078 3.490

 (5)

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6)

D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (7)

2.3. Road Profile

Road profile disturbance signals were applied to the actuators with the intention of the
central platform experiencing the same forces as if it was driving over a real road surface.
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A random road profile formulation was based on the ISO 8608 norm, with a “roughness
factor” indicating how smooth the road surface is. This factor ranges from 1 to 8 for smooth
asphalt layers to very rough cobblestone roads [33,34]. The road profile is defined as a
displacement disturbance, while the laboratory setup only allows force disturbance inputs.
That is why the road displacement zr is converted to a force disturbance d for the active car
suspension laboratory setup. This conversion is graphically represented in Figure 5.

Figure 6a shows an ISO 8606 road profile for a car traveling at 72 km/h for 20 s on a
road profile of 400 m with a roughness factor 5. Figure 6b shows this displacement profile
converted to an equivalent force profile, applicable to the laboratory setup. Based on a
speed of 72 km/h and a distance between the front and rear wheel axles of 1 m, there will
be a time delay of 0.05 s between the applied front and rear wheel force disturbances.

sK sB

um

sm

uK

zu

zr

zs

d
sK sB

sm

zs

Figure 5. Graphical representation of the conversion from a road displacement zr from a traditional
quarter car model to a force disturbance d for the quarter-car suspension laboratory setup.

Figure 6. (a) ISO 8608 road displacement profile with roughness factor 5. (b) Corresponding actuator
force disturbance.

3. Hardware and Control Co-Design
3.1. Objective Function

The objective of the active car suspension setup is to achieve the greatest comfort
for the driver. According to the ISO 2631 norm, the driver’s comfort is quantified as the
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perceived acceleration levels in the three principal axes [35]. The laboratory setup only
allows translation along the vertical z-axis. That is why in this case, the control objective
is to minimize the z-axis accelerations, maximizing the driver’s comfort. A fitness value
(FV) quantifies the performance according to the ISO 2631 norm by taking the rms of the
acceleration along the z-axis:

FV =

√√√√ 1
N

N

∑
n=1

z̈2, (8)

with N the total number of samples, being Tm/Ts = 30 s/0.001 s = 30,000.

3.2. Design Parameters

The design parameters for this co-design optimization problem consist of two ac-
tuator selection integers, two sensor selection binaries, two control architecture binaries,
and 12 controller tuning parameters.

The actuator selection integers iact, f and iact,r define which types of actuators are
applied to the front wheels f and the rear wheels r, respectively. Table 2 provides an
overview of the different actuator types, with each actuator type corresponding to an
associated cost and maximum actuator output. The component cost was chosen arbitrarily
and was different for each application. Therefore, this cost is not expressed in a currency
but in percentage terms relative to the most expensive setup in which all possible parts
were present.

Table 2. Possible actuator selection integer iact,... values with corresponding cost and maximum
actuator output.

Actuator Selection Integer Cost [%] Maximum Actuator Output [Nm]

0 0 0
1 5.7 1
2 14.3 2
3 42.9 5

The design space for the feedback control architecture is shown in Figure 7. This design-
space shows the attainable form of the feedback control when all capabilities regarding the
control configuration optimization are active. The second and fourth row of the C and D
matrices of the identified model are omitted for the co-design optimization procedure so
that the model has the platform position z and acceleration z̈ as outputs. PID controllers can
be applied separately to the front and rear wheels for both the displacement and accelera-
tion feedback control. The sensor selection binaries bsen,z and bsen,z̈ define the presence or
absence of a sensor on the central platform heave position z and acceleration z̈, respectively.
The cost for a displacement feedback sensor and an acceleration feedback sensor is 1.4%
and 4.3%, respectively. The control architecture binaries bCL,z and bCL,z̈ define the presence
or absence of the PID controllers for the displacement and acceleration feedback control,
respectively. Both control loops have a cost of 2.1%. The PID controller values Kp,..., Ti,...,
and Td,... are also design parameters, with the subscript referring to the corresponding
controller. For example, Td,z̈,r is the Td value of the acceleration feedback PID controller
connected to the rear actuators.
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Figure 7. Design space for the feedback control architecture with the active car suspension model in blue, road profile force
disturbance signals in green, actuator output saturation in yellow, PID controllers in red, and sensor feedback in orange.

3.3. Constraints

The number of possible actuator types determines the upper and lower bounds for
the actuator selection integers, see Table 3. For the binary design parameters, the bounds
are equal to zero and one. For the PID values, the most relaxed boundaries are determined
based on system stability margins. For example, for determining the constraint on the
upper bound of the acceleration feedback values Kp,z̈, f and Kp,z̈,r, a phase margin φPM of
50◦ is suggested to obtain a sufficiently robust control [36]. The Bode plot of the system
input u to the platform acceleration z̈ identification measurements is shown in Figure 8. To
obtain this phase margin φPM of 50°, a zero crossing of the magnitude plot must occur at a
phase angle shift of −180◦ + φPM = −180◦ + 50◦ = −130◦. The phase plot shows that a
phase angle shift of −130° occurs at ωPM50 = 19.5Hz (illustrated with a black vertical line
in Figure 8). The gain at phase ωPM50 is 25.96 dB. Thus, the corresponding gain factor is
10−25.96/20 = 0.05.

Figure 8. Bode plot of the identification measurements (blue) from system inputs u to platform
acceleration z̈. A vertical black line indicates frequency ωPM50 at which the phase plot attained –130◦.
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Table 3 provides an overview of the design parameters with corresponding lower
bound (LB) and upper bound (UB) constraints. Next to the design parameter bounds,
a maximum implementation cost can be implemented as a nonlinear constraint in which
the optimization algorithm ensures that the sum of the different components does not
exceed this maximum implementation cost. By subsequently performing this optimization
for several different maximum implementation costs, the progression of the maximum
achievable performance relative to the total implementation cost can be determined.

Table 3. Design parameters with their corresponding lower bound (LB) and upper bound (UB)
constraints.

Design Parameter LB UB Design Parameter LB UB

iact, f 0 3 iact,r 0 3
bsen,z 0 1 bsen,z̈ 0 1
bCL,z 0 1 bCL,z̈ 0 1
Kp,z, f 0 2 Kp,z,r 0 2
Ti,z, f 0 0.01 Ti,z,r 0 0.01
Td,z, f 0 0.01 Td,z,r 0 0.01
Kp,z̈, f 0 0.05 Kp,z̈,r 0 0.05
Ti,z̈, f 0 0.01 Ti,z̈,r 0 0.01
Td,z̈, f 0 0.01 Td,z̈,r 0 0.01

3.4. Genetic Algorithm Application

A Genetic Algorithm (GA) was deployed to optimize the 18 design parameters based
on the non-linear objective function and according to the mixed-integer and non-linear
constraints mentioned above. For this active car suspension application, the optimization
was performed repeatedly with a changing constraint on the maximum cost varying from
0% to 100% in 14 equal steps. By allowing a higher maximum implementation cost in
successive optimizations, more expensive and higher performing parts could be used. In
this way, the different points of the Pareto front were determined. Table 4 depicts some of
the key settings for the Genetic Algorithm.

Table 4. Genetic Algorithm settings.

Description Value Unit

Population size 200 individuals
Maximum calculation time 7200 seconds

Maximum number of generations infinite generations
Function tolerance 1−10 /

Maximum stall generations 10 generations
Crossover fraction 40 %

Elite count 20 individuals

Increasing the population size enables the Genetic Algorithm to search more points in
one generation. However, the larger the population size, the longer the genetic algorithm
takes to compute each generation. A population size of 300–500 individuals is suggested
for the type of co-design optimization problems described in this paper. Successive gen-
erations are calculated iteratively using three “reproduction functions”: “elite selection”,
“crossover”, and “mutation”. “Elite count” indicates how many individuals go directly
and unchanged to the next generation through elite selection. This value is usually around
10–20 for this type of optimization problem [37]. The rest of the GA children are determined
via crossover and mutation. A crossover child is formed by randomly combining variables
from two parent individuals. A mutation child is created by randomly making small
changes in the variables of a parent individual. The “crossover fraction” value specifies
the fraction of the remaining children determined via crossover (and not via mutation).
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For optimization problems with a discontinuous objective function, it is recommended
to set the crossover fraction low [38]. In this way, a relatively large number of mutations
occur when determining the children, resulting in a broad search space for subsequent
generations, preventing the optimization algorithm from prematurely ending up in a local
minimum. An appropriate “crossover fraction” value is 0.4 for co-design optimization
problems described in this paper. Refer to [39] for more in-depth information on the techni-
cal operation of a Genetic Algorithm. The optimization took approximately 8 hours and 18
minutes on an Intel® Xeon® CPU @ 3.10 GHz with 64 GB of RAM.

4. Results and Measurements
4.1. Model-Based Pareto Optimizations

Table 5 shows the results for every Pareto point optimization. As more implementation
costs are allowed, actuators with higher torque outputs can be applied, resulting in better
fitness values, and thus, better system performances. Each point contains an optimized
situation depending on the implementation cost. It will be up to the design engineer to
make a final decision on which Pareto point is most appropriate for the specific application.
None of the Pareto-optimized points contain a position feedback control. Thus, these results
show that applying a position feedback control gives no added value to the intended
objective. This is also why the last Pareto point does not have a cost of 100%. The resulting
Pareto front is shown in blue in Figure 9 and provides a valuable understanding of the
trade-off between the performance and the implementation cost.

Figure 9. Pareto front representing the active car suspension model optimization results, showing
the maximum achievable performance related to the implementation cost.
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Table 5. Model-based Pareto front optimization results (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

0 0 85,526 [0, 0] [0, 0] [0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
1 12.7 58,318 [0, 1] [0, 1] [0, 1] [0, 0, 0] [0.040, 0.006, 0.009] [0, 0, 0] [0, 0, 0]
2 18.7 36,633 [1, 1] [0, 1] [0, 1] [0.042, 0.003, 0.008] [0.048, 0.001, 0.009] [0, 0, 0] [0, 0, 0]
3 27.6 26,795 [1, 2] [0, 1] [0, 1] [0.043, 0.005, 0.004] [0.036, 0.007, 0.007] [0, 0, 0] [0, 0, 0]
4 36.6 17,800 [2, 2] [0, 1] [0, 1] [0.049, 0.09, 0.003] [0.049, 0.007, 0.008] [0, 0, 0] [0, 0, 0]
5 66.4 16,332 [3, 2] [0, 1] [0, 1] [0.048, 0.009, 0.009] [0.043, 0.004, 0.007] [0, 0, 0] [0, 0, 0]
6 96.3 14,404 [3, 3] [0, 1] [0, 1] [0.05, 0, 0.01] [0.05, 0.01, 0.01] [0, 0, 0] [0, 0, 0]

4.2. Validation Measurements

The results of the model-based Pareto optimizations were validated with measure-
ments on the physical laboratory setup. For each hardware and control combination of Ta-
ble 5, the system response to the same road disturbance signals was measured. Appendix A
details the differences between the model-based calculated responses and the actual mea-
sured responses for each Pareto point, see Figures A1–A14 and Tables A1–A7. Figure 10
depicts the platform acceleration z̈ measurements for every Pareto-optimized point con-
figuration. The progression of the graphs clearly shows that the measured accelerations
decrease as a higher maximum implementation cost is allowed. Figure 11 depicts the
difference in platform accelerations z̈ measurements between no active actuation and the
optimized active actuation from Pareto point 6. The figure shows that the largest accelera-
tion spike decreased from −566 to −63 mm/s2, which is a reduction of 89%. This means
that a significant increase in driver’s comfort can be achieved using the optimized active
car suspension, which is also represented in the corresponding fitness values.

Figure 10. Measured platform acceleration z̈ for every Pareto-optimized point configuration.
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Figure 11. Comparison of the measured platform acceleration z̈ for no active actuation (blue) and
with optimized active actuation (red) from Pareto point 6 for the same road disturbance signals.

Figure 12 shows a comparison of the calculated and measured front and rear wheel
actuator outputs u f and ur and platform acceleration signals z̈ for a part of the time-domain
response for Pareto point 6, demonstrating that the calculated and measured responses
match well. Table 6 shows the fitness values for the validation measurements. These valida-
tion measurement results are depicted together with the model-based Pareto optimization
results in Figure 13. The calculated and measured fitness values show better agreement
as more co-design features are allowed and the implementation cost rises. Although the
individual measured fitness values for configurations with smaller implementation costs
do not match the model-based calculated fitness values, the overall trend is similar to
that of the calculated fitness values. Therefore, conclusions on the hardware and control
co-design based on the model-based optimization values will still be valid on the physical
setup. The differences mentioned above can be attributed to modeling errors (e.g., friction
or non-linear system behavior) and inherent measurement noise levels in the actual setup
rather than limitations of the optimization algorithm.

Table 6. Fitness values for the model-based optimization results and the validation measurements.

Pareto Cost Model-Based Optimization Validation Measurement
Point [%] Fitness Value [ ] Fitness Value [ ]

0 0 85,526 156,349
1 12.7 58,318 100,677
2 18.7 36,633 46,322
3 27.6 26,795 33,926
4 36.6 17,800 20,448
5 66.4 16,332 17,489
6 96.3 14,404 15,106
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Figure 12. Comparison of the calculated (blue) and measured (red) time-domain responses for the
front wheel actuator output u f (a), rear wheel actuator output ur (b), and platform acceleration z̈
(c) for the validation measurement of Pareto point 6. The actuator outputs u... consist of the road
disturbance signals d... and the control effort signals f....

Figure 13. Comparison of the Pareto front results (blue) from the model-based co-design optimization
methodology and the Pareto point validation measurements on the physical lab setup (red).

4.3. Comparison to Existing Controller Tuning Methods

The optimized controller values are compared here to existing controller tuning
methods to validate the optimized acceleration controller tuning parameters as part of the
control configuration optimization. First, the obtained controller tuning is compared to an
LQR feedback design. In an LQR control design, relative weights are given to the state and
input variables by adjusting the diagonal matrix Q and R values, respectively. Based on
these values, a cost function minimization routine determines the values of the feedback
matrices [15]. Thus, the LQR controller design comes down to adjusting the weights of the
Q and R matrices according to the desired system behavior. However, for this application,
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a typical starting value of 1, applying the Bryson method [40], and manual adjustments of
the Q and R diagonal matrices did not lead to a feasible solution. Thus, it was found that
applying an LQR feedback control loop always leads to an unstable system, which is not
the case with the controllers from the presented co-design methodology.

Furthermore, an existing controller tuning method was applied in which the P and PI
controller values were determined based on the intended phase margins of the measured
Bode plots [41]. This measured model is further denoted as G. The controller tuning
method was applied to obtain P acceleration controllers with intended phase margins φPM
equal to 30◦, 60◦, and 90◦. Figure 14 shows the Bode plot of the identification measurements
for G in which the frequencies ωP,PM30, ωP,PM60, and ωP,PM90 for phase margins of 30◦,
60◦, and 90◦, shown with black vertical lines. The corresponding Kp,P,PM30, Kp,P,PM60,
and Kp,P,PM90 values are obtained by compensating for the differences in the magnitude
ratio at ωP,PM30, ωP,PM60, and ωP,PM90, respectively. Thereafter, each P controller was
tested on the physical laboratory setup with different actuator types for a comparison with
the obtained Pareto points from the co-design optimization methodology. Table 7 shows
the results for the existing P controller tuning method and the corresponding validation
measurements.

Figure 14. Bode plot of the identification measurements from system inputs u to platform acceleration
z̈ with frequencies ωPM30, ωPM60, and ωPM90 shown in vertical black lines to define the corresponding
P controller values.

Table 7. Existing P controller tuning and validation measurement results for different phase margins. The fitness values for
unstable system configurations are denoted by “/”.

Phase Margin (φPM ) 30◦ 60◦ 90◦

∠G(jωP,PM) −150◦ −120◦ −90◦

ωP,PM [Hz] 38.28 15.8 8.76
|G(jωP,PM)| [dB] 15.2 28.38 35.16

Kp,P,PM 10−15.2/20 = 0.17 10−28.38/20 = 0.04 10−35.16/20 = 0.02

[iact, f , iact,r] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3]
Cost [%] 18.7 36.6 96.3 18.7 36.6 96.3 18.7 36.6 96.3

Fitness value (FV) / / / 56,956 32,431 27,017 60,260 48,807 47,749
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The same approach was used to obtain PI acceleration controllers with phase margins
φPM of 30◦, 60◦, and 90◦ at corresponding frequencies ωPI,PM30, ωPI,PM60, and ωPI,PM90.
A PI controller consists of a gain, a pole at the origin, and a zero [42]. The pole will cause
a phase delay of −90◦ at the frequency ωPI,PM at which the magnitude plot |G(jωPI,PM)|
crosses 0 dB. A zero causes a phase angle shift of +90◦ for infinitely high frequencies, but it
is more realistic to design the controller requiring a phase shift of +60◦ at frequency ωPI,PM.
With this knowledge, the frequency ωPI,PM can be determined as:

∠G(jωPI,PM)− 90◦ + 60◦ = −180◦ + φPM. (9)

Figure 15 shows the Bode plot of the identification measurements in which the fre-
quencies ωPI,PM30, ωPI,PM60, and ωPI,PM90 for phase margins φPM of 30◦, 60◦, and 90◦ are
shown with black vertical lines.

Figure 15. Bode plot of the identification measurements from system inputs u to platform acceleration
z̈ with frequencies ωPM30, ωPM60, and ωPM90 shown in vertical black lines to define the corresponding
PI controller values.

Once frequency ωPI,PM is defined, Ti,PI,PM can be specified as:

∠(1 + Ti,PI,PMs)|ω=ωPI,PM = 60◦, (10)

from which the value of Ti,PI,PM is found.
Finally, the value Kp,PI,PM is determined so that the combined magnitude plot of

the system and the PI controller intersects 0 dB at frequency ωPI,PM. The obtained PI
acceleration controllers were also tested on the physical laboratory setup with different
actuator types. Table 8 shows the results for the existing PI controller tuning method and
the corresponding validation measurements.
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Table 8. Existing proportional integral (PI) controller tuning and validation measurement results for different phase margins.

Phase Margin (φPM ) 30◦ 60◦ 90◦

∠G(jωPI,PM) −120◦ −90◦ −60◦

ωPI,PM [Hz] 15.8 8.76 4.91
|G(jωPI,PM)| [dB] 28.38 35.16 40.61

Ti,PI,PM tan(60◦)/(15.8× 2π) = 0.017 tan(60◦)/(8.76× 2π) = 0.032 tan(60◦)/(4.91× 2π) = 0.056
Kp,PI,PM 10−30.6/20 = 0.030 10−39.17/20 = 0.011 10−45.35/20 = 0.054

[iact, f , iact,r] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3]
Cost [%] 18.7 36.6 96.3 18.7 36.6 96.3 18.7 36.6 96.3

Fitness value (FV) 57,396 35,146 30,643 61,144 51,611 51,049 64,982 59,839 59,761

The measured performances of these P and PI controller tuning methods are depicted
as black circles in Figure 16. As shown in this figure, no classical controller tuning method
achieved the performance obtained with the optimized values determined by the co-design
methodology proposed in this paper.

Figure 16. Comparison of the Pareto front results (blue) from the model-based co-design optimiza-
tion methodology, Pareto point validation measurements of the physical laboratory setup (red),
and measurements of existing controller tuning methods (black).

5. Conclusions

In this work, a novel co-design optimization methodology was applied to an active
car suspension laboratory setup. Initially, the setup dynamics were identified by applying
a prediction error minimization method to obtain a state-space system representation.
Actuator force disturbance signals were determined to mimic a situation in which a car
is driving over an actual road profile. The active components in the car suspension were
used to reduce the central platform vibrations so that the driver’s comfort was increased.

With the proposed co-design methodology, the optimal types and locations of actua-
tors and sensors were determined simultaneously with the optimal control architecture
and controller tuning parameters, exhibiting a profound level of co-design unprecedented
in the current literature. This novel co-design methodology uses a Genetic Algorithm im-
plementation, for which the results are presented in a Pareto front that graphically shows
the interplay between the maximum achievable performance and the implementation
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cost. These results can be of great value to a design engineer in understanding how the
maximum achievable performance varies as a function of the implementation cost.

The system configurations of the resulting Pareto points were validated with a physical
laboratory setup. These validation measurements show that the obtained model-based
trend in the Pareto front can also be observed in the corresponding measurements. The
differences in the performances between the calculated and the measured situations can
be attributed to the inherent measurement noise levels and modeling inaccuracies (e.g.,
friction or non-linear system behavior) rather than to errors in the co-design optimization
methodology. Additionally, existing controller tuning methods were applied to the physical
setup, and no existing method achieved the performance obtained with the proposed co-
design methodology. This demonstrates that the presented co-design methodology is
capable of determining the optimal controller tuning parameters.
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Appendix A. Validation Measurements

Appendix A.1. Pareto Point 0 = No Active Car Suspension

Table A1. Model-based Pareto front optimization results for Pareto point 0 (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

0 0 85,526 [0, 0] [0, 0] [0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Figure A1. Overview of the front wheel actuator output u f , rear wheel actuator output ur, and plat-
form acceleration z̈ for the calculated model-based response (red) and the response measured in the
physical setup (blue) for Pareto point 0.
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Figure A2. Zoom from 18 to 23 s of the front wheel actuator output u f , rear wheel actuator output ur,
and platform acceleration z̈ for the calculated model-based response (red) and the response measured
in the physical setup (blue) for Pareto point 0.

Appendix A.2. Pareto Point 1

Table A2. Model-based Pareto front optimization results for Pareto point 1 (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

1 12.7 58,318 [0, 1] [0, 1] [0, 1] [0, 0, 0] [0.040, 0.006, 0.009] [0, 0, 0] [0, 0, 0]

Figure A3. Overview of the front wheel actuator output u f , rear wheel actuator output ur, and plat-
form acceleration z̈ for the calculated model-based response (red) and the response measured in the
physical setup (blue) for Pareto point 1.
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Figure A4. Zoom from 18 to 23 s of the front wheel actuator output u f , rear wheel actuator output ur,
and platform acceleration z̈ for the calculated model-based response (red) and the response measured
in the physical setup (blue) for Pareto point 1.

Appendix A.3. Pareto Point 2

Table A3. Model-based Pareto front optimization results for Pareto point 2 (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

2 18.7 36,633 [1, 1] [0, 1] [0, 1] [0.042, 0.003, 0.008] [0.048, 0.001, 0.009] [0, 0, 0] [0, 0, 0]

Figure A5. Overview of the front wheel actuator output u f , rear wheel actuator output ur, and plat-
form acceleration z̈ for the calculated model-based response (red) and the response measured in the
physical setup (blue) for Pareto point 2.
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Figure A6. Zoom from 18 to 23 s of the front wheel actuator output u f , rear wheel actuator output ur,
and platform acceleration z̈ for the calculated model-based response (red) and the response measured
in the physical setup (blue) for Pareto point 2.

Appendix A.4. Pareto Point 3

Table A4. Model-based Pareto front optimization results for Pareto point 3 (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

3 27.6 26,795 [1, 2] [0, 1] [0, 1] [0.043, 0.005, 0.004] [0.036, 0.007, 0.007] [0, 0, 0] [0, 0, 0]

Figure A7. Overview of the front wheel actuator output u f , rear wheel actuator output ur, and plat-
form acceleration z̈ for the calculated model-based response (red) and the response measured in the
physical setup (blue) for Pareto point 3.
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Figure A8. Zoom from 18 to 23 s of the front wheel actuator output u f , rear wheel actuator output ur,
and platform acceleration z̈ for the calculated model-based response (red) and the response measured
in the physical setup (blue) for Pareto point 3.

Appendix A.5. Pareto Point 4

Table A5. Model-based Pareto front optimization results for Pareto point 4 (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

4 36.6 17,800 [3, 2] [0, 1] [0, 1] [0.049, 0.09, 0.003] [0.049, 0.007, 0.008] [0, 0, 0] [0, 0, 0]

Figure A9. Overview of the front wheel actuator output u f , rear wheel actuator output ur, and plat-
form acceleration z̈ for the calculated model-based response (red) and the response measured in the
physical setup (blue) for Pareto point 4.
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Figure A10. Zoom from 18 to 23 s of the front wheel actuator output u f , rear wheel actuator output ur,
and platform acceleration z̈ for the calculated model-based response (red) and the response measured
in the physical setup (blue) for Pareto point 4.

Appendix A.6. Pareto Point 5

Table A6. Model-based Pareto front optimization results for Pareto point 5 (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

5 66.4 16,332 [2, 2] [0, 1] [0, 1] [0.048, 0.009, 0.009] [0.043, 0.004, 0.007] [0, 0, 0] [0, 0, 0]

Figure A11. Overview of the front wheel actuator output u f , rear wheel actuator output ur, and plat-
form acceleration z̈ for the calculated model-based response (red) and the response measured in the
physical setup (blue) for Pareto point 5.
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Figure A12. Zoom from 18 to 23 s of the front wheel actuator output u f , rear wheel actuator output ur,
and platform acceleration z̈ for the calculated model-based response (red) and the response measured
in the physical setup (blue) for Pareto point 5.

Appendix A.7. Pareto Point 6

Table A7. Model-based Pareto front optimization results for Pareto point 6 (rounded).

Pareto Cost Fitness [iact, f , ... [bsen,z, ... [bCL,z, ... [Kp,z̈, f , ... [Kp,z̈,r , ... [Kp,z, f , ... [Kp,z,r , ...
Point [%] Value [ ] iact,r] bsen,z̈] bCL,z̈] Ti,z̈, f ,Td,z̈, f ] Ti,z̈,r ,Td,z̈,r] Ti,z, f ,Td,z, f ] Ti,z,r ,Td,z,r]

6 96.3 14,404 [3, 3] [0, 1] [0, 1] [0.05, 0, 0.01] [0.05, 0.01, 0.01] [0, 0, 0] [0, 0, 0]

Figure A13. Overview of the front wheel actuator output u f , rear wheel actuator output ur, and plat-
form acceleration z̈ for the calculated model-based response (red) and the response measured in the
physical setup (blue) for Pareto point 6.
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Figure A14. Zoom from 18 to 23 s of the front wheel actuator output u f , rear wheel actuator output ur,
and platform acceleration z̈ for the calculated model-based response (red) and the response measured
in the physical setup (blue) for Pareto point 6.
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