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A B S T R A C T   

Opportunistically collected species occurrence data are often used for species distribution models (SDMs) when 
high-quality data collected through standardized recording protocols are unavailable. While opportunistic data 
are abundant, uncertainty is usually high, e.g. due to observer effects or a lack of metadata. To increase data 
quality and improve model performance, we filtered species records based on record attributes that provide 
information on the observation process or post-entry data validation. Data filtering does not only increase the 
quality of species records, it simultaneously reduces sample size, a trade-off that remains relatively unexplored. 
By controlling for sample size in a dataset of 255 species, we were able to explore the combined impact of data 
quality and sample size on model performance. We applied three data quality filters based on observers’ activity, 
the validation status of a record in the database and the detail of a submitted record, and analyzed changes in 
AUC, Sensitivity and Specificity using Maxent with and without filtering. The impact of stringent filtering on 
model performance depended on (1) the quality of the filtered data: records validated as correct and more 
detailed records lead to higher model performance, (2) the proportional reduction in sample size caused by 
filtering and the remaining absolute sample size: filters causing small reductions that lead to sample sizes of more 
than 100 presences generally benefitted model performance and (3) the taxonomic group: plant and dragonfly 
models benefitted more from data quality filtering compared to bird and butterfly models. Our results also 
indicate that recommendations for quality filtering depend on the goal of the study, e.g. increasing Sensitivity 
and/or Specificity. Further research must identify what drives species’ sensitivity to data quality. Nonetheless, 
our study confirms that large quantities of volunteer generated and opportunistically collected data can make a 
valuable contribution to ecological research and species conservation.   

1. Introduction 

Appropriate conservation measures must mitigate the alarming de-
clines of biodiversity caused by global pressures such as climate change 
(Urban et al., 2016), invasive species (Early et al., 2016) and intensi-
fying land use (Newbold et al., 2015). Choosing proper conservation 
measures requires evidence on the state of biodiversity and species’ 
distributions. Ideally, such evidence is gathered through standardised 
protocols, performed by trained observers and with a clear description 
of both data collection and project objectives (Kosmala et al., 2016). 

Such highly structured data, however, is rarely available for a wide 
range of species, nor extensive periods or geographical areas (Urban 
et al., 2016). 

In response, less structured but bulky occurrence data with varying 
information content, often collected by volunteers participating in citi-
zen science initiatives (Theobald et al., 2015), are being explored for 
biodiversity conservation purposes (Guisan et al., 2013). The value of 
data with information on detectability or information on absences is 
indisputable and their applications are abundant, e.g. for species dis-
tribution models (SDMs) (Guisan and Zimmermann, 2000; van Strien 
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et al., 2013; Wood et al., 2018) or Red List compilations (e.g. Maes et al., 
2015). In contrast, the value of data with little information on the 
observation process is uncertain and conservation applications are 
limited (Dobson et al., 2020; Guillera-Arroita et al., 2015). When such 
unstructured occurrence data consist of occasional observations of 
species presences, they are termed opportunistic presence-only (Giraud 
et al., 2016) or presence-background data (Wang and Stone, 2019). They 
are generally used in SDMs (e.g. Maxent (Phillips et al., 2006) or point 
process models (Renner et al., 2015)) that contrast available environ-
mental conditions in the study area (the background), with the condi-
tions at locations where the species was observed (Elith et al., 2011). 

Using opportunistic presence-only data for SDMs has both advan-
tages and disadvantages. The main advantage is the abundance of the 
available data, because an easy data collection leads to the coverage of a 
large number of species over large geographical areas, at a fine scale and 
over potentially long periods (Kosmala et al., 2016). Online platforms 
and smartphone applications facilitate an easy recording of species for a 
volunteer observer, and the number of active observers on data plat-
forms such as iRecord in the United Kingdom (https://www.brc.ac.uk 
/irecord/), waarnemingen.be in Flanders (northern Belgium; https:// 
www.waarnemingen.be) or iNaturalist worldwide (https://www.ina 
turalist.org/) is indeed growing by the hundreds (e.g. waarnemingen. 
be) or even thousands (e.g. iNaturalist) every year. Since the quantity 
and extent of this data can never be reached by standardised monitoring 
schemes, opportunistic data can make a valuable contribution to science 
if processed correctly (Giraud et al., 2016; Soroye et al., 2018). Two 
major disadvantages of opportunistic presence-only data limiting their 
application potential (Dobson et al., 2020; Guillera-Arroita et al., 2015), 
however, are the incapability of delivering probabilistic model outputs 
(Guillera-Arroita et al., 2015) and a high risk of bias and error (Bird 
et al., 2014; Isaac and Pocock, 2015). The awareness of these un-
certainties reflects in the scepticism towards data quality of opportu-
nistic observations or citizen science data in general (Burgess et al., 
2017), because when disregarded in the modeling or decision-making 
process, these disadvantages can lead to misguided conservation mea-
sures (Isaac et al., 2014). 

Different strategies are applied to increase the quality of opportu-
nistic datasets. A first strategy is rather bottom-up, where the underlying 
protocol of a citizen science project is changed (Kosmala et al., 2016). 
This requires a regime shift and takes time, but can be fruitful (e.g. eBird 
- Sullivan et al., 2014). A second and promising strategy is 
data-integration (Miller et al., 2019), where multiple sources of oppor-
tunistic presence-only data are combined (Lin et al., 2017) or 
presence-only data is treated as complementary to structured 
presence-absence data (Robinson et al., 2019). A third strategy, inte-
grated into many national citizen science databases, is data validation, 
where the species’ identification is verified, often together with the 
spatial and temporal plausibility of a record. It is common practice in, 
for example, eBird (Sullivan et al., 2009),waarnemingen.be (Swinnen 
et al., 2018) and iRecord (https://www.brc.ac.uk/irecord/records 
-verified). However, even with the best experts and state-of-the-art 
methods (e.g. image recognition), it is challenging to verify thousands 
of records entering data repositories every day, particularly those 
without corroborating picture evidence. As a result, many researchers 
apply a fourth strategy, where data reliability is maximised by data 
filtering or data cleaning. This can be done by error detection (e.g. 
Serra-Diaz et al., 2017), outlier removal (e.g. Kallimanis et al., 2017), by 
filtering in geographical or environmental space (e.g. Varela et al., 
2014), or by deleting species records based on data attributes (e.g. 
Rutten et al., 2019), so-called “stringent filtering” (Steen et al., 2019). 

The desired effect of stringent filtering is an increase in quality, by 
reducing bias and error (Steen et al., 2019). Yet, sample size is inevitably 
reduced by filtering, and as sample size is known to have a major in-
fluence on model performance (Gábor et al., 2019; Wisz et al., 2008), 
stringent filtering leads to a trade-off between data quality and sample 
size. To our knowledge, the combined impact of data quality and sample 

size in stringent filtering on the performance of SDMs remains under-
explored. Studies that explored the impact of stringent data filters found 
a negligible effect on bird occurrence predictions when retaining only 
structured survey data (Kamp et al., 2016) or data from observers with 
higher expertise (Steen et al., 2019). On the other hand, predictions 
were more accurate when using only records validated as correct for a 
butterfly genus prone to misidentification (Vantieghem et al., 2017), or 
by using only eBird checklists of observers who travelled larger dis-
tances to do their observations (Steen et al., 2019). 

In our study, we will expand on previous findings by applying 
different quality filters on a regional species occurrence database 
‘waarnemingen.be’. The database consists of both structured and un-
structured recordings in Flanders since 2008 and currently holds more 
than 44 million species records and one of the densest collections of 
species records in Europe (Herremans et al., 2018). Our aim is to identify 
which quality filters increase the discrimination accuracy of Maxent and 
to formulate recommendations based on taxonomic group and data 
characteristics. Every citizen science database is unique and while the 
considered taxonomic groups in waarnemingen.be are blessed with a 
relatively high proportion of quality data, this might not be the case in 
all data repositories. The properties of waarnemingen.be allowed us to 
evaluate the impact on model performance of different changes in data 
quality, for a wide range of changes in sample size. This does not only 
provide more insight into the trade-off between data quality and sample 
size in stringent filtering but also ensures the transferability of our re-
sults to datasets of lower quality and/or record density. 

2. Material and methods 

2.1. Dataset and quality filters 

We assessed the impact of data quality filtering on opportunistic 
citizen science data gathered in the Flemish species occurrence database 
‘waarnemingen.be’. The dataset contained both “structured data” or ob-
servations supported by guidelines or a protocol (varying from stan-
dardized monitoring schemes to small project observations), and 
“unstructured data” or incidental observations. For a detailed descrip-
tion of our data selection and model testing procedure see Section 2.2 
and Appendix A. 161,782 structured records were separated for model 
testing, to measure the performance of the SDMs (see Section 2.3). 
Another 5,547,750 unstructured records were used for model training. 
We adopted the ODMAP protocol (v1.0, Zurell et al., 2020) and describe 
the different steps (Overview, Data, Model, Assessment and Prediction) 
in Appendix B. 

We selected three dichotomous filters as a measure for data quality, 
based on available metadata (Table A.1). The first filter “ACTIVITY” 
refers to the annual average number of active recording days of an 
observer, in the study period 2014-2019. We calculated the individual 
activity rate of observers, including the observers with the highest 
number of records first and stopped when we reached the observers that 
cumulatively collected 80% of the data. The threshold for a high activity 
rate was set to the first quartile of the activity rate of this group, i.e. 92 
recording days in one year. We considered this a proxy for observer 
experience, known to lead to lower rates of both false-negative and false- 
positive errors (Farmer et al., 2012; Kallimanis et al., 2017; Kelling et al., 
2015). The second filter “DETAIL” reflects whether observers provide 
information beyond the default date, location and species name, such as 
species behaviour, photographs or additional comments. Records sub-
mitted with more effort are of higher quality, if effort is defined by the 
‘distance travelled for a checklist’ (Steen et al., 2019). Because we 
applied filters to unstructured data only, we used record detail as a 
measure for effort instead. The third filter “VALSTAT” is based on the 
status of a record in the internal validation system of the database, 
indicating if it was evaluated as correct or as uncertain. Records marked 
as correct are meant to contain no misidentification errors (e.g. Van-
tieghem et al., 2017), even though an occasional human or software 
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error might occur. Records marked as uncertain have either not been 
validated or were hard to judge correctly, due to lack of additional in-
formation (Swinnen et al., 2018). 

2.2. Data selection 

Records from four well-studied taxonomic groups in Flanders, i.e. 
birds, butterflies, dragonflies and plants were subjected to some initial 
data restrictions: (1) records were limited to our study area, the Flemish 
region of Belgium, (2) observations dated from January 2014 to 
September 2019, (3) we included only records with sufficient 
geographical precision (≤ 500 metres), (4) for birds, only birds that 
breed in Flanders were used (Vermeersch et al., 2020), and (5) we 
removed absences (zero-counts) and entries validated as incorrect. 

After the initial selection, we divided the data into records for model 
training and records for model testing (also see Appendix A and Fig. 
A.1). Structured data were used solely for model testing and never for 
model training, and were further reduced to high-quality testing re-
cords. This was done by selecting only structured records that were 
validated as correct and from observers with a high activity rate. The 
model training records consisted of unstructured presence-only data, a 
data type found in many large-scale datasets of opportunistic species 
records (e.g. GBIF, https://www.gbif.org). Model training records were 
subjected to the three quality filters and their combinations, resulting in 
seven filtered datasets (Fig. A.2). 

Per species, training and testing records were aggregated in a 1 × 1 
km grid, a frequently used resolution in Flemish biodiversity research (e. 
g. Demolder et al., 2014; Rutten et al., 2019; Vantieghem et al., 2017), 
resulting in one presence per grid cell per species. This aggregation of 
records is also known as ‘spatial thinning’ or ‘spatial filtering’, a com-
mon technique to reduce spatial bias (Kramer-Schadt et al., 2013) and 
improve model performance (Boria et al., 2014). The high-quality 
presences of the model testing set were complemented with absences 
derived from grid cells with high search effort for the associated taxo-
nomic group, but where the target species was not observed. We kept 
only species with at least 50 presences in the testing set, and at least one 
filtered training set with at least 100 presences. This resulted in a dataset 
of 255 species in four taxonomic groups (full list in Table C.1). 

2.3. Species distribution model 

We evaluated the impact of stringent filtering on the performance of 
Maxent (software version 3.4.1, implemented in the R package ‘dismo’ 
v1.1–4 (Hijmans et al., 2017)). Maxent is a commonly used 
presence-only algorithm (Elith et al., 2011; Phillips et al., 2006), which 
models a relative probability of occurrence based on a species’ presence 
records and background points. Background points are used to define 
the contrast between what is available in the environment and what is 
used by the species (Elith et al., 2011). We included all of the 13,552 
cells in our study area as background and did not adjust the background 
selection to correct for sampling bias (e.g. Phillips et al., 2009; Vollering 
et al., 2019), to ensure comparability of our models (Merow et al., 
2013). Comparability was further supported by allowing only linear, 
quadratic and product features for every model, by setting a minimum 
sample size of 100 to ensure that the regularization coefficient was kept 
to 0.05, and by using identical predictors in all Maxent models. 

The predictor set represented the range of environmental conditions 
in our study area and comprised twelve continuous predictors and two 
factor variables (see Table C.2 for a summary). We aggregated the land 
use in Flanders in eleven classes: agriculture, forest, semi-natural 
grassland, scrub, heathland, saltmarshes, wetlands, dunes, urban 
areas, water and other green areas (i.e. green areas outside the urban 
area that are not mapped as agricultural or natural land use) (Poelmans 
and Van Daele, 2014). The area of these classes in each 1 × 1 km cell was 
calculated and cells were removed if the cumulative area of land use was 
less than 50% of the total area (i.e. cells close to regional borders). We 

removed one class “agriculture” from the set because of the relatively 
high collinearity with other classes and because of the problem with 
perfect multicollinearity in compositional data (Aichison, 2003). The 
ten other land use classes were used to describe the variation in the 
extremely fragmented landscape in Flanders (Antrop, 2004). Two 
additional continuous predictors were the mean annual temperature and 
mean annual precipitation, BIO1 and BIO12 from WorldClim2 respec-
tively (Fick and Hijmans, 2017). The first factor variable was a grid cell’s 
dominant soil texture class (Maréchal and Tavernier, 1974), a direct or 
indirect influencer of a species’ microclimate (Titeux et al., 2009). The 
second was ‘Ecoregion’ (Couvreur et al., 2004), which is a region with 
similar biotic and abiotic conditions. Since Flanders has limited 
geographical and environmental gradients (e.g. 240 km across, 0 to 288 
m elevation and relatively uniform climatic conditions) and species use 
similar biotopes throughout the region, we assumed that the environ-
mental response of a species was similar across the entire study area 
(Chen et al., 2020). 

2.4. Model evaluation 

For model evaluation, we chose three metrics: the area under the 
receiver operating characteristic (ROC) curve (AUC), Sensitivity (i.e. 
true positive rate) and Specificity (i.e. true negative rate) (Fielding and 
Bell, 1997), based on three rationales. First, using AUC alone as a 
summary metric of the ROC curve would lead to a loss of information 
about model performance (Jiménez-Valverde, 2012). Second, these 
metrics are measures of model discrimination and independent of spe-
cies prevalence, which is unknown in presence-background situations 
(Lawson et al., 2014). Third, we evaluated our models on an external 
testing test that contained both presences and absences, enabling a 
reasonable calculation of the two threshold-dependent metrics (Sensi-
tivity and Specificity) and justifying the use of these metrics for model 
evaluation (Jiménez-Valverde, 2012; Jiménez and Soberón, 2020). 
Sensitivity and Specificity were calculated by transforming the contin-
uous model predictions, resulting from the different training sets, into a 
binary response. The threshold was set to the value that maximized the 
sum of Sensitivity and Specificity calculated on the species’ testing set, 
thereby minimizing misclassification errors (Kaivanto, 2008). The dif-
ference in model performance (∆ AUC, ∆ Sensitivity and ∆ Specificity) 
was used to evaluate the impact of data quality filtering. Four choices 
facilitated the comparison of evaluation metrics within one species 
(Elith et al., 2011; Lobo et al., 2008; Merow et al., 2013): (1) an identical 
testing set, (2) identical Maxent settings (features and regularization 
coefficient), (3) identical background selection and (4) identical 
predictors. 

2.5. The impact of data quality on model performance 

We repeatedly (20 times) selected a random sample from the unfil-
tered and filtered training sets, at six predefined levels of 100, 250, 500, 
1000, 2000 and 4000 presences (also see Fig. A.3). Model evaluation 
metrics were compared between training sets of constant fixed sample 
size but with different quality, resulting from the application of the 
different filters. 

For the evaluation of data quality, species were divided into one of 
the six sample size levels, based on two conditions. Firstly, the sample 
size level was bounded from above by the number of available presences 
for all filtered training sets, including the 3-filter combination 
ACTIVITY-DETAIL-VALSTAT (ADV). This facilitated a comparison of all 
filters without the influence of inter-species differences. Secondly, spe-
cies were classified at the highest level possible, based on the number of 
available presences in the original ADV training set. In other words, 
sample size was kept as close as possible to the number of recorded 
presences in the database. This way we prevented that large differences 
between the sample size of the unchanged training set (i.e. the actual 
occurrence in the data) and the fixed sample size would impact model 
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performance (Hanberry et al., 2012). 

2.6. The impact of absolute sample size on model performance 

For the evaluation of absolute sample size, we included models from 
different fixed sample sizes per species. We kept data quality constant by 
comparing results per filter and not between filters. Per filter, species 
were grouped in one out of six intervals of sample size that indicate the 
sample size of the original training sets: [100, 250[or [250, 500[or [500, 
1000[or [2000, 4000[or ≥ 4000. Species were thus constant across 
absolute sample sizes but not across filters nor intervals. 

2.7. The combined impact of data quality and sample size on model 
performance 

The impact on model performance of a change in data quality and a 
change in sample size will occur simultaneously. To evaluate this com-
bined impact, we analysed 30,724 combinations of unfiltered and 
filtered training sets, with different changes in quality and sample size. 
We used all training sets of fixed sample size (at the six predefined 
levels) that we could obtain for each species, together with the original 
training sets, with sample size equal to the number of aggregated pres-
ences from the dataset. 

Model evaluation metrics were averaged across the 20 repetitions for 
the fixed sample sizes (i.e. per species, filter type and sample size level) 
and we looked at the mean differences in model performance (∆ AUC, ∆ 
Sensitivity, ∆ Specificity) between models of an unfiltered training set 
and the filtered training sets. To fully capture the impact of the change in 
sample size, we assessed two ‘sample size variables’: the remaining 
sample size after filtering and the proportional reduction in sample size. 
The latter is defined as the proportion of presences removed from an 
unfiltered training set by applying a single filter or a combination of 
filters. See Fig. A.3 for an example of how many different datasets we 
could extract for one species and filter. 

The combined impact of data quality and sample size on the differ-
ence in model performance was assessed using Generalized Additive 
Mixed Models (GAMMs) with species as a random effect, implemented 
in the ‘mgcv’ R package v1.8–31 (Wood, 2017). To account for the 
doubly-bounded character of our response variable, we rescaled ∆ AUC, 
∆ Sensitivity and ∆ Specificity to fall between 0 and 1 and used the 
‘betareg’ family with logit-link. Smoothing functions were used to fit 
both sample size variables, with cubic spline method and k = 5 to reduce 
overfitting. We included interactions by allowing different smoothers 
per filter and by including the product of the remaining sample size and 
the proportional reduction in the equation. Per taxonomic group, the 
model which best explained the difference in model performance while 
keeping model complexity low was selected, by comparing the Akaike’s 
Information Criterion (AIC) (Burnham et al., 2011) of multiple a priori 
GAMMs (full list in Appendix F) in the R package ‘MuMIn’ v1.43.17 
(Barton, 2019). The relative importance of data quality (filter type) and 
sample size (sample size after filtering and proportional reduction) was 
assessed by comparing the proportion of explained deviance of those 
variables in the best model identified by our model selection. 

We performed all analyses for the three evaluation metrics (AUC, 
Sensitivity and Specificity) across all species and within species groups 
and show the main results for AUC in the main text. All other results can 
be found in Appendices D through H in Supplementary Information 1. 
Models and statistical analyses were run in R v4.0.1 (R Core Team, 
2020). 

3. Results 

Throughout the results section, the filters will be referred to as AC-
TIVITY (A): retaining records collected by observers with a high activity 
rate, DETAIL (D): retaining records that were submitted with informa-
tion beyond the default date, location and species name, and VALSTAT 

(V): retaining records marked as ‘correct’ in the data platform’s vali-
dation system. 

3.1. The impact of data quality on model performance 

Fig. 1 shows that for all species, filtered data could deliver higher 
AUCs than unfiltered data, but with differences among sample size 
levels. Smaller sample sizes of filtered data were more likely to result in 
higher AUCs compared to large sample sizes of filtered data. At 100 
presences, all filters could result in a higher AUC, while at 250 and 500 
presences VALSTAT and DETAIL could deliver positive results. For 
larger sample sizes, VALSTAT and its combinations (at 1000 presences) 
or no filters at all (at 2000 and 4000 presences) benefitted model 
performance. 

Plants were most sensitive to data quality, where DETAIL and VAL-
STAT, and also ACTIVITY at 100 presences, resulted in higher AUCs 
throughout. Birds were sensitive to data quality at the low and inter-
mediate sample sizes, where the best option was VALSTAT. At 500 and 
1000 presences, VALSTAT alone already increased AUC. At 100 and 250 
presences, VALSTAT had to be combined with at least one other filter. 
For butterflies, AUCs increased when using ACTIVITY: alone or in 
combination with one or two other filters at 4000 presences, or in 
combination with VALSTAT at 1000 presences. For dragonflies, single 
filters were not powerful enough to increase AUC. Combining DETAIL 
with VALSTAT at 500 presences or with ACTIVITY at 1000 presences did 
deliver higher AUCs. 

Similar results to AUC were found for Specificity, but mostly for 
plants at small sample sizes of 100 presences (all filters increased 
Specificity) and 250 presences (DETAIL, VALSTAT, A + D and A + V 
increased Specificity). At 500 presences, we noted increases in Speci-
ficity for dragonflies (A + D and A + D + V) and decreases in Specificity 
for plants (DETAIL, A + D and D + V). At larger sample sizes of 1000 
presences or more, a higher Specificity was found only for birds (filter 
combinations). Data quality did not impact Specificity for butterflies 
(Fig. D.2). 

Results for Sensitivity showed more negative impacts of using 
filtered data compared to AUC and Specificity, yet also increases in 
Sensitivity were noted for plants at 250 presences (DETAIL and its 
combinations) and 500 presences (all filters except ACTIVITY and A +
V), and for butterflies at 4000 presences (ACTIVITY and its combina-
tions). A lower Sensitivity was found for plants at 100 presences (VAL-
STAT and its combinations), for dragonflies at 500 presences (A + D and 
A + D + V) and for birds at 100 presences (A + D), 2000 presences 
(ACTIVITY and combinations with VALSTAT) and 4000 presences 
(DETAIL and its combinations) (Fig. D.1). 

3.2. The impact of absolute sample size on model performance 

Fig. 2 shows that reducing absolute sample size beyond a certain 
level always impacted AUCs negatively. This level depended more on 
the original sample size than on the applied filter. At lower original 
sample sizes (< 2000 presences), reducing sample size by 50% did not 
cause significant decreases in AUC for most filters, with exceptions for 
DETAIL, VALSTAT, A + D and A + V at 500 to 1000 presences. At larger 
original sample sizes (> 2000 presences), sample size could be reduced 
by 75% for most filters, with exceptions for VALSTAT and D + V at 2000 
to 4000 presences. Reducing sample size to 100 presences, no matter 
what the original sample size was, always resulted in lower model 
performance. For birds and butterflies, the impact of sample size on AUC 
was similar to that of all species (Fig. E.3 and E.4). Dragonfly and plant 
models appeared less sensitive to sample size (Fig. E.5 and E.6). 

Similar to AUC, the impact of smaller sample sizes on Specificity was 
generally negative across all species with a higher tolerance for larger 
reductions when original sample sizes were high, yet with more varia-
tion among filters (Fig. E.2). Specificity of butterfly and plant models 
(Fig. E.12 and E.14) appeared more sensitive to smaller sample sizes 
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compared to bird and dragonfly models (Fig. E.11 and E.13). 
In contrast with results for AUC and Specificity, the impact of smaller 

sample sizes on Sensitivity is generally positive. Significant increases in 
Sensitivity were more likely to occur for higher quality data (filter 
combinations) at lower original sample sizes and for lower quality data 
(unfiltered data and single filters) at higher original sample sizes (Fig. 
E.1). For butterflies, dragonflies and plants, Sensitivity generally 
increased (Fig. E.8, E.9 and E.10) when Specificity decreased (Fig. E.12, 
E.13 and E.14). For birds, this contrast was less pronounced and we even 
noted more decreases in Sensitivity than increases when sample size was 
reduced (Fig. E.7). 

3.3. The combined impact of data quality and sample size on model 
performance 

Up to this point, the absolute sample size of unfiltered and filtered 
data remained identical. In reality, however, sample size usually de-
creases when applying quality filters. Therefore, the impact of sample 
size was quantified with two variables in this section: the ‘proportional 
reduction in sample size’ and the ‘sample size after filtering’ (also called 
‘remaining sample size’). A detailed summary per species of all the filters 
and their impact on model performance showed that model performance 
mostly increased after filtering (depending on the applied filter, for 55 to 

80% of the species for AUC, 49 to 55% for Sensitivity and 51 to 58% for 
Specificity), but that various filter-species combinations also show a 
negative impact on model performance (Table in Supplementary Infor-
mation 2). 

Per taxonomic group, we selected the ‘best’ GAMM (Appendix F), i.e. 
the model with the least parameters and a small difference in AIC (∆ AIC 
< 1) compared to the top model, to evaluate the combined impact of 
data quality and sample size on the change in model performance caused 
by filtering. Fig. 3 shows the relative importance of the variables in the 
model for ∆ AUC. Considering the averages across species (boxplots), the 
change in quality (the filter type) explained most of the variation in ∆ 
AUC for plants and dragonflies, yet with high variability in percentage 
deviance explained (%DE) among species. The interaction between 
proportional reduction and sample size after filtering explained the most 
variation in ∆ AUC for bird and butterfly models and is also important 
for dragonfly models. For plants, however, more variation in ∆ AUC was 
explained by the interaction between quality and sample size after 
filtering. This interaction was also more important when considering the 
variation in ∆ Sensitivity and ∆ Specificity, and the differences between 
the proportional%DE for the variables ‘filter’, ‘interaction RxS’ and 
‘interaction SxF’ became smaller. The filter type remained the most 
important variable for plants for predicting both ∆ Sensitivity and ∆ 
Specificity, yet with less variability among species compared to AUC 

Fig. 1.. The impact of data quality on AUC for all species and per taxonomic group, when absolute sample size is constant at six levels: 100, 250, 500, 1000, 2000 and 
4000 presences. Per level, species were limited to those that could be modelled with all filters at the considered level, including the 3-filter combination ACTIVITY- 
DETAIL-VALSTAT. Species were subsequently classified at the highest level possible, meaning that AUC results cannot be compared between sample size levels, 
because species are different. The number of species in each comparison is presented in the top left corner of the graphic areas. Not all levels could be assessed for all 
taxonomic groups, because for example for butterflies there were no species with less than 500 presences in our dataset, so all species were classified at level 500 or 
higher. Boxplots represent medians, upper and lower quartiles with whiskers extending to the minimum and maximum values. Asterisks show significant differences 
in AUC compared to the unfiltered data, tested by a multiple comparison test with Benjamini & Hochberg (1995) correction (*** p<0.001, ** p<0.01, * p<0.05). 
Colours indicate only positive changes (green) for AUC. Results for the impact of data quality on Sensitivity and Specificity are found in Fig. D.1 and D.2 respectively. 
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results (Fig. G.1 and G.2). 
The predictions for ∆ AUC of the best GAMM are presented in Fig. 4, 

along a continuous scale of proportional reduction and for three sample 
sizes after filtering, that we chose based on data availability: 100, 500 
and 1000 presences. Predictions for ∆ Sensitivity and ∆ Specificity are 
found in Appendix H. The combined impact of filtering varies among 
taxonomic groups and we find the highest impacts for plant models 
(AUC and Sensitivity) and dragonfly models (Sensitivity), with the 
largest differences in model performance among filters. The predictions 
for birds and plants in Fig. 4 show that the best filters (i.e. the filters 
leading to increases in AUC) can differ between remaining sample sizes, 
confirmed by the relatively higher importance of the interaction be-
tween filter and sample size after filtering (Fig. 3). For plants, for 
example, the best filter was A + D + V at small, but D + V at large 
remaining sample sizes. Similar patterns were detected for Sensitivity 
(birds, dragonflies and plants in Fig. G.1 and H.1) and for Specificity (all 
groups in Fig. G.2 and H.2). In general, filters that resulted in high- 
quality data usually increased model performance (Figs. 1, D.1 and 
D.2). The proportional reduction in sample size could also be higher for 
those filters, before a negative impact on model performance was 
detected. 

Overall, filtering increased AUCs and Sensitivity for plants (i.e. ∆ >
0) and decreased Sensitivity for birds (i.e. ∆ < 0), while in other cases, 
both increases and decreases in model performance were noted. 
Different trends described the impact of proportional reduction on 
model performance. The shape of the trend depended on the remaining 
sample size, with different trend slopes for all taxonomic groups and 
even different trend directions for birds (Sensitivity), butterflies (AUC), 
dragonflies (Sensitivity and Specificity) and plants (Sensitivity). 

For AUC and Specificity, trends at small remaining sample sizes of 
100 presences were negative, and filtering decreased model perfor-
mance (i.e. ∆ < 0) beyond a certain maximal threshold of proportional 
reduction. Depending on the filter, maximum reductions in sample size 
could range from 0–35% (AUC) for birds, 20–60% (AUC) or 10–30% 
(Specificity) for butterflies, 55–85% (AUC) or 35–65% (Specificity) for 
dragonflies and 5–85% (Specificity) for plants. For Sensitivity, trends at 
a remaining sample size of 100 presences were positive, except for birds. 
Depending on the filter, reductions had to be at least 0–10% for but-
terflies and 35–70% for dragonflies before an increase in model per-
formance was noted. 

For larger remaining sample sizes of 500 and 1000 presences, trends 
in the impact of proportional reduction on ∆ AUC and ∆ Specificity 
remained negative for birds. For butterflies, trends for ∆ AUC flattened 
with increasing sample size after filtering and ∆ AUCs became largely 
positive, except for DETAIL, VALSTAT and D + V at reductions above 
45%. We even saw a positive trend when reductions above 70% resulted 
in larger sample sizes of 1000 presences. For dragonflies, trends were 
flattened for AUC and Specificity at larger remaining sample sizes and, 
except in the case of Specificity and VALSTAT, model performance 
generally increased after filtering. Trends even became positive for 
Specificity at larger remaining sample sizes of 1000 presences and re-
ductions above 20%. For Sensitivity, however, trends became more 
negative for dragonflies at higher remaining sample sizes and only 
VALSTAT, at 500 presences and reductions below 70%, lead to increases 
in model performance. 

Fig. 2.. The impact of absolute sample size on AUC for all species when data quality is constant. Per filter, species were grouped in one of the six specified intervals of 
sample size (left) that indicate the available sample sizes of the original training sets. AUCs were compared between models resulting from a repeated and random 
selection of different fixed sample sizes. Because species differ, results can only be compared within the graphic areas, i.e. between fixed sample sizes, but not 
between filters (horizontal) nor intervals (vertical). The number of species in each comparison is presented in the top left corner of the graphic areas. Boxplots 
represent medians, upper and lower quartiles with whiskers extending to the minimum and maximum values. Asterisks show significant differences in AUC compared 
to the highest sample size, tested by a multiple comparison test with Benjamini & Hochberg (1995) correction (*** p<0.001, ** p<0.01, * p<0.05). Colours indicate 
only negative changes (red) for AUC (∆ AUC < 0). Results for the impact of absolute sample size on Sensitivity and Specificity are found in Fig. E.1 and E.2 
respectively. 
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4. Discussion 

We applied three dichotomous filters to opportunistic species records 
of citizen scientists as single filters and in combinations to test their 
impact on species distribution model (SDM) performance. We retained 
records from more active observers (ACTIVITY), detailed records, i.e. 
submitted with information beyond the default date, location and spe-
cies name (DETAIL) and validated records, i.e. marked as ‘correct’ in the 
data platform’s validation system (VALSTAT). Results indicated that the 
impact of stringent filtering on model performance (measured by 
changes in AUC, Sensitivity and Specificity) depended on the quality of 
the filtered data, both the proportional reduction in sample size caused 
by filtering and the remaining absolute sample size, and the taxonomic 
group. 

A recurring pattern was that Specificity results (true negative rates) 
generally agreed more with AUC results than Sensitivity results (true 
positive rates). Moreover, Specificity usually increased when Sensitivity 
decreased and vice versa, which happens when evaluating model pre-
dictions on an external data set (Jiménez-Valverde, 2012). In the dis-
cussion that follows, we will focus on AUC results and we refer to the 
different results for Specificity and Sensitivity in the results section and 
Supplementary Information. The reader must keep in mind that the 
choice of an optimal threshold for threshold-dependent metrics depends 
on the characteristics of the SDM study (e.g. the goal of the study or the 
availability of information on species prevalence) (Jiménez-Valverde 
and Lobo, 2007) and that this choice might influence the recommen-
dations for the most suited approach for quality filtering. 

The quality of validated and detailed records was generally higher 
than the quality of records from more active observers. Luckily, vali-
dation of occurrence data entering large repositories, by synergies be-
tween human experts and computer intelligence, has been common 

practice (e.g. in eBird, Kelling et al., 2013). The main benefits for data 
quality of such an internal validation system are (i) the quick and rela-
tively easy identification and correction of false-positive errors, as they 
can impact model performance negatively (Costa et al., 2015), and (ii) 
an increased observer skill by the interaction between data managers 
and users (Sullivan et al., 2009). 

Metadata cannot only hold important information to improve SDMs 
by overcoming problems with imperfect detection (e.g. Kéry et al., 
2009) or other types of systematic bias (e.g. Johnston et al., 2017), but 
our results also indicate that the very act of supplying additional in-
formation can benefit data quality. We therefore agree that observer 
dedication and effort (linked to DETAIL) are more fit measures of data 
quality than observer experience and recording rates (linked to AC-
TIVITY) (Henckel et al., 2020; Steen et al., 2019). Like in several other 
studies on data quality, it remains tough to detect changes in model 
performance due to observer related measures of quality (e.g. observer 
skill and reporting consistency in Henckel et al. (2020) or observer 
expertise in Steen et al. (2019)). Combining multiple observer charac-
teristics in observer profiles (Boakes et al., 2016; Isaac and Pocock, 
2015) might be of added value here. Nonetheless, selecting data from 
active observers did significantly increase data quality for eight butterfly 
species that were among the most observed species in our dataset. We 
hypothesize that these common species are susceptible to misidentifi-
cation by the inexperienced observer (Farmer et al., 2012), because of 
their highly familiar names in Dutch (Aglais io L., Gonepteryx rhamni L. 
and Vanessa atalanta L.) or because they are hard to distinguish from 
congeners (Pieris rapae L., Maniola jurtina L. and Pararge aegeria L.) 
(Vantieghem et al., 2017). 

When deciding whether or not to filter, it is not only important to 
consider the obtained data quality, but also both the proportional 
reduction in sample size and the remaining absolute sample size after 

Fig. 3.. The relative variable importance for the impact of data quality and sample size on ∆ AUC, based on the proportion of the percentage of deviance explained 
(%DE) by the different explanatory variables in the best GAMM (Generalized Additive Mixed Model) per taxonomic group (orange dots), and the relative variable 
importance across species, in the GAMs (Generalized Additive Models) where the random species effect was excluded (boxplots). The proportional%DE is the 
decrease in%DE between the full model and the model where the variable was excluded (but with identical smoothing parameters), relative to the%DE of the full 
model to summarize effects across n species. Species where the full model could not be estimated due to convergence issues were excluded from the summary. The 
relative variable importance for the impact on ∆ Sensitivity and ∆ Specificity are found in Fig. G.1 and G.2 respectively. 
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filtering. Large reductions or small remaining sample sizes do not always 
cause lower model performance, and while we agree that small sample 
sizes generally lead to worse models (Jiménez-Valverde et al., 2009; Liu 
et al., 2019), the relative change in sample size must not be ignored 
(Hanberry et al., 2012). Both measures of sample size co-define which 
filters are suited for model performance improvement. They have a 
limited impact on the selection of the best or worst filters based on AUC 
results, as the relative impact on AUC of the different filters remained 
largely constant across different changes in sample size. However, here 
we must mention that when the goal is to increase Sensitivity or Spec-
ificity, the remaining sample size after filtering does need to be 
considered (Appendix G). 

The different drivers of model performance make the interpretation 
complex, but also highlight the importance of analysing multiple aspects 
of data manipulation together (Gábor et al., 2019). We add data quality 
to the list of drivers that can notably impact model performance, such as 
species characteristics, modeling technique and sample size (Gábor 
et al., 2019; Tessarolo et al., 2014). Compared to these factors, previous 
studies found marginal importance of the impact of sampling bias 
(Gábor et al., 2019; Tessarolo et al., 2014) and we have no reason to 
contest this finding based on our results (but note that we partially 
controlled for sampling bias by spatial thinning (Kramer-Schadt et al., 

2013)). Disentangling the different drivers of model performance in 
stringent filtering could be more feasible in a virtual species setting 
(Hirzel et al., 2001; Meynard et al., 2019), however, we argue that the 
simulation of filtered data of different quality is not trivial. This would 
require a more profound understanding of how data quality is impacted 
by data and species characteristics. 

We can recommend stringent filtering for taxonomic groups where 
model performance is more impacted by data quality and less by sample 
size, such as the plants and dragonflies in this study. For plant models, 
we even observed that an increase in quality can mitigate the negative 
impact on AUC of reducing sample size to 100 presences (Fig. E.6 and 
Fig. 4). For the other taxonomic groups, this is only true below certain 
proportional reductions. Models from species with specific habitat 
conditions, such as dragonflies, are less sensitive to sample size and also 
profit from data quality increase. Such species have a more distinct link 
with their habitat and are easier to model compared to species with a 
broader niche (Hernandez et al., 2006). Nevertheless, caution is needed, 
because the impact of data quality on model performance shows large 
variation among plant and dragonfly species (Fig. 3) and is different 
when considering other evaluation metrics (Appendix E). 

For taxonomic groups where model performance is more impacted 
by sample size and less by data quality, such as the birds and butterflies 

Fig. 4.. The combined impact of data quality and sample size on ∆ AUC per taxonomic group. The full lines are the predictions for ∆ AUC (AUCfiltered data – 
AUCunfiltered data) from the ‘best’ GAMM (Generalized Additive Mixed Model) along a continuous scale of proportional reduction in sample size and for three sample 
sizes after filtering that we chose based on data availability: 100, 500 and 1000 presences. Colours represent the different filters (data quality). The red dotted line 
equals a ∆ AUC of 0, i.e. filtering did not impact model performance. We used the REML-method (restricted maximum likelihood) in the ‘gam’ function of the ‘mgcv’ 
R package v 1.8–31 (Wood, 2017) to model our data. Filter type was modelled as factor variable and species as random effect. Smoothing functions were used to fit 
both sample size variables (proportional reduction and sample size after filtering), with cubic spline method and k = 5. ∆ AUC was rescaled to fall between 0 and 1, so 
that we could use the ‘betareg’ family with logit-link, because of the double-bounded character of the response variable (∆ AUC). The combined impact of data 
quality and sample size on ∆ Sensitivity and ∆ Specificity are shown in Fig. H.1 and H.2 respectively. 
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in this study, we advise being more careful. We observed that filtering is 
less beneficial for these groups, probably because their abundant data 
already leads to relatively high model performance. Especially for birds, 
unfiltered data appeared very suited for modeling and filtering did not 
improve AUCs, certainly when less than 50% of the sample size 
remained. For these groups, even filters that do not cause large re-
ductions nor lead to a small sample size could cause model performance 
to decrease. Nonetheless, choosing the right filter can mitigate the 
negative impact of sample size if the obtained quality is high enough (e. 
g. extracting data from active observers for butterflies or combining 
validated and detailed records for birds). 

In this study, we focussed on the combined impact of data quality 
and sample size in stringent filtering, but we acknowledge that other 
factors, such as environmental filtering (Gabor et al., 2019), scale 
(Connor et al., 2018; Gottschalk et al., 2011), species traits (Hernandez 
et al., 2006; McPherson and Jetz, 2007) and SDM technique (Liu et al., 
2019) will probably impact the sensitivity of a dataset to stringent 
filtering as well. For example, the proportion of high-quality data in a 
model training set is scale-dependent, because a coarse resolution gives 
a higher chance that at least one high-quality observation falls in a grid 
cell. Spatial thinning is therefore not only a way to remove spatial bias 
(Boria et al., 2014), but also to reduce other sources of uncertainty 
(Kramer-Schadt et al., 2013), such as the presence of data with uncertain 
quality. We also detected variation among species, and as taxonomic 
groups still show plenty variation in species traits (Maes et al., 2019), it 
might be more efficient to formulate recommendations for stringent 
filtering based on species traits rather than on taxonomy. Species prone 
to misidentification, for example, can benefit from retaining only re-
cords validated as correct based on photos supplied by the observer 
(Vantieghem et al., 2017) and we have indications that, for example, 
habitat-specificity, mobility and popularity impact the sensitivity of a 
species to data quality filtering as well. 

Our recommendations are limited to the discrimination accuracy of 
Maxent. As Maxent usually comes out as a relatively more robust SDM 
technique (Thibaud et al., 2014), our conclusions are likely to be con-
servative. We therefore expect at least a similar, if not a larger, impact of 
data quality filtering for other SDM techniques. 

5. Conclusions 

We conclude that data quality filtering has the potential to improve 
predictions of species distributions, especially for species where SDMs 
are less sensitive to decreases in sample size. However, data quality 
should not be pursued at any cost, because filtering can also impact 
model performance negatively, e.g. for species with abundant data or 
when filtering leads to low sample sizes or causes high sample size re-
ductions. We encourage the further development and adoption of 
techniques that can increase the availability of high-quality data, to be 
able to fully profit from the benefits of opportunistic citizen science data. 
The value of a database-integrated validation system demonstrates the 
potential of bulky datasets from platforms and applications where the 
focus is on the identification and validation of species observations, such 
as iNaturalist (https://www.inaturalist.org/), Pl@ntnet (https://www. 
plantnet.org) or ObsIdentify (Hogeweg et al., 2019). We advise to al-
ways “Think before you shrink” because volunteer generated data can 
make valuable contributions to science if processed correctly. 
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