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ABSTRACT
Autism Spectrum Disorder (ASD) is conceptualised by the Diag-
nostic and Statistical Manual of Mental Disorders (DSM-V) [1] as
a spectrum, and diagnosis involves scoring behaviours in terms
of a severity scale. Whilst the application of automated systems
and socially interactive robots to ASD diagnosis would increase ob-
jectivity and standardisation, most of the existing systems classify
behaviours in a binary fashion (ASD vs. non-ASD). To be useful in
interventions, and to overcome ethical concerns regarding overly
simpli�ed diagnostic measures, a robot therefore needs to be able
to classify target behaviours along a continuum, rather than in
discrete groups. Here we discuss an approach toward this goal
which has the potential to identify the full spectrum of observable
ASD traits.

1 INTRODUCTION
Autism Spectrum Disorder (ASD) is de�ned by the DMS-V in terms
of two behavioural domains: social communication and interaction,
and restricted or repetitive behaviours and interests [1]. Recent
advances in our understanding have led to the re-conceptualisation
of ASD as a spectrum. �is concept refers to: (1) di�erences in
presentation and severity within the clinical population, (2) the
continuous distribution of “autistic traits” between the general and
clinical populations, and (3) subgroups [6]. Diagnosis of ASD can-
not, therefore, be thought of as a binary classi�cation (e.g. non-ASD
vs. ASD) but rather in terms of severity scales applied to multiple
behaviours and traits. Diagnosis thus relies largely on subjective in-
terpretations of various sources of information [2, 10], and children
with ASD demonstrate high levels of clinical heterogeneity [4, 11].
�e diagnostic standard of ASD could, therefore, be improved by
more quantitative, objective measures of social response.

�ese bene�ts can be provided by introducing automated sys-
tems into the diagnostic process in the form of socially interactive
robots [3], and systems to aid in the diagnosis of several behavioural
and psychological disorders including ASD [7, 12] have been de-
veloped. However, in contrast with the diagnostic requirements,
these systems usually approach behaviour classi�cation in a binary
fashion; individuals are classed as either ASD or non-ASD [12]. �is
lack of sensitivity to intermediate cases brings with it the ethical
issues of overly simpli�ed diagnostic measures, such as potentially
classifying a large proportion of the behaviours which fall on the
autism spectrum as non-ASD [7]. Here, we discuss an approach
toward, and the bene�ts of, non-binary, automated classi�cation of
autistic behaviours embedded within human-robot interactions.

2 ROBOTS AS DIAGNOSTIC TOOLS FOR ASD
�e prospect of introducing robots into interventions for ASD has
become increasingly popular due to �ndings indicating that robots
can promote motivation, engagement, and the occurrence of other-
wise rare social behaviours in children with ASD [2, 14]. �ey have
therefore been proposed as an e�ective tool for helping children
develop and employ social skills, and to transfer these skills to inter-
actions with humans [2, 13]. Whilst less a�ention has been given
to the role of robots in ASD diagnosis [14], such an application of
robot technology does o�er unique bene�ts including: (1) standard-
isation of stimulus and recording methodology, and (2) increased
repeatability [2, 8]. It has also been argued that a robot’s ability to
generate social prompts allows for the controlled elicitation and
examination of social responses [2]. �is is in-line with the goal of
diagnostic instruments such as the Autism Diagnostic Observation
Schedule (ADOS) [5], i.e. to elicit spontaneous behaviours in a
standardised context. Furthermore, the �nding that children with
ASD interact more with technology than with humans [8] indi-
cates that having a child interact with a robot during assessment
may facilitate the production of a wider range of behaviours. �is
facilitation could, in turn, provide richer data for the purposes of
diagnostic analysis [14].

On-line behaviour adaptation is important for autonomous
robots in ASD interventions due to the high variability seen be-
tween children with ASD [3]. �is process requires the system
to track and classify the child’s behaviour before appropriate re-
sponses can be selected. However, many systems which are used to
classify behaviours in therapeutic se�ings are limited to simple, eas-
ily distinguished classes; they do not identify intermediate classes
[12]. Wall and colleagues [12] used a subset (8 out of 29) of be-
haviours coded from ADOS to design a diagnostic algorithm which
could di�erentiate between children with and without ASD. Whilst
the algorithm could classify cases correctly, Wall and colleagues
simpli�ed the problem by removing the middle diagnostic classes,
leaving only ASD and non-ASD. As a result, individuals who fall
in the middle of the ASD spectrum were identi�ed as non-ASD.
Furthermore, an a�empt to replicate these �ndings found that the
algorithm was not robust enough to deal with a di�erent dataset
and a larger group of coded behaviours was required to identify
individuals diagnosed as being in a mid-spectrum ASD class [7].

�e spectrum nature of ASD means that to avoid under-
identi�cation and to allow the system to provide useful infor-
mation for decisions about therapeutic approaches, classes of be-
haviour which do not fall at the extremes of the spectrum, e.g.
High-Functioning Autism, should be identi�able. Contemporary
approaches to non-binary classi�cation are rare. Bone and col-
leagues [7] used a similar machine learning method to that of [12],
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but incorporated all the behaviour codes from ADOS which made
the classi�cation system more robust and more accurate. Including
the middle diagnostic classes did decrease the accuracy but it still
remained high (i.e. 96% dropped to 82%). However, this approach is
still labor intensive and time-consuming, and is designed to be run
o�-line using data collected by the clinician.

3 CLASSIFYING CONTINUOUS BEHAVIOURS
USING CONCEPTORS

For a classi�cation system to accurately identify the intermediate
classes of ASD, it must be able to classify behavioural pa�erns rang-
ing from “typical of the general population” to “severely atypical”.
�is can be achieved using purely machine learning methods. How-
ever, this requires a large, representative data-set which is o�en
di�cult and time-consuming to obtain due to the need to annotate
the training data-sets. We therefore require a methodology that can
deal with the spectrum nature of ASD by representing behaviours
over continuous dimensions, and which requires less data for learn-
ing than traditional machine learning methods. One approach is to
use conceptors [9]; neuro-computational mechanisms that can be
used for learning a large number of dynamical pa�erns. Conceptors
can also be combined and morphed to generate new pa�erns based
on learned prototypical extremes along a behavioural continuum,
e.g. a system given the prototypes for “walking” and “running” can
generate pa�erns for “jogging” [9]. �is approach assumes that
there is a continuum underlying the behaviour, which is well suited
to the symptomology of ASD [1], as demonstrated by ADOS [5]
which scores behaviours such as speech abnormalities on a scale of
0 (“no evidence of abnormality”) to 3 (“markedly abnormal”).

To represent the spectrum nature of ASD using conceptors, a
recurrent neural network can be provided, for example, with the
prototype pa�erns for typical and markedly abnormal speech be-
haviour. Relevant information from these input pa�erns are then
represented as the internal state of the system. �ese internal states
are then used for classi�cation, rather than the inputs themselves.
Conceptors can be computed to represent the state of each dimen-
sion of speech (volume, intonation, stress, etc.) within each pa�ern,
and clustered to form groups. �ese groups represent the key com-
ponents of the behavioural continuum which are described by the
prototype pa�erns provided. Morphing of these pa�erns using
linear mixes of the prototype conceptors allows the system to inter-
polate less extreme pa�erns into the representational continuum
for the behaviour. When provided with inputs of behaviours which
fall in the middle of this continuum, the system already has a rep-
resentation of the internal state this input would provoke, and can
classify that input according to the continuum, rather than into a
discrete class.

4 DISCUSSION AND CONCLUSIONS
In this paper we have brie�y discussed how conceptors could pro-
vide an alternative to machine learning methods of automated
behaviour classi�cation for ASD diagnosis. By representing be-
haviours as continuous, the proposed approach has the potential
to identify a more complete spectrum of ASD behaviours, rather
than just extreme behaviours. Implementing such a system within a

socially interactive robot would also leverage those bene�ts, provid-
ing a control system able to more accurately assess child behaviour
to inform response selection, as the robot would be able to appro-
priately select and perform social prompts to elicit behaviours from
the child in a standardised and repeatable manner. �is application
accommodates the goals of diagnostic models, e.g. ADOS [5]. Our
next steps are to develop such a system, based on data from the
DREAM project 1 [13], to train the system and test its performance.
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