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ABSTRACT 

This paper incorporates a probabilistic fire loss assessment method for reinforced concrete structures into 

a cost-benefit analysis to optimize a structural fire design. Economic losses in case of failure and survival 

of the structure are both quantified with, in the latter case, an estimate of the damage and repairs costs. As 

a case study, a cost-benefit optimization of the position of rebars in a concrete column is investigated. The 

column response in fire is evaluated using finite element simulations in SAFIR. Variations in cover 

thickness result in variations in failure probabilities and, for cases where no failure occurs, variations in 

repair costs due to heat penetration and residual out-of-plane deformation of the column. The optimum 

cover thickness is the one that offers the best trade-off between the various repair costs across the range of 

likely fire intensity levels. This optimum is sensitive to repair decisions such as the tolerance on the 

acceptable residual out-of-plane deformation after a fire. For the studied cases, the optimum cover thickness 

is smaller in slender columns than in stocky columns due to greater out-of-plane deformations in the former. 
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1 INTRODUCTION 

Adequate fire safety requires that the building’s risk profile with respect to fire exposure is tolerable, and 

that societally cost-effective safety measures are implemented [1]. The tolerability evaluation is best done 

holistically, taking into account the combined fire performance of all the building’s fire safety features. In 

the end, an explicit tolerability evaluation elucidates the range of potential consequences and their 

occurrence frequencies for the design, and confirms that these are acceptable to the stakeholders under the 

condition that further investment is too costly. The consideration that further investment is not cost-

effective is a direct implementation of the As Low As Reasonably Practicable (ALARP) requirement, 

demonstrating that the residual risk level is ALARP. 

A case specific demonstration of tolerability and ALARP is however exceedingly rare. Most buildings are 

constructed through consideration of prescriptive design guidance, either directly or through engineered 

‘alternative solutions’. Achieving tolerability and ALARP for those buildings is assumed based on the 

application of the design guidance itself, placing great importance on the appropriateness of this guidance. 

The design guidance should result in a building for which the residual risk is approximately ALARP, i.e., 

further safety investments are suboptimal, provided that guidance is applied within its intended scope. 
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The above observation is not restricted to fire engineering. As stated by Rackwitz, design optimization 

forms the basis of code calibration in structural engineering [2]. When adopting such an approach, the 

lifetime costs and benefits of safety investments are balanced to derive optimum values for the design. 

These optima can then be either listed directly in design guidance as part of prescriptive (tabulated) 

recommendations or can be generalized towards target safety levels. In fire safety engineering, efforts 

towards lifetime cost optimization (LCO) have only been explored recently. For example, De Sanctis and 

Fontana derived the optimum egress width for compartments in multi-story commercial premises with a 

single compartment exit [3]. In structural fire safety engineering, LCO based methods are applied by 

Hopkin et al. [10] to derive optimum insulation thicknesses for protected steel beams. 

However, most current studies related to the design optimization calculate the lifetime costs, particularly 

the repair cost, only based on a binary damage criterion, failure or no failure [4–6], which may not be 

suitable for some scenarios where a finer degree of granularity in defining fire damage is required, e.g., for 

reinforced concrete (RC) structures that usually do not collapse under fire but require significant repair 

efforts for continued use. To overcome this limitation, this paper incorporates a recently developed fire loss 

estimation method [7] into a lifetime cost optimization. The loss estimation method addresses gradual levels 

of damage states and the corresponding repair efforts, in addition to a binary failure/no failure criterion, 

thus providing a more refined estimate of the repair costs. In this paper, the general formulation of the cost-

benefit analysis is introduced first; then, the fire loss estimation method is described. The theory is then 

applied to the problem of cover thickness optimization of RC columns in the fire situation. Finally, the 

discussion is expanded to show the effects of occupancy types and column slenderness on the derived 

optimum cover thickness.  

2 METHOD 

2.1 Cost-benefit analysis for fire design optimization  

Cost-benefit evaluations in structural engineering are commonly derived from [2], with further reference to 

[8]. These formulations were adapted to consider fire exposure in [4,9,10]. Following the formulation as 

described by Hopkin et al. [10], the lifetime cost is given by Eq. 1, with constituent terms including  the 

total building construction and maintenance cost, C; the obsolescence cost, A; the adverse event 

(nonstructural) direct and indirect material damages, DM; the adverse event loss to human life and limb, 

DL; and the adverse event (structural) reconstruction and repair cost after fire, DR. The lifetime cost and its 

constituent terms are functions of a vector p of design parameters pi. Minimizing the overall lifetime cost 

corresponds with finding the combination of design parameters for which the lifetime cost’s partial 

derivatives are zero, i.e., Eq. 2. For completeness, Eq. 2 should be solved with considerations to avoid 

obtaining local minima or maxima. Furthermore, when considering physical constraints to the design 

parameters, the global minimum lifetime cost may correspond with the limiting values of the design 

parameters, which do not conform to Eq. 2. For simple cases in accordance with the current state-of-the-

art, the above issues are generally not a concern as the lifetime cost function Y can readily be visualized, 

confirming the global minimum.  

𝑌 = 𝐶 + 𝐴 + 𝐷𝑀 + 𝐷𝐿 + 𝐷𝑅   (1) 

𝜕𝑌

𝜕𝑝𝑖
= 0 ∀𝑖 (2) 

The construction cost C is commonly modelled as the sum of a base construction cost C0 and a safety-

investment cost C1. Only the latter cost is considered as a function of the design parameter vector p. The 

obsolescence cost A is commonly specified through an obsolescence rate ω, discounted to present net value 

through the continuous discount rate γ. Considering (from a practical perspective) an infinite time horizon 

for the optimization, the present net values for C and A are given by Eq. 3 and Eq. 4.  

𝐶 = 𝐶0 + 𝐶1(𝑝)   (3) 
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𝐴 = 𝐶
𝜔

𝛾
 (4) 

The damage terms DM, DL, and DR relate to damages incurred in case of adverse events. First of all, such 

damages can be incurred in case of structural failure in normal design conditions. Considering a yearly 

probability of structural failure Pf,0, the associated annualized costs are specified through Eq. 5-7, with CM,0 

the material damage incurred in case of normal design situation failure, and CL,0 and CR,0 the corresponding 

human losses and repair costs. These costs are here considered as deterministic (expected) values. The 

effect of variability in the incurred damages is considered through the tolerability assessment. 

𝐷𝑀,0 =
𝑃𝑓,0

𝛾
𝐶𝑀,0 (5) 

𝐷𝐿,0 =
𝑃𝑓,0

𝛾
𝐶𝐿,0 (6) 

𝐷𝑅,0 =
𝑃𝑓,0

𝛾
𝐶𝑅,0 (7) 

In the context of this paper, fire-induced damages are investigated. It is considered here that other damage 

terms (related to, for example, flooding) can be neglected, or more precisely: that these other damage terms 

are not p-dependent. The fire-related damage terms are specified below, where λfi is the occurrence rate of 

structurally significant fires, Pf,fi is the (conditional) probability of structural failure (collapse) in case of 

fire. With respect to the incurred losses, a distinction can be made between situations where the structure 

collapses during fire and situations where the structure survives up to burnout. Hence, a distinction is made 

for the incurred costs as well, with the index ‘f’ corresponding with failure and the index ‘nf’ indicating the 

situation where the structure maintains stability up to and including burnout. 

𝐷𝑀,𝑓𝑖 =
𝜆𝑓𝑖

𝛾
(𝑃𝑓,𝑓𝑖𝐶𝑀,𝑓𝑖,𝑓 + (1 − 𝑃𝑓,𝑓𝑖)𝐶𝑀,𝑓𝑖,𝑛𝑓) (8) 

𝐷𝐿,𝑓𝑖 =
𝜆𝑓𝑖

𝛾
(𝑃𝑓,𝑓𝑖𝐶𝐿,𝑓𝑖,𝑓 + (1 − 𝑃𝑓,𝑓𝑖)𝐶𝐿,𝑓𝑖,𝑛𝑓) (9) 

𝐷𝑅,𝑓𝑖 =
𝜆𝑓𝑖

𝛾
(𝑃𝑓,𝑓𝑖𝐶𝑅,𝑓𝑖,𝑓 + (1 − 𝑃𝑓,𝑓𝑖)𝐶𝑅,𝑓𝑖,𝑛𝑓) (10) 

Summation of Eq. 3-10 gives an extensive formulation of the total lifetime cost Y in accordance with Eq. 1, 

considering a vector p of design variables. Depending upon the case, the vector of design parameters p will 

influence the failure probabilities and/or the expected values of the incurred costs for Eq. 5-10. In agreement 

with current state-of-the-art applications, adoption of a number of simplifying assumptions allows a 

reduction in the equations considerably. Firstly, current LCO for structural fire engineering (SFE) considers 

only a single design variable p for the optimization. Secondly, the probability of structural failure in normal 

design conditions can be considered negligible, i.e., Pf,0 ≈ 0, or to the same effect, the failure probability 

and costs incurred in case of normal design failure can be considered independent of the fire design 

optimization parameter p. In that case, the contribution of normal design failure to the lifetime cost can be 

substituted by a constant value a. The lifetime cost now reduces to Eq. 11, where the index ‘p’ has been 

introduced to denote p-dependency. 

𝑌 = 𝑎 + 𝐶0 (1 +
𝜔

𝛾
) + 𝐶1,𝑝 (1 +

𝜔

𝛾
) + 𝐷𝑀,𝑓𝑖,𝑝 + 𝐷𝐿,𝑓𝑖,𝑝 + 𝐷𝑅,𝑓𝑖,𝑝 (11) 

Further assumptions can be made to simplify the formulation for specific cases. For example, where the 

design variable p applies to a member that is not critical to the stability of the entire structural assembly 

(e.g., due to redundancy and robustness of the structure), it may be assumed that incurred costs due to 

complete building failure are negligible. In other words, if structural stability up to burnout is readily 

ensured, the term Pf,fi ≈ 0. Rebasing the lifetime cost to Yn1, leaving only the p-dependent terms, results in 

Eq. 12. 

𝑌𝑛1 = 𝐶1,𝑝 (1 +
𝜔

𝛾
) +

𝜆𝑓𝑖

𝛾
(𝐶𝑀,𝑓𝑖,𝑛𝑓,𝑝 + 𝐶𝐿,𝑓𝑖,𝑛𝑓,𝑝 + 𝐶𝑅,𝑓𝑖,𝑛𝑓,𝑝) (12)
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If, in addition to the above, the design parameter does not significantly affect the cost of the design, then 

C1,p ≈ 0. Rebasing and renormalizing the cost to Yn,2 results in Eq. 13.  

𝑌𝑛2 = 𝐶𝑀,𝑓𝑖,𝑛𝑓,𝑝 + 𝐶𝐿,𝑓𝑖,𝑛𝑓,𝑝 + 𝐶𝑅,𝑓𝑖,𝑛𝑓,𝑝 (13) 

If furthermore the fire is contained to the storey of origin, and knowing that stability up to burnout is 

maintained, the nonstructural material losses and human losses can reasonably be considered independent 

of structural fire design parameters. The lifetime cost can then be rebased to the basic formulation of Eq. 14, 

i.e., the lifetime cost of the design is in such cases fully dependent on the reconstruction and repair cost in

the wake of a fire.

𝑌𝑛3 = 𝐶𝑅,𝑓𝑖,𝑛𝑓,𝑝 (14) 

2.2 Fire loss estimation 

The cost-benefit analysis requires the estimation of fire loss. A framework [7] has been proposed to estimate 

the direct fire loss in concrete structures. The framework considers different possible fire scenarios within 

the building, corresponding to different possible ignition locations. For a given fire location, the framework 

applies a four-step procedure, which parallels the PEER methodology [11], including fire hazard analysis, 

fire-thermo-mechanical analysis, damage analysis, and loss analysis.  

The fire hazard analysis first calculates the probability of having a severe fire in a building and the 

conditional probability of fire occurrence in different compartments. These probabilities are used to 

integrate the losses associated with different fire locations, as shown by the loop in Figure 1. The fire hazard 

analysis then provides the associated distribution of the intensity measure (IM) of fire hazards that 

represents the hazard severity. The fire load density qf in a compartment (in MJ/m² of floor area) is used as 

IM [12].  

Given a location of fire fiLi and a fire load qf, a fire-thermo-mechanical analysis is conducted to obtain the 

engineering demand parameters (EDPs) that are used to quantify the damage. The analysis incorporates the 

uncertainties from the fire, heat transfer, and mechanical models. For each fire location, probabilistic fire-

thermo-mechanical analyses of the building are conducted for different values of the fire load qf. The 

analyses yield probability density distributions of the defined EDPs. 

Based on the EDPs, the damage analysis quantifies the probability associated with failure, as well as the 

probability associated with each damage state for the building’s components. This probability distribution 

for the damage measure (DM) is conditional on a specific fire load qf and fire location fiLi. Finally, the loss 

analysis estimates the replacement or repair cost. This estimation is based on loss functions that represent 

the probabilistic distributions of the repair costs for each component at each damage state, including 

structural components, nonstructural components, and content, in the fire exposed area and outside this 

area. The repair cost is estimated for each fire location. The total fire loss for a building is the weighted 

summation of the fire loss at each fire location, where the weights account for the probabilities of the 

different fire scenarios (i.e. allocation of the annual ignitions amongst compartments).  

Figure 1. Probabilistic loss assessment for buildings under fire [7] 
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2.3 Optimization of the cover thickness of a column 

The above described methods are implemented in this paper to optimize the cover thickness of RC columns. 

As the full fire-induced collapse of RC buildings is rare, it is assumed as a simplification that Pf,fi ≈ 0. This 

assumes that the failure of a column in a fire compartment does not lead to the failure of the building. 

Meanwhile, the change of cover thickness by displacing the rebars (at constant section size) does not change 

the construction cost for a column, hence 𝐶1,𝑝 = 0 . Assuming that the fire is contained to the fire 

compartment where the target column is located and knowing that stability up to burnout is maintained, the 

nonstructural material losses and human losses can reasonably be considered independent of the column 

cover thickness. Therefore, the optimization of cover thickness could be conducted based on Eq. 14 that 

has been simplified to only include the expected repair cost, 𝐶𝑅,𝑓𝑖,𝑛𝑓,𝑝. The framework described in Section 

2.2 is used to estimate the expected repair cost in Eq. 14, but without considering the uncertainties in fire 

locations. The estimation of the expected repair cost for a single column includes both failure (of the column) 

and nonfailure cases.  

The optimization is conducted using the numerical method, and the optimal design parameter is identified 

by visualizing the variation of the repair cost with the design parameter. The optimum cover thickness is 

the one that minimizes the repair cost.  

3 ANALYSES 

3.1 Description of the columns 

The cover thickness of two columns (Column A and Column B) are optimized to illustrate how to use the 

method of Section 2. Columns A and B are assumed to be located in a 21 m x 21 m fire compartment, with 

maximum opening factor equal to 0.043 m1/2. The mean compressive strength of concrete is 30 MPa, while 

the steel rebar's mean yield strength is 400 MPa. The dimension and reinforcement details of the two 

columns are shown in Figure 2a and 2b. The column height is 3.867 m. The reference cover thickness is 

40 mm for Column A and 30 mm for Column B. The columns are assumed as pinned-pinned with an axial 

load at the top of the column, as shown in Figure 2c. Column A is exposed to natural fire on three sides, 

with a reference gravity load (Eurocode combination in the fire situation) of 992 kN. Column B is exposed 

to natural fire on four sides, with a reference gravity load of 1984 kN. A sinusoidal geometric imperfection 

with 1/400h at the middle height is imposed to the columns, where h is the height of the column. 

(a) Column A, 350 mm x 350 mm,

8 bars of 30 mm diameter

(b) Column B, 450 mm x 450 mm,

16 bars of 30 mm diameter

(c) Mechanical boundary condition

Figure 2. Dimension and thermal boundary condition of RC columns 

3.2 Description of EDPs, DSs, fragility functions, and loss functions 

The columns are subject to natural fires inclusive of a cooling phase. A failure criterion is first used to 

identify whether a column fails. Here, failure is characterized by the sudden and large increase in 

deformation. If the column fails, the cost of reconstruction of the column is adopted. If the column does not 
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fail, the repair cost related to each damage state of a column is calculated based on fire-specific EDPs, DSs, 

fragility functions and loss functions.  

It is recognized that fire damage is caused by both thermal action (i.e., thermally-induced degradation of 

the material) and mechanical action (i.e., thermally-induced deformations and forces in the structure). 

Therefore, two EDPs are selected to assess the damage in the members. The first EDP is the heat penetration 

depth of the 300°C isotherm in the section, to address the material damage due to heat penetration [7]. 

Different repair actions are required as a function of the heat penetration. The second EDP is the maximum 

residual out-of-plane deformation ratio (MRODR), i.e., the ratio of the maximum residual out-of-plane 

deformation over column height, to address the fire damage related to residual deformations. A limit in the 

out-of-plane deformation could avoid the detrimental effects in terms of mechanical resistance and stability 

in transient and service stages, the service performance during the use of a building, and guaranteeing the 

compatibility for the erection of the structure and its nonstructural components. ENV 13670-1 [13] 

recommends that the structural deviation of a column should be less than the larger of 1/300 h and 15 mm. 

Such a threshold value may be different for different purposes; therefore, various threshold values (1/300 h, 

1/500 h, and 1/700 h) are investigated in this paper. A column has to be replaced if its MRODR value is 

greater than the selected threshold value; otherwise, no repair actions are required.  

The damage states of the column, corresponding to different levels of repair efforts, are mapped to different 

EDP thresholds. The damage related to the heat penetration of the 300 ℃ isotherm has four states, which 

has been described in details in [7]. The damage related to the residual out-of-plane deformation has only 

two states, i.e., MRODR exceeding the threshold value (replacement) or not (no action). To consider the 

uncertainties inherent to the post-fire evaluation, the threshold values are taken as probabilistic variables. 

The lognormal distribution of the lower threshold of each damage state, as a probabilistic function of the 

EPD, is the fragility function that represents the probability that a component reaches or exceeds a specified 

damage state [7]. 

The repair cost corresponding to each damage state is assumed to follow a lognormal distribution, with the 

mean value estimated from data in the Concrete & Masonry Costs (RSMeans, 2019 [14]) and the COV 

ranging from 0.6 to 0.8 based on earthquake engineering data [15]. Table 4 lists the mean repair cost of the 

two columns with the reference cover thicknesses for the damage related to heat penetration. As the cover 

thickness changes, the repair cost varies slightly for DS1, DS2, and DS3 while the costs for DS4 remain 

the same, corresponding to the reconstruction (demolition and replacement) of a column due to extensive 

damage from the heat penetration, which is also the cost for scenarios when a column fails or experiences 

extensive out-of-plane deformation leading to its replacement.  

Table 1. Repair cost for the EDP of heat penetration (d300) for columns exposed to fire 

 DS1 ($) DS2 ($) DS3 ($) DS4 ($) 

Column A, 40 mm 143 725 1,240 7,329 

Column B, 30 mm 246 1,179 2,461 12,852 

 

3.3 Identification of probabilistic parameters  

This section studies the sensitivities of column damage to variables related to fire analysis, thermal analysis, 

and structural analysis, including opening factor of a fire compartment, concrete thermal conductivity, 

concrete density, dead load, live load, model effect, retention factor of concrete compressive strength at 

high temperature, and retention factor of steel yield strength at high temperatures.  

The uncertainty in the opening factor is adopted from the JCSS model [16], O = Omax(1 − ζ), where Omax 

is the maximum possible opening factor assuming all the window glass is immediately broken when fire 

breaks out. O𝑚𝑎𝑥 = 0.043 m1/2 is assumed for the target compartment. 𝜁 is a random variable following a 

truncated (cut off at 1.0) lognormal distribution with a mean of 0.2 and a standard deviation of 0.2. 

The concrete thermal conductivity can be chosen between a lower (α=0) and an upper (α=1) limit, which 

follow the recommendation of Eurocode [17]. It is assumed that α follows a uniform distribution with a 
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range from 0 to 1. The characteristic range of normal-weight concrete density  ranges from 2240 kg/m3 to 

2400 kg/m3 [18]. For the thermal analysis, it is assumed that the density of normal-weight concrete follows 

a uniform distribution with a range from 2240 kg/m3 to 2400 kg/m3.  

The total load effect is described by KE∙(G + Q), with KE the model uncertainty for the load effect, G the 

permanent load, and Q the imposed load [19]. The model uncertainty KE is described by a lognormal 

distribution with a mean equal to 1 and a COV of 0.10. The dead load is modelled by a normal distribution 

with a mean equal to the nominal dead load (Gnorm), and a COV of 0.1. The live load effect Q is modelled 

by a Gamma distribution. For typical occupancies (office, residential), the mean live load can be taken as 

0.2 times the nominal, with a COV of 0.60 for large load areas (> 200 m2). For the columns analysed in this 

paper, Gnorm is equal to dead load plus superimposed dead load (6.9 kPa in total) while the Qnorm is equal to 

live load (3 kPa).  The two columns are assumed to be located at the ground floor of a five story building. 

Column A is subject to a gravity load from a tributary area of 7 m x 3.5 m while Column B is subject to a 

gravity load from a tributary area of 7 m x 7 m.  

The retention factor of concrete compressive strength at high temperatures, kc,T, follows a weibull 

distribution, while the retention factor of steel yield strength at high temperatures, ky,T, follows a lognormal 

distribution [20]. The parameters for the two distributions are temperature-dependent variables.  

The scenarios with each variable equal to its mean value are taken as the reference cases. The column cover 

thickness remains as the reference values in the sensitivity studies. The parametric fire model in the 

Eurocode 1 [21] is used to calculated the gas temperature, with the fire load equal to 420 MJ/m2.  For the 

reference cases, the heat penetration depth d300 is 49 mm for Column A and 51 mm for Column B, and the 

maximum residual out-of-plane deformation is 3 mm for Column A and 0.8 mm for Column B. For each 

variable, two additional cases were run: one is the column with the target variable equal to its mean value 

minus one standard deviation and the other one is the column with the target variable equal to its mean 

value plus one standard deviation; all the other variables equal to their mean values. Table 2 summarizes 

the absolute value of the variation of the EDP values as the target variable changes from μ – std to μ + std, 

relative to that of the reference case. The percentages listed in Table 6 are the average values for the two 

example RC columns.  

According to Table 2, the opening factor is the most critical variable for d300, while d300 is not very 

sensitive to the thermal conductivity and density of concrete, with the variation percentages less than 10%.  

The MRODR of the columns is sensitive to the retention factor of the yield strength of steel at high 

temperatures, model effect, dead load, and opening factor. The variation percentage of MRODR due to the 

uncertainties in live load is greater than 10%, although not as great as the other variables. Therefore, the 

following parameters will be included in the probabilistic fire-thermo-mechanical analysis: opening factor, 

dead load, live load, model effect, and retention factor of the yield strength of steel at high temperatures. 

The uncertainties from the other variables are ignored in this paper.  

Table 2 Relative variation in EDP values associated with variable changes from μ – std and  μ + std 

d300 (%) MRODR (%) 

Opening factor 54.3 18.0 

Concrete thermal conductivity 8.6 3.4 

Concrete density 1.2 1.2 

Model effect - 29.6

Dead load - 27.9

Live load - 11.7

Concrete strength - 8.6

Steel strength - 37.7
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4 RESULTS OF THE COVER THICKNESS OPTIMIZATION 

The expected repair cost of a column is estimated for a cover thickness ranging from 10 mm to 70 mm, 

using the fire loss estimation framework described in Section 2.2. For each cover thickness, the probabilistic 

analysis is based on 500 calculations with SAFIR [22] for each level of fire load (ranging from 100 MJ/m2 

to 2300 MJ/m2). In addition, the optimum cover thickness of another relatively slender column is 

investigated in Section 4.3 to investigate the impacts of column slenderness on the optimum cover.  

4.1 Fragility curves 

Figure 3 shows the failure probabilities of the two columns, as a function of the fire load. The numerical 

data (dots in Figure 3) were fitted by lognormal distributions. The failure probability is almost zero for fire 

loads up to 1500 MJ/m2. For fire loads greater than 1500 MJ/m2, as the cover thickness increases, a column 

becomes less vulnerable to failure first but then may become more vulnerable if the cover thickness is as 

great as 70 mm. This is because a thick cover can provide adequate protection to the rebar but also decreases 

the distance between the rebar (lever arm) for bending behavior. Compared to Column A, the failure 

probability of Column B is lower due to its relatively large section and symmetrical fire exposure.  

(a) Column A (b) Column B

Figure 3. Failure probability of the two target columns 

For nonfailure (nf) scenarios, the distributions of the two EDPs at different levels of fire loads are 

determined by the probabilistic fire-thermo-mechanical analysis, incorporating the variable uncertainties in 

opening factor, live load, dead load, model effect, and retention factor of steel yield strength at high 

temperature. The PDFs of d300 and MRODR are fitted by the modified gamma distribution and lognormal 

distributions, respectively. The convolution of the fragility function and the PDF of EDP yields the 

probability that a column reaches or exceeds a specified damage state (fragility curves). Figure 4 shows the 

fragility curves of Column A, related to the heat penetration of the 300 ℃ isotherm, for cover thickness of 

10 mm, 40 mm, and 70 mm. The fragility curve of DS1 is unaffected by the change in cover because the 

lower threshold value of DS1 is a constant value of zero, independent of the cover thickness. Since the 

lower threshold value of DS2 is 1/10 of the cover thickness that is close to zero [7], the fragility curve of 

DS2 is close to that of DS1. However, as the cover thickness increases, the fragility curve of DS3 moves 

away from DS2 towards DS4, while the fragility curve of DS4 slightly shifts to the right side on the x axis. 

Figure 5 shows the fragility curves of the two columns related to the maximum residual deformation, for 

different cover thicknesses. Those curves are from the damage analysis with the limit for the MORDR set 

as 1/700 h. As the cover thickness increases, the fragility curves move to the right since a thick cover 

protects the rebar from exposure to high temperature. Compared to Column B, Column A is more 

vulnerable to the out-of-plane deformation due to its relatively small section dimension and unsymmetrical 

fire exposure. As the cover thickness increases further up to 70mm, its probability of reaching or exceeding 

the threshold value is relatively high when the fire load is low (as shown in the blue curve in Figure 5a), 

since the bending stiffness of a section decreases when the distance between the rebars decreases. However, 

when the fire load increases further, the advantage of insulation from a thick cover prevails; thus, the 

probability decreases.   
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(a) Cover thickness 10 mm (b) Cover thickness 40 mm (c) Cover thickness 70 mm

Figure 4. Fragility curves related to the heat penetration of the 300 ℃ isotherm (Column A) 

(a) Column A (b) Column B

Figure 5. Fragility curves related to the maximum residual out-of-plane deformation 

4.2 Optimum cover thickness 

Figure 6 shows the variation of the two columns' expected repair cost with cover thickness, conditional on 

the threshold value for the out-of-plane deformation equal to 1/700 h. These curves are calculated from the 

convolution of the probabilities of a column at different damage states and the PDF of the fire load density, 

taking into account the costs such as those listed in Table 1. Each curve in Figure 6 represents a level of 

fire load in a compartment, which depends on a compartment’s occupancy type [21]. The fire load is 

assumed to follow the Gumbel type I distribution; the legends in Figure 6 are the mean values of the fire 

loads, ranging from 100 MJ/m2 to 1100 MJ/m2. 

As shown in Figure 6a, as the cover thickness increases up to 60 mm, the expected repair cost of Column A 

decreases. For further increase to 70 mm, the repair cost increases slightly. Thick concrete cover could 

protect the rebar from exposure to high temperatures, thus decreasing the probability that d300 reaches or 

exceeds DS3, as shown in Figure 4, and reducing the repair cost significantly since the repair efforts for 

DS3 requires the supplement rebars. However, as the cover thickness increases to 70 mm, the distance 

between the rebars decreases, resulting in relatively low bending stiffness of a section and thus a relatively 

high probability to reach or exceed the MRODR threshold value (as shown in the blue curve in Figure 5a); 

that is why the repair cost increases for the largest value of cover thickness. Moreover, the expected repair 

cost increases as the fire load level increases; however, this does not impact the value of the optimum cover 

thickness which equals to 60 mm for Column A, regardless of the fire load. It is noteworthy that this 

optimum is larger than the minimum cover thickness (40 mm) required for design [23].   

Unlike Column A, Column B is heated from four sides and is of a relatively large section, leading to small 

out-of-plane deformations under fire. Most of the cost of Column B results from the repair efforts associated 

with the heat penetration of the 300 ℃ isotherm. As mentioned before, a thick cover could minimize the 
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probability that d300 reaches or exceeds DS3; that is why the repair cost decreases continuously as the 

cover thickness increases. However, it is reasonable to expect that the fire loss would increase at some point 

as the cover thickness increases further beyond 70 mm, due to a reduction in the lever arm.   

For both columns studied in this section, the expected repair cost is the highest when the cover thickness is 

as low as 10 mm (which is, anyway, an unacceptably low value for other requirements as well, e.g., 

corrosion). A 10 mm-thick cover is unable to protect the rebar from exposure to high temperature. The 

degradation of the mechanical properties of rebar at high temperatures leads to a relatively higher failure 

probability, as shown in Figure 5, thus increasing the expected repair cost. The analyses suggest that the 

optimum cover thickness from the perspective of fire loss minimization is greater than the minimum cover 

thickness required for other purposes [23]. 

（a）Column A （b）Column B

Figure 6. Variation of expected repair cost with cover thickness

The optimum cover thickness discussed above is conditional to a threshold value of MRODR equal to 

1/700 h. As the threshold value increases to a higher level, the repair cost of Column A also decreases 

continuously as that of Column B due to the limited out-of-plane deformation of the two columns.  

4.3 Effect of column slenderness on the optimum cover thickness 

The studied columns A and B were relatively stocky. This resulted in a limited influence of the residual 

out-of-plane deformation damage state on the fire losses. In this section, another column was studied to 

investigate the effect of column slenderness on the optimum cover thickness. The column is 4.76 m high, 

simply supported. The section of the column is 300 mm x 300 mm, with 6 steel bars of 20 mm diameter 

and a reference cover thickness of 28 mm. The mean compressive strength of concrete is 31MPa, and the 

mean yield strength of steel is 462 MPa. It is assumed that the column is located in a fire compartment of 

14 m x 14 m, with a maximum opening factor of 0.043 m1/2. Similar to Column B, this column is exposed 

to fire on four sides. The fire severity is probabilistically assessed, assuming uncertainty in the opening 

factor, in addition to fire load being selected as the intensity measure. A stratified sampling method is 

adopted to select the opening factor for each fire load based on the probability density distribution of 

opening factor; ten opening factors are selected for each fire load. The axial load imposed at the top of the 

column remains the same, 650 kN, in all the analyses. Table 3 lists the mean repair cost of the column with 

the reference cover thickness (28 mm), for the damage related to heat penetration. As the cover thickness 

changes, the repair cost varies slightly for DS1, DS2, and DS3 while the costs for DS4 remain the same. 

The repair cost at DS4 is equal to the reconstruction cost of the column in the scenarios where the column 

has to be replaced due to failure, extensive heat penetration, or extensive out-of-plane deformation. 

Table 3. Repair cost for the EDP of heat penetration (d300) for the slender column exposed to fire 

Cover thickness DS1 ($) DS2 ($) DS3 ($) DS4 ($) 

28 mm 202 905 1,184 3,451 

Figure 7 shows the variation of the expected repair cost of the column with cover thickness under different 

fire load levels, for various threshold values of MRODR. If the threshold value of MRODR is equal to 
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1/300 h, the expected repair cost continuously decreases as the cover thickness increases, regardless of the 

fire load. This is because the importance of out-of-plane displacement is lesser when the tolerance on the 

threshold is more lenient. For a threshold value of MRODR of 1/500 h (meaning that the tolerated residual 

deflection becomes more stringent), a clear optimum cover can be observed for medium fire load levels 

(500 MJ/m2 to 900 MJ/m2), as the expected repair cost decreases first and then increases slightly after an 

optimum of 49 mm. For fire load levels lower than 500 MJ/m2 and higher than 900 MJ/m², the expected 

repair cost continuously decreases with the increase of the cover thickness. This is because low fire load 

limits the out-of-plane deformation while high fire load requires a thick cover to protect the rebars, thus the 

advantages of insulation from a thick cover prevail in both cases. As the threshold of MRODR decreases 

further to 1/700 h, the decreasing-increasing trend of the expected repair cost becomes more evident for the 

three fire load levels, 500 MJ/m2
,
 700 MJ/m2, and 900 MJ/m2. The optimum cover thickness is 42 mm for 

the three levels of fire load. Similar to the slender column, Column B is also exposed to four side fire. 

However, due to its relatively large section dimension and relatively small height, the expected repair cost 

of Column B does not have a decreasing-increasing trend even when the threshold value of MRODR is 

equal to 1/700 h.  

(a) 1/300 h (b) 1/500 h (c) 1/700 h

Figure 7. Variation of expected repair cost with cover thickness for the slender column

5 CONCLUSION 

This paper incorporated a method for probabilistic fire loss estimation of reinforced concrete structures into 

a lifetime cost optimization framework to optimize the cover thickness with respect to fire response. 

Without considering the impact of other cost components in the cost-benefit analysis, the cover thickness 

of several columns was optimized based on the expected probability of failure and repair cost after a fire 

event. The expected repair cost accounted for the cost of repairs due to heat penetration in the section and 

residual out-of-plane deformations, as well as the cost for replacement in case of failure. These cost 

components vary with the variation of cover thickness. The optimum thickness is achieved by balancing 

the cost components across the range of expected fire events, as characterized by the fire load as the 

intensity measure. The optimum is also sensitive to assumptions on repair actions, such as on the tolerance 

for the acceptable residual out-of-plane deformation. For large values of this tolerance, the cost 

continuously decreased with an increase in cover thickness. Compared to stocky columns, a slender column 

that experiences more out-of-plane deformation has a smaller optimum cover thickness. The optimization 

in this paper only focuses on the repair cost of isolated columns. Future works will seek to include more 

damage characteristics, e.g., residual axial deformation will be incorporated into the fire loss estimation of 

a column; more cost components in Eq. (1); and to conduct the optimization of design parameters at the 

scale of a whole building, the importance of which has been emphasized in [24].  
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