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Permeation of many small molecules through lipid bilayers can be directly observed

in molecular dynamics simulations on the nano- and microsecond timescale. While

unbiased simulations provide an unobstructed view of the permeation process, their

feasibility for computing permeability coefficients depends on various factors that

differ for each permeant. The present work studies three small molecules for which

unbiased simulations of permeation are feasible within less than a microsecond, one

hydrophobic (oxygen), one hydrophilic (water), and one amphiphilic (ethanol). Per-

meabilities are computed using two approaches: counting methods and a maximum-

likelihood estimation for the inhomogeneous solubility diffusion (ISD) model. Count-

ing methods yield nearly model-free estimates of the permeability for all three per-

meants. While the ISD-based approach is reasonable for oxygen, it lacks precision

for water due to insufficient sampling, and results in misleading estimates for ethanol

due to invalid model assumptions. It is also demonstrated that simulations using a

Langevin thermostat with collision frequencies of 1/ps and 5/ps yield oxygen per-

meabilities and diffusion constants that are lower than those using Nose-Hoover by

statistically significant margins. In contrast, permeabilities from trajectories gener-

ated with Nosé-Hoover and the microcanonical ensemble do not show statistically

significant differences. As molecular simulations become more affordable and accu-

rate, calculation of permeability for an expanding range of molecules will be feasible

using unbiased simulations. The present work summarizes theoretical underpinnings,

identifies pitfalls and develops best practices for such simulations.

PACS numbers: 02.70.Ns, 87.15.Aa, 87.16.Dg, 82.39.Wj

a)Electronic mail: richard.pastor@nih.gov; Corresponding author
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I. INTRODUCTION

Permeation of substances through membranes is a fundamental cellular process that

determines many pivotal properties of cells. Crucially, the permeability coefficient P informs

drug efficacy, since it describes the rate at which substances translocate into and out of

cells and thus their ability to attain molecular targets. While specific molecular species

such as ions undergo facilitated permeation through channel proteins, permeation of most

molecules occurs in a non-facilitated fashion, i.e. by passive diffusion through lipid bilayers.

The corresponding permeability coefficients P are in practice often represented by de facto

estimates. One example is the water-octanol partition coefficient in Lipinski’s Rule of Five,1

which characterizes drug-like molecules. Such solubility-based estimates roughly capture the

energetic contributions to the translocation rate. However, they do not include the kinetics,

which are much harder to obtain from experiment.2

In contrast, molecular dynamics (MD) simulations provide a detailed view of the kinetics

and are in principle suited to quantify P precisely given an accurate force field.3 Various

methods have been used for calculating permeabilities from simulations, most of which rely

on enhanced sampling methods and the inhomogeneous solubility diffusion (ISD) model.2,4,5

This one-dimensional model relates P to the local diffusivity and free energy gradients

along a transition coordinate. However, it is not clear a priori to which degree and in which

situations the assumptions of the ISD model are justified. Moreover, even for unbiased

simulations, calculating P involves technical challenges regarding system and simulation

setup, choice of the membrane interface, length and time scales for fitting the ISD model,

and error estimation. Those difficulties are underappreciated and differ widely for different

classes of permeants.

The present work provides guidelines, tools and theoretical underpinnings for calculating

permeability coefficients from unbiased simulations. To cover the most important scenarios,

three small molecules are considered: oxygen (hydrophobic), water (hydrophilic) and ethanol

(amphiphilic). Despite their fundamental differences in solubility, unbiased simulations on

the sub-µs time scale provide sufficient sampling to estimate their permeabilities through

phospholipid bilayer membranes. The existence of unbiased estimates for these molecules

makes them ideal candidates for scrutinizing the capabilities and limitations of simulation

models.
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Figure 1. Two general approaches to compute permeabilities from MD simulations. Methods from

the first category are based on global observables like the crossing rate, the net flux through the

membrane and the permeant concentration difference between compartments. Methods from the

second category are based on local observables like local transition rates or the position-dependent

diffusivity, which can be computed, either via local autocorrelation functions of position r, velocity

v, and force F or via globally fitting a diffusive model.

Generally, existing methods for calculating permeability from simulations fall in one of

two categories based on whether P is derived from global or local observations, see Figure

1. The global observables are closely related to the definition of P in a setup with two water

compartments that are separated by a membrane. In this setup, P is the proportionality

constant between the concentration difference ∆c of permeants in the water compartments

and the net flux J of permeant through the membrane.3 In a nonequilibrium setup, these

observables can be directly measured to evaluate P via “flux-based counting”

J = P∆c. (1)

By invoking Fick’s First Law, Equation (1) can be reformulated in a way that applies also

for systems in equilibrium. Here, the global observables are the crossing rate r, i.e. the

number of permeant transitions through the membrane per unit time and area irrespective

of direction, and the equilibrium concentration cw of permeant in water,3 and

P =
r

2cw
, (2)
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see also Supplementary Section S1. Albeit sometimes formulated differently, this “transition-

based counting” method and its variants have been used in various previous studies.6–15 Both

counting methods are almost model-free, as they make no assumptions about the nature of

permeant kinetics inside the membrane.

The required global observables J , ∆c, and r, however, are generally not available from

biased simulations and full transitions are often too rare to characterize P precisely from

unbiased simulations. In order to utilize enhanced sampling techniques, one must switch to

a local framework, where the permeability can be derived from the individual rates between

microstates as in Milestoning16–18 and Markov state models.19 The two are closely related

as Milestoning can be understood as Markov state modeling in trajectory space.20 However,

Milestoning is also applicable to non-Markovian kinetics.21 Both approaches can utilize many

short simulations for finding the transition rates between microstates. Moreover, they allow

for a balanced sampling of low- and high-energy segments of the transition. The same

also applies to Transition Interface Sampling methods.22,23 Note that the transition-based

counting method can be considered as a special case of Milestoning with milestones only at

the two membrane-water interfaces.20

Lastly, the most-used class of methods builds on diffusive modeling, predominantly the

ISD model. The ISD model characterizes the permeability via the position-dependent dif-

fusion D(z) and free energy F (z) along the transition coordinate z, and the permeability

directly follows from solving the Smoluchowski equation under stationary conditions:

1

P
= e−βF

ref

∫ h/2

−h/2

eβF (z)

D(z)
dz. (3)

Here, F ref is the reference free energy of the permeant in water, h is the width of the bilayer

centered around z = 0 and β = 1/(kBT ) with the Boltzmann constant kB and temperature

T . While the permeants’ center of mass along the bilayer normal z is the natural transition

coordinate for small molecules, the path can be more complicated for larger permeants,24

and the ISD model has also been used in this situation.25

Applying the ISD model involves practical and theoretical challenges. From a practical

point of view, identifying the transition path as well as the free energy along this path can

be difficult. To this end, others have applied enhanced sampling methods such as (replica

exchange) umbrella sampling,4,5,26–28 (transition-tempered) metadynamics,25,29 and adaptive

biasing force methods.11 Identifying suitable reaction coordinates becomes especially difficult
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when deformations and undulations of the membrane have to be taken into account.30 More-

over, some permeants can undergo dynamic changes in protonation state as the permeant

translocates into the hydrophobic core of the bilayer.28 Once the transition path is identi-

fied, the diffusion profile can be computed via autocorrelation functions of either force,31

position,5,32,33 or velocity5,32 that are evaluated at multiple locations along the transition

coordinate. Alternatively, a global diffusive model can be fit to optimally explain permeant

displacements along z.11,32,34

From a theoretical perspective, a one-dimensional diffusive model presents an idealized

description of the true kinetics. The ISD model assumes that the diffusion constant along

the transition path can be defined as a function of the transition coordinate, which is not

obvious, e.g. if multiple paths exist. Moreover, memory effects of the medium can corrupt the

Markovian assumption that underlies diffusive modeling. Therefore, the global model fitting

approach has also been extended to a fractional diffusion equation.34 Taken together, the

assumptions underlying Equation (3) may introduce substantial errors to the permeability

estimate.

For the simulations in the present work, estimates from the ISD model are compared

to the nearly model-free permeabilities obtained from transition-based counting. Section

II recapitulates the counting method, establishes its validity in the context of the ISD

model, presents a maximum likelihood approach for globally fitting diffusion and free energy

profiles, and introduces two new software packages to facilitate those calculations. Section III

describes in detail the calculation of permeabilities for oxygen, water, and ethanol through

phospholipid bilayers, studies the influence of various method parameters, and compares

results between the two approaches. Section IV uses the findings from these examples to

develop best practices and discuss implications for biased approaches. Section V provides

conclusions. The second part of this study35 (henceforth referred to as Paper II) applies the

methods described here as well as flux-based counting and a compartmental model to study

in detail ethanol permeation through various bilayers.

II. METHODS

This section first describes the methods used to evaluate the permeabilities from count-

ing (II A) and the ISD model (II B). It then points out the relationship between the two
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approaches (II C) and presents the analysis software (II D) and simulation setups (II E).

A. Evaluating Permeability from Counting

Let us briefly revisit the transition-based counting method as derived in our recent

review.3 The picture underlying Equation (2) is that of a quasi steady state, where the

dimensions of the water compartments and membrane as well as the water-membrane par-

titioning of permeants are constant up to statistical fluctuations. If the system contains

multiple water compartments, the distribution of permeants between these compartments

does not necessarily need to be in equilibrium, but the molecular systems in the present

manuscript contain only a single bilayer and a single water phase and the rest of this section

assumes such a single-bilayer setup. Double bilayers are explicitly considered in Paper II.

Given an MD trajectory of length Tsim, let z denote the bilayer normal with the mem-

brane’s center of mass at z = 0, H the average length of the unit cell along z, and Axy

the average cross-section area of the membrane. Furthermore, let h be the thickness of the

bilayer, i.e. the distance between the water-membrane dividing surfaces. The concrete choice

of h is not trivial and its influence on the permeability coefficient will be discussed later (see

Section III C 5). To compute P from transition-based counting, two quantities need to be

computed: the equilibrium concentration cw and the permeation rate r.

1. Equilibrium Concentration in Water

The steady state concentration cw is the average number of permeants in water, divided by

the total volume of the water compartment. Given the permeant distribution p (normalized

to
∫
p dz = 1) this concentration is evaluated as

cw =
N

Axy · (H − hw)
·
∫
z /∈[−hw/2, hw/2]

p(z) dz, (4)

where N is the total number of permeants in the system, and hw is the dividing surface.

When using this equation it is important that p(z) is roughly constant at and beyond hw.

Another convenient way to evaluate cw from an equilibrium simulation utilizes the potential

of mean force15

cw =
N

Axy
·

(∫ H/2

−H/2
e−β(F (z)−F ref) dz

)−1

, (5)
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where the reference free energy F ref is the average value of the potential of mean force in the

water phase. In practice, F ref is computed over a range of bins far away from the membrane,

where F (z) is roughly constant.

2. Permeation Rate

Table I. Events that relate to the permeability according to Equations (6) and (7). The arrows

represent translocations through, into and out of the membrane, which is depicted as a shaded

rectangle.

Type of Event Φ References

Full crossing (either direction) 2 channel7,8

membrane3,14,15

Escape (from the center to either side) 4 membrane12,13

Semipermeation event (crossing of a single leaflet) 8 membrane26

The rate r is the number of permeation events per unit time and membrane area,

nevents/(Axy · Tsim). In the simplest case, permeation events are defined as full crossings,

i.e. transitions from z = −h/2 through the bilayer to z = h/2 or reverse, and the perme-

ability is obtained from Equation (2). In symmetric setups, statistics can be improved by

introducing an additional milestone in the center z = 0. If the kinetics are memory-less

(Markovian) a particle in the center has equal probability to exit on either side. In other

words, an escape from the membrane center to either water/membrane dividing surface has

a 50% chance to be a crossing and a 50% chance to be a rebound. Moreover, each crossing or

rebound is composed of two semipermeation events (one entry and one escape). Therefore,

previous work has calculated membrane and channel permeabilities from

Pmembrane =
nevents

AxyTsim

/
(Φcw) , (6)

Pchannel =
nevents

Tsim

/
(Φcw) , (7)

where Φ is an integer specified in Table I. Note that these relations hold only in equilibrium

for symmetric systems, where transitions between the water phase and the membrane center

are mostly Markovian, while counting full crossings is also valid in non-equilibrium and

asymmetric setups.
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As mentioned earlier, these counting methods can be considered as special cases of

Milestoning.16 In Milestoning, milestones z = m1, m2, ... are placed along the transition

coordinate and the trajectory of a particle is divided into segments based on which mile-

stone was last visited. Whenever a particle hits a milestone its segment i is updated. This

type of modeling allows the calculation of transition rates between segments and the closely

related mean first passage times τ(mi → mj) between milestones, which in turn provide the

permeability, see Appendix A.

This discussion of the transition-based counting method closes with some remarks regard-

ing its implementation. Firstly, the entire analysis is performed in normalized coordinates

z/H with respect to the instantaneous box size in order to handle constant-pressure simula-

tions and constant-volume simulations in the same way. Secondly, for each permeant in the

membrane, the direction from which it entered the membrane must be recorded in order to

count crossings. For particles that are in the membrane at the start of the simulation, this

information is not known. Therefore, the first escape would not be counted, which can lead

to underestimates of the permeability.15 A heuristic solution is to initialize all permeants in

z ∈ (−h/2, 0] as having entered from z = −h/2 and all in z ∈ (0, h/2] as having entered

from z = h/2. Thirdly, particle positions are only known at discrete points in time. If

the output interval, i.e. the time between stored trajectory frames, is too long, transitions

might be missed. In order to allow an output interval as large as possible, jumps over certain

compartments are handled in a stepwise approach. For example, the simulation domain is

divided into four intervals, water to the left and right of the membrane, z ∈ (−H/2,−h/2]

and (h/2, H/2], as well as a left and a right membrane leaflet, (h/2, 0] and (0, h/2]. When-

ever a particle jumps over one of these intervals between two trajectory frames, it could

have gone either through the periodic boundary or through the membrane center. In this

case, we will always assume that it has gone through the periodic boundary, since diffusion

is usually faster in the water phase than the membrane. The effects of initialization, output

interval, and type of event on the permeability estimates are discussed in Section III.

B. Evaluating Permeability from Fitting an ISD Model

The ISD model, Equation (3), requires the position-dependent diffusion and free energy

profiles in the bilayer. To extract these profiles from a simulation trajectory, the present
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work uses a modification of Hummer’s Bayesian analysis.32

1. Optimization Problem

As in Hummer’s method,32 the transition axis z is divided into bins of width ∆z,

Bi = [zi −∆z/2, zi + ∆z/2), i = 1, · · · , nbins.

Permeant transitions from Bj to Bi over a lag time τL are counted and stored as a transition

matrix (Nij)ij.

To find diffusion and free-energy profiles that optimally explain the simulated transition

data, Hummer sampled trial profiles using a Monte-Carlo scheme and the log-likelihood

lnL =
∑
i,j

Nij ln
[
(eR·τL)ij

]
. (8)

The present work replaces this Monte-Carlo sampling with a maximum likelihood estimation.

The matrix R stores transition rates between adjacent bins and is generated from the discrete

profiles Di±0.5 and Fi (the diffusion is defined at bin edges and the free energy is defined at

bin centers). The elements of the rate matrix are

Rij =


Di±0.5

∆z2
exp

(
−β Fi−Fj

2

)
j = i± 1,

−
∑

k 6=iRkj j = i,

0 otherwise.

(9)

This rate matrix is tridiagonal except for the corner elements, which are adapted to impose

periodic boundary conditions. Equation (9) is derived from a finite-volume discretization of

the Smoluchowski equation, see Supplementary Section S2. To reduce the number of degrees

of freedom, the profiles are modeled through basis functions ψk. Furthermore, to perform

the optimization without constraints, the diffusion is enforced to be positive by writing the

logarithm of D as a superposition of basis functions. This gives

Fi =

nf∑
k=1

fkψk(zi), lnDi+0.5 =

nd∑
k=0

dkψk(zi).

with nf (nd) the number of basis functions for the F profile (lnD profile) and fk (dk) the

coefficients that are optimized by the maximum likelihood routine. Two different sets of
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basis functions are used, cubic splines as well as trigonometric functions as in Ghysels et

al.36 The optimal profiles are found by numerically solving

min! − lnL(f ,d), (f ,d) ∈ Rnf+nd+1, (10)

where R is the space of real numbers. The minimum is not necessarily the same as the average

from Monte-Carlo sampling, since the distribution of sampled f and d may be skewed around

the maximum of the log-likelihood. However, both converge to the same global optimum in

the limit of an infinitely long, diffusive trajectory, where the Monte-Carlo method accepts

new samples only in a very close neighborhood of the global optimum.

2. Optimization Method and Implementation

The optimization problem in Equation (10) is solved using a robust, derivative-free global

optimization method, the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES).37

This method is more directed towards the optimum than random Monte-Carlo sampling,

which speeds up the search for an optimal set of profiles and thus allows utilization of

a higher-dimensional space of basis functions. Another consideration in switching to a

maximum-likelihood estimation is that the error estimates from the Bayesian analysis tend

to be overly narrow, as they only represent the error within the model, which includes a

fixed set of basis functions and a single set of transitions.38 Instead, the present work reports

error estimates as twice the standard error over multiple independent replicas and multiple

sets of basis functions, which turn out considerably larger.

3. Lag Time Dependence

Diffusion profiles D(z) generated from fitting an ISD model to a transition matrix Nij

usually vary between different lag times τL,11,36 mostly because the short-time dynamics con-

tain non-Markovian contributions that are not represented in a diffusive model.34 Moreover,

the finite-volume discretization of the Smoluchowski equation may lead to non-negligible nu-

merical diffusion, see Section III C 1. In the context of the ISD model, these factors usually

cause an overestimation of diffusivities, which is most severe for small lag times. Problemat-

ically, shifting the focus to long lag times is not a practical solution, because the transition
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matrix becomes increasingly insensitive to local transitions, which in turn makes it harder

to fit a meaningful diffusion profile.

While this dilemma reflects some of the general theoretical issues with the ISD model,

a remedy has been proposed by Ghysels et al.36 They applied the Bayesian analysis to

different lag times and then applied linear regression to fit the diffusion coefficients D(z; τL)

to 1/τL → 0. The present work follows the same approach. Concretely, the extrapolation

is performed for each replica of a simulation and each set of basis functions. The resulting

profiles D(z; τL = ∞) are averaged over all replicas and sets of basis functions and error

estimates are calculated as twice the standard error.

C. Relationship between the two Approaches

As apparent from its derivation, the transition-based counting method does not require

diffusive dynamics inside the membrane. However, it is reassuring that Equation (2) can

also be obtained in the framework of the Smoluchowski equation. The proof is given in

Appendix A.

D. Analysis Codes

Two software packages were developed to facilitate the permeability calculations. Rick-

flow 39 is a Python package that implements well-validated OpenMM simulation protocols

using the CHARMM force field. It also provides analysis classes to compute observables

including potentials of mean force, number of entries, escapes, and crossings of a membrane,

characteristic permeation times, and transition matrices. Many common trajectory formats

are supported by way of the MDTraj package40 and analysis routines are vectorized using

numpy.

The maximum-likelihood estimation for the ISD model is implemented in the package

diffusioncma.41 Its core functionality is implemented in C++ and uses the libraries Eigen

and libcmaes for linear algebra and optimization routines. A wrapper module transfers the

optimization routine into the Python ecosystem and provides many useful utility functions

for postprocessing and analyzing the profiles.

Both packages are open source. Examples are given in Supplementary Section S4.
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Figure 2. Snapshots from the POPC simulations considered in this work. Only heavy atoms of

the permeants and lipids are shown with the bilayer in opaque style (waters are omitted in the

ethanol and oxygen snapshots). Carbon, oxygen, phosphate, and nitrogen atoms are shown in grey,

red, orange, and blue, respectively. Permeant atoms are enlarged for clarity. The dimensions of

each system have been scaled to yield similarly sized figures (see Table II for compositions).

E. Molecular Dynamics Simulations

Water and oxygen trajectories generated with the CHARMM program43,44 were taken

from previous work.3,36,42 Trajectories frames were stored at 1 ps intervals.

Ethanol simulations were run using two different approaches, mostly to study the effect

of the integration algorithm. First, simulations were run using the setup described in Paper

II. Systems containing water and lipids were run for 30 ns of NPT equilibration in NAMD.45

Ethanol molecules were then added to the water phase using Packmol.46 Production simula-

tions were run using a Langevin thermostat at 298.15 K in the isothermal-isobaric ensemble

at atmospheric pressure (henceforth denoted NAMD/LD). The time step was 2 fs. In order

to reduce the effect of added friction, the collision frequency was relatively small, 1 ps-1.27

Trajectory frames were written out every 10 ps.

Second, simulations of the same systems were set up in OpenMM version 7.3.1.47 us-

ing the Rickflow package. Dynamics were run in the isothermal-isobaric ensemble using a

Nosé-Hoover chain48–50 velocity Verlet integrator as implemented in openmmtools51 and a

Monte-Carlo barostat52 for membranes. The integration time step was 1 fs and trajectory

frames were written out with an output interval of 1 ps. All covalent hydrogen bonds were
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constrained using the SETTLE and CCMA algorithms.53,54

The CHARMM36 lipid force field was employed for all simulations.55 As advised for mem-

brane simulations, Lennard-Jones interactions were cut off at 12 Å with a force-switching

function between 8 and 12 Å.56 Particle mesh Ewald was used for long range electrostatics.

Table II summarizes the primary simulations presented in this work. Figure 2 shows

snapshots of the POPC simulations. Methods for the simulations of O2 in POPC bilayers

and homogeneous solutions (hexadecane and water) discussed in Section III C 4 (Influence

of the Thermostat) are contained in Supplementary Sections S5 and S6, respectively.

III. RESULTS AND DISCUSSION

Results are presented starting with permeant distributions (III A), then moving on to

permeabilities from counting (III B) and the ISD model (III C).

A. Permeant Distributions

1. Free Energy Profiles

Figure 3. Potentials of mean force for water in POPC and DPPC, oxygen in POPC, and ethanol

in POPC at two different concentrations (170 and 626 ethanol molecules).

Table III and Figure 3 show system properties and potentials of mean force (PMF) for
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Table III. System properties from simulations: box area Axy and height H, permeant concentration in

water cw, average phosphorus distance from bilayer center zP, and dividing surfaces at |z| = h/2. The last

column lists the normalized dividing surfaces (h/2)/H which are input to the Rickflow event counters.

Uncertainties were calculated as twice the standard error over all replicas of a simulation.

Identifier Area Axy [nm2] Height H [nm] cw [1/nm3] zP [nm] h/2 [nm] (h/2)/H

Water (DPPC) 22.68 ± 0.10 6.82 ± 0.03 32.7563 ± 0.0037 1.98 2.48 0.36

Water (POPC) 23.75 ± 0.07 6.62 ± 0.02 33.3771 ± 0.0049 1.92 2.42 0.37

Oxygen 23.12 ± 0.00 6.79 ± 0.00 0.0141 ± 0.0035 1.97 2.47 0.36

Ethanol (170) 36.81 ± 0.16 7.88 ± 0.03 0.8819 ± 0.0192 1.81 2.31 0.29

Ethanol (626) 43.35 ± 0.78 7.70 ± 0.14 2.9941 ± 0.0312 1.62 2.12 0.27

Ethanol (170, NAMD/LD) 35.94 ± 0.19 8.03 ± 0.04 0.9096 ± 0.0174 1.85 2.35 0.29

Ethanol (626, NAMD/LD) 42.71 ± 0.35 7.78 ± 0.06 3.0032 ± 0.0245 1.63 2.13 0.27

the five systems. PMFs were computed directly from the probability distributions from all

replicas. The highly symmetric shapes of the PMFs indicate good sampling and convergence.

The water and ethanol PMFs are in good agreement with those calculated by enhanced

sampling methods using the same force field,57,58 although some discrepancies are expected

due to a different ethanol concentration. We are not aware of equivalent studies of oxygen.

As expected from their solubilities, the distributions for water, oxygen, and ethanol differ

greatly. Water has a high barrier at the bilayer center, approximately 10 kBT for DPPC

and 11 kBT for POPC. In contrast, oxygen partitions favorably into the bilayer. It has a 1

kBT barrier around z = 20 Å, which is the average position of the phosphorus atoms, and

a minimum in the inter-leaflet space which is approximately 3 kBT below F ref . Ethanol has

a similar 1 kBT barrier near the phosphate groups, a minimum below the head groups, and

a 5 kBT barrier in the center.

At the lower ethanol concentration, the space below the head group region was equally

accessible as the water phase. At the higher concentration, however, the free energy mini-

mum at z ≈ ± 12 Å became metastable and the peak in the center narrower. This suggests

that the space below the headgroups became increasingly saturated by ethanols, which in

effect inserted deeper into the membrane. The generally less pronounced minima and max-

ima of the profile at higher ethanol concentration also indicate that the structural properties
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of the membrane were modulated: the bilayer became more flexible. This is reflected by a

higher standard deviation of phosphorus atoms along the z coordinate (2.8 instead of 2.5

Å). In comparison, the standard deviation in the Water (POPC) system was only 2.1 Å.

Table III also shows that a higher ethanol concentration caused a thinning and widening

of the bilayer. Concretely, the cross-section area increased by approximately 18% and the

distance between the phosphate planes decreased by approximately 10%, which reflects the

membrane-modulating properties of alcohols. A detailed structural analysis of bilayers in

response to ethanol is found in Paper II.

The average phosphate distances from the center zP were also used to define dividing

surfaces at z = ±h/2 for computing the permeability 5 Å outside the phosphate planes,

h/2 = zP +5 Å. This choice allows a consistent definition of dividing surfaces for all systems.

It mostly includes the variations in the free energy profiles and leaves enough space in the

water compartment to reliably record transitions into and out of the membrane.

Figure 4. Permeant concentration in water cw evaluated from Equation (4) as a function of

the normalized dividing surface (hw/2)/H. The concentrations in Table III were evaluated from

(hw/2)/H = 0.45 (dotted vertical line). The dashed line represents the dividing surface (h/2)/H

used for counting, which lies 5 Å outside the phophate plane. The unnormalized distances from

the bilayer center are depicted for scale. Uncertainties (lighter colors) are defined as twice the

standard error over all replicas.
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2. Equilibrium Concentrations in Water

The permeant distributions underlying Figure 3 were then used to compute the steady-

state concentrations cw that are required for the counting methods. To this end, it is

important to realize that cw depends on the choice of the dividing surface hw in Equation

(4). The same applies for Equation (5), which depends on the region that is used to fit F ref .

Figure 4 shows cw as calculated from Equation (4) as a function of the dividing surface.

While hw = h is most natural in theory, the ethanol concentration at (hw/2)/H = 0.29

was already significantly different than for points further away from the membrane. In fact,

choosing hw = h would artificially increase the permeability estimate by 10% according to

Equation (2). To this end, it is more important to enforce a constant concentration in water

than to use the same dividing surfaces for calculating cw and evaluating permeation events.

This can also be seen from Equation (A3) in the derivation of the counting method from the

Smoluchowski model, where it is critical that F (z) be constant throughout the water phase.

In contrast, a minor difference between h and hw only affects the permeability estimate very

slightly as will be discussed in Section III C 5. We overlooked this nuance in previous work3

and reported cw = 0.0109/nm3 for oxygen, which resulted from a different choice of hw.

In the present work, all cw were calculated over the outer 10% of the simulation box, i.e.

(hw/2)/H = 0.45, where the variations in F (z) are negligible.

B. Permeabilities from Counting Methods

1. Counts and Breakdown of the Markovian Assumption for Ethanol

With Tsim from Table II and Axy and cw from Table III, the final variable required for

the counting methods in Equation (6) is the number of event counts. These were computed

from the trajectories using the dividing surfaces h/2 from Table III. The numbers of entries

(water → center), escapes (center → water), rebounds (water → center → water on the

same side), and crossings (water → center → water on the other side) are listed in Table

IV. Escapes, rebounds, and crossings were counted using the heuristic memory initialization

described in Section II A 2 so that all escapes were counted as either rebounds or crossings,

i.e. nescapes = nrebounds + ncrossings. The number of entries was not affected by this way of

initializing the counting method.
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Table IV. Number of events summed over all replicas. The dividing surfaces are listed in Table III.

Identifier nentries nescapes nrebounds ncrossings

Water (DPPC) 91 91 42 49

Water (POPC) 19 19 10 9

Oxygen 102 103 47 56

Ethanol (170) 123 119 84 35

Ethanol (626) 1304 1307 1060 247

Ethanol (170, NAMD/LD) 59 62 40 22

Ethanol (626, NAMD/LD) 1212 1201 893 308

In all systems, the entry and escape counts were approximately equal, as expected from

Equation (6). For the water systems, they were even identical, which means that all waters

that diffused into the bilayer center also escaped thereafter. According to Equation (6)

and Table I, the number of rebounds and crossings should also be equal (on average) for

a diffusive trajectory. This was the case for water and oxygen. However, the ethanol

simulations showed a large discrepancy.

The ethanol simulation at lower concentration, “Ethanol (170)”, had more than twice as

many rebounds as crossings so that permeabilities calculated from Equation (6) are dramat-

ically different for different types of events. This inconsistency was even more pronounced

at the higher ethanol concentration, where the number of rebounds exceeded the number of

crossings by a factor of four. In other words, an ethanol reaching the membrane center was

much more likely to return than to move on and permeate to the other side.

To understand this breakdown of the Markovian assumption for ethanol, consider the

simulation frames depicted in Figure 5. Ethanols populate the space below the headgroups,

where they form hydrogen bonds with lipids and each other. Ethanols that translocate into

the center z = 0 still maintain these connections with ethanol molecules in the same leaflet.

Permeating to the opposite leaflet is energetically unfavorable, since it requires leaving the

hydrogen bond network. This effect is especially visible in the snapshot of the high concen-

tration (Figure 5, right), where an ethanol molecule from the upper leaflet has reached the

core of the bilayer, while remaining weakly bound to other ethanol molecules on the same

side. At high ethanol concentrations, this effect is stronger, which can be explained from the
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Figure 5. Snapshots from ethanol simulations at lower concentration (170 molecules, left) and

higher concentration (626 molecules, right). Lipid phosphates are shown in blue, other lipid atoms

and water molecules are omitted for clarity. Ethanols are shown in red, white, and grey spheres.

The figures were made with NGLView.59

structural properties reported in the previous section. Firstly, the increased flexibility and

undulations of the membrane facilitate reaching the center. Secondly, the increased area

of the membrane creates more space for ethanols and therefore more potential hydrogen

bonding partners. Thirdly, the ethanol saturation of the space below the head group region

pushes permeants further into the membrane, which makes brief insertions into the center

more likely.

In contrast, oxygen and water did not show such collective behavior. Oxygen molecules do

not form hydrogen bonds so that their kinetics in the membrane is much more independent.

For water, the energetic barrier is too high and too wide to maintain strong hydrogen bonds

with the head groups and water on the same side. As a result, a water molecule in the center

can exit the membrane in either direction without energetic penalties, which was reflected

by consistent numbers of rebounds and crossings in both water simulations.

In conclusion, the water and oxygen simulations are amenable to all counting methods

listed in Table I since the Markovian assumption in the center is satisfied. Ethanol per-

meabilities at significant concentrations, however, can only be determined accurately by

counting crossings, while counting escapes or entries may lead to gross overestimates of the

permeability.

Another consequence of such collective behavior is that the permeability becomes a func-
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tion of the concentration in the two leaflets rather than the mere concentration difference.

Since this effect cannot be observed in single-bilayer simulations, this line of research is pur-

sued further in double-bilayer simulations in Paper II. In the remainder of the present work,

the presented ethanol permeabilities relate to a setup with similar concentrations in the two

leaflets. Paper II shows how such estimates for symmetric concentrations can be used to

estimate permeabilities for asymmetric ethanol distributions via compartmental models.

2. Error Estimation

Before calculating permeabilities from the counts in Table IV, the present section dis-

cusses the estimation of uncertainties. We have previously reported uncertainties of the

crossing counts using two different approaches: confidence intervals of a Poisson distribution3

and standard errors over multiple replicas.14,15 The present section investigates whether the

counts follow a Poisson distribution and whether escapes and semipermeation events are

also amenable to this type of modeling.

Figure 6. Q-Q plot for interarrival times of permeation events with respect to exponential distribu-

tions. Quantiles are spaced in 5% intervals from 5 to 95%. Events were recorded upon completion

of the entry or exit. The rates of the exponential distributions were computed by the mean interar-

rival time for each event. Water plots are for entries, exits, and all semipermeation events (entries

and exits). Oxygen and ethanol plots are for all semipermeation events.

Poisson processes describe independent rare events that are separated by exponentially

distributed “interarrival times”. It is thus useful to test whether the interarrival times in
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fact follow an exponential distribution. Therefore, the times at which an event concluded

(an entry or escape occurred) were recorded. The times between two consecutive events were

analyzed for different event types and the statistics were fit by exponential distributions.

Subsequently, 10000 random samples from the theoretical distributions were created and

the quantiles between the theoretical and observed interarrival times were compared in a

logarithmic Q-Q plot, Figure 6.

For water in DPPC, the quantiles for entries as well as escapes fell almost on a straight

line, which indicates that the fitted exponential model provides a sound theoretical basis for

the observations. In contrast, the statistics for all events (entries and escapes) were less well

represented by an exponential distribution. This can be explained from the short residence

times of water in the membrane.3 Each entry of a water molecule into the center was closely

followed by the same water molecule escaping. In effect, the Q-Q plot takes a nonlinear

shape, indicating that entries and escapes were not independent. Therefore, considering

both entries and exits does not harm the water permeability estimate but does not help the

statistics either. When counting crossings or escapes, a Poisson distribution is appropriate

to model uncertainties. When counting semipermeation events, the uncertainties are larger

than predicted by Poisson confidence intervals.

For oxygen, the interarrival times considering all semipermeation events were much better

described by a Poisson process, as indicated by the more linear Q-Q plot. Small deviations

are expected due to the relatively small number of oxygen molecules in the system (10),

which increases the correlation between entries and escapes. Nevertheless, the distribution

of interarrival times was close enough to an exponential distribution to justify Poisson con-

fidence intervals for all three types of counting methods (entries and escapes separately not

shown).

Finally, the interarrival times for ethanol were almost perfectly exponential for both con-

centrations, which is visible in the Q-Q plot as well as the plot of the distributions in Figure

7. This result is slightly surprising due to the complications for ethanol transitions described

in the preceding subsection. It shows that, despite the strong hydrogen bonding of ethanols

in the membrane, crossings through the bilayer midplane were still single-molecule. Ethanols

did not permeate in pairs or clusters and even brief insertions into the center z = 0 occurred

independently for single molecules. This justifies the use of Poisson confidence intervals to

estimate the uncertainty in the number of transitions. It also shows that transitions through
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Figure 7. Distribution of interarrival times: escapes for water, or all semipermeation events (entries

and escapes) for oxygen and ethanol. The black lines represent exponential distributions that were

fit to the data.

the center can be non-Markovian, even when (semi-)permeation events occur one at a time.

3. Rates and Permeabilities

Finally, the above findings can be combined to compute permeabilities and estimate

statistical errors. The error estimates were dominated by statistical uncertainties in the

counts and, in the case of oxygen, the equilibrium concentration cw. Since error propagation

in Equation (6) is not easily expressed analytically, 106 values for the counts were sampled

from Poisson distributions around the number of independent events (water entries and exit

were not considered as independent events). The same number of samples for cw and Axy

were created from normal distributions with mean and standard deviations according to

Table III. These were combined to generate samples of P for each method and permeant

and compute 95% quantiles for P .

Table V lists the rates and permeabilities. The permeabilities span a wide range from

1.5 × 10−3 cm/s for water in POPC to 20 cm/s for oxygen, as expected from the vastly

different solubilities of the considered permeants. As evident from the water and ethanol

simulations, P also depends on the lipid type, temperature, and permeant concentration.

The effect of ethanol concentration was especially visible for the OpenMM simulations,

while the simulations from NAMD using the Langevin thermostat lacked precision. A de-

tailed study of such concentration-dependent behavior is given in Paper II. The rates and
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permeabilities for oxygen and water were slightly but not significantly different than previ-

ously reported,3 which is due to a more accurate calculation of cw. Also, the error estimates

were more conservative due to the propagation of the uncertainty on cw into the permeability,

which affected the precision especially for oxygen.

The counting of escapes increased precision for water and oxygen. The uncertainty for

oxygen permeability was further reduced by counting all semipermeation events (entries and

escapes; this reduction is partially artificial due to some dependence between entries and

escapes). In contrast, these more precise counting methods led to gross permeability over-

estimates for ethanol due to the breakdown of the Markovian assumption in the center (see

Section III B 1). Comparing the two different simulation protocols for ethanol, the crossing

rates obtained from Langevin and Nose-Hoover simulations were consistent. In contrast,

the rates of semipermeation events and escapes diverged for the higher concentration. The

most important differences between those simulations were the thermostat (Nosé-Hoover vs.

Langevin), integration time step (1 vs. 2 fs) and trajectory saving frequency (every picosec-

ond vs. every 10 picoseconds). As shown by an application of the counting methods to

trajectories with different output interval in the next section, this discrepancy was caused

by the output interval rather than the integration method, at least for a Langevin collision

frequency of 1 ps−1.

4. Output Interval

The frequency of writing out the coordinates in the MD simulation plays an important

role for the counting methods. Table VI shows the event counts for different output intervals.

Even for an interval of 5 ps, the first discrepancies started to appear with respect to the finest

frequency of 1 frame/ps: entries and escapes were missed for all permeants. The situation

became more severe for larger intervals. For water, frames written only every 25 ps led

to dramatic overcounting of all types of events because water molecules translocated from

one leaflet through the periodic boundary into the other leaflet between subsequent frames.

These crossings through the boundary could not be distinguished from crossings through the

bilayer, since permeation through the water phase is fast and the dividing surfaces h/2 were

placed relatively close to the periodic boundary. The situation can be remedied without

corrupting the permeability estimate for water by moving the dividing surfaces further into
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Table VI. Number of events for different trajectory output intervals ∆t.

Identifier ∆t [ps] Semipermeation Escapes Crossings

Water (DPPC) 1 182 91 49

5 174 87 49

10 168 84 49

25 1442 722 691

Water (POPC) 1 38 19 9

5 36 18 9

10 40 20 12

25 1070 535 528

Oxygen 1 205 103 56

5 193 97 53

10 185 93 51

25 181 91 49

100 185 93 53

250 190 95 56

Ethanol (170) 1 242 119 35

5 215 105 35

10 192 93 34

25 179 87 34

100 140 67 34

250 125 60 39

Ethanol (626) 1 2611 1307 247

5 1993 996 247

10 1722 861 247

25 1384 691 247

100 993 498 247

250 750 377 247
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the bilayer (see also Section III C 5).

The counting was more stable for oxygen, where even the largest interval of 250 ps did

not affect the numbers of events severely due to long residence times in the membrane.60

Ethanol crossings through the membrane could also easily be distinguished from crossings

through the periodic boundary, mostly due to a larger box size in the z-direction. Further-

more, ethanol diffusion in water is slower than for the other two permeants (see Section

III C 2), which makes leaflet-to-leaflet transitions through the periodic boundary more un-

likely. However, dramatic undercounts of rebounds and entries were observed, since many

insertions of ethanols into the center were too brief to be captured at larger intervals. This

also explains the above-described discrepancy between the OpenMM and NAMD counts at

the higher ethanol concentration. The NAMD/LD simulations were only saved every 10

ps. The rates from OpenMM simulations at the same output interval were comparable with

the ones in Table V: 99 (94 – 104) nm−2µs−1 for semipermeation events and 50 (46 – 53)

nm−2µs−1 for escapes.

C. Permeabilities from the ISD Model

1. Fitting Parameters

This section describes the results from the maximum likelihood estimation of the ISD

model. The maximum likelihood estimation was performed for various choices of the lag

time, number of bins, and basis function space. The application of the CMA-ES optimization

method improved performance by 1 – 2 orders of magnitude compared to Bayesian analy-

sis based on Monte-Carlo sampling, as fewer evaluations of the log-likelihood are required

for convergence. The bottleneck in both schemes is the matrix exponential in Equation

(8) which is computed via a Padé approximation of complexity O(n3
bins). Consequently,

discretizations � 100 bins quickly become computationally infeasible in both approaches.

However, high orders of ansatz functions are only practical in the CMA-ES optimization

due to slow convergence of the Monte-Carlo scheme in high-dimensional parameter spaces.

To analyze the effect of lag time and discretization, Figure 8 shows different oxygen diffu-

sion profiles obtained over the data from all replicas. The lag-time dependence is depicted in

the left plot. At small lag times, the diffusion was overestimated, but the profiles converged
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Figure 8. Oxygen diffusion profiles for different discretizations with 18 and 13 asymmetric cosine/-

sine coefficient for F and D, respectively. Left: Diffusion profiles for 100 bins and different lag

times. Middle: Diffusion profiles for different numbers of bins for a small lag time (4 ps). Right:

Diffusion profiles for different numbers of bins fit to infinity. The fits to τ = ∞ were obtained by

linear regression over five lag times from 10 to 50 ps.

smoothly over the whole domain with increasing lag time. For long lag times (400 ps),

unreasonable oscillations appeared in the water phase, which suggests that the fit becomes

ill-conditioned due to insufficient local information in the transition matrix.

The spatial discretization error was only relevant at small lag times. For τ = 4 ps, the

profiles were strongly affected at coarse spatial resolution with 40 bins or less, see Figure 8

(middle). These errors are not surprising, since central-difference schemes as the one used

for discretizing the Smoluchowski equation introduce numerical diffusion, see Supplementary

Section S2; especially when they are applied to discontinuous initial conditions as in the

present case. In contrast, the diffusion profiles at τ =∞ were consistent for different spatial

discretizations (see Figure 8, right).

The rational behind such a fit is that the oxygen kinetics are mostly diffusive beyond 10

ps, while the displacements still contain contributions from the non-diffusive regime. The

same problem is encountered in the computation of self-diffusion coefficients from mean

squared displacements (MSD), where the linear fit of MSD vs. lag time does generally not

pass through the origin due to inertial contribution at small lag times. Consequently, the

fit to infinite lag time is strongly encouraged in order to remove non-diffusive short-time
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behavior and discretization errors from the profiles.

Finally, fits were performed for different basis function spaces to confirm that the profiles

were not biased by the choice of ansatz functions. Six different settings were applied:

• (symmetric) cosine series with 9 and 6 coefficients for F and D, respectively

• (symmetric) cosine series with 11 and 8 coefficients for F and D, respectively

• (asymmetric) cosine/sine series with 18 and 13 coefficients for F and D, respectively

• (asymmetric) cosine/sine series with 20 and 15 coefficients for F and D, respectively

• asymmetric B-splines with 18 and 13 coefficients for F and D, respectively

• asymmetric B-splines with 20 and 15 coefficients for F and D, respectively.

While previous work36 used symmetric ansatz functions to better exploit the available tran-

sition data, the present manuscript intentionally allows asymmetry, which can be a useful

indicator for poor convergence.

2. Diffusion Profiles

The fits were performed individually for each replica and lag times τ = 10, 20, 30, 40

and 50 ps. The diffusion profiles for each set of fits were extrapolated to τ = ∞. The final

profiles and uncertainties were obtained as averages and standard errors of D(z, τ = ∞)

over all replica and basis function spaces.

Figure 9 shows the diffusion profiles fit with this protocol for all permeants. The uncer-

tainties for oxygen and ethanol were low in the membrane, indicating good agreement of the

individual fits. In contrast, the uncertainties for water in the POPC membrane spanned one

order of magnitude due to poor sampling in the core of the bilayer. The uncertainties for

water in DPPC (see Supplementary Figure S1) were similarly large. Although the average

profile agreed well with previous work by Sajadi and Rowley,57 an uncertainty this high in-

dicates that the ISD model is not well suited to calculate water permeability from unbiased

simulations.

Although the diffusion profiles were well converged for ethanol, the non-Markovian col-

lective behavior in the bilayer (Section III B 1) suggests that diffusive modeling of a single
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Figure 9. Diffusion profiles D(z, τ = ∞) for 80 bins. Uncertainties (lighter colors) are 95%

quantiles over different replica and ansatz functions.

ethanol molecule is not suitable, especially at the higher concentration. This is because the

Smoluchowski equation models the dynamics as Markovian on all time and length scales.

While this type of diffusive modeling is generally infeasible at very small times, the ISD

model assumes that there exists a regime in which the dynamics are nearly diffusive. Pre-

vious work by Chipot and Comer suggests that small alcohols do not reach this regime

within the relevant permeation times even at very low concentration.34 The collective effects

at higher concentrations strongly amplify this behavior and it is highly questionable that

diffusive modeling of the permeation is appropriate.

An important consistency check for the ISD fit is the comparison of the free energy

profile F (z) coming from the fit with the directly observed potential of mean force. Figure

10 shows the profiles from the maximum likelihood estimation. The profiles for oxygen

and water matched the PMFs in Figure 3 although water uncertainties were high in the

center. Agreement was significantly poorer for ethanol despite small error bars. At the lower

concentration, the plateau in the center was smoothed out and at the higher concentration

the barrier was lowered by almost 1 kBT. These disagreements indicate limited applicability

of the ISD fit for the ethanol simulations.
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Figure 10. Free energy profiles from the ISD fit for 80 bins. Uncertainties (lighter colors) are

95% quantiles over different replica and ansatz functions. Dots show free energy profiles directly

computed from the probability distributions (cf. Figure 3).

3. Permeabilities

Table VII. Permeabilities and 95% confidence inter-

vals from the ISD model in cm/s.

Identifier P [cm/s]

Water (DPPC) 12.5 ×10−3 (7.8 – 17.1)

Water (POPC) 2.7 ×10−3 (0.2 – 6.5)

Oxygen 27.2 ( 19.0 – 34.5)

Ethanol (170)a 4.3 ×10−1 (3.3 – 5.4)

Ethanol (626)a 9.7 ×10−1 (8.3 – 11.1)

Ethanol (170, NAMD/LD)a 3.2 ×10−1 ( 1.6 – 4.6)

Ethanol (626, NAMD/LD)a 7.3 ×10−1 (6.4 – 7.8)

a ISD model is not suitable for ethanol simulations

The diffusion and free energy profiles in Figures 9 and 10 were used to compute perme-

abilities via the ISD model, Equation (3). The results are shown in Table VII. While the

water permeabilities through POPC and DPPC were consistent with the estimates from
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counting methods (Table V), their error estimates in the ISD model were much wider, as

expected from the large uncertainties in the profiles. The oxygen profiles were significantly

better converged in the membrane, which also shows in the permeability estimates. However,

the estimates were much more conservative than reported in our previous work.3,36 This is

understandable from significant variation in the reference free energy, which was previously

not propagated into the error estimates. In comparison, the counting of semipermeation

events led to a more precise estimate than the ISD fit.

For ethanol, the values from the ISD model and counting crossings were inconsistent. The

ISD model overestimated P by a factor of 2 for the low concentration and a factor of 4 for the

higher concentration. This mismatch supports the above conclusion that ethanol permeation

at significant concentration in the membrane is not amenable to diffusive modeling at the

individual particle level.

4. Influence of the Thermostat

Figure 11. Ethanol diffusion for simulations with a Nosé-Hoover thermostat vs. Langevin thermo-

stat (NAMD/LD) with 170 and 626 ethanol molecules. Uncertainties (lighter colors) are computed

as 95% quantiles over independent replicas.

32

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
13

42
9



Table VIII. Number of transitions for water and oxygen in POPC bilayers from one microsecond

trajectories carried out at NVE, and NPT with Nose-Hoover (NH), Langevin dynamics with γ=1/ps

(LD1), and Langevin dynamics with γ=5/ps (LD5). Values are presented for each of four replicates;

the 95% confidence intervals are for the total from each set.

Water Oxygen

Replicate NVE NH LD1 LD5 NVE NH LD1 LD5

A 36 41 36 18 121 124 99 55

B 26 36 31 10 112 116 115 50

C 40 30 31 14 123 113 102 71

D 33 31 32 19 125 122 105 70

Total 135 138 130 61 481 475 421 246

95% CI 113 – 160 116 – 163 109 – 154 47 – 78 439 – 526 433 – 520 382 – 463 216 – 279

Table VII also shows a statistically significant difference between the Langevin thermostat

simulations and the Nosé-Hoover thermostat simulations at high ethanol concentration.

Figure 11 shows that this discrepancy comes from inconsistent diffusivity. Although the

collision frequency was low (1/ps), the artificial friction added by random thermal noise

changed the kinetics, particulary in the water phase. It is well-known that a Langevin

thermostat can alter the kinetics in this way. However, the difference was small in the

membrane, suggesting that simulations with a 1/ps collision frequency are acceptable for

permeation studies of ethanol.

Two different systems were chosen to study the thermostat effect in more detail, water

and oxygen transitions in a POPC bilayer, and oxygen diffusion in water and hexadecane.

Details of the simulations are provided in Supplementary Sections S5 and S6. As expected

the number of transitions vary among the replicates; Table III C 4 lists the results. Beginning

with the bilayer, the total number of transitions Ntot is similar for NVE and Nose-Hoover

(NH) for both water and oxygen permeability, lending strong support to the notion that

rigorous extended system thermostat and barostat can yield reliable dynamics. Ntot for the

Langevin thermostat with γ=1/ps (LD1) is comparable to NH for water, as shown above

for ethanol, but not for oxygen; i.e., the 95% CI for LD1 does not overlap with the mean of

the NH. Ntot is only approximately half that for NH and NVE for the Langevin thermostat
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Table IX. Diffusion constants D in 10−5cm2/s of molecular oxygen in water and hexadecane for

a Langevin thermostat with different collision frequencies γ and for a Nosé-Hoover thermostat

(γ = 0.0).

γ [ps−1] Water Hexadecane

0.0 5.8 4.2

0.1 5.4 4.0

0.5 4.9 3.5

1.0 4.4 3.4

2.0 4.1 2.4

5.0 2.4 1.6

with γ=5/ps (LD5), and clearly statistically different.

Table IX shows that diffusivities of oxygen in homogeneous media are similarly perturbed

by the Langevin thermostat. Oxygen diffusion was decreased by approximately 20% at γ =

1/ps and by more than 50% at γ = 5/ps. Hence, the simulations of these simple systems yield

the same conclusions as those in the far more computationally demanding POPC bilayer.

While this correspondence will not necessarily hold for other permeants, it is an easy and

worthwhile check. In any case, permeabilities calculated for other solutes using NAMD/LD

should be validated against more rigorous thermostats.

5. Dividing Surfaces

As a final comparison between counting methods and the ISD model, Figure 12 shows

the permeabilities from both methods with respect to the dividing surface h/2. For the

water systems, the value of h/2 did not affect the permeabilities in either method. While

the uncertainties especially from the ISD model were large, results from both methods

were consistent for all dividing surfaces. The resistivity is purely dominated by the large

free energy barrier in the membrane. This allows for flexibility in the choice of dividing

surface. In practice, one can pick a dividing surface so that crossings through the membrane

and through the periodic boundary are easily distinguished in order to allow larger output

intervals of the trajectory.
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Figure 12. Permeabilities for all systems and different choices of the dividing surface h/2. Dashed

and dotted lines represent estimates and uncertainties from transition-based counting. Colored

lines and areas (lighter colors) represent estimates and uncertainties from the ISD model.

For ethanol, the situation is similar, since P is also dominated by the free energy barrier

in the membrane center. Figure 12 shows that the overestimates from the ISD model were

similar for all dividing surfaces, which again underlines the unfitness of the ISD model to

determine ethanol permeability at significant concentrations.

Oxygen, in contrast, has a free energy minimum in the center. Its resistivity is dominated

by the local free energy maxima around the phosphate planes (∼ ±20 Å). Therefore, the

permeability was very sensitive to the choice of the dividing surface. This was reflected in

estimates coming from both methods, which matched for all choices of h/2.

IV. POTENTIAL PITFALLS

This paper has described in detail the computation of permeability estimates for water,

oxygen, and ethanol using counting methods and the ISD model. On the way, many ways

to go wrong were identified, the most important of which are reiterated in the following.

A. Placing too Few or too Many Permeants in the System

The utility of counting methods is of course limited by the number of permeant crossings.

This is optimally in the range of 100 for statistical precision, though as few 10 might be

acceptable for exploratory studies. The systems presented here all contained numerous
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transitions. Microsecond simulations of oxygen and water yielded an average of 34 and

119 transitions, respectively (Table VIII). Analysis of the last 200 ns from simulations of

ethanol at six different concentrations in three different bilayers showed between 13 and 923

transitions in 200 ns (Table S2-S4 in Paper II).

Now consider a solute with a permeability the same as water, but at a concentration of

11 mM (4 molecules in a simulation cell containing 20,000 waters). Hence, cw is lowered by

a factor of 5000 (55 M/0.011 M) compared to water. Rewriting Equation (2) as r = 2cw ·P ,

the rate of crossings observed in the simulation is similarly reduced by a factor of 5000, and

well out of the realm of counting methods with current computer resources. Hence, both

the solute concentration and anticipated permeability must be included when assessing the

applicability of counting methods. The same considerations hold for estimating the PMF of

a permeant from conventional simulations as opposed to enhanced sampling. Sampling for

PMF includes unsuccessful transitions so is a little better than for rates.

A separate issue involves too many permeants in the system. The number of permeants

has to be carefully considered, especially for membrane-modulating permeants like alcohols

or general anesthetics, where the permeability coefficient is sensitive to concentration. While

it is encouraging that bilayer crossings in all considered simulations were single-molecule,

typical atomistic simulation setups will often have a higher permeant concentration than

corresponding experiments. In this case, simulation results have to be scrutinized in order

to rule out undesirable collective behavior.

B. Setting up the System with Many Lipids and Few Waters

The number of lipid and water molecules has to be carefully considered as well. Large

bilayers are prone to undulations, in which case the definition of a suitable transition coor-

dinate can become highly non-trivial.3 When counting crossings in a single-bilayer setup, it

is also important that the water compartment is large enough to place a dividing surface

away from the membrane and still be able to distinguish crossings through the bilayer from

crossings through periodic boundary in the water phase.
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C. Saving Disk Space by Writing the Trajectory Sparingly

Due to increasing computational power, simulation frames are often written at increas-

ingly large intervals to save disk space. However, permeability calculations require a detailed

monitoring of permeant kinetics. The recording of entries and escapes is particularly sensi-

tive to the output interval. It is beneficial if the transition coordinate is known in advance

and the analysis can be performed on-the-fly. To this end, the Rickflow package provides an

OpenMM reporter for on-the-fly recording of transition matrices and event counts.

D. Counting Entries and Escapes for Better Statistics

While counting entries and escapes can improve statistics over counting crossings, it can

also introduce errors. Firstly, it generally requires a fine output spacing in order to not miss

brief insertions of permeants into the membrane center. Secondly, when the kinetics are

non-Markovian (as for ethanol in the present study), the counting of semipermeation events

is no longer a reliable method for calculating permeability. Counting crossings is generally

more robust. In order to not underestimate the actual number of events for lipid-soluble

permeants, the permeation event counter has to be initialized with memory in order to

incorporate the first escapes into the permeability calculation.

E. Not Questioning the Simulation Estimate

The mismatch between permeabilities from simulation and experimental studies is well-

documented3 for water,14 ethanol,11 and oxygen.13,36 Currently, one of the major challenges

in the force field community is the development of models that perform well in various

molecular environments. Current additive force fields do not accurately predict the parti-

tioning of solutes between water and organic phases;61 polarizable force fields will ultimately

be required to obtain agreement with experiment for many permeants.14 Additionally, per-

meability can often only be measured indirectly in experimental studies and a one-to-one

correspondence between simulation and experiment is often not easily established.
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F. Using Langevin Thermostat with a Large Friction Constant

The Langevin thermostat is known to alter the kinetics by introducing artificial thermal

noise on the atomistic level. The introduction of friction decreases the diffusivity. For

ethanol, the effect on the diffusivity inside a bilayer is small but noticeable when using a

1/ps collision frequency. The same holds for oxygen, where the permeation rate is lowered

by approximately 15% due to a 1/ps collision frequency. For water, the number of crossings

was too low to indicate a significant discrepancy. Use of larger collision frequencies is not

advised; γ=5/ps already lowered the permeation rate by 50% for both water and oxygen.

This damping of the kinetics has to be individually considered for each permeant and was

not present in simulations with a Nosé-Hoover thermostat. Therefore, permeation studies

should ideally use thermostats that better retain the kinetics, such as Nosé-Hoover or Lowe-

Andersen.62

G. Only Using One Replica to Fit an ISD Model

Error estimates from Bayesian analysis do not necessarily represent the sampling error,

as shown by the detailed analysis in this work. As a consequence, previously reported

error estimates were one order of magnitude too narrow. Another factor that can lead to

underestimation of errors is the use of smooth, symmetric basis functions. The present work

introduced software to perform the fit more efficiently, which enables the use of higher-

dimensional basis function spaces. It is advised to perform the ISD fit over multiple replicas

of a simulation and to use multiple basis function spaces in order to provide conservative

error estimates.

H. Only Using One Lag Time for the Diffusion Profile

The lag time dependence of diffusion profiles has been discussed in previous literature.11,34,36

The present work shows that diffusion profiles at lag times as long as 50 ps are affected

by non-diffusive effects coming from shorter time scales which lead to overestimates of the

diffusivity and thus the permeability. The fit to infinite lag time is a practical way to remove

such contributions from the profiles and restore consistency with model-free estimates.
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I. Not Questioning the ISD Model

ISD-based approaches are often used for permeability calculations from biased simula-

tions. However, it is important to recognize that the ISD model presents an idealized de-

scription of the true kinetics. Diffusive models are, by definition, memory-less on all scales.

In contrast, Milestoning also captures non-Markovian dynamics and might be more suited

as a general tool for simulations of permeation.

V. CONCLUSIONS

This work is a simulation study of water, oxygen, and ethanol permeation through lipid

bilayers. The permeability coefficients were obtained from unbiased simulations by counting

methods and the ISD model. To this end, two software packages are introduced to facilitate

such calculations. The Python package Rickflow implements simulation workflows and tra-

jectory analysis code to count permeation events and record transitions. The Python/C++

code DiffusionCMA implements a maximum-likelihood estimation for fitting an ISD model.

This approach is closely related with a previously published Bayesian analysis,32,36 but speeds

the fitting up by one to two orders of magnitude.

The comparison between permeability estimates from both types of approaches showed

good agreement for oxygen and water, although water permeabilities obtained from the

ISD model carried large uncertainities. In contrast, ethanol as a membrane-modulating

permeant was not amenable to diffusive modeling due to collective effects in the membrane.

Consequently, the ISD model overestimated permeabilities by factors of 2 to 4. This shows

that the ISD model should be used with caution, especially for permeants that interact

strongly with one another and the membrane. Furthermore, due to the collective behavior,

the permeability becomes a function of not only the concentration difference but also the

individual ethanol concentrations in the two leaflets. This line of research is further pursued

in Paper II.

DATA AVAILABILITY STATEMENT
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SUPPLEMENTARY MATERIAL

See Supplementary Material for details about the consistency between Fick’s First Law

and transition-based counting, discretization of the Smoluchowski equation, water diffusion

profiles in POPC and DPPC, code examples, computation of diffusion constants in homo-

geneous media, and simulation details for supplementary microsecond POPC simulations.
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Appendix A: Consistency of Transition-based Counting with the Smoluchowski

Equation

This section derives the transition-based counting method from the Smoluchowski equa-

tion. Consider the mean first passage time (MFPT), a quantity that is related to both the

permeability and the number of crossings. The MFPT considered here is the average time

for a particle to travel from b to a in a domain that has a reflective boundary condition at

z = q and an adsorbing boundary condition at z = a, where q ≤ b = −a ≤ 0 ≤ a (Fig. 13).

For a diffusive trajectory, the MFPT can be expressed as63

τ[q,a] (b) =

∫ a

b

eβF (z)

D(z)

[∫ z

q

e−βF (z′)dz′
]
dz. (A1)

It can be assumed that F ref = 0 is the free energy outside the membrane (|z| > b) without

loss of generality.
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Figure 13. Counting number of crossings in three different setups. First passage (in red) and

second passage (in blue). S1: reflective boundary condition (“refl.”) at z = q, particle is reset to

its initial position after passage and the experiment is repeated due to the absorbing boundary

condition (“abs.”) at z = −q. S2: reflective boundary conditions at z = q and z = −q, particle

continues from its position after passage. S3: periodic boundary conditions (“per.”) at z = q and

z = −q, particle continues from its position after passage.

To relate the MFPT to the number of crossings in a molecular simulation, the system

with a reflective boundary condition is transformed into a periodic system in three steps.

For clarity, we prefer a graphical over a formal transformation, cf. Figure 13. First, consider

the above-mentioned setup with one reflective boundary (S1), where one particle starts off

at z = b and is reset to this initial position, as it reaches the opposite dividing surface z = a,

in order to repeat the experiment. In this setup, the number of crossings in a simulation

of length Tsim is given as Tsim/τ[q,a](b). Now consider a second setup (S2), where a reflective

boundary is symmetrically introduced at z = −q. In absence of an adsorbing boundary

in S2, the particle does not need to be reset to its initial condition. This change does not

affect the number of crossings. Furthermore, replacing the reflective by periodic boundary

conditions (S3) also does not affect the number of crossings because of symmetry. Finally,

in a periodic system with N independent permeants, one expects

ncrossings = NTsim/τ[q,a]. (A2)

The next step is to relate the MFPT to the permeability P . By splitting the inner integral
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over the interval [q, z] in Equation (A1) into two integrals over the intervals [q, b] and [b, z],

τ[q,a](b) =

∫ a

b

eβF (z)

D(z)

[∫ b

q

e−βF (z′)dz′
]

︸ ︷︷ ︸
=(b−q)

dz + τ[b,a](b)

=
b− q
P

+ τ[b,a](b) (A3)

where the remaining inner integral was simplified using F ref = 0 in the interval [q, b]. In the

case of a bilayer with a = h/2 and q = b = −h/2, i.e. when the permeants are restrained to

the membrane, τ[b,a](b) is also related to the permeability when the dynamics are diffusive17

P =

∫ a
b
e−βF (z)dz

2τ[b,a](b)
. (A4)

Combining Equations (A3) and (A4) yields

τ[q,a] =
b− q
P

+

∫ a
b
e−βF (z)dz

2P

=
2(b− q) +

∫ a
b
e−βF (z)dz

2P
(A5)

=

∫ −q
q

e−βF (z)dz

2P
,

since the free energy vanishes outside the membrane. The latter integral over the whole

membrane relates to the concentration in water through Equation (5). By inserting Equa-

tions (5) and (A2) into (A5), the permeability turns out as

P
(5)
=

N

cwAxy

/(
2τ[q,a]

)
(A2)
=

N

cwAxy

/(
2
NTsim

ncrossings

)
=

1

2cw
· ncrossings

TsimAxy

=
r

2cw
,

as in Equation (2). While Equation (2) was derived from fairly general assumptions,3 it is

now rigorously confirmed in this much more specific setting of a diffusive equilibrium tra-

jectory. The two considered connections with Fick’s First Law (Supplementary Section S1)

and diffusive dynamics (here) confirm the validity of the transition-based counting method

in two extreme situations: the former holds in a situation where all permeants are in the

source compartment, the latter is associated with an equilibrated system.
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