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Abstract

Pseudorabies virus (PRV), an alphaherpesvirus closely related to Varicella-Zoster virus

(VZV) and Herpes simplex type 1 (HSV1) infects mucosa epithelia and the peripheral ner-

vous system (PNS) of its host. We previously demonstrated that PRV infection induces a

specific and lethal inflammatory response, contributing to severe neuropathy in mice. So far,

the mechanisms that initiate this neuroinflammation remain unknown. Using a mouse foot-

pad inoculation model, we found that PRV infection rapidly and simultaneously induces high

G-CSF and IL-6 levels in several mouse tissues, including the footpad, PNS and central ner-

vous system (CNS) tissues. Interestingly, this global increase occurred before PRV had rep-

licated in dorsal root ganglia (DRGs) neurons and also was independent of systemic

inflammation. These high G-CSF and IL-6 levels were not caused by neutrophil infiltration in

PRV infected tissues, as we did not detect any neutrophils. Efficient PRV replication and

spread in the footpad was sufficient to activate DRGs to produce cytokines. Finally, by using

knockout mice, we demonstrated that TLR2 and IFN type I play crucial roles in modulating

the early neuroinflammatory response and clinical outcome of PRV infection in mice. Over-

all, these results give new insights into the initiation of virus-induced neuroinflammation dur-

ing herpesvirus infections.

Author summary

Herpesviruses are major pathogens worldwide. Pseudorabies virus (PRV) is an alphaher-

pesvirus related to varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1).

The natural host is the pig, but PRV can infect most mammals. In these non-natural hosts,

the virus causes a severe pruritus called the ‘mad itch’. Interestingly, PRV infects the

peripheral nervous system (PNS) and induces a specific and lethal inflammatory response

in mice, yet little is know about how this neuroinflammatory response is initiated. In this

study, we demonstrated for the first time how PNS neurons tightly regulate the inflamma-

tory response during PRV infection and contribute to severe clinical outcome in mice.

Our work provides new insights into the process of alphaherpesvirus-induced neuropa-

thies, leading to the development of innovative therapeutic strategies.
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Introduction

Pseudorabies virus (PRV) is a swine alphaherpesvirus, which infects mucosal epithelia and the

peripheral nervous system (PNS) of its host. The virus is closely related to human pathogens

herpes simplex virus 1 (HSV1) and varicella-zoster virus (VZV) [1]. In adult swine, wild-type

PRV infection causes respiratory and reproductive disorders with a low mortality rate [2].

Infection of neonatal swine, by contrast, is usually fatal resulting from encephalitis [3]. PRV

can also infect a wide range of mammals, including dogs and rodents, except higher-order pri-

mates [4, 5]. In these non-natural hosts, wild-type PRV infection causes a severe pruritus called

‘the mad itch’ with peracute death [6, 7]. Using a footpad inoculation model, we previously

demonstrated that infection with a virulent PRV strain (PRV-Becker), but not with an attenu-

ated live vaccine strain (PRV-Bartha), induces a systemic and lethal inflammatory response in

mice [8]. High levels of interleukin 6 (IL-6) and granulocyte colony-stimulating factor

(G-CSF) were detected in both plasma and tissues of PRV-Becker infected mice at moribund

stage (82 hpi). In addition, we found a strong correlation between PRV-Becker gene expres-

sion in the footpad and dorsal root ganglia (DRGs) and the production of both pro-inflamma-

tory cytokines at that time. IL-6 and G-CSF are produced by various cells, including immune

cells (neutrophils, macrophages, and T lymphocytes), neurons, and endothelial cells. IL-6 has

pleiotropic effects on inflammation, immune response and hematopoiesis [9, 10]. G-CSF regu-

lates neutrophil production and exerts neuroprotective effects through different mechanisms

by inhibiting anti-apoptosis and stimulating neuronal differentiation [11–13]. To date, the

mechanism by which PRV-Becker initiates the production of G-CSF and IL-6 in mice remains

unclear.

The host innate immune system is the first line of defense against herpesvirus infections.

This early response is initiated by recognition of viral DNA or RNA through pathogen recog-

nition receptors (PRRs), such as Toll-like receptors (TLRs), IFI16, and cGAS sensors [14, 15].

The detection of viral components by PRRs in host cells activates distinct intracellular signal-

ing cascades, leading to the secretion of type I interferon (type I IFN), and pro-inflammatory

cytokines. During HSV1 infection, PRR TLR2 is critical to initiate the innate immune

response. Indeed, TLR2 has been shown to mediate the induction of pro-inflammatory cyto-

kines in response to HSV1 infection and contributes to encephalitis in infected mice [16].

More precisely, TLR-2 knockout mice (KO) inoculated intraperitonally with HSV1 showed

reduced mortality and had significantly lower serum levels of IL-6 compared to the wild-type

mice. TLR2 has also been reported to promote the production of cytokines and chemokines in

primary microglia after HSV1 infection [17]. TLRs are expressed in nociceptive neurons and

play an important role in neuroinflammation [18, 19]. For instance, it was demonstrated that

TLR2 contributes to the nerve injury-induced spinal cord glial cell activation and subsequent

pain hypersensitivity [20]. Still, it is not known whether TLR2 signaling is required to regulate

the production of IL-6 and G-CSF and to directly contribute to the clinical outcome of PRV

infection in mice.

In addition to TLR activity, the IFN response is a critical part of the host innate immune

response against viral infections. Type I IFN comprises both IFN-α and -β and is produced as

the first wave of antiviral defense [21, 22]. After secretion, IFN-α/β binds to the specific recep-

tors, the IFN-α receptor (IFNAR) 1 and IFNAR 2, expressed on the cell surface. IFNAR

engagement activates JAK/STAT signaling pathways, inducing expression of an array of IFN-

stimulated genes. The products of many of these genes eventually inhibit viral replication. Like

HSV1, PRV has evolved strategies to evade the IFN-mediated immune response. For example,

virulent PRV-Becker infection suppresses the expression of most IFNβ-stimulated genes in

primary rat fibroblasts through inhibition of STAT1 tyrosine phosphorylation [23]. In
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addition, another study showed that PRV-Becker infection inhibits the IFN response in swine

plasmacytoid dendritic cells (pDCs), while the attenuated vaccine strain PRV-Bartha elicits a

much more robust type I IFN response in these cells [24]. This difference was attributed to a

deletion of the glycoprotein gE/gI gene complex in the PRV Bartha genome. While type I IFN

has been shown to exert an antiviral effect, its role in regulating the production of other pro-

inflammatory cytokines and thus controlling PRV-induced neuroinflammation has not been

investigated.

Here, we sought to characterize the very early events of the specific inflammatory response

induced by PRV infection of mice. We hypothesized that PRV-Becker infection of DRGs that

innervate the site of infection, activates the production of G-CSF and IL-6 at very early times

post-infection through TLR2 signaling. Because infection by PRV-Becker suppressed type I

IFN production, we also determined whether this lack of type I IFN affects the production of

cytokines and PRV-induced neuroinflammation in mice. In this study, we first established and

leads to the kinetics of G-CSF, IL-6 and type I IFN expression in tissues of PRV-infected and

control animals. In addition, we used IFNAR and TLR2 knock-out (KO) mice to dissect the

inflammatory response to PRV infection.

Results

Virulent PRV-Becker infection induces high levels of IL-6 and G-CSF in

mouse tissues early after infection

We first determined the early kinetics of G-CSF and IL-6 production in several tissues of

PRV-Becker infected mice. As shown in Fig 1A, G-CSF levels were significantly increased in the

footpad and DRGs compared to controls as early as 7 hpi (p<0.05). By 24 and 48 hpi, G-CSF lev-

els decreased in both tissues and were comparable to controls. At 82 hpi, G-CSF levels increased

again in both footpad and DRGs of PRV-Becker infected mice to similar levels as seen at 7 hpi.

Significant G-CSF levels were also observed at 82 hpi in spinal cord, brain, heart and liver of

PRV-Becker infected compared to control mice. In addition, by 24 hpi, the level of IL-6 was signif-

icantly higher in all tissues of PRV-Becker infected mice compared to controls (Fig 1B). For each

tissue, the IL-6 concentrations reached a plateau starting from 24 hpi to 82hpi, except for the foot-

pad, which showed increased levels at 82 hpi. Taken together, we conclude that PRV footpad

infection induces high G-CSF and IL-6 concentrations in many tissues very early after infection.

High G-CSF and IL-6 concentrations detected in the footpad and DRGs

early upon infection are not caused by immune cell infiltration

To rule out the possibility that the rapid increase of G-CSF and IL-6 in the footpad and DRGs

of PRV-Becker infected mice could be attributed to the infiltration of immune cells attracted

to the site of infection, sections of both tissues were stained with hematoxylin and eosin (H&E)

and compared to control samples.

Abraded footpads of both PRV-Becker and control mice resulted in minimal to moderate

epidermal necrosis in all animals at 7 and 24 hpi, respectively (Fig 2A and 2C). Epidermal

necrosis was characterized as segmental loss of the epidermis, sometimes flanked by epidermal

thinning and limited neutrophilic accumulation. No viral inclusion bodies were observed

within the footpad at both time points. The neutrophilic inflammation was considered to be

secondary to loss of the epidermal barrier due to the abrasion rather than a primary effect of

the virus. More importantly, no viral inclusion bodies or increase of immune cell infiltrates

were detected in the ipsilateral DRGs of control and PRV-Becker infected mice at 7 and 24 hpi

(Fig 2B and 2D). Based on the histopathological findings, we can conclude that the high levels
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Fig 1. Kinetics of G-CSF and IL-6 production in PRV-Becker infected and control mouse tissues. (A) G-CSF and (B) IL-6

protein levels detected in PRV-Becker infected (red) and control (black) mouse tissues throughout the course of the experiment.

Protein levels were quantified by ELISA and expressed as picogram (pg) per milligram (mg) of tissue. Three independent

experiments were performed. Five mice per group were used per experiment. �, P< 0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1008087.g001
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Fig 2. Histopathological findings in footpad and DRGs of PRV-Becker and mock inoculated mice at 7 and 24 h after

footpad inoculation. Hematoxylin and eosin (H&E) staining of mouse inoculated footpads and ipsilateral DRGs from control
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of G-CSF and IL-6 detected in the footpad and DRGs, so early after PRV infection, are not

caused by the rapid increase of immune cell infiltrates.

Primary replication of PRV-Becker in the footpad is required to activate

DRGs to produce G-CSF and IL-6

Here, we determined whether PRV-Becker replication in DRGs is required to initiate the early

production of G-CSF and IL-6. We measured PRV DNA in DRGs at different time post-infec-

tion by qPCR analysis. No PRV-Becker DNA was detected in DRGs at 7, 24 and 48 hpi. There-

fore, high G-CSF and IL-6 levels detected in tissues of PRV-Becker infected mice at 7 and 24

hpi could not be attributed to extensive viral replication in DRGs.

Next, we hypothesized that primary replication of PRV-Becker in the footpad is required to

activate DRGs to release these pro-inflammatory cytokines. To test this hypothesis, we com-

pared the levels of G-CSF in the footpad and DRGs of mice either mock inoculated or inocu-

lated with PRV-Becker, UV-inactivated PRV-Becker (UV-Becker), PRV-Bartha, or a gB null

mutant (PRV 233) by ELISA at 7 hpi. UV-inactivated PRV-Becker virions deliver their

genome to cells, but cannot replicate; PRV-Bartha replicates to a reduced extent compared to

PRV-Becker, and PRV 233 can initiate one round of replication in cells but cannot spread fur-

ther. We found that both mock-inoculated and UV-Becker-inoculated mice showed compara-

ble levels of G-CSF in the footpad and DRGs (Fig 3A and 3B). Unfortunately, we were not able

to directly detect viral DNA loads by qPCR because it was not possible to distinguish viral

DNA loads between the inoculum and progeny virions at 7 hpi. Also, we could not consistently

detect PRV plaques in the mouse footpad by plaque assay so early post-infection. This result

clearly indicates that active viral replication in the footpad is required to activate DRGs to pro-

duce G-CSF at 7 hpi. Interestingly, mice inoculated with PRV-Bartha or PRV 233 did not

show significant G-CSF levels in both footpad and DRGs compared to control groups. Taken

together, these results confirm that efficient primary replication and spread of PRV-Becker in

the footpad is required to initiate the production of cytokines by DRGs.

TLR2 facilitates PRV spread from the footpad to the DRG neurons and

mediates the neuroinflammatory response in mice

We investigated whether PRV infection activates DRGs to produce G-CSF and IL-6 through

TLR2 signaling. To test this, idea, TLR2 KO mice either were mock infected or inoculated with

PRV-Becker at a dose of 8.106 PFU in the footpad and monitored daily for 82 h. Previous work

done with WT mice has already been published (8). At the start of the experiment, mice

weighed an average of 23 ± 0.7 g and had a mean body temperature of 36.8 ± 0.5˚C. No signifi-

cant increase in body weight and temperature was observed between control and PRV-Becker

infected TLR2 KO mice throughout the course of the experiment (Fig 4A). All five

PRV-Becker infected mice remained asymptomatic at 82 hpi. The inoculated footpad did not

show any signs of inflammation and looked comparable to control footpad (Fig 4B).

We first quantified the PRV load in the footpad of PRV-Becker infected TLR2 KO mice at

24 hpi by qPCR analysis. Footpads of PRV-Becker infected wild-type (WT) mice were used as

a control. As shown in Fig 4C, PRV-Becker infected TLR2 KO mice showed significantly less

PRV DNA in the footpad (approx. 1.2 x 102 PFU/mg of tissue) compared to PRV-Becker

and PRV-Becker inoculated mice at 7 (A and B) and 24 hpi (C and D). Both abraded footpads of PRV-Becker and control

mice resulted in minimal to moderate epidermal necrosis in all animals at both time points. No neutrophil infiltrates were

observed in DRGs of experimental and control groups. Results are representative of three biological replicates for a given type

of tissue. Scale bar (50μm) are indicated for each picture.

https://doi.org/10.1371/journal.ppat.1008087.g002
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infected WT animals (approx. 5.4 x 104 PFU/mg of tissue). At 82 hpi, we could not detect PRV

DNA in the footpad, DRGs, spinal cord and brain of all five PRV-Becker inoculated TLR2 KO

mice. Next, we measured the levels of G-CSF and IL-6 in tissues of PRV-Becker inoculated

and compared to those in control TLR2 KO mice at 82 hpi. Interestingly, we found that G-CSF

and IL-6 levels were only significantly increased in the footpad of PRV-Becker infected TLR2

KO mice compared to control KO group (p<0.05) (Fig 4C and 4D). Here, we can conclude

that PRV-Becker replication is limited in the footpad of TLR2 KO mice and the infection does

not spread and replicate in the DRGs. Similarly, the PRV-induced inflammatory response is

restricted to the area of infection, the footpad, as the virus does not activate DRG neurons to

produce G-CSF and IL-6 in the absence of TLR2. Overall, these results suggest that TLR2

might be an important receptor for PRV on DRG neurons to facilitate viral spread and to acti-

vate PRV-induced inflammation in mice.

Type I IFN controls both antiviral and neuroinflammatory responses

during PRV infection in mice

To investigate the role of type I IFN in controlling the inflammatory response to PRV infec-

tion, we first measured and compared the concentrations of IFN-α and IFN-β in the footpad,

DRGs and plasma of PRV-Becker, PRV-Bartha infected, and control mice at 7 and 24 hpi. At 7

hpi, both PRV-Becker and PRV-Bartha infections trigger significant IFN-α production in

DRGs compared to the control group (p<0.01) (Fig 5A). At 24 hpi, IFN-α levels significantly

decreased in DRGs of PRV-Becker infected animals while the production remained signifi-

cantly elevated in DRGs of PRV-Bartha infected mice (p<0.0001). No significant IFN-α pro-

duction was detected in the footpad and plasma of PRV-Becker and Bartha inoculated mice at

anytime. Interestingly, PRV-Bartha, but not PRV-Becker, elicited a significant increase of

IFN-β in the footpad, DRGs and plasma of inoculated mice at 7 hpi (p<0.0001) (Fig 5B). At 24

hpi, IFN-β levels rapidly decreased to control levels.

Next, we determined if type I IFN plays a role in preventing PRV-Becker-induced disease at

late stages of infection using IFNAR KO mice. The footpads of IFNAR KO mice were inocu-

lated with PRV-Bartha at a dose of 108 PFU and monitored daily over an 82 hours period. Pre-

vious work done with WT mice has already been published (8). Our expectation was that in

the absence of an IFN response, PRV-Bartha infected IFNAR KO mice should develop PRV-

Becker-like symptoms. As shown in Fig 6A, PRV-Bartha infected IFNAR KO mice did not

Fig 3. Primary replication of PRV-Becker in the footpad is required to activate DRGs to produce G-CSF at 7 hpi. Mice were inoculated with either mock or

PRV-Becker, UV-inactivated PRV-Becker, PRV-Bartha or PRV gB null mutant. At 7 hpi, G-CSF protein levels were measured in the footpad (A) and DRGs (B) of

corresponding mice. Protein levels were quantified by ELISA and expressed as picogram (pg) per milligram (mg) of tissue. Three independent experiments were

performed. Five mice per group were used per experiment. Data are represented as means + SD. �, P< 0.05; ns, not significant compared to control group.

https://doi.org/10.1371/journal.ppat.1008087.g003
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Fig 4. PRV-Becker neither replicates in DRGs nor induces a neuroinflammatory response in TLR2 KO mice. (A)

Body weight and temperature of TLR2 KO mice following PRV infection with Becker strain (8.106 PFU) (red) or

control (black). (B) Representative images of mouse right hind paws at 82 hpi. Black arrows indicate the site of

abrasion. (C) At 24 hpi, PRV DNA was quantitated in mouse footpad by qPCR using UL54 primers. PRV-Becker loads

are expressed as plaque forming units (PFU) per mg of tissue. Footpads of PRV-Becker infected WT mice were

included as a control. (D) G-CSF and (E) IL-6 protein levels detected in PRV-Becker infected and control mouse

tissues at 82 hpi. Protein levels were quantified by ELISA and expressed as pictogram (pg) per milligram (mg) of tissue.

(n = 5 per group). Two independent experiments were performed. Five mice per group were used per experiment. �,

P< 0.05; �� P< 0.01; ns, not significant.

https://doi.org/10.1371/journal.ppat.1008087.g004
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show a significant increase of body temperature or weight loss compared to control IFNAR

KO animals throughout the course of the experiment. However, PRV-Bartha infected mice

did show mild inflammation and redness of the inoculated footpad compared to control group

at 82 hpi (Fig 6B). No tremors or intense scratching and biting of the footpad were reported.

As shown in Fig 6C, PRV-Bartha DNA was detected only in the footpad (approximately 8 x102

PFU/mg of tissue) and DRGs (approximately 104 PFU/mg of tissue) of IFNAR KO mice. In

addition, we quantified the levels of IL-6 and G-CSF in plasma and several tissues of

PRV-Bartha infected IFNAR KO mice at 82 hpi by ELISA. G-CSF levels were significantly

increased in all tissues, except bladder, of infected mice compared to controls (p<0.05) (Fig

6D). However, no significant difference in plasma levels was observed between experimental

and control groups. No significant IL-6 increase was detected in the plasma and tissues of

PRV-Bartha infected IFNAR KO mice (Fig 6E). Interestingly, high levels of G-CSF were

already detected at 7 hpi in several tissues, including PNS and CNS tissues of PRV-Bartha

infected mice compared to controls (p<0.05) (Fig 6F). Taken together, the data suggest that

infection by PRV-Bartha, but not by PRV-Becker, strongly induces production of IFN-β in the

footpad, in DRGs, and in plasma of inoculated mice at 7 hpi. In addition to its role in limiting

viral replication, our data suggest that type I IFN plays a key role in modulating the early neu-

roinflammatory response and clinical outcome of PRV infection in mice.

Fig 5. Comparison of type I IFN levels between PRV-Becker and PRV-Bartha infected mice at early time post-infection. (A) IFN-α and (B) IFN-β
protein levels detected in the foot, DRGs and plasma of control (black), PRV-Becker (red) and PRV-Bartha (blue) infected WT mice at 7 and 24 hpi. Protein

levels were quantified by ELISA and expressed as picogram (pg) per milligram (mg) of tissue. Three independent experiments were performed. Five mice per

group were used per experiment. �� P< 0.01; ���� P< 0.0001; ns, not significant.

https://doi.org/10.1371/journal.ppat.1008087.g005
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Fig 6. PRV-Bartha replicates efficiently in DRGs and partially induces a neuroinflammatory response in IFNAR

KO mice. (A) Body weight and temperature of IFNAR KO mice following PRV infection with Bartha strain (108 PFU)

(blue) or control (black). (B) Representative images of mouse right hind paws at 82 hpi. Black arrows indicate the site

of abrasion. (C) PRV DNA was quantitated in mouse tissues by qPCR using UL54 primers. PRV-Bartha loads are

expressed as plaque forming units (PFU) per mg of tissue. (D) G-CSF and (E) IL-6 protein levels detected in

PRV-Bartha infected and control mouse tissues at 82 hpi. (F) G-CSF protein levels detected in PRV-Bartha infected

and control mouse tissues at 7 hpi. Protein levels were quantified by ELISA and expressed as pictogram (pg) per

milligram (mg) of tissue. Two independent experiments were performed. Five mice per group were used per

experiment.�, P< 0.05; �� P< 0.01; ��� P< 0.001; ����P< 0.0001; ns, not significant.

https://doi.org/10.1371/journal.ppat.1008087.g006
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Discussion

Virulent PRV infection of mice has been shown to induce a specific and lethal systemic inflam-

matory response [8]. However, the molecular mechanisms by which PRV initiates this inflam-

matory response remain unknown. Here, using the virulent PRV strain Becker and an

attenuated vaccine strain, PRV Bartha, we provide evidence that PRV-Becker infection but not

PRV Bartha infection, primes DRG neurons to an inflammatory state at very early time post-

infection, which is regulated through TLR2 and type I IFN signaling.

In this study, we first showed that high levels of G-CSF and IL-6, biomarkers for an inflam-

matory response, are produced in most tissues of PRV-Becker infected mice at early time post-

infection. In particular, a peak of G-CSF and IL-6 were detected in the footpad and DRGs at 7

and 24 hpi, respectively. The histopathological examination showed no increase of immune

cell infiltrates in both footpad and DRGs at these time points. This result indicates that the

early peak of cytokine production detected in both footpad and DRGs of PRV-Becker inocu-

lated animals cannot be attributed to the rapid infiltration of neutrophils to these tissues. We

first hypothesized that PRV replication in DRGs was required to initiate this early production.

However, we could not detect PRV DNA in the DRGs of PRV-Becker infected animals by

RT-PCR at 7 and 24 hpi, respectively. This result is in agreement with a previous study that

could only detect PRV in ipsilateral mouse DRGs 48 h after footpad inoculation [5].

Instead, we demonstrated that efficient replication and spread of PRV-Becker in the foot-

pad was required to activate DRGs to produce G-CSF at 7 hpi. Indeed, mice inoculated with

the attenuated PRV-Bartha strain or an avirulent PRV strain (PRV 233, gB null mutant) failed

to activate cytokine production in DRGs. PRV Bartha is known to have slower replication

kinetics than PRV-Becker [25]. Curanović, Lyman [26] demonstrated that PRV-Bartha

spreads slower in neuronal circuits due to a mutation in the UL21 gene. In addition, unlike

infection by PRV-Becker, infection by PRV-Bartha induces a strong IFN response in cells,

which is likely to limit the infection [24]. The PRV gB null mutant can initiate one round of

replication but cannot spread from cell to cell [27]. PRV gB protein is a key component of the

viral membrane fusion complex, essential for viral entry into neurons [28]. This fusion com-

plex consists of gB/gH/gL that produces fusion pores and enables ions to flow between PNS

neurons and cause direct electrical coupling and elevated firing rates in vitro [29]. An in vivo
study demonstrated that PRV-Becker infection of PNS neurons of the submandibular ganglia

induces synchronous and cyclical activity in neuronal cell bodies [30]. No signs of synchro-

nous or cyclical firing were observed in PRV gB null infected PNS ganglia. Despite its role in

mediating transneuronal spread and electrical coupling in neurons, the involvement of PRV

gB in the induction of an early inflammatory response in mice is not known. Here, we specu-

late that the interaction of PRV gB expressed on infected epidermal cells or new progeny viri-

ons with a receptor expressed on DRG neurons is sufficient to activate the early production of

G-CSF and IL-6 in DRG neurons and their subsequent release to the footpad through the sci-

atic nerve via axon terminals.

Interestingly, HSV1 gB has been shown to be a ligand for TLR2 and activates TLR2-depen-

dent NFkB signaling in vitro [31, 32]. During HSV1 infection, the engagement of TLR2 medi-

ates the production of chemokines, such as CCL2, in infected neurons and facilitates the

recruitment of macrophages [33]. In our study, we demonstrated that PRV infection of TLR2

KO mice resulted in the production of IL-6 and G-CSF only in the footpad. All PRV infected

KO mice animals remained asymptomatic and survived after 82 hpi. These results are in agree-

ment with a study from Kurt-Jones, Chan [16], which demonstrated that TLR2 mediates the

lethal inflammatory cytokine response to HSV1 using KO mice. Similarly, they showed that all

HSV1 infected TLR2 KO mice survived 4 days pi compared to 50% infected WT. Even so, no
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significant difference in HSV1 titer was observed in the brains of TLR2 KO compared to WT

mice. Surprisingly, we found that PRV-Becker only replicates in the footpad, but not DRG

neurons, of TLR2 KO mice. We speculate that TLR2 might be a receptor required for PRV

infection of DRG neurons or that PRV-induced TLR2 activation of DRG neurons triggers the

neuroinflammatory response in mice. Future in vitro studies will further characterize the inter-

action of PRV gB with TLR2 expressed in neurons, including a comparison of binding affini-

ties of PRV-Becker and PRV-Bartha gB to TLR2.

Next, we demonstrated that IFN-β, was significantly increased in the foot, DRGs and

plasma of PRV-Bartha, but not PRV-Becker, infected mice at 7 hpi. These results are in accor-

dance with a previous study from Lamote, Kestens [24], which showed that PRV-Bartha, but

not PRV-Becker, elicits a strong IFN response in pDC. While PRV Bartha infection induces an

antiviral state in mice via IFN-β expression, we believe that virulent PRV-Becker infection trig-

gers an exceptional inflammatory response marked by global production of G-CSF and IL6,

because it suppresses the IFN response. The imbalance between antiviral and pro-inflammatory

immune responses is likely to contribute to the distinct clinical outcomes of PRV-Becker and

Bartha infections in mice. In accordance with this finding, we demonstrated that PRV-Bartha

infection triggered a modest inflammatory response in mice lacking type I IFN receptor. The

inflammatory response was milder than that induced by PRV-Becker infection of WT mice [8].

PRV-Bartha infected IFNAR KO animals only showed inflammation of the inoculated foot-

pad with no signs of morbidity at 82hpi. However, the infection triggered significant G-CSF

concentration in tissues compared to KO controls. No significant IL-6 levels were detected in

PRV-Bartha infected KO mice. Another interesting finding was that PRV-Bartha replicated to

a reduced extent in the footpad and DRGs of KO mice compared to what was seen in PRV-

Becker infected WT mice. We think that the limited replication of the attenuated PRV-Bartha

in the footpad and DRGs is due in part to the strong IFN-β response, which in turn results in

reduced expression of G-CSF in tissues with no subsequent activation of IL-6 production. The

absence of high IL-6 concentrations in blood and tissues might explain why the infected ani-

mals were still alive at 82 hpi. Indeed, high serum levels of IL-6 have been correlated with dis-

ease severity and mortality in cases of bacterial sepsis and viral infections, such as E71 and

Sindbis virus infections [34, 35]. IL-6 has also been implicated in the cytokine storm initiated

following influenza and severe acute respiratory syndrome (SARS) infections [36, 37]. These

results further suggest that PRV-Becker infection in mice induces a biphasic inflammatory

response controlled by DRG neurons. In the first phase, PRV-Becker infection of DRG neu-

rons promotes the rapid release of high levels of G-CSF in many uninfected tissues at early

time post-inoculation. In the second phase, this high concentration of G-CSF leads to further

activation of IL-6 production in uninfected tissues. This expansive expression of G-CSF and

IL6 promotes an uncontrolled systemic and lethal inflammatory cytokine response in mice at

later time post-inoculation. Overall, our work demonstrates that initial innate immune

defenses to infection must be carefully controlled and that virulent infection reflects lack of

such control. Indeed, a hallmark of PRV infection is that it is so virulent producing similar

lethal symptoms in a broad range of infected mammals (except its natural host). Certainly,

evolution of the host-virus interaction is carefully balanced. This assertion is reflected by the

fact that PRV infection is lethal for neonatal but not adult swine, which control PRV infection

well. Indeed, adult pigs infected with PRV typically exhibit symptoms of respiratory disease

with low mortality rate. In contrast, in younger swine, PRV causes an acute neurological dis-

ease with a high fatality rate supposedly due to productive viral replication in the CNS [38, 39].

The latter study reported that 2-week-old piglets also exhibited severe neuropathic itch

between 3 and 4 days post-infection and piglets were euthanized at 4 days. Moreover, IL-6, IL-

10, TNF-α and IFN-γ mRNA were found to be significantly increased in the trigeminal ganglia
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(TG) of 2-week-old piglets infected with virulent PRV strain NIA3 at 2 days post-infection.

The increase in cytokine mRNA expression occurred simultaneously with the appearance of

viral mRNA in TG. No clear increase of these cytokines was observed in TG of PRV infected

15-week-old pigs. This study concluded that age-dependent differences in PRV-induced clini-

cal signs are due to enhanced viral replication and associated immunopathology in immature

trigeminal ganglion and central nervous system neurons of 2-week old pigs. Based on these

results, we do think that the interaction of PRV gB with TLR2 on porcine neurons occurs and

thus also triggers a specific inflammatory response in young piglets. In contrast, adult swine

infected with PRV do not exhibit neuropathic itch or an aberrant inflammatory response

because the infection elicits a strong and protective IFN response in adult animals.

Here, we provide a model of PRV infection and priming of DRG neurons to an inflamma-

tory state versus antiviral state at very early time post-infection (Fig 7A and 7B). Virulent

Fig 7. Model of PRV infection and priming of DRG neurons to an inflammatory state versus antiviral state at very early time post-infection. (A) (1)

PRV-Becker efficiently replicates and spreads in the epidermal cells of the mouse footpad. (2) PRV gB expressed on infected epidermal cells or on new

progeny virions may interact with TLR2 expressed on axonal terminals of DRG neurons that are innervating the footpad. (3) This high level gB-TLR2

interaction activates TLR2 signaling pathway through NF-κβ in DRG neurons and leads to the synthesis of G-CSF and IL-6 molecules. (4) Both cytokines are

released in (a) DRG neurons and (b) locally at axon terminals innervating the footpad. (5) G-CSF and IL-6 molecules can directly interact with their receptors

(G-CSFR and IL6R) expressed on DRG neurons priming them to an inflammatory state with global effects. (6) G-CSF- and IL-6-mediated signaling pathways

may increase the excitability of DRG nociceptors and facilitate synaptic transmission of specific IL-6 and G-CSF afferent signals to the CNS. (B) (1)

PRV-Bartha does not replicate and spread efficiently in epidermal cells. (2) The infection induces a rapid type I IFN response in cells. (3) Only a few infected

epidermal cells and progeny virions expressing gB on their surfaces can interact with TLR2 found on DRG peripheral axons. (4) Low level gB-TLR2

engagement is below the threshold for activation of TLR2-mediated cytokine signaling pathway. (5) In contrast, type I IFN molecules released from infected

epidermal cells bind to their receptors and directly prime DRG neurons to an antiviral state, through activation of type I IFN signaling pathway (JAK/STAT)

(6).

https://doi.org/10.1371/journal.ppat.1008087.g007
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PRV-Becker efficiently replicates and spreads in the epidermal cells of the mouse footpad

because it suppresses the IFN type I response (Fig 7A). Consistent with the work of others

[31, 32], we postulate that PRV gB expressed on infected epidermal cells or on new progeny

virions interacts with TLR2 expressed on DRG neurons. This interaction may initiate TLR2

intracellular signaling cascades in these neurons mediating the synthesis of G-CSF and IL-6

in DRGs. A previous study showed that TLR2 signaling inhibits induction of IFN type I by

TLR7/9 in murine DCs [40]. This result is consistent with the idea that PRV may have

evolved additional mechanisms to suppress the IFN response, not only at the signaling but

also induction level. Once released locally, G-CSF and IL-6 molecules can directly interact

with their receptors (G-CSFR and IL6R) expressed on DRG neurons priming them to an

inflammatory state with global effects [41]. DRG neurons play an important role in the mod-

ulation of peripheral and central sensory processing, such as inflammation and neuropathic

pain [42–44]. Sensory DRG neurons can also respond to the presence of pathogens, indepen-

dently of immune cell activation [45]. Interestingly, the interaction of G-CSF with its recep-

tor has been shown to cause hyperexcitability of DRG neurons during colitis [46]. In our

model, G-CSF- and IL-6-mediated signaling pathways may increase the excitability of DRG

nociceptors and facilitate synaptic transmission to the CNS. We propose that G-CSF and IL-

6 specific afferent signals are produced through signaling cascades and then transmitted to

the vagus nerve, which innervates visceral tissues. This proposal explains why most tissues

collected from PRV-Becker infected mice showed high levels of G-CSF and IL-6 at early time

post-infection, independent of a systemic inflammation and evidence of viral infection.

Indeed, the nervous system supports homeostasis by modulating the function of organ sys-

tems. A well-known example of neural control of inflammation is the inflammatory reflex

[47]. This reflex consists of afferent signals that are transmitted in the CNS and culminate in

efferent vagus nerve activity that regulates macrophage cytokine release in the spleen [48].

Signals originating in the CNS can travel through the cholinergic vagus nerve and regulate

inflammation in peripheral organs innervated by this nerve. This latter hypothesis is sup-

ported by a study from Zanos, Silverman [49], which demonstrated that administration of

IL-1β and TNF-α to mice activate specific sensory action potentials in the vagus nerve. Each

cytokine signal had a specific firing rate and it was suggested that these signals could come

from the activation of cytokine specific receptor.

In striking contrast to effects of virulent PRV-Becker infection, we postulate that

PRV-Bartha replication and spread is restricted in epidermal cells because infection elicits

a rapid type I IFN response (Fig 7B). We suggest that because of this limited replication, only

a few infected epidermal cells and progeny virions expressing gB on their surfaces can inter-

act with TLR2 found on DRG peripheral axons. As a result, this low level gB-TLR2 engage-

ment may be below the threshold for activation of TLR2-mediated cytokine signaling

pathway. Interestingly, three point mutations have been detected in the functional domain of

PRV-Bartha gB fusion protein, which might also affect its efficiency to interact with TLR2

[50]. Another hypothesis is that type I IFN molecules already released from infected epider-

mal cells can bind to their receptors and directly prime DRG neurons to an antiviral state. In

fact, a study from Song, Koyuncu [51] demonstrated that IFN-β applied to isolated axons of

cultured PNS neurons induces a local response that limits transport of PRV virus particles.

In contrast to G-CSF, type I IFN inhibits excitatory synaptic transmission and nociceptive

transmission in the spinal cord [52]. In that scenario, no cytokine afferent signals would be

sent to the CNS.

In conclusion, this work reveals some new mechanisms by which PNS neurons control the

cytokine response during alphaherpesvirus infection and contribute to severe neuropathies.
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Material and methods

Viruses

The wild-type virulent PRV strain (PRV-Becker) and live-attenuated PRV strain (PRV-Bartha)

were used in this study. PRV-Becker is a virulent field isolate from dog, originally isolated at

Iowa State University (USA), with subsequent laboratory passage [53]. PRV-Bartha is a highly

passaged vaccine strain, derived from the original Aujeszky strain, which was isolated in Hun-

gary [54]. The attenuated live Bartha strain has mutations in the glycoprotein C (gC), gM, and

UL21 genes and a deletion in the unique short region spanning the gI, gE, Us9, and Us2 genes

[55–58]. PRV-Becker and PRV-Bartha stocks were grown and titered on monolayers of PK-15

pig kidney cells (ATCC). PRV 232 is a gB-null strain expressing VP26-GFP in a PRV Becker

background [27]. The gB-null viral strains were propagated, and their titers were determined

in PK15 cells stably transfected with LP64e3, a plasmid expressing PRV gB under the control

of the cytomegalovirus (CMV) immediate early promoter. For virus inactivation by UV, a thin

layer of viral suspension was exposed to short-wave UV light for 10 min. Absence of viral

infectivity was checked by virus titration on PK-15 cells.

Mice

Male C57BL/6 mice between 5 to 7 weeks old were purchased from The Jackson Laboratory

(Bar Harbor, ME). C57BL/6 mice are sensitive to PRV infection, as previously described [59].

Mice deficient for type I IFN α/β receptor (IFNAR) and TLR2 on a C57BL/6 genetic back-

ground were also purchased from The Jackson Laboratory (stock number 028288 and 004650,

respectively).

Mouse footpad inoculation model

The protocol used for the footpad inoculation experiments was adapted from the protocol pre-

viously described [8]. Briefly, mice were anesthetized with 1–3% isoflurane gas and the right

hind footpad, between the heel and walking pads, was gently abraded about 20 times with an

emery board until the stratum corneum was removed. A 20-μl droplet of virus inoculum con-

taining 8.106 plaque-forming unit (PFU) of PRV-Becker, UV-PRV-Becker, PRV 232 or 108

PFU of PRV-Bartha, resuspended in medium (Dulbecco modified Eagle medium, 2% fetal calf

serum and antibiotics) (Hyclone, GE Healthcare life sciences), was applied onto the abraded

area of the skin. Mock-inoculations (medium only) were carried out in parallel. The inoculum

was gently rubbed 5 to 10 times with the shaft of an 18-gauge hypodermic needle to facilitate

adsorption of the virus. The mice were kept under anesthesia for 30 minutes (min) until the

abraded footpad was dry and then the animals were placed in separate cages for further analy-

sis. Mice were weighed daily and temperature measured using a rectal probe. Clinical manifes-

tations of disease were monitored over time as previously described.

Tissue collection and homogenization

Mice were euthanized by CO2 asphyxiation at 7, 24, 48 and 82 hours post-inoculation (hpi).

The humane endpoints for PRV-Becker and PRV-Bartha infected WT animals are 82 and 200

hpi, respectively. A set of controls was euthanized at each time point. Fresh tissues (50 to 100

mg), including the footpad, ipsilateral DRGs, spinal cord, brain, heart, lungs, spleen, pancreas,

liver, kidneys and bladder were collected, flash-frozen in liquid nitrogen, and stored at -80˚C.

One hundred milligrams of tissue was weighed and placed in a 2 ml microcentrifuge tube con-

taining a sterile steel bead (Qiagen) and 500 μl modified RIPA buffer containing 0.5M EDTA,

pH 8.0; 1M Tris-HCl, pH 8.0; 5M NaCl; 10% SDS and protease cocktail inhibitor tablets
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(cOmplete Mini EDTA-free, Roche Diagnostics). Tissues were disrupted using a TissueLyser

(Qiagen) (20 cycles/s for 2 min, 1 min wait, 20 cycles/s for 2 min) and centrifuged at high

speed (17,900 x g) for 10 min. Tissues were stored at -20˚C until use in ELISA and qPCR.

Blood collection

Whole blood (approx. 300 μl) was collected by cardiac puncture after CO2 asphyxiation and

transferred into 1.5ml EDTA capillary collection tubes (BD Vacutainer). Following collection,

samples were first centrifuged for 10 min at 1,500 x g, 4˚C to separate cells from plasma and

then for 15 min at 2,000 x g, 4˚C to deplete platelets. Samples were stored at -80˚C until ELISA

analysis.

Histology

At 7 and 24 hpi, footpad and DRGs samples of mock infected or PRV-Becker infected mice

were carefully dissected and placed in 10% formalin at 4˚C for 24h. The ipsilateral DRGs of

lower lumbar and sacral levels were collected for histopathological analyses. Samples were pro-

cessed and embedded in paraffin and 4–6 μm sections were prepared and stained with hema-

toxylin and eosin (H&E) by Charles River histopathology services. Three H&E-stained

sections per mouse were evaluated for signs of inflammation, epidermal and neuronal

necrosis.

ELISAs

The quantitation of single analyte IL-6, G-CSF, type I IFN (α and β) levels in plasma and/or tis-

sue homogenates were performed using commercial ELISA kits from Thermo Fischer, Qiagen,

Biolegend and Invitrogen. The assays were conducted by following the manufacturer’s recom-

mendations. All samples were measured in duplicate.

Quantitative PCR assay (qPCR)

Homogenized tissues were digested with proteinase K (New England Biolabs) in Tween-20 for

60 min at 55˚C followed by inactivation for 10 minutes at 95˚C prior to qPCR run. Viral geno-

mic DNA was quantified by using UL54 specific primers as previous published [60]. This set

of primers (5’-TGC-AGC-TAC-ACC-CTC-GTC-C-3’ and 5’-TCA-AAA-CAG-GTG-GTT-

GCA-GTA-AA-3’) (Integrated DNA Technologies) generated a 65 bp fragment of the viral

gene UL54 after amplification. Quantitative PCR was performed with Eppendorf Realplex

Mastercycler. Reaction mixture was prepared using Kapa Syber Fast qPCR kit and samples

were prepared as triplicates. Each experiment was done in duplicates. The amplification reac-

tions were carried out in a total volume of 10 μl, containing 2 μl of template DNA, 5 μl 2X

SYBR FAST qPCR Master Mix Universal (Kapa Biosystems), 0.4 μl each of (2.5 μM) forward

and reverse primer and 2.2 μl of RNAse free water. The amplification conditions consisted of

pre-incubation at 95˚ for 2 min and 40 cycles of denaturation (5 seconds at 95˚C), annealing

(20 seconds at 55˚C), and extension (10 seconds at 72˚C). The quantification cycle (Ct) was

calculated as the cycle number at which the concentration increase became exponential. The

specific target amplification was analyzed by melt-curve analysis using the Mastercycler ep

realplex 2.2 software.

To quantitate viral DNA, a standard curve was obtained for each experiment by co-amplifi-

cation of known amounts of PRV DNA. Five consecutive tenfold dilution of PRV stocks was

prepared containing from 105 to 101 PFU. PRV-Becker and PRV-Bartha virus stocks (5x108

PFU/ml and 2X1010 PFU/ml, respectively) were used as standards to determine how many
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viral genomes correspond to one plaque forming unit. The amounts of PRV DNA in samples

were obtained by plotting Ct values onto the standard curve and expressed as PFU/mg of tissue

[61]. The conversion of genome copies to PFU was done for convenience of comparing our

data to previous published data [8, 61].

Statistical analyses

Data were pooled from 2–3 independent experiments. Five mice per group were used per

experiment. Significant differences (�, P< 0.05; ��, P <0.01; ���, P< 0.001; ����, P< 0.0001)

between mock-, PRV-Becker- and PRV-Bartha inoculated animals were identified by one way

analysis of variances (ANOVA) followed either by a Tukey’s post-hoc test or a two-sided Dun-

nett’s post-hoc test. If homoscedasticity of the variables was not met as assessed by Levene’s

test, the data were log-transformed prior to ANOVA. Normality of the residuals was verified

by the use of the Shapiro-Wilk test. If the variables remained heteroscedastic or normality was

not met after log-transformation, a Kruskall-Wallis test, followed by a Mann-Whitney post-

hoc test were performed. All analyses were conducted in GraphPad Prism v7.0d (Graph Pad

Software, La Jolla, CA). Values in the text, graphs, and figure legends throughout the manu-

script are means + or ± standard deviations (SDs).
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