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Abstract: The technological innovation of continuously reinforced concrete pavement (CRCP) that
contains a significantly reduced amount of reinforcement and the same fundamental behavior as
CRCP is called advanced reinforced concrete pavement (ARCP). This new concept of a rigid pavement
structure is developed to eliminate unnecessary continuous longitudinal steel bars of CRCP by using
partial length steel bars at predetermined crack locations. In Belgium, partial surface saw-cuts are
used as the most effective crack induction method to eliminate the randomness in early-age crack
patterns by inducing cracks at the predetermined locations of CRCP. The reinforcement layout of
ARCP is designed based on the distribution of steel stress in continuous longitudinal steel bar in
CRCP and the effectiveness of partial surface saw-cuts as a crack induction method. The 3D finite
element (FE) model is developed to evaluate the behavior of ARCP with partial surface saw-cuts.
The early-age crack characteristics in terms of crack initiation and crack propagation obtained from
the FE simulation are validated with the field observations of cracking characteristics of the CRCP
sections in Belgium. The finding indicates that there is fundamentally no difference in the steel stress
distribution in the partial length steel bar of ARCP and continuous steel bar of CRCP. Moreover,
ARCP exhibits the same cracking characteristics as CRCP even with a significantly reduced amount
of continuous reinforcement.

Keywords: early-age crack induction; partial surface saw-cuts; advanced reinforced concrete pavement;
continuously reinforced concrete pavement; finite element simulation

1. Introduction

Early-age cracking inevitably occurs in concrete pavements because of the temperature
differences and stress development during the hardening process of concrete [1]. For this
reason, transverse joints in jointed plain concrete pavement (JPCP) are intended to relieve
the stresses in the concrete slab caused by environmental loading. Severe distress in JPCP
includes the spalling and faulting over these joints, which increase the maintenance and
rehabilitation cost and associated user inconvenience due to traffic control. The continuous
joints repairing throughout the life span of JPCP originates the concept of continuously
reinforced concrete pavement (CRCP) [2–7]. The original intention of CRCP is to eliminate
the transverse joints and enhance the pavement service life with minimal maintenance [8–14].

CRCP contains steel bars continuously in the longitudinal direction and no gaps for
transverse joints. Hence, the cracking is allowed to occur as a result of the volumetric
changes in the concrete pavement slab under environmental loads. The continuously placed
longitudinal steel bars are intended to hold the cracks so tight that the pavement concrete
slab behaves like a continuous system. As CRCP is constructed without any intended joints,
no repairing and maintenance of joints are required. Consequently, the overall life cycle
cost of CRCP is less than that of JPCP. The proponents of CRCP cite durability, sustainability,
and low maintenance cost, which made it as durable pavement requiring little maintenance.
For the past few decades, most of the countries in Europe including Belgium have been
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using CRCP to build high priority and heavily loaded roadways [9,15–24]. The performance
of CRCP is mainly dependent on the development of early-age crack pattern caused
by environmental loading [10–12,25–32]. Different crack induction methods have been
adopted to induce cracks from the designated locations, aiming to reduce the probability
of cluster crack formation in the transverse crack pattern, which eventually leads to the
development of severe distress such as punch-out in CRCP. In Belgium, the active crack
control method in the form of transverse partial surface saw-cuts at one of the outer edges
of the concrete slab has been proven as the most effective crack induction method for
inducing the cracks from pre-determined locations (saw-cut tips) of CRCP [13,15,26,27].

As CRCP is designed to crack naturally, randomly occurring cracks such as divided
cracks, Y cracks, diagonal cracks, and narrowly spaced cluster cracks inevitably take
place during early age, and are held tightly by the continuous longitudinal steel bars.
Therefore, the main role of continuous longitudinal reinforcement in CRCP is to prevent
excessive crack openings for fulfilling the serviceability requirements within the desired
limits [8,29,33–40]. Hence, the initial construction cost of CRCP is always much higher
than that of other types of concrete pavements because of the larger amount of longitudinal
steel throughout the length of the concrete slab. The effective crack inductions over the
designated locations in the concrete slab could reduce the substantial amount of continuous
longitudinal steel without compromising the pavement performance and intended service
life of CRCP; consequently, the initial construction cost of CRCP could become comparable
to those of other concrete pavements.

A state-of-the-art concrete pavement structure called advanced reinforced concrete
pavement (ARCP) is a concrete slab reinforced with a combination of continuous and
partial longitudinal steel bars throughout the length of the pavement [37]. Continuous
longitudinal steel bars are replaced with partial steel bars at the crack locations to decrease
the total amount of reinforcement and corresponding initial construction cost. In other
words, the unnecessary continuous longitudinal steel bars are removed in the concrete
slab, where there is the least probability of cracking. The concept and reinforcement design
layout of ARCP are comprehensively explained with respect to CRCP. The selection of the
most appropriate crack induction method for ARCP is a main focus.

The performance of ARCP is mainly dependent on the actively induced crack charac-
teristics. This novel rigid pavement structure has not been yet implemented in building of
roadways. Moreover, the cracking behavior of ARCP using partial surface saw-cuts has not
been evaluated. Although, the previously used automated tape insertion crack induction
strategy for CRCP has been applied to ARCP for actively inducing cracks at predetermined
locations [37]. However, some demerits such as construction disruption at every insertion
and concrete spalling are associated with this type of crack induction strategy, as reported
in the performance evaluation of CRCP [10–12].

Therefore, the main objective of the present study is to evaluate the early-age crack
induction in ARCP subjected to external varying temperature field by employing the active
crack control method through partial surface saw-cuts and to compare with the cracking
behavior of CRCP. The feasibility study of this crack induction method is carried out
based on the field observation of cracking developments on the CRCP sections in Belgium.
For this purpose, the three dimensional (3D) finite element (FE) model was developed
using the FE tool DIANA 10.3 to simulate early-age crack induction in CRCP and ARCP
segments. The field observations of cracking characteristics of the active crack control and
passive crack control CRCP sections are used to validate the results obtained from the FE
simulation. A comparison is made between CRCP and ARCP with respect to the early-age
crack characteristics, development of maximum steel stress, and amount of longitudinal
reinforcement used.

2. Concept of ARCP

When the tensile stress exceeds the tensile strength of concrete, a crack occurs to
relieve the stress. CRCP is known for its randomly occurring cracks at an early age. The
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volume changes in the concrete slab due to environmental loading are restrained by a huge
amount of continuous longitudinal reinforcement, leading to the development of internal
stresses in both concrete slab and longitudinal steel bars [38,41–43]. The reinforcement in
CRCP is required only at the crack locations. Figure 1 shows the tensile stresses in the steel
bar and concrete at the cracks in CRCP at early age. The stress values are larger during the
initial cracking and an ample amount of reinforcing steel is required to avoid the failure of
steel. As more cracks appear with the passage of time—in other words, when the crack
spacing decreases—the stresses in concrete and continuous steel bar decrease, as shown in
Figure 1b,c. This implies that, when cracking initiates in CRCP with large crack spacing,
an ample amount of steel is required, but, when the CRCP fully cracks with small crack
spacing, the required steel is much lower than the initial amount of steel.
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Figure 1. Cracking development in continuously reinforced concrete pavement (CRCP): (a) crack
initiation; (b) crack propagation; and (c) fully developed crack pattern.

When cracks are induced at the designated locations, the same number of continuous
steel bars in CRCP at the crack interfaces could be replaced with the partial length steel
bars, as shown in Figure 2a. The stresses in partial steel bars are basically the same as those
in continuous steel bars, as shown in Figure 2b. The continuous steel bars in between the
intentionally induced cracks are intended to hold freely formed cracks between the induced
cracks, as shown in Figure 3. This type of pavement structure is called the advanced
reinforced concrete pavement (ARCP). Hence, a considerable amount of reinforcement
can be reduced by eliminating the unnecessary continuous steel bars in CRCP without
compromising the fundamental behavior of CRCP. One of the major drawbacks of CRCP,
the high initial construction cost, could be eliminated with the choice of ARCP.
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To eliminate the potential risk of the punch-out development associated with the
clusters of closely spaced cracks in CRCP, the transverse partial surface saw-cuts as a crack
induction method was proposed for Belgian conditions [13]. This method was applied
to the CRCP sections in the reconstruction project of Motorway E313 in Belgium. In this
project, two saw-cut depths of 30 mm and 60 mm were used to evaluate the effect of
notch-depth on the cracking characteristics of active crack control CRCP sections. Partial
surface saw-cuts were made at the edge of the outer pavement lane within 24 h after the
concrete placement [12,13], as shown in Figure 4. More details related to the construction
of both motorways are represented in the literature [12].
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Regular surveys of crack developments on the active crack control CRCP sections were
conducted right after the construction without considering the traffic load. It was observed
that cracks initiated exactly from the tips of partial surface saw-cuts and propagated
along the width of the concrete slab, as illustrated in Figure 5. A desirable crack pattern
with uniform crack spacing was observed [12,13]. To evaluate the effectiveness of partial
surface saw-cuts to induce cracks over the designated locations of the concrete slab, the
observed crack patterns of these test sections were compared with those of CRCP sections
on Motorway E17 in Belgium. Field investigation indicated that the CRCP sections on
Motorway E17 (passive crack control sections) experienced the punch-out development
more than those on Motorway E313 (active crack control sections) [12,20,44]. The majority
of punch-out formations and concrete spalling over the surface of the pavement slab were
triggered by the cluster of closely spaced crack patterns, as illustrated in Figure 3.

The survey results of crack developments on the CRCP sections of Motorway E313
are demonstrated in Table 2. For the CRCP sections with deeper saw-cut (60 mm), all
the observed cracks were induced from notches during the initial days after construction,
as shown in Figure 5. As can clearly be observed in Table 2, about 78.6% of cracks were
initiated from notches after a period of two months. Meanwhile, the shallower saw-cut
CRCP sections exhibited this value equal to 56.5% [12,13]. This illustrates that the deeper
saw-cut could be more effective than the shallower saw-cut in inducing early-age cracks
from pre-defined locations (saw-cut tips) of the CRCP sections. Even in the later-age of
CRCP, these partial surface saw-cuts remained quite active for initiating new more cracks,
as demonstrated in Table 2.
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The cracking characteristics of the crack pattern in terms of cumulative crack spacing
distributions on the CRCP sections of both Motorway E313 and E17 are illustrated in
Figure 6. Owing to the passive nature of crack development, the CRCP sections on
Motorway E17 exhibited only 27% of total cracks within a desirable range of crack spacing
(0.6–2.4 m) and more than 50% of total cracks were spaced less than 0.6 m (closely-spaced
cracks), as shown in Figure 6. Therefore, the crack pattern observed on the E17 sections
was categorized as low mean crack spacing, which posed a potential risk of punch-out
formation, as demonstrated in Figure 3. On the other hand, a favorable crack spacing
distribution (0.6–2.4 m) of the crack pattern was observed on the active crack control CRCP
sections. For deeper saw-cut sections, only 13% of total cracks were spaced less than 0.6 m,
and more than 74% of cracks were within a favorable cracking spacing range of 0.6 m
to 2.4 m. Meanwhile, in the case of shallower saw-cut sections, 66% of total cracks were
within this range [12,13,20,44]. Based on these field findings, the partial surface deeper
saw-cuts could be employed as the most effective crack induction method to induce cracks
at pre-defined locations of the CRCP section, as shown in Figure 5.
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Table 2. Active crack characteristics on the Motorway E313 section [12,13].

Road Section Length (m) Age (Days) No. of Notches
(N1)

No. of Cracks
(N2)

No. of Cracks at
Notches (N3)

Effectiveness of
Notches N3/N1 (%)

Percentage of Cracks in Category by Distance to
Nearest Notch (m)

0 0–0.2 0.2–0.4 0.4–0.6

60 mm

1100 4 897 193 191 21.3 98.9 0 0 1.1
1100 65 897 664 555 61.9 83.5 2.4 7.7 6.4
1100 204 897 762 597 66.6 78.4 3.8 9.8 8.0
1100 378 897 775 606 67.6 78.2 3.8 9.9 8.1
500 123 422 417 245 58.1 58.7 9.4 15.9 16.0

30 mm
500 262 422 497 281 66.5 56.5 8.7 17.5 17.3
500 436 422 502 285 67.5 56.8 8.6 17.3 17.3
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Hence, the crack control method in the form of the partial surface saw-cut (60 mm) is
assumed as the most appropriate and effective crack induction method for the reinforce-
ment design layout of ARCP in the present study. The variation of steel stresses along
the length of continuous longitudinal steel bars at the crack interface is used to decide
the length of partial steel bars for the reinforcement design of ARCP [37]. Based on this
concept, the overall amount of longitudinal reinforcement is reduced by replacing the
continuous steel bars with partial length ones.

4. Finite Element Modeling

The FE program simulates the heat of hydration and corresponding temperature
development based on the degree of reaction. The 3D FE model of active crack control
CRCP segment with deeper saw-cuts, as used on the E313 section, was developed to
predict the early-age crack induction under external varying temperature field conditions.
The staggered structural-flow analysis, which is a special feature available in FE program
DIANA 10.3, is performed to study the cracking induction associated with the temperature
development calculated by transient heat flow analysis and stress computation by structural
analysis. The evolution of concrete mechanical properties (compressive strength, tensile
strength, and modulus of elasticity) is incorporated into the FE model in accordance with
the Euro-code 2 EN 1992-1-1 concrete material model available in the DIANA tool [45].

4.1. Model Geometry

Following the current standard CRCP practice in Belgium, partial surface saw-cuts at a
spacing of 1200 mm are made at one of the outer edges of the concrete slab. An intermediate
50 mm thick asphalt layer is provided between the 250 mm thick concrete slab and the
200 mm thick lean concrete to avoid direct contact of the slab with the base. The saw-cut
with a depth of 60 mm, length of 400 mm, and width of 4 mm, as employed on the Motorway
E313 CRCP sections, is taken into account in the development of the reference 3D FE model
for simulating the early-age crack induction in CRCP. The continuous longitudinal steel
bars of 20 mm diameter are placed at a spacing of 170 mm along the length of the concrete
slab. The concrete cover depth is taken 80 mm from the pavement surface. The transverse
steel bars of 12 mm diameter are provided at a spacing of 600 mm [12,13,23,26,27].

The behavior of CRCP subjected to environmental loading is considered symmetrical
with respect to the center of the pavement land as well as with respect to the center of
two consecutive transverse cracks [25–27,36,46]. Therefore, one-half of the concrete slab on
either side of saw-cuts and another half of the pavement lane are taken into account by
considering the suitable boundary conditions. Hence, a 2400 mm long and 1800 mm wide
CRCP segment is assumed by taking advantage of symmetric conditions. The position of
reinforcing steel layout and partial surface saw-cut in the CRCP segment is elaborated on
in Figure 7.
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4.2. Thermo-Mechanical Properties

Following the Eurocode 2 EN 1992-1-1 model available in the DIANA FE program,
the young hardening of concrete with total strain crack model is considered to simulate
early-age crack induction in the CRCP segment under external varying temperature condi-
tions [45]. The concrete class C40/50 is generally used in the construction of CRCP sections
in Belgium [12]. The specific heat capacity and thermal conductivity of concrete are the
essential parameters for predicting the temperature gradient in early-age concrete. The
former represents the heat storage capacity and the latter determines the heat transfer
through conduction [47]. The specific heat capacity is taken as 2.87 × 106 J/m3 ◦C in
the FE analysis based on previous studies [48–50]. The value of thermal conductivity is
considered to be 2.7 W/m ◦C [12,41,48]. Constant values have been considered in the
present study because of the difficulties in determining accurate early-age concrete thermal
properties [51].

The coefficient of thermal expansion (CTE) is a parameter of paramount importance
required for the thermal analysis of concrete as it provides a measure of volumetric changes
at varying temperatures. As the concrete material is composed of aggregates up to 70 to
85% of the total solid volume, the type of aggregate and its mineral composition largely
determine the values of CTE of concrete due to different thermal properties possessed by
various types of aggregates [51,52]. Experimental studies have indicated that the CTE of
concrete remains constant after the final setting [12,47,50]. Therefore, in the present study, a
constant value of CTE is assumed for the simulation of early-crack induction. The thermal
and mechanical properties of concrete used in the FE analysis are demonstrated in Table 3.

Table 3. Input parameters used in the finite element (FE) simulation.

Concrete class C40/50
Aggregate type Limestone

Coefficient of thermal expansion of concrete (1/◦C) 10.0 × 10−6

Concrete thermal conductivity (W/m ◦C) 2.7
Concrete volumetric heat specific capacity (J/m3 ◦C) 2.87 × 106

Convection-radiation coefficient between concrete and air (W/m2 ◦C) 7.55

The early-age cracking of concrete is significantly influenced by the type of cement.
The blast furnace slag cement (CEM III) is mostly preferred for the construction of CRCPs
in Belgium owing to lesser heat discharge, low permeability, and good durability [53]. The
heat of the hydration model valid for blast furnace slag cement is used to define the heat
development in terms of the adiabatic heat curve [54]. The evolution of concrete mechanical
properties (tensile strength, compressive strength, and elastic modulus) with respect to
time is formulated based on the degree of reaction in accordance with the Eurocode 2
EN 1992-1-1 model code [45]. Input parameters for Eurocode 2 EN 1992-1-1 creep and
shrinkage model are demonstrated in Table 4.

Table 4. Input parameter for Euro-code 2 EN 1992-1-1 creep and shrinkage model.

Input Parameters Value

Ambient temperature (◦C) 20
Notional size (mm) 439

Relative humidity (%) 80
Curing age (Days) 3

The longitudinal and transverse reinforcing steel bars are modeled as embedded
reinforcement. The Young’s modulus and yield strength of steel are taken as 200 GPa and
500 MPa, respectively. The constitutive material behavior of reinforcing steel is defined
as elastoplastic with no hardening. To ensure the smooth convergence of the FE analysis
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as well as to reduce the computational time and data storage space, full-bonding contact
between the steel bars and concrete is assumed in the present study [15,26,27,38,41,42].

4.3. Boundary Conditions

For the simulation of early-age cracking in CRCP under external varying temperature
conditions, 3D staggered structural-flow analysis was performed in two parts. In the first
part of the analysis, the transient heat flow analysis calculates the temperature development,
and the structural elements are transformed into the flow elements. Then, in the second
part of the analysis, the output obtained from the first part is used as input for the structural
analysis. The self-weight of the concrete slab is taken as a gravity load in the FE analysis.
Smaller increments of loading are applied to avoid convergence problems.

The structural and thermal aspects of the boundary conditions are defined with respect
to the staggered structural-flow analysis. For the structural aspect, the bottom face of the
concrete slab is restrained in an upward direction (Uz = 0), assuming a stiffer ground base
layer beneath the concrete slab. By taking advantage of the symmetric conditions, the
concrete slab is restrained in both the Y–Z planes and the symmetrical inner plane X–Z
plane; however, the plane on the saw-cut side is free to expand and contract. It translates
that the concrete slab on the symmetric planes can contract, but it cannot expand because
of the infinite surrounding concrete. The contact interface between the bottom face of
the concrete slab and ground base has been modeled using a nonlinear elastic friction
model [55].

For the thermal boundary conditions, the slab top face and the outer edge face on
the saw-cut side are directly exposed to external varying temperature field conditions, as
demonstrated in Figure 8. Considering the potential heat flow analysis, the convective
interface boundary elements are used to simulate the heat transfer through the concrete
slab and the outside environment. The value of the heat transfer coefficient is assumed as
7.5 W/m2 ◦C based on previous studies [43,51,56,57]. The proposed boundary conditions
of the FE model are shown in Figure 9.
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4.4. Elements Used in FE Modeling

For the 3D heat flow analysis, a four-node isoparametric quadrilateral element (BQ4HT)
is commonly used to define the convective interface boundaries. The exposed surfaces of
the concrete slab subjected to heat convection, as shown in Figure 9, are modeled using
this four-node quadrilateral element. The concrete was discretized through a 20-node
isoparametric solid brick element (CHX60). The contact interface between the bottom face
of the concrete slab and ground base is modeled using an eight-node element (CQ481) with
interface elements of zero-thickness. The accuracy of the FE analysis depends on the size
and characteristics of the element in the mesh. The element size is taken as 30 mm based
on the mesh sensitivity analysis.

4.5. Cracking Model Used in FE Modeling

The smeared cracking approach is mostly employed to simulate the cracking behavior
of concrete members. This approach treats the cracked material as continuous and spreads
the discontinuity of displacement field caused by crack across the element through the
constitutive equations following the crack development in the element [45,58]. The concrete
cracks when the tensile stress exceeds its tensile strength.

5. Validation of the FE Model

The partial surface saw-cuts in CRCP are originally intended to induce cracking
from pre-defined positions (saw-cut tips), which ultimately results in the formation of a
more regular spaced crack pattern, as demonstrated in Figure 5 [12,13,26,27]. The same
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configuration of saw-cuts applied in the field test sections on Motorway E313, as discussed
in Section 3, was used in the reference FE model to simulate the crack induction. As
expected, the saw-cut tips exhibit the maximum tensile stress compared with the rest of the
concrete slab. The development of tensile stress is plotted against tensile strength over the
saw-cut tips along the length of the concrete slab, as shown in Figure 10. The tensile stress
exceeds tensile strength exactly over the saw-cut tips. Hence, crack induction occurs from
the saw-cut tips, as illustrated in Figure 11. The crack propagation along the width of the
concrete slab is demonstrated in Figure 12. “Eknn”, shown in Figures 11 and 12, represents
the crack strain. It can clearly be observed that cracks initiate exactly from the tips of the
saw-cut and propagate along the pavement width, as observed on the E313 test section
discussed above in Section 3. The same transverse crack pattern as illustrated in Figure 5 is
predicted by the FE model.
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The third longitudinal steel bar just ahead of the saw-cut tips is selected for evaluating
the stress distribution in the steel bar. The development of maximum steel stress distribu-
tion along the length of the steel bar is depicted in Figure 13. It can clearly be noticed that
the steel bar exhibits the maximum stress exactly below the position of saw-cuts. These
findings indicate that the proposed methodology and assumptions in the development of
the reference FE model are appropriate for evaluating early-age crack induction in CRCP
under environmental loading.
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Figure 13. Stress variation in the longitudinal steel bar.

Furthermore, the early-age crack induction in the CRCP segment without partial surface
saw-cuts is also evaluated and a comparison is made with the field observations of cracking
development on the Motorway E17 test section. The observed crack pattern was characterized
as the cluster of closely spaced cracks, as discussed in Section 3. Figure 14 illustrates the crack
induction in CRCP predicted by the FE model without saw-cuts. The same crack pattern
with cluster crack formations is induced as indicated by field observations as shown in
Figure 3. The FE model with and without saw-cuts predicts the same crack induction as
observed on the CRCP test sections of Motorway E313 and E17. Based on these findings, it
may be assumed that the reference FE model developed with appropriate considerations
could be further used to advance the structural design concept of CRCP.
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Figure 14. Development of the randomly occurring crack pattern in the CRCP segment without
partial surface saw-cuts.

6. Reinforcement Layout Design of ARCP Segment

As the fundamental behavior of ARCP is the same as that of CRCP even though a
lesser amount of steel is used in ARCP [37], the dimensions of the ARCP segment along
with the position of partial surface saw-cuts are taken as the same as that of CRCP, as
discussed in Section 4. In the ARCP design, partial steel bars are used to replace continuous
longitudinal steel bars under the crack inducer to minimize the excess amount of steel in the
pavement. The continuous steel bars in between the actively induced cracks are intended to
hold freely formed cracks, as illustrated in Figure 15. Based on the steel stress distribution
illustrated in Figure 13 and the design spacing of partial saw-cuts, the total length of the
partial steel bar is assumed to be 600 mm. Two reinforcement layouts are considered for
evaluating the effect of partial steel bars on the early-age cracking behavior of ARCP. In the
first layout, the continuous longitudinal steel bars are alternatively replaced with partial
steel bars, as demonstrated in Figure 16, which is named ARCP-1. Meanwhile, the second
layout is comprised of replacing two consecutive continuous longitudinal steel bars with
partial steel bars, as illustrated in Figure 17, which is named ARCP-2. The comparison of
reinforcement layout design used in the CRCP and ARCP segments is demonstrated in
Table 5.
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Table 5. Comparison of reinforcement layout of CRCP and advanced reinforced concrete pavement (ARCP).

Steel Design CRCP ARCP-1 ARCP-2

Diameter of continuous steel bar (mm) 20 20 20
Length of continuous steel bar (mm) 2400 2400 2400

Rows of continuous steel bars 11 6 4
Continuous steel ratio (%) 0.767 0.418 0.279

Diameter of partial steel bar (mm) - 20 20
Length of partial steel bar (mm) - 600 600

Rows of partial steel bars - 5 7
Steel ratio at crack inducer (%) 0.767 0.767 0.767

Relative continuous steel amount to
CRCP (%) 100 54.54 36.36

7. Results and Discussion

The early-age cracking behavior of CRCP without the active crack control method is
categorized as the randomly occurring crack pattern [12,13,20,44]. The key factor affecting
the development of early-age cracking in CRCP is the resistance to the change in length
of the concrete slab [59]. The performance of CRCP is largely determined by the early-
age cracking development [10–13,44]. It has been reported that about 90% of punch-out
distress on CRCP sections was triggered by clusters of randomly occurring cracks [60].
The thorough saw-cut across the full width of pavement and automated tape insertion
illustrate some drawbacks, such as issues related to concrete surface spalling [11,12,14].
The behavior of ARCP is dependent on the effectiveness of the crack induction strategy in
inducing cracks at the desired locations where the partial length steel bars are originally
intended to replace the continuous longitudinal steel bars. Two major shortcomings of
passive crack control CRCP (without any active crack control method), that is, the high
initial construction cost and non-uniform crack patterns, are discussed to be resolved with
the concept of ARCP by using automated tape insertion as a crack induction strategy [37].
As discussed above, this strategy has already been applied to CRCP as an active crack
control method and its associated demerits have also been discussed.

Regarding the performance of active crack control CRCP using partial surface saw-
cuts, as discussed above in Section 3, only one shortcoming of CRCP, that is, the high
initial construction cost, is left to be resolved by using partial length steel bars in place of
continuous longitudinal steel bars. Based on this fact, the fundamental behavior of ARCP is
basically equivalent to that of CRCP. Therefore, in the present study, the early-age cracking
behavior of ARCP with partial surface saw-cuts is evaluated with respect to the amount of
continuous steel and compared with that of CRCP.

The crack induction from the tips of saw-cuts in ARCP-1 and ARCP-2, shown in
Figures 18 and 19, illustrates that ARCP behaves exactly as CRCP, as discussed in the
Section 5. The predicted crack patterns of ARCP-1 and ARCP-2 depicted in Figures 20
and 21 are also basically the same as those exhibited by CRCP depicted in Figure 12 and
as indicated by field observations illustrated in Figure 5. This finding indicates that the
transverse crack pattern with desirable crack spacing (1.2 m) could be effectively induced
in ARCP by using partial surface saw-cuts.



Appl. Sci. 2021, 11, 1659 17 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

continuous longitudinal steel bars. Based on this fact, the fundamental behavior of ARCP 
is basically equivalent to that of CRCP. Therefore, in the present study, the early-age 
cracking behavior of ARCP with partial surface saw-cuts is evaluated with respect to the 
amount of continuous steel and compared with that of CRCP. 

The crack induction from the tips of saw-cuts in ARCP-1 and ARCP-2, shown in Fig-
ures 18 and 19, illustrates that ARCP behaves exactly as CRCP, as discussed in the Section 
5. The predicted crack patterns of ARCP-1 and ARCP-2 depicted in Figures 20 and 21 are 
also basically the same as those exhibited by CRCP depicted in Figure 12 and as indicated 
by field observations illustrated in Figure 5. This finding indicates that the transverse 
crack pattern with desirable crack spacing (1.2 m) could be effectively induced in ARCP 
by using partial surface saw-cuts. 

 
Figure 18. Crack initiation in ARCP-1 from the saw-cuts. 

 
Figure 19. Crack initiation in ARCP-2 from the saw-cuts. 

Figure 18. Crack initiation in ARCP-1 from the saw-cuts.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

continuous longitudinal steel bars. Based on this fact, the fundamental behavior of ARCP 
is basically equivalent to that of CRCP. Therefore, in the present study, the early-age 
cracking behavior of ARCP with partial surface saw-cuts is evaluated with respect to the 
amount of continuous steel and compared with that of CRCP. 

The crack induction from the tips of saw-cuts in ARCP-1 and ARCP-2, shown in Fig-
ures 18 and 19, illustrates that ARCP behaves exactly as CRCP, as discussed in the Section 
5. The predicted crack patterns of ARCP-1 and ARCP-2 depicted in Figures 20 and 21 are 
also basically the same as those exhibited by CRCP depicted in Figure 12 and as indicated 
by field observations illustrated in Figure 5. This finding indicates that the transverse 
crack pattern with desirable crack spacing (1.2 m) could be effectively induced in ARCP 
by using partial surface saw-cuts. 

 
Figure 18. Crack initiation in ARCP-1 from the saw-cuts. 

 
Figure 19. Crack initiation in ARCP-2 from the saw-cuts. Figure 19. Crack initiation in ARCP-2 from the saw-cuts.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
Figure 20. The predicted transverse crack pattern of ARCP-1. 

 
Figure 21. The predicted transverse crack pattern of ARCP-2. 

Moreover, the development of crack strain with respect to time over the saw-cut tips 
demonstrated in Figure 22 illustrates no prominent difference between CRCP and ARCP. 
Based on the field observations of cracking developments discussed above, it may justify 
the lesser amount of continuous steel bars in the active crack control ARCP segment in 
between the saw-cuts to hold the passively formed cracks tightly between the actively 
induced cracks. Hence, a considerable amount of initial construction cost could be re-
duced by eliminating the unnecessary longitudinal continuous steel bars in between the 
crack inducers (saw-cuts) without compromising the pavement performance. 

The longitudinal reinforcing steel bars in the CRCP and ARCP segments just ahead 
of saw-cut tips are selected for evaluating the maximum steel stress distribution. Figure 
23 demonstrates the maximum steel stress distribution in the continuous steel bar of 
CRCP and partial steel bars of ARCP-1 and ARCP-2. It can clearly be observed that the 
steel stress peaks occur exactly over the saw-cut tips. In between the saw-cuts, the stress 
variations converge to zero, which indicates the effectiveness of the active crack control 
method to induce cracks at the desired locations. It may translate that the continuous steel 
bars between the crack inducers (saw-cuts) across the whole width of the concrete slab are 
unnecessary when no passive cracks are formed. As demonstrated in Figure 23, the con-
tinuous steel bar and partial steel bar experience the same stress peaks only over the saw-

Figure 20. The predicted transverse crack pattern of ARCP-1.



Appl. Sci. 2021, 11, 1659 18 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
Figure 20. The predicted transverse crack pattern of ARCP-1. 

 
Figure 21. The predicted transverse crack pattern of ARCP-2. 

Moreover, the development of crack strain with respect to time over the saw-cut tips 
demonstrated in Figure 22 illustrates no prominent difference between CRCP and ARCP. 
Based on the field observations of cracking developments discussed above, it may justify 
the lesser amount of continuous steel bars in the active crack control ARCP segment in 
between the saw-cuts to hold the passively formed cracks tightly between the actively 
induced cracks. Hence, a considerable amount of initial construction cost could be re-
duced by eliminating the unnecessary longitudinal continuous steel bars in between the 
crack inducers (saw-cuts) without compromising the pavement performance. 

The longitudinal reinforcing steel bars in the CRCP and ARCP segments just ahead 
of saw-cut tips are selected for evaluating the maximum steel stress distribution. Figure 
23 demonstrates the maximum steel stress distribution in the continuous steel bar of 
CRCP and partial steel bars of ARCP-1 and ARCP-2. It can clearly be observed that the 
steel stress peaks occur exactly over the saw-cut tips. In between the saw-cuts, the stress 
variations converge to zero, which indicates the effectiveness of the active crack control 
method to induce cracks at the desired locations. It may translate that the continuous steel 
bars between the crack inducers (saw-cuts) across the whole width of the concrete slab are 
unnecessary when no passive cracks are formed. As demonstrated in Figure 23, the con-
tinuous steel bar and partial steel bar experience the same stress peaks only over the saw-

Figure 21. The predicted transverse crack pattern of ARCP-2.

Moreover, the development of crack strain with respect to time over the saw-cut tips
demonstrated in Figure 22 illustrates no prominent difference between CRCP and ARCP.
Based on the field observations of cracking developments discussed above, it may justify
the lesser amount of continuous steel bars in the active crack control ARCP segment in
between the saw-cuts to hold the passively formed cracks tightly between the actively
induced cracks. Hence, a considerable amount of initial construction cost could be reduced
by eliminating the unnecessary longitudinal continuous steel bars in between the crack
inducers (saw-cuts) without compromising the pavement performance.
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Figure 22. Comparison of crack strain over the saw-cut tips between CRCP and ARCP.

The longitudinal reinforcing steel bars in the CRCP and ARCP segments just ahead of
saw-cut tips are selected for evaluating the maximum steel stress distribution. Figure 23
demonstrates the maximum steel stress distribution in the continuous steel bar of CRCP
and partial steel bars of ARCP-1 and ARCP-2. It can clearly be observed that the steel stress
peaks occur exactly over the saw-cut tips. In between the saw-cuts, the stress variations
converge to zero, which indicates the effectiveness of the active crack control method to
induce cracks at the desired locations. It may translate that the continuous steel bars between
the crack inducers (saw-cuts) across the whole width of the concrete slab are unnecessary
when no passive cracks are formed. As demonstrated in Figure 23, the continuous steel
bar and partial steel bar experience the same stress peaks only over the saw-cut tips. This
means that steel bars are only required at crack locations to hold the actively induced
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cracks tightly and a lesser amount of the steel bars is required for any randomly occurring
cracks between the crack inducers. Although a considerable amount of continuous steel
bars, up to about 45% and 63% in ARCP-1 and ARCP-2 in relative comparison to that of
CRCP, is reduced, the steel stress distributions in ARCP are almost similar to those in CRCP,
as shown in Figure 23. Therefore, it may be stated that the behavior of ARCP even with a
relatively lesser amount of continuous reinforcement is basically the same as the behavior
of CRCP under environmental loading.
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As the overall configuration of the CRCP structure being used in Belgium is not quite
different from that used in the United States and other parts of the world, the proposed
ARCP structure can be applied in place of CRCP along with a relatively lower initial
construction cost, subject to the extensive field trials.

8. Summary of Findings and Conclusions

The concept and design of ARCP are comprehensively explained with respect to the
effectiveness of the crack induction strategy and the steel stress distributions. In the present
study, two different reinforcement design layouts of ARCP are developed to reduce the
amount of continuous longitudinal reinforcement up to about 45% to 63% relative to that of
CRCP. Based on the steel stress distributions and design spacing of partial surface saw-cuts,
the partial steel bar of 600 mm length is used in place of the continuous longitudinal steel
bar across the pavement width at crack locations. The active crack control method in the
form of partial surface saw-cuts at one of the top edges of the concrete slab is applied to
induce cracks at the predetermined locations in ARCP. The crack initiation from the tips of
saw-cuts and crack propagation across the pavement width indicate the appropriateness
and effectiveness of active crack control for ARCP. The steel stress distributions in the
partial steel bar of ARCP are quite similar to those in the continuous longitudinal steel
bar of CRCP. The early-age crack induction in ARCP using partial surface saw-cuts is
identical to that of CRCP under the same prevailing external environmental conditions.
Based on these findings, it may be concluded that the concept of ARCP using partial
surface saw-cuts as a crack induction strategy could be an effective solution to resolve the
shortcomings of CRCP without compromising the fundamental behavior of CRCP. This
concept of ARCP using partial surface saw-cuts is quite a new development for the rigid
pavement structure. Therefore, more extensive experimental and field investigations, as
well as numerical studies, are required by considering traffic loading to formulate a more
rational pavement structure.
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