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ABSTRACT 

Thermal conductivity and specific heat of concrete are highly influential parameters for the heat transfer 

into the material during fire exposure. Reviewing the available literature has shown that there is a large 

scatter in the data for these thermal parameters. To quantify that uncertainty, novel probabilistic models for 

thermal conductivity and specific heat of concrete at elevated temperatures are developed. 

Analysis of available experimental data indicates that a temperature-dependent Gamma distribution can 

be recommended for both thermal properties. Closed-form equations for the temperature-dependent mean 

and standard deviation are derived. Thus, for both the thermal conductivity and the specific heat, a 

continuous probability distribution as a function of temperature is obtained, which can be easily 

implemented in numerical simulations. Using the example of the probabilistic analysis of a simply 

supported concrete slab exposed to the standard fire, the models are compared with the commonly used 

deterministic representation of the thermal properties. It is shown that the calculated probabilities of 

failure using the deterministic models are an order of magnitude lower and therefore 

unconservative. This analysis suggests that accounting for the uncertainty in thermal properties for 

concrete slabs can have a significant effect on evaluating the safety and therefore should not be ignored 

in cases of high importance.
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1 INTRODUCTION 

Fire is a rare event that can have a significant negative impact on people’s safety. Luckily many fires are 

extinguished or suppressed early on by the occupants of the building or active measures (e.g. sprinklers). 

However, when fires progress beyond this level, they can cause serious damage to the structure. The effects 

of these, often referred to as ‘structurally significant’, fires are analysed in structural fire engineering (SFE). 

The main task of SFE is to produce a design solution that provides an adequate safety level, more precisely 

a solution with the failure probability below an explicit or implicit acceptable value.  
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In most design situations, the combination of prescribed fire resistance ratings and standardized calculation 

methods is sufficient to prove that the structure has an adequately low, although unquantified, failure 

probability. In special cases of high importance, however, adequate safety needs to be demonstrated 

explicitly. In those situations, (semi-)probabilistic calculations are required which directly take into account 

the stochastic nature of the input parameters. Even though the appropriate probabilistic models for some of 

these input variables are well-defined, others are often regarded as deterministic due to the lack of the 

appropriate models.  

Probabilistic structural fire engineering (PSFE) is traditionally conducted using a large number of 

calculations with varying parameters and using numerical simulations. As the probabilistic approach is 

much more developed in classical structural engineering, the stochastic description of a large number of 

input variables needed for the structural analysis is well defined. This involves the geometry [1], loads [2] 

and material strength at ambient and elevated temperatures [3]. However, concerning the heat transfer part 

of the calculation, there is not much information available on the stochastic description of needed inputs. 

Heat transfer has three modes: convection, radiation, and conduction. When conducting the heat transfer 

analysis for the temperature within structural members, the first two modes can be considered as a boundary 

condition and the last, conduction, as the main mode of temperature propagation through the concrete 

element. Conduction represents the diffusion of thermal energy (heat) within the material.  

Thermal conductivity, k describes the material’s ability to conduct heat, and specific heat, cp represents the 

amount of energy needed to heat up a unit mass of the material by a unit temperature. Both of these 

properties are highly material and temperature dependant. Their influence on the thermal gradient within 

an element is defined by Fourier’s law of (1D) conduction: 

𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝑐𝑝
∇2𝑇 (1) 

where 
𝜕𝑇

𝜕𝑡 represents the change of temperature with time, 𝒌 [ 𝑾𝒎∙𝑲
] is the thermal conductivity, 𝒄𝒑 [

𝑱

𝒌𝒈∙𝑲
] is 

the specific heat and 𝜌 is the material density. 

The heat transfer analysis in SFE in its essence represents the numerical solution of the multidimensional 

version of equation (1). The most commonly used approach is to use the deterministic models for these 

thermal properties as provided in guidance documents. For concrete, some of the most widely used models 

are those presented in Eurocode [4]. Thermal conductivity is defined by two limits (upper and lower) that 

are given as quadratic functions of the temperature 𝑇: 

𝑘𝑢𝑝𝑝𝑒𝑟 = 2.00 − 0.2451 ∙ (𝑇/100) + 0.0107 ∙ (𝑇/100)2 for 20°𝐶 ≤ 𝑇 ≤ 1200°𝐶 (2) 

𝑘𝑙𝑜𝑤𝑒𝑟 = 1.36 − 0.1360 ∙ (𝑇/100) + 0.0057 ∙ (𝑇/100)2 for 20°𝐶 ≤ 𝑇 ≤ 1200°𝐶 (3) 

where the choice of the exact value between these two limits is left to the user, but the lower values are 

recommended  

On the other hand, specific heat is given as a single piecewise function: 

𝑐𝑝 = 0.9 for   20°𝐶 ≤ 𝑇 ≤ 100°𝐶 

𝑐𝑝 = 0.9 + (𝑇 − 100)/1000  for 100°𝐶 ≤ 𝑇 ≤ 200°𝐶 (4) 

𝑐𝑝 = 1.0 + (𝑇 − 200)/2000  for 200°𝐶 ≤ 𝑇 ≤ 400°𝐶 

𝑐𝑝 = 1.1 for 400°𝐶 ≤ 𝑇 ≤ 1200°𝐶 
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Both of these definitions are graphically presented in Figure 1. 

Review of the available literature has shown that a significant scatter exists in the values of these thermal 

properties of concrete. In order to conduct a valid probabilistic calculation of the behaviour of a concrete 

structure exposed to fire, the uncertainty in the heat transfer analysis should be considered. In doing so, 

probabilistic models for the thermal properties of the material (i.e., thermal conductivity and specific heat) 

are needed.  

Figure 1. a) thermal conductivity 𝑘 and b) specific heat 𝑐𝑝 of concrete as a function of temperature as defined by the Eurocode 
[4] 

2 METHODOLOGY 

Probabilistic models in this study are developed with the intention of being used in numerical simulations. 

For that purpose, (i) the models have to be continuous functions across the appropriate temperature range, 

and (ii) there should be a closed-form function for each specific quantile value to facilitate implementation 

in the numerical simulations. The methodology for the model development is based on the one presented 

by Qureshi et al. [3], but with few modifications that are highlighted in the further text. 

To obtain a closed-form function for each specific quantile value, the thermal conductivity and the specific 

heat are each individually considered to be described by the same probability distribution type (e.g. normal 

distribution, lognormal distribution) at any fixed temperature. The parameters that govern the probability 

distribution at a given temperature are then considered to be a continuous function of temperature. To obtain 

those parameters the first step is to organize the data in bins. More precisely, all the data points in the 

relatively narrow range around chosen temperature values are grouped into one bin and the mean and 

standard deviation of each bin are calculated. This way the closed-form equation for the mean and standard 

deviation as a function of temperature can be obtained by fitting a polynomial curve to these values. In 

order to take into account the different number of data points inside each bin and to capture the different 

amount of information each bin carries, each mean and standard deviation value is weighted with a number 

proportional to its size in the fitting process.  

(a) (b) 
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After both the mean value and standard deviation are fitted in the form of a polynomial function, the 

appropriate probability distribution must be determined. This is done based on the Akaike Information 

Criteria (AIC) [5]: 

𝐴𝐼𝐶 = 2𝑚 − 2ln⁡(𝐿) (5) 

where 𝑚 represents the number of estimated parameters in the model and 𝐿 is the likelihood of the model 

for the given data. It must be noted that the AIC value can only be used as a comparative measure, more 

precisely, a single absolute value of AIC on its own does not contain any useful information. It can only be 

used to compare two or more models in a way that the model with the lowest AIC value represents the best 

fit. 

The procedure to find the most appropriate distribution is as follows: Firstly, for each data point, the 

corresponding model mean and the standard deviation are calculated, based on the data point’s temperature 

and the previously fitted polynomial functions. Based on those two values a specific theoretical distribution 

is defined and the likelihood of the data point is calculated. Lastly, the total likelihood is calculated by 

multiplying the values for each data point, and the AIC for a specific theoretical distribution is then obtained 

through (5). Using all the AIC values the best distribution is chosen.  

It should be highlighted that even though the methodology described here is based on the work presented 

in [3] it has a couple of distinctive differences. First, the choice of adequate theoretical distribution is done 

more holistically, using the AIC for every data point based on the fitted curves for the governing parameters, 

instead of fitting the distribution for each bin separately, summing the AIC for each bin and then fitting a 

curve on the parameters. As its direct consequence, the second difference is fitting of the polynomial 

functions on mean and standard deviation values instead of the specific chosen distribution’s parameters. 

The main advantage of this modified approach is that the best candidate distribution is chosen based on the 

final model and all the data points instead of only the data in the bins.  

3 RESULTS AND DISCUSSION 

The temperature range of 20 − 1200°𝐶 is chosen based on three factors, firstly the available data for 

constructing the model, secondly the fact that damage to the concrete at temperatures higher than 1000°𝐶 

is large enough that it loses all of its mechanical properties, and finally the range of the commonly used 

Eurocode models.  

Based on the available literature data, it is evident that the thermal properties differ significantly based on 

the type of concrete, whether its lightweight, normal strength (NSC) or high strength concrete (HSC). The 

focus in this paper is on the NSC as it is the most commonly used type. When considering the type of 

aggregate used in the concrete, it is decided to not make the distinction between siliceous and calcareous, 

in order to be in sync with the widely used Eurocode models for thermal properties [4].  

Data needed for the creation of the models have been collected from the literature. Some data was found as 

tabulated values, but the majority had to be extrapolated from figures. The thermal conductivity dataset 

collected in this study consists of 382 points taken from 12 sources [6–17]. On the other hand, the specific 

heat data consists of 343 points taken from 9 sources [6, 8, 9, 12, 14–16, 18, 19]. 
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Figure 2. Acquired data points for a) thermal conductivity 𝑘 and b) specific heat 𝑐𝑝 of concrete at elevated temperature

From Figure 2, which presents all the acquired data points for both thermal conductivity and specific heat, 

it is evident that there is a large scatter, which implies considerable uncertainty. It is also clear that almost 

all of the data points are measured at a temperature that is close to a multiple of 50°⁡𝐶. Thus, the data is 

grouped in bins with 50° ± 5°⁡𝐶 temperature intervals. A minimum number of 5 data points are considered 

to form a bin (for example, there were only 4 points in the 350 ± 5°𝐶 range for specific heat and therefore 

that bin was omitted). This concept is illustrated using a box plot in Figure 3, where it can also be observed 

that the lack of data at higher temperatures implies that no bins are created at temperatures higher than 

800°𝐶 and 700°𝐶 for thermal conductivity and specific heat respectively. 

Figure 3. Box plot representing the variation of the a) thermal conductivity 𝑘 and b) specific heat 𝑐𝑝 of concrete data inside the 
bins 

The fitting of the mean and standard deviation of the bins described earlier shows that the second order 

polynomial function is an appropriate fit. Because of the lack of data at temperatures higher than 800⁡°𝐶 , 

one condition is added to the fitting process. Namely, in the case of the thermal conductivity, the functions 

are defined as monotonically decreasing in the range 20-1200⁡°𝐶 based on the global trends of the data and 

physical considerations. Similarly, the functions for the specific heat are considered as monotonically 

(a) (b) 

(a) (b) 
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increasing in the same domain. The resulting equations are graphically presented in Figure 4 and are the 

following: 

𝑚𝑒𝑎𝑛𝑘 ⁡= ⁡⁡⁡⁡⁡6.627⁡ × ⁡10−7 × 𝑇2 − 1.458⁡ ×⁡10−3 × 𝑇 + 1.772 (6) 

𝑠𝑡𝑑𝑘 ⁡⁡⁡⁡⁡⁡= ⁡⁡⁡⁡⁡3.139⁡ ×⁡10−7 × 𝑇2 − 0.691⁡ × ⁡10−3 × 𝑇 + 0.434 (7) 

𝑚𝑒𝑎𝑛𝑐𝑝 =⁡−2.953⁡ ×⁡10−7 × 𝑇2 + 6.498⁡ × ⁡10−4 × 𝑇 + 0.872 (8) 

𝑠𝑡𝑑𝑐𝑝 ⁡⁡⁡⁡⁡= ⁡−3.500⁡ × ⁡10−7 × 𝑇2 + 7.700⁡ ×⁡10−4 × 𝑇 + 0.042 (9) 

Figure 4. Polynomial function fit for the mean and standard deviation values for a) thermal conductivity 𝑘 and b) specific heat

𝑐𝑝 of concrete

Numerous two parameter theoretical distributions have been fitted in order to find the most adequate 

one for the models. More precisely, the fitted distributions were: Normal, Lognormal, Gamma, Gumbel, 

Beta44, Weibull, Inverse Gaussian, Logistic, Log-logistic, Rican, Nakagami and Birnbaum Saunders. 

Figure 5 shows the AIC values obtained for different distributions (for clarity only the five best fits are 

presented, as the values for the others were an order of magnitude larger). Both in the case of thermal 

conductivity and specific heat, the best fits (i.e., the lowest AIC score) are obtained by Normal and Gamma 

distributions. From the two, the Gamma distribution is chosen given that, on the contrary to the Normal 

distribution, it has zero probability for negative values (which are theoretically impossible for these thermal 

properties). 

Figure 6 presents the obtained models alongside with the data points and Eurocode models. In the case of 

the specific heat, it can be seen that the 50% quantile values are close to those prescribed in Eurocode, 

however, that is not the case for thermal conductivity where the overlap between the two is minimal, 

especially at higher temperatures. Also, it can be seen that even though the data points for temperatures 

higher than 800°𝐶 were not used for the fiting of polygonal functions due to the lack of data, the overall 

model behaviour describes them relatively well.  

(a) (b) 
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Figure 5. Akaike information criteria (AIC) comparison of a few theoretical distributions for a) thermal conductivity and b)

specific heat of concrete 

For the specific heat, the Eurocode [4] recommends an additional peak between 100°𝐶 and 200°𝐶, as a 

function of the moisture content, to take into account the moisture inside the concrete and the needed energy 

for moisture evaporation. Due to the great similarities of the 50% quantile curve, the same approach with 

the same values is recommended when using the probabilistic model for the specific heat of concrete. More 

precisely, the same moisture peak values are added to the specific heat curve for the desired quantile value. 

Even though the models do not provide a direct closed-form equation for any quantile value, the needed 

value can be easily calculated in two steps. Firstly the mean and the standard deviation are calculated for a 

given temperature and then based on the two calculated values and the desired quantile, the thermal property 

is evaluated using the well-known equations defining the Gamma distribution.  

Figure 6. Probabilistic models for (a) thermal conductivity and (b) specific heat of concrete at elevated temperatures: 5%,

50%, and 95% quantiles, together with the model from Eurocode and the raw data. 

4 EXAMPLE 

An example of a simply supported concrete slab exposed to the standard fire will be used to demonstrate 

the influence of stochasticity in concrete thermal properties on the probability of failure. This example, but 

(a) (b) 

(a) (b) 
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with deterministic thermal properties, in accordance with the Eurocode, was used in [20]. The slab in 

question is exposed to the fire only on the bottom side, while the top side is subjected to the ambient 

conditions. Thus, for the considered slab thickness, it is safe to assume that the temperatures on the top (i.e., 

the compression side) will not achieve values high enough to cause considerable strength reduction. For 

those reasons, it is justifiable to use the following equation to calculate the resisting moment of the slab, 

𝑀𝑅: 

𝑀𝑅 = 𝑘𝑓𝑦 ∙ 𝑓𝑦,20 ∙ 𝐴𝑆 ∙ (ℎ −
∅
2⁄ − 𝑐) −

(𝑘𝑓𝑦 ∙𝑓𝑦,20∙𝐴𝑆)
2

2∙𝑏∙𝑓𝑐
(10) 

where 𝑏 is the slab width (taken as 1 m) and all the other parameters, along with their distributions, are 

presented in Table 1.  

A probabilistic analysis based on 104 Latin Hypercube Samples (LHS) is conducted in three parts: (i) first

the heat transfer analysis using finite difference method and newly presented probabilistic models for 

thermal conductivity and specific heat are conducted in order to obtain the temperature distribution inside 

the slab; (ii) next, taking into account the temperature of the reinforcements inside the slab and Eqn. (10), 

the moment capacity of the slab is calculated; and (iii) finally, the probability of failure is calculated based 

on the loads and model uncertainties presented in Table 2 and using the limit state equation: 

𝑍 = 𝑅 − 𝐸 = 𝐾𝑅 ∙ 𝑀𝑅 − 𝐾𝐸 ∙ (𝐺 + 𝑄) (11) 

Figure 7 (a) shows the results of the heat transfer analysis, specifically the temperature gradient inside the 

slab after 120 and 180 minutes of standard fire exposure. In the figure, also the temperature gradient 

obtained using the Eurocode equations (lower limit) for thermal properties is presented. The most notable 

observation is that the temperatures are higher when calculated using the probabilistic models. The 

Eurocode temperature gradient is on the level of the 5% quantile of the probabilistic model for both fire 

exposure times, and only close to the top surface of the slab, where the temperature is close to ambient 

condition, does the Eurocode temperature gradient come closer to the median results obtained with the 

probabilistic model. 

Table 1. Stochastic input parameters used for the moment capacity calculation

Parameter Distribution Mean μ Standard deviation σ Ref 

20°C concrete compressive strength, 𝑓𝑐,20 [MPa] Lognormal 42.9 (𝑓𝑐𝑘 = 30𝑀𝑃𝑎) 6.44 [21] 

20°C reinforcement yield strength, 𝑓𝑦,20 [MPa] - 560 (𝑓𝑦𝑘 = 500𝑀𝑃𝑎) - - 

Steel yield stress retention factor, 𝑘𝑓𝑦[-] Lognormal Temperature dependent Temperature dependent [3] 

Reinforcement area, 𝐴𝑆⁡[𝑚𝑚2/𝑚] Normal 785 16 [21] 

Reinforcement diameter, ∅⁡[𝑚𝑚] - 10 - - 

Slab height, ℎ⁡[𝑚] - 0.2 - - 

Concrete cover, 𝑐 [mm] Beta [μ ±3σ] 30+5 = 35 5 [1] 

Figure 7 (b) shows the Probability Density Function (PDF) of moment capacity of the slab. It can be seen 

that an analysis using the Eurocode thermal properties overestimates the slab capacity compared to an 

analysis using the probabilistic models for thermal properties. This indeed can be explained by the higher 

temperatures in the reinforcement. The difference is even better illustrated in Figure 8, which shows the 

Cumulative Distribution Function (CDF) of the limit state from the Eqn. 11. The CDF value at 0⁡𝑘𝑁𝑚 

represents the probability of failure. Probabilites of failure in the case where the probabilistic model for the 
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thermal properties is used are an order of magnitude higher compared to those obtained using the Eurocode 

thermal models, more precisely 2.82 ∙ 10−4 vs 2.37 ∙ 10−5 and  7.32 ∙ 10−2 vs 3.07 ∙ 10−3 for 120 and 180

min respectively. This difference in the probability of reaching the limit state illustrates how important it is 

to take into account the uncertainties in the thermal properties of concrete, especially since using the 

deterministic model is unconservative.  

Figure 7. a) Temperature gradient inside of the concrete slab after 120 and 180 minutes of standard fire exposure at the

bottom side, b) PDFs of the slab bending capacity calculated using the probabilistic and deterministic models for the thermal 

properties of concrete 

Table 2. Stochastic input parameters used for calculation for the probability of failure

Parameter Distribution Mean μ Standard deviation σ Ref 

Dead load, 𝐺⁡[𝑘𝑁𝑚] Normal 15 1.5 [2] 

Live load, Q⁡[𝑘𝑁/𝑚2] Gamma 1.875 1.78 [2] 

Model uncertainty for the load effect, 𝐾𝐸[-] Lognormal 1 0.1 [2] 

Model uncertainty for the resistance effect, 𝐾𝑅[-] Lognormal 1 0.15 [2] 

Figure 8 CDFs of the limit state calculated using the probabilistic and deterministic models for the thermal properties of 

concrete 

(a) (b) 
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5 CONCLUSION 

Novel probabilistic models for thermal conductivity and specific heat of concrete are developed. The 

motivation for this study is the large uncertainty in the thermal properties of concrete that is evident from 

the large scatter in data reported in the literature. The models provide an efficient way to define the value 

of the thermal property at a specific temperature for the required quantile value, which is highly suitable 

for numerical simulations.  

Models for both thermal parameters are defined using two steps. First, the mean and standard deviation are 

calculated for a specific temperature using Eqn. (6)-(9). Afterwards, the thermal property value can be 

generated based on the mean, standard deviation and the specified quantile value using the Gamma 

distribution.  

In the case of the specific heat, the median, 50% quantile, values are similar to those prescribed in Eurocode, 

but the overall model still shows considerable variation. For thermal conductivity, however, the values are 

much larger and show a relatively small overlap with the Eurocode models. The influence of such 

differences is demonstrated using the probabilistic structural fire engineering analysis of a simply supported 

concrete slab. It was shown that a considerable difference in the temperature gradient, moment capacity 

and finally probability of failure could be expected when using the developed models as opposed to existing 

deterministic relationships.  

Using the traditional deterministic models for thermal properties is justified for simple design situations, 

but the uncertainty of the thermal properties values cannot be neglected for special cases where the 

probabilistic calculations are needed, as traditional models could lead to unconservative results.  
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