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Abstract. Representation Learning in dynamic networks has gained
increasingly more attention due to its promising applicability. In
the literature, we can find two popular approaches that have been
adapted to dynamic networks: random-walk based techniques and graph-
autoencoders. Despite the popularity, no work has compared them in
well-know datasets. We fill this gap by using two link prediction settings
that evaluate the techniques. We find standard node2vec, a random-walk
method, outperforms the graph-autoencoders.
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1 Introduction

Network analysis has increasingly gained attention both in academia and indus-
try because it offers a framework that analyzes interrelationships within natu-
ral structures: we find applications in churn prediction [7,20], crime detection
[26,27], recommendation systems [14]. However, network analysis traditionally
requires extensive preprocessing: data analysts have relied on handmade feature
engineering based on expert knowledge or summary statistics (e.g. clustering
coefficients) [17]. Despite the popularity of ad-hoc feature engineering, it lacks
flexibility and requires extensive domain knowledge [12,14,20].

One response to traditional feature engineering is representation learning
(RL); it is sometimes referred as feature learning. RL aims at finding a low-
dimensional representation or embedding of the data so further downstream
tasks become more automatic [3]. However, most early techniques in RL can only
handle static networks [12,16,22,28]. In contrast, a real-world network displays
dynamic processes that changes its topological structure [25]. Recent techniques
for RL in dynamic graphs have relied on random walks [8,21,24], autoencoder
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[10,11], or matrix factorization in a lesser extent [18]. However, to the best
of our knowledge, no work has compared graph autoencoder and random-walk
techniques. Furthermore, no work has compared RL techniques for link predic-
tion both interpolation (i.e. finding missing links) and extrapolation (i.e. predict
future networks) settings.

Our contribution is twofold for RL in dynamic networks. First, we propose an
experimental setup that evaluates RL techniques in how effective they recover
missing links (i.e. interpolation setting) and predict future version of graphs
(i.e. extrapolation setting). Second, we use a bayesian approach of word2vec
[1] for representation learning in graphs. A bayesian approach to RL provides
insights due to its probabilistic nature [2]. We evaluated the RL techniques in
two well-known datasets in the literature of dynamic networks: Facebook forum
and Enron.

2 Related Work

The literature on RL for graphs have diversified into several lines of research
[6,29]: for network transductive tasks, dynamic RL exploits the topological evo-
lution [10,20,24] while inductive RL leverages extra information for unseen nodes
[13,27]. We can categorize RL techniques in dynamic networks regarding time
granularity [9]: some methods handle discrete time and others, with continuous
time evolution [21]. We focus on the former as more works have been developed
in that line of research.

We consider two main types of RL techniques in dynamic networks that are
relevant for this study: random walk and graph-autoencoder approaches. On the
one hand, the random walk techniques, related to shallow embedding methods
[13], learn the network embedding based on the nodes that co-occur on random
walks. One strong merit of random-walk techniques is the use of a stochastic
similarity measure (e.g. co-occurrence in random walks) which leads to lower
complexity compared to deep learning approaches. However, these techniques
require fine-tuning of the random walks. On the other hand, graph-autoencoder
techniques leverage the adjacency matrix that captures non-linear relationship in
the node neighbourhood [28]: similar neighbourhood leads to similar embedding.
Compared to the random-walk approach, graph-autoencoders can reconstruct
the whole graph since they learn from its adjacency representation; dependence
on the adjacency matrix also constrains its applicability in large real-world net-
works [20].

Both approaches originally handle static networks [12,28] so recent works
developed extensions for dynamic networks. Most of the techniques depends
either on reusing parameters in each time-step [10,11,19] or aligning the static
embeddings [8,24]: However, these efforts lack theoretical foundation. The
Bayesian framework considers a prior probability distribution that can allow
a smoother drift of the network embedding across time. Bayesian word embed-
dings have been explored in NLP [1,2,5]: Bayesian word embeddings offer noise
robustness by time slices and uncertainty measurement via density. Despite its
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theoretical benefits, no work in RL for networks has explored this direction. We
implement the approach taken in [1] as a first step towards filling the gap for
Bayesian RL techniques in dynamic networks.

3 Methodology and Experimental Setup

Current literature considers both interpolation and extrapolation settings,
although not at the same extent. Most of the literature focuses on the interpola-
tion setting, also known as the completion problem [9]. The completion problem
for the missing links in a graph is posed as: given G = {G1, .., GT }, we want to
predict links among the graphs. The RL techniques for static graphs mostly rely
on the single time-step of the interpolation setup [12]; however, it is also possible
to use interpolation for dynamic graphs [8]. In contrast, extrapolation requires
predicting links from further time-steps beyond GT ; prediction of a graph as a
set of links can be considered as extrapolation setting. Few works address the
extrapolation setup [10,11,30] since it can be more challenging. For this work,
we consider both interpolation and extrapolation setting.

The literature lacks of comparison of RL techniques in dynamic networks
that are based on orthogonally different approaches. For this study, we compare
two approaches for RL techniques: random-walk and graph-autoencoder. We use
the standard node2vec [12], and a network adaptation of the dynamic Bayesian
word embeddings [1]. From the graph-autoencoder techniques, we consider Dyn-
GEM [11] and dyngraph2vecAE (dynae) [10]. Both techniques generate embed-
dings from the bottleneck layer in the autoencoder. The techniques optimize
the embedding in order to preserve the local and global structure: the relevant
hyperparameters that represent the trade-off between preserving local and global
structure are α and β. The key difference between these graph-autoencoder is
that DynGEM exploits the adjacency matrix from a previous time-step while
dynae can leverage more previous time-steps.

Our adaptation for Bayesian embeddings (dynbae) requires random walks,
instead of text, as input so we must sample the network as in node2vec: thus,
the same sampling parameters are present (e.g. return parameter p and in-out
parameter q). This dynamic approach is based on the previous Bayesian Skip-
gram model [2], but a Kalman Filter [15] is added to allow dynamic processes.
The Bayesian skip-gram model uses a Gaussian prior to formulate the posterior
probability of the embedding. The posterior is computed through Variational
Bayes [4] which differs from the standard Skip-gram optimization. The result
is that the technique can map nodes into probability densities instead of point
estimates.

Two network datasets are used for the experimental setup; all of them
are available on Network Repository (http://networkrepository.com) [23] where
open access is given to different dynamic networks. Table 1 describes some
descriptive statistics for each of the datasets. The Facebook Forum dataset dis-
play high density, considered as a dense network, which can be reflected in the
high average degree of 15.68. The other datasets can be considered as sparse
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Table 1. Descriptive statistics

Facebook forum Enron

Number of nodes 899 135

Number of edges 7046 135

Average degree 15.68 10.96

Average clustering coef. 0.0637 0.4889

Number of connected components 1 3

Degree assortativity coef. −0.1083 −0.1490

Density 0.01746 0.0818

Number of snapshots 6 8

Size interval of snapshots Month 2 Months

networks given their low density. The Enron dataset is also a dense network
but it contains substantially less nodes and edges. However, the dataset shows
a higher average clustering coefficient.

First, we need to split the datasets into different snapshots. The choice of the
time frame size follows as in [8]. For each snapshot, we have an edge list that
represents a network. The test snapshot in both interpolation and extrapolation
settings derive from the last time-step GT . For the interpolation approach, we
randomly divide into two sets for the subsequent downstream task: 70% of the
edges are used for training and 30%, for test. For the extrapolation approach,
we use the whole GT for evaluation. Additionally, we sample non-edges as many
as the edges so the datasets are balanced in all snapshots. We only use previ-
ously seen training nodes so we extract a subgraph from GT that complies with
this requirement. All training snapshots share information of the training nodes
even if they are not active in a particular snapshot (i.e. a node without any
link to others). We follow the approach in [12] to get the edge features from
the node embeddings: the Hadamard operator is used to combine a couple of
node embeddings into one vector for representing edges. At the end, we obtain a
matrix of edge features: for the extrapolation setting, embeddings for each snap-
shot are stacked vertically while for the interpolation setting, embeddings are
stacked horizontally. Subsequently, a classifier can learn from the edge features
for predicting in the corresponding test set if the two nodes hold an edge. Three
well-known classifiers in link prediction are used: Logistic Regression, Random
Forest, and Gradient Boosting.

We perform a hyperparameter tuning on the training snapshots for the
RL techniques based on the link prediction performance. For the random-
walk techniques, the grid search is as follows: p ∈ {0.25, 0.5, 0.75, 1}, q ∈
{0.1, 0.5, 1, 2, 5, 10, 100}. For the graph-autoencoder, the grid search is as fol-
lows: α ∈ {10−6, 10−5}, and β ∈ {2, 5}. All experiments, including the data, can
be found in https://github.com/CarlosOrtegaV/dyn-bae.
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4 Results

Table 2 and 3 contain, for each classifier and RL technique, the highest Area
Under the Receiver Operating Curve (AUC) scores across hyperparameter com-
binations with its corresponding Average Precision (AP). We can observe that
the extrapolation setting poses a more challenging task since RL techniques have
a lower AUC score than in the interpolation setting; Facebook forum dataset
also obtained lower AUC scores because of the higher number of nodes and
edges. Node2vec consistently outperforms all other RL techniques in both inter-
polation and extrapolation setting. Despite its simpler structure compared to
dyngraph2vecAE (dynae), dynGEM reaches the second place among the RL
techniques. The dynamic Bayesian node2vec (dynbae) scores low compared to
the standard node2vec. Figure 1 and 2 display the variability of the AUC scores
across hyperparameters for two classifiers in the Facebook forum dataset. Inter-
estingly, the graph-autoencoder techniques have higher variability in the extrap-
olation setting compared to the interpolation counterpart.

Table 2. The AUC score & average precision in interpolation setting

Dataset Classifier node2vec DynGEM dynae dynbae

AUC AP AUC AP AUC AP AUC AP

Facebook forum Logistic Reg. 0.851 0.865 0.754 0.728 0.585 0.580 0.672 0.672

Random Forest 0.883 0.891 0.746 0.761 0.604 0.582 0.713 0.667

Gradient Boosting 0.832 0.844 0.724 0.749 0.591 0.612 0.714 0.701

Enron employees Logistic Reg. 0.880 0.890 0.870 0.850 0.615 0.599 0.653 0.662

Random Forest 0.866 0.841 0.823 0.767 0.649 0.602 0.620 0.582

Gradient Boosting 0.867 0.850 0.818 0.770 0.655 0.607 0.641 0.630

Table 3. The AUC score & AP in extrapolation setting

Dataset Classifier node2vec DynGEM dynae dynbae

AUC AP AUC AP AUC AP AUC AP

Facebook forum Logistic Reg. 0.750 0.804 0.701 0.725 0.618 0.585 0.564 0.545

Random Forest 0.748 0.800 0.500 0.502 0.555 0.540 0.585 0.563

Gradient Boosting 0.746 0.792 0.519 0.534 0.530 0.512 0.566 0.560

Enron employees Logistic Reg. 0.846 0.860 0.810 0.820 0.582 0.599 0.601 0.593

Random Forest 0.864 0.872 0.657 0.668 0.531 0.543 0.585 0.605

Gradient Boosting 0.856 0.862 0.630 0.621 0.537 0.548 0.585 0.595
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Fig. 1. Extrapolation using Logistic
Regression

Fig. 2. Interpolation using Random
Forest

5 Conclusions

This work compares orthogonally different techniques for RL in dynamic graphs
regarding link prediction. The comparison consists in two settings that are not
often presented together in the literature. We find that the random-walk tech-
niques, particularly the standard node2vec, outperform the graph-autoencoder
techniques. Furthermore, the Bayesian adaptation of node2vec performs poorly
even though it uses the same similarity measure.

References

1. Bamler, R., Mandt, S.: Dynamic word embeddings. In: Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, pp. 380–389. PMLR
(2017)

2. Barkan, O.: Bayesian neural word embedding. In: Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 3135–3143. AAAI
Press (2017)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)
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