
Estimation of safety performance functions for urban intersections using 

various functional forms of the negative binomial regression model and a 

generalized Poisson regression model 

 

Muhammad Wisal Khattak* 

UGent, Department of Civil Engineering 

Technologiepark 60, 9052 Zwijnaarde, Belgium 

Tel(Admin): +32 (0) 92 64 54 89 Fax: +32 (0) 92 64 58 37 

Email: Muhammad.Khattak@UGent.be 

& 

UHasselt, Transportation Research Institute (IMOB), 

Agoralaan, 3590 Diepenbeek, Belgium 

Tel (Admin): +32 (0) 11 26 91 11 Fax: +32 (0) 11 26 91 99 

Email: muhammadwisal.khattak@uhasselt.be 

  

Ali Pirdavani 

UHasselt, Faculty of Engineering Technology 

Agoralaan, 3590 Diepenbeek, Belgium 

& 

UHasselt, Transportation Research Institute (IMOB) 

Agoralaan, 3590 Diepenbeek, Belgium 

Tel: +32 (0) 11 29 21 83 Fax: +32 (0) 11 26 91 99  

Email: ali.pirdavani@uhasselt.be 

 

Pieter De Winne 

UGent, Department of Civil Engineering 

Technologiepark 60, 9052 Zwijnaarde, Belgium 

Tel: +32 (0) 92 64 54 89  Fax: +32 (0) 92 64 58 37  

Email: P.DeWinne@UGent.be 

 

Tom Brijs 

UHasselt, Transportation Research Institute (IMOB) 

Agoralaan, 3590 Diepenbeek, Belgium 

Tel: +32 (0) 11 26 91 55 Fax: +32 (0) 11 26 91 99  

Email: tom.brijs@uhasselt.be 

 

Hans De Backer 

UGent, Department of Civil Engineering 

Technologiepark 60, 9052 Zwijnaarde, Belgium 

Tel: +32 (0) 92 64 54 34 Fax: +32 (0) 92 64 58 37  

Email: Hans.DeBacker@UGent.be 

 

 

 

 

 

 

 

 

 

*Corresponding author  

mailto:Muhammad.Khattak@UGent.be
mailto:muhammadwisal.khattak@uhasselt.be
mailto:ali.pirdavani@uhasselt.be
mailto:P.DeWinne@UGent.be
mailto:tom.brijs@uhasselt.be
mailto:Hans.DeBacker@UGent.be


Highlights 

 Multiple safety performance functions (SPFs) by crash severity are developed for urban 

intersections 

 Various functional forms of the negative binomial (NB) regression and a generalized Poisson 

(GP) regression model are applied to develop the SPFs  

 All the NB models and a GP model show promising results when estimating the SPFs 

 On the basis of goodness of fit and predictive performance measures, the developed models are 

compared to choose a better model 

 The performance of the NB-P model is better than the competing models for signalized 

intersections while the GP model outperforms other models for unsignalized intersections 

 

  



Estimation of safety performance functions for urban intersections using 

various functional forms of the negative binomial regression model and a 

generalized Poisson regression model 

ABSTRACT 

Intersections are established dangerous entities of a highway system due to the challenging and unsafe 

roadway environment they are characterized with for drivers and other road users. In efforts to improve 

safety, an enormous interest has been shown in developing statistical models for intersection crash 

prediction and explanation. The advantage of statistical models is that they unveil important 

relationships between the intersection characteristics and intersection related crashes. Accurate 

estimates of crash frequency and identification of crash contributing factors guide safe design and help 

us implement policy interventions aiming for safety improvement. In this regard, the selection of the 

most adequate form of crash prediction model is of great importance for the accurate estimation of crash 

frequency and the correct identification of contributing factors. Using a six-year crash data, road 

infrastructure and geometric design data, and traffic flow data of urban intersections, we applied three 

different functional forms of negative binomial models (NB-1, NB-2, NB-P) and a generalized Poisson 

(GP) model to develop safety performance functions by crash severity for signalized and unsignalized 

intersections. This paper presents the relationships found between the explanatory variables and the 

expected crash frequency and reports the comparison of different models for total, injury & fatal, and 

property damage only crashes to obtain those with the maximum estimation accuracy for each severity 

level. The comparison of models was based on both the goodness of fit and the prediction performance 

measures.  

The fitted models showed that the traffic flow and several variables related to road infrastructure and 

geometric design have a significant influence on the intersection crash frequency. Further, the goodness 

of fit and the prediction performance measures revealed that the NB-P model outperformed other 

models for most of the crash severity levels in the case of signalized intersections. For the unsignalized 

intersections, the GP model was the best performing model. Our findings suggest a potential significant 

improvement in the estimation accuracy of crashes on urban intersections by applying the NB-P and 

GP models. Improved estimation accuracy lead to a better understanding of crash occurrence which 

facilitate informed decisions, effective selection and design of the countermeasures, and improve safety. 

Keywords:  

Urban intersections, Crash frequency, Crash severity, Negative binomial models, Safety performance 

functions, Geometric design 

 

 

 

 

 

 

 

 



1. Introduction 1 

Drivers encounter multiple interactions with turning and crossing vehicles, pedestrians, and 2 

cyclists at intersections. A plethora of information (e.g. the presence of road signs, street signs and name 3 

tags, traffic lights, channelization and road markings, conflicting, crossing and adjacent traffic 4 

movements, dedicated lanes for left and right turning vehicles, billboards and advert screens, etc.) at 5 

intersections produce an unsafe environment, which poses an enormous challenge for drivers to operate 6 

safely. The demand for instant decision making, complex urban design, dense and rigorous land use, 7 

congestion, heavy traffic, vulnerable road users, and many on-and-off-vehicle distractions overload the 8 

attentional resources of the driver. This in turn leads to poor judgment of the traffic situation, confusion, 9 

inadequate decision, and ultimately a crash. Hence, it is not surprising to note that intersections 10 

constitute the highest proportion of total crashes on the roads. Tay (2015) has provided some statistics 11 

from around the world to highlight this safety concern. In the past, the operational aspects of urban 12 

intersections, such as optimization of the traffic signals and/or reduction of vehicular and pedestrian 13 

traffic delays, travel time and congestion have received significant coverage in the literature (Dong et 14 

al., 2014; Roshandeh et al., 2014; Nesheli et al., 2009). However, these operational improvements do 15 

not account for the overall performance-based benefits (Roshandeh et al., 2016). The overall 16 

performance of the roadway network requires consideration of additional aspects like safety, comfort, 17 

cost, availability, accessibility, etc. In this paper, we have focused on the safety of intersections in urban 18 

areas.  19 

The safety of intersections can be improved by understanding the factors that contribute to the 20 

occurrence of crashes and thereby, proposing appropriate countermeasures. Concerning this, an 21 

intersection safety analysis is typically suggested. One of the tools to measure the safety performance 22 

of intersections is by developing crash prediction models (CPMs). The CPMs are mathematical 23 

equations obtained through the statistical modeling of crash data and a series of explanatory variables, 24 

and are used to estimate the expected average crash frequency of roadway facilities over a specified 25 

period. They are also known as safety performance functions (SPFs) or collision prediction models 26 

(CPMs). The SPFs are applied to evaluate the safety of intersections and road segments, identify 27 



hazardous locations, assess the safety of applied solutions, and compare and prioritize the best 28 

alternative designs (AASHTO, 2010). To address safety issues, the SPFs  have been developed for many 29 

years now across the globe for numerous highway facilities (Elvik et al., 2019; Abdel-Aty et al., 2016; 30 

Janstrup, 2016; Cafiso et al., 2012; Persaud et al., 2012; Vieira Gomes et al., 2012; Srinivasan and 31 

Carter, 2011; Wong et al., 2007; Greibe, 2003). Leaving aside the applicability of those models, the 32 

development of the SPFs is a critical process in which a modeler makes crucial decisions. To emphasize, 33 

Hauer and Bamfo (1997) argued, “In the course of modeling, the modeler will make two major 34 

decisions: (a) What explanatory variables to include in the model equation; and, (b) What should be its 35 

functional form”. Factors, such as the purpose of the SPF, the availability, quality, and quantity of the 36 

data, required expertise, etc. affect those decisions.  37 

 American Association of State Highways and Transportation Officials (AASHTO) published 38 

the Highway Safety Manual (HSM), first in 2010 (AASHTO, 2010), and then in 2014 with a few 39 

supplements (AASHTO, 2014). The HSM offers the SPFs for prediction of intersection and road 40 

segment crashes on several highway facility types, e.g., rural two-lane and multilane highways, urban 41 

and suburban arterial and freeway ramp terminals (AASHTO, 2014; AASHTO, 2010). The predictive 42 

models in the HSM were developed using data from a small number of States. Because of the possible 43 

differences in the travel behavior, traffic conditions and road characteristics across different 44 

geographical regions, it has been highlighted that the crash relationships in these states may not be 45 

necessarily representative of those in the other states. Regarding this, the HSM guidelines recommend 46 

(i) the calibration of the HSM base models for applications in other jurisdictions or (ii) the estimation 47 

of new SPFs for the regions where a sufficient good quality local data is available. Several states in the 48 

US and other countries have thus developed their own SPFs. The SPFs given in the HSM for 49 

intersections estimate only total crashes that might not be an ideal approach since crashes vary by type 50 

and severity across intersections (Wang et al., 2019; Zhao et al., 2018; Wang et al., 2017). Some 51 

intersection might be crowded by fatal crashes only and others might experience injury or property 52 

damage only (PDO) crashes. Similarly, some intersections could have a higher proportion of a different 53 

particular type of crash compared with other intersections. Differences in the distribution of crash 54 



severity and/or crash type could be attributed to the variation in the geometric design and traffic 55 

characteristics between intersections. In order to consider those variations, studies estimate predictive 56 

models for intersections by crash type (Wang et al., 2019; Gates et al., 2018; Liu and Sharma, 2018; 57 

Wu et al., 2018; Dixon et al., 2015; Geedipally and Lord, 2010), and/or by severity level (Liu and 58 

Sharma, 2018; Wang et al., 2017; Wu et al., 2013; Oh et al., 2010). 59 

Regarding the statistical methodologies, the crash prediction modeling has come a long way. In 60 

the beginning, researchers used linear regression models for the estimation of crashes and determining 61 

the relationships between crash frequency and explanatory variables (Joshua and Garber, 1990; 62 

Okamoto and Koshi, 1989). However, with new research, it was soon realized that linear regression 63 

models have certain limitations in treating the non-negative and discrete nature crash data (Lord and 64 

Mannering, 2010; Miaou and Lum, 1993). This led to the adoption of count data models in crash 65 

prediction. Naturally, the first choice of researchers was the Poisson regression model which assumes 66 

that the variance of the data is equal to the mean of the data. On the other hand, the crash data is 67 

frequently characterized by over-dispersion, that is, the variance of the crash data is greater than its 68 

mean. To overcome the over-dispersion issue, the negative binomial (NB) regression models were used 69 

(Abdel-Aty & Radwan, 2000; Miaou, 1994). With the progress in statistical methods and improved 70 

computing power, more advanced techniques have been applied recently to model the crash data. Lord 71 

and Mannering (2010), and Mannering and Bhat (2014) have provided detailed accounts of the existing 72 

trends in the crash prediction and future directions. Despite all the intricacy, the traditional NB models 73 

still enjoy great popularity due to their inherent simplicity of estimation and a relatively better 74 

performance. 75 

Several parameterizations of the NB models are available in the literature. Nonetheless, the NB-76 

1 and NB-2 (Cameron and Trivedi, 1986) have been commonly used to model the count data (Wang et 77 

al., 2019; Giuffrè et al., 2014; Ismail and Zamani, 2013; Hilbe, 2011; Winkelmann, 2008; Chang and 78 

Xiang, 2003; Miaou and Lord, 2003). The two models necessarily differentiate on the basis of the 79 

relationship between the variance of the data and the mean of the data. The NB-1 assumes a linear 80 

relationship between the variance and the mean, while the NB-2 assumes a quadratic relationship. 81 



Detailed estimation procedures of the two alternative forms are given in Hardin (2018), Lord and Park 82 

(2015), and Hilbe (2011). In traffic safety, the NB-2  has been frequently used to estimate the SPFs 83 

while the NB-1 has also found a few applications. For instance, Chang and Xiang (2003) created SPFs 84 

using both the NB-1 and NB-2 models to study the relationship between crashes and congestion levels 85 

on freeways. The authors found that both models showed consistent results for the relationship between 86 

crashes and traffic volume, the number of through lanes, and median. Giuffrè et al. (2014) applied the 87 

NB-1 and NB-2 models to develop the SPFs for urban unsignalized intersections. They found that the 88 

NB-1 fits the data better than the NB-2. Wang et al. (2019) also used the NB-1 and NB-2 along with 89 

standard Poisson regression and an NB-P model for estimation of the SPFs for rural two-lane 90 

intersections.  91 

The applications of the NB-1 and NB-2 models, however, come with a few compromises. For 92 

instance, the NB-1 and NB-2 models both restrict the variance structure in the estimation of the SPFs 93 

(Park, 2010), that is, the mean-variance relationship of the crash data is constrained to either a linear or 94 

quadratic for the NB-1 and NB-2 models, respectively. The restricted variance structure may result in 95 

the biased estimates of model parameters and ultimately the incorrect crash forecasts (Wang et al., 96 

2019). Furthermore, both the NB-1 and NB-2 are non-nested models and an appropriate statistical test 97 

to determine a better model of the two cannot be carried out directly (Wang et al., 2019; Greene, 2008). 98 

To account for that, Greene (2008) introduced a new functional form of the NB regression called an 99 

NB-P that nests both the NB-1 and NB-2 models. The NB-P is essentially the extension of the traditional 100 

NB models to address the restricted variance structure problem. The NB-P reduces to NB-1 when P=1 101 

and to NB-2 when P=2. Since the NB-P model parametrically nests both the NB-1 and NB-2 models, 102 

it allows analysts to test the two NB functional forms (NB-1, NB-2) against a more general alternative 103 

(NB-P) for a better model (Greene, 2008; Ismail and Zamani, 2013; Hilbe, 2011). The NB-P model has 104 

been used in a few studies dealing with count data. For example, Greene (2008) applied the NB-P along 105 

with the NB-1 and NB-2 models to the German health care data. It was found that the NB-P 106 

outperformed the other two models based on the goodness of fit measures. Ismail and Zamani (2013) 107 

used the NB-1, NB-2, and NB-P models to study the Malaysian private car own damage claim counts. 108 



They also reported that the NB-P model was the best performing model. In traffic safety, Wang (2019) 109 

used the NB-P along with Poisson, NB-1, and NB-2 models to study the safety performance of rural 110 

two-lane intersections by crash type and intersection type. They developed traffic only models. Their 111 

findings revealed that the NB-P model performed better than the Poisson model, NB-1, and NB-2 112 

models for most crash types and intersection types. The authors concluded that the flexible variance 113 

structure of the NB-P model significantly improves the estimation accuracy. 114 

The literature review shows that the applications of the NB-P model, despite the obvious 115 

improvement compared to the traditional NB models, are still not common in traffic safety and crash 116 

prediction. To the authors' knowledge, no study has used the NB-P model to estimate SPFs for urban 117 

roads. Moreover, there has been no evidence that the NB-P model is used in the estimation of fully 118 

specified SPFs. Given that the applications of the NB-P model in road safety are rare, its potential to 119 

improve the estimation accuracy by offering a flexible variance structure, and the fact that it allows to 120 

statistically test the NB-1 and NB-2 against a general alternative, are motivations behind this work. 121 

Besides, the HSM recommendation of developing local SPFs for locations with enough data was 122 

another driving force. In this paper, we applied different functional forms of the NB regression model 123 

(NB-1, NB-2 and NB-P) and compare the results with the Generalized Poisson (GP) regression model, 124 

also a popular count data modeling technique, in the pursuit of obtaining the best model for the 125 

estimation of intersection SPFs in the urban areas. The GP model, discussed in section 2.4 in details, is 126 

an extension of the Generalized NB models (Ismail and Zamani, 2013). In the past, the GP models have 127 

been applied to study road crashes (Famoye et al., 2004), shipping damage incidents (Ismail and Jemain, 128 

2007), vehicle insurance claims (Ismail and Zamani, 2013), etc. The rationale for choosing the GP 129 

model for comparison with the NB models was that it can also accommodate the over-dispersed data 130 

equally well, has relatively less applications in the SPF estimation and the fact that it is sometimes 131 

regarded as a potential competitor to the NB models for treatment of over-dispersed count data 132 

(Melliana et al., 2013). The contribution of the current study to traffic safety literature is that it applies 133 

the functional form NB-P of the NB regression, along with the NB-1, NB-2 and a GP model for the 134 

estimation of intersection SPFs in the urban areas. A unique combination of the new approach for the 135 



SPFs estimation and the use of not only the traffic flow but also other explanatory variables adds to the 136 

novelty of this work. To the best of our knowledge, no micro-level SPFs have been developed for the 137 

urban intersections in Belgium, results of this study could potentially serve the local research 138 

community involved in traffic safety as well as the industry in planning level safety assessment of new 139 

road infrastructure projects. 140 

2. Methodology 141 

The count data models have been widely applied to estimate crashes at the road segments and 142 

intersections in a non-negative, discrete, and random fashion (Washington et al., 2010). Since the 143 

Poisson regression models are usually not fit for modeling the crash data due to their inability to 144 

accommodate overdispersion, three different functional form of the NB model and a GP model were 145 

applied to estimate the SPFs for urban intersections in this study. 146 

2.1 Negative binomial model-type 2 (NB-2) 147 

The negative binomial regression is the derivative of the standard Poisson regression. It 148 

redefines the conditional mean of the standard Poisson model (equi-dispersion; variance of the data 149 

equals its mean) and incorporates a latent heterogeneity term to account for over-dispersion in data. The 150 

expected crash frequency "μi" at the intersection “i” obtained by applying the NB model as in 151 

Washington et al. (2010) is given by: 152 

 𝜇𝑖 = 𝑒𝑥𝑝(𝛽𝑋𝑖+𝜀𝑖) (1) 

where "𝑋𝑖" is the vector of explanatory variables, "𝛽" is the vector of estimable coefficients and 153 

"exp (𝜀𝑖)" is the latent heterogeneity term, also known as an error term. When the "exp (𝜀𝑖)" follows 154 

gamma distribution with mean 1 and variance 1/σ = k where "k" represents an over-dispersion 155 

parameter, a traditional NB model, called the NB-2 model, is derived.  156 

For the interest of readers, an equation 1 according to the standard Poisson regression model 157 

would have been: 158 

 𝜇𝑖 = 𝑒𝑥𝑝(𝛽𝑋𝑖) (2) 

Clearly, this lacks the term "exp (𝜀𝑖)" to account for over-dispersion.  159 



The probability density function of the NB-2 model for estimation of the SPFs as in Washington 160 

et al. (2010): 161 

 𝑃𝑟𝑜𝑏[𝑦𝑖|𝜇𝑖] =
Γ[(𝜎) + 𝑦𝑖]

Γ(𝜎)𝑦𝑖!
[

𝜎

(𝜎) + 𝜇𝑖

]
𝜎

[
𝜇𝑖

(𝜎) + 𝜇𝑖

]
𝑦𝑖

 (3) 

where Γ is a gamma function. The mean and the variance of the NB-2 regression model are 162 

equal to 𝐸(𝑦𝑖) = 𝜇𝑖, and 𝑉𝑎𝑟(𝑦𝑖) =  𝜇𝑖 + 𝑘𝜇𝑖
2= 𝜇𝑖(1 + 𝑘𝜇𝑖), respectively. When 1/σ = k, the marginal 163 

distribution function of the NB-2 model can be reproduced: 164 

 𝑃𝑟𝑜𝑏[𝑦𝑖|𝜇𝑖] =
Γ [(

1
𝑘

) + 𝑦𝑖]

Γ (
1
𝑘

) 𝑦𝑖!
[

1
𝑘

(
1
𝑘

) + 𝜇𝑖

]

1
𝑘

[
𝜇𝑖

(
1
𝑘

) + 𝜇𝑖

]

𝑦𝑖

 (4) 

2.2 Negative binomial model-type 1 (NB-1) 165 

A re-parameterization of the variance structure of the NB model by replacing 
1

𝑘
 in the NB-2 166 

(equation 4) with 
1

𝑘
𝜇𝑖 allows for another functional form, called the NB-1 (Wang et al., 2019; Hilbe, 167 

2011; Greene, 2008; Cameron & Trivedi, 1986). The marginal distribution function of the NB-1 is given 168 

by:   169 

 𝑃𝑟𝑜𝑏[𝑦𝑖|𝜇𝑖] =
Γ [(

1
𝑘

𝜇𝑖) + 𝑦𝑖]

Γ (
1
𝑘

𝜇𝑖) 𝑦𝑖!
[

1
𝑘

𝜇𝑖

(
1
𝑘

𝜇𝑖) + 𝜇𝑖

]

1
𝑘

𝜇𝑖

[
𝜇𝑖

(
1
𝑘

𝜇𝑖) + 𝜇𝑖

]

𝑦𝑖

 (5) 

The mean of the NB-1 is 𝐸(𝑦𝑖) = 𝜇𝑖  and the variance of the NB-1 is 𝑉𝑎𝑟(𝑦𝑖) =  𝜇𝑖 + 𝑘𝜇𝑖. 170 

2.3 Negative binomial model-type P (NB-P) 171 

Greene (2008) proposed a new form of the NB regression that uses the parameter “P” to 172 

represent the mean-variance relationship. It is known as the NB-P model. The NB-P model is obtained 173 

by replacing  
1

𝑘
 in the NB-2 model (equation 4) with  

1

𝑘
𝜇𝑖

2−𝑃
. The marginal distribution function of the 174 

NB-P model is given by: 175 

 𝑃𝑟𝑜𝑏[𝑦𝑖|𝜇𝑖] =
Γ [(

1
𝑘

𝜇𝑖

2−𝑃

) + 𝑦𝑖]

Γ (
1
𝑘

𝜇𝑖

2−𝑃

) 𝑦𝑖!

[

1
𝑘

𝜇𝑖

2−𝑃
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𝑘

𝜇𝑖
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]

1
𝑘

𝜇𝑖

2−𝑃

[
𝜇𝑖

(
1
𝑘

𝜇𝑖

2−𝑃

) + 𝜇𝑖

]

𝑦𝑖

 (6) 



where mean and variance of the NB-P are 𝐸(𝑦𝑖) = 𝜇𝑖 and 𝑉𝑎𝑟(𝑦𝑖) =  𝜇𝑖 + 𝑘𝜇𝑖
𝑃, respectively. 176 

“P” represents the functional parameter of the NB-P model. 177 

All the NB models used maximum likelihood estimation (MLE) approach to estimate the 178 

parameter coefficients. 179 

2.4 Generalized Poisson model (GP) 180 

The generalized Poisson (GP) regression is another popular approach to model count data. As 181 

an alternative to the NB regression, the GP models have the advantage of modeling both over-dispersed 182 

and under-dispersed data. Like the NB regression, the GP model has an extra parameter, called a scale 183 

or dispersion parameter. A distinctive feature of the GP dispersion parameter is that it can take both 184 

positive and negative values for over-dispersed and under-dispersed data, respectively. The probability 185 

mass function (p.m.f.) of the GP distribution given as in Yang et al. (2009): 186 

 𝑃𝑟𝑜𝑏[𝑌𝑖|𝑦𝑖] =
𝜃(𝜃+𝑘𝑦𝑖)𝑦𝑖−1 exp(−𝜃−𝑘𝑦𝑖)

𝑦𝑖!
,        𝑦𝑖 = 0,1,2, ….  , (7) 

where 𝜃 > 0, and 0 < 𝑘 < 1.  From Joe and Zhu (2005), the mean of the GP regression is 187 

𝐸(𝑌𝑖) = 𝜇 = (1 − 𝑘)−1𝜃, and the variance of the GP regression is 𝑉𝑎𝑟(𝑌𝑖) = (1 − 𝑘)−3𝜃 =188 

(1 − 𝑘)−2𝜇 = ∅. 𝜇. The term ∅ = (1 − 𝑘)−2 is a dispersion factor, and it is used in the GP mass 189 

function where “𝑘” is a dispersion parameter. It can be seen that when 𝑘 = 0, a standard Poisson model 190 

is obtained. For 𝑘 < 0, under-dispersion is assumed while 𝑘 > 0 represents over-dispersion. Since crash 191 

data normally exhibits over-dispersion, this study will assume 𝑘 > 0 condition. There are other 192 

parametrizations of the GP but their applications are left for future studies. 193 

2.5 Model structure 194 

The literature offers several ways to model the relationships between intersection crash 195 

frequency and explanatory variables (Barbosa et al., 2014; Park and Lord, 2009; Nambuusi et al., 2008; 196 

Miaou and Lord, 2003). They are differentiated on the basis of the type of variables, the number of 197 

variables, the form that the variables take during the modeling process and the transformation applied 198 

to the variables (Oh et al., 2003). In this study, the following model structure was used to estimate the 199 

expected crash frequency “𝜇𝑖" of the intersection “i”: 200 



 𝜇𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟)  +  𝛽2 𝑙𝑛(𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟) +  𝛴𝑚=3
𝑛 𝛽𝑚𝑋𝑚) (8) 

where 𝛽0 represents the intercept, 𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟 is the major approach average annual daily 201 

traffic (AADT), 𝛽1 represents the coefficient estimate of the major approach AADT, 𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟 202 

represents the minor approach AADT, 𝛽2  represents the coefficient estimate of the minor approach 203 

AADT, 𝛽𝑚 is the vector of the coefficient estimates of explanatory variables and  “𝑋𝑚” denotes the 204 

vector of explanatory variables. For the NB models (NB-1, NB-2, and NB-P) and the GP model, the 205 

coefficients denoted by 𝛽𝑚 and a dispersion parameter denoted by “k” were estimated but for the NB-206 

P, an additional parameter “P”, called a functional parameter, was also estimated. 207 

2.6 Model comparison 208 

 For model comparison, both the likelihood-based and the predictive ability-based measures 209 

were used. The likelihood-based measures consisted of the likelihood ratio test (LRT), the Akaike 210 

Information Criteria (AIC) and the Bayesian Information Criteria (BIC). The LRT was used only when 211 

comparing the hierarchically nested models (Greene, 2008; Wang et al., 2019). The AIC and the BIC 212 

were used for comparing the non-nested models (Ismail and Jemain, 2007). 213 

The predictive ability-based measures compared all developed models for predictive 214 

performance using the validation data. Those included in the study were; mean prediction bias (MPB), 215 

mean absolute deviation (MAD), and mean squared prediction error (MSPE) as in Oh et al. (2003), and 216 

% CURE deviation and a validation factor (Hauer, 2015; Wang et al., 2019).  217 

3. Data  218 

The data used for modelling was obtained for urban intersections of Antwerp, Belgium. A 219 

dataset consisting of crash data of six years (2010-2015), road geometric data, and traffic flow data was 220 

created for the estimation of the SPFs. An online database of the regional government called the 221 

Flanders road register was consulted for the intersection data. A total of 760 intersections were used for 222 

analysis, of which 198 were signalized and 562 were unsignalized. Around 470 were three-legged 223 

intersections and the remaining 290 were four-legged intersections. Because the skewness of 224 

intersection has been reported to have an impact on its safety (Nightingale et al., 2017; Haleem and 225 



Abdel-Aty, 2010), it was decided to include skewness as a potential explanatory variable. The smallest 226 

angle between the two adjacent approaches of intersection, known as an intersection angle (Nightingale 227 

et al., 2017), was used as a surrogate to define the level of skewness. A 75 degrees intersection angle 228 

used by Haleem and Abdel-Aty (2010) was chosen as a threshold to define the levels of skewness. An 229 

intersection angle less than or equal 75 degrees represented skewness level 1 while an intersection angle 230 

greater than 75 degrees represented skewness level 2. A total of 217 intersections had a skewness level 231 

1 and 543 intersections had a skewness level 2. Table 1 provides the description of variables employed 232 

in this study for urban signalized and unsignalized intersections. 233 

Table 1 Variables description for urban intersections of Antwerp 234 

Variable Description  Variable levels 

    

AADT on the major approach - 

AADT on the minor approach - 

  

Skewness 1: Intersection angle is less than/equal to 

75-degrees  
2: Intersection angle is greater than 75-

degrees 

Legs/approaches of the intersection 1: For 4 legged intersections  
0: For 3 legged intersections 

Existence of stop sign on the minor 

approach 

1: Stop sign is present on at least one 

minor approach  
0: No stop sign on the minor approaches 

Existence of stop line on the minor 

approach 

1: Stop line is present on at least one 

minor approach  
0: No stop line on the minor approaches 

Number of left turn lane on the 

major approach 

2: At least one left turn lane exists on each 

direction of the major approach  
1: At least one left turn lane exists on only 

one direction of the major approach  
0: No left turn lane exists 

Number of right turn lane on the 

major approach 

2: At least one right turn lane exists on 

each direction of the major approach  
1: At least one right turn lane exists on 

only one direction of the major approach  
0: No right turn lane exists 

Number of through lanes of the 

minor approach 

4 or 4+: Four and more through lanes of 

the minor approach  
1-3: One to three through lanes of the 

minor approach  
0: No through lane of the minor approach 

Left turn (LT) movements on the 

minor approach 

2: LT movement on each minor approach 

 
1: LT movement on only one minor 

approach  
0: No LT movement on the minor 

approach 



Existence of crosswalk on minor 

approach 

2: Crosswalk on each minor approach 

 
1: Crosswalk on only one minor approach    
0: No crosswalk 

Existence of crosswalk on major 

approach 

2: Crosswalk on each major approach 

 
1: Crosswalk on only one major approach    
0: No crosswalk 

Size of the intersection a 4: for 5*4, 5*8, 6*4, 6*6, 6*8, 8*4, 8*6,     

8*8, 8*10, 10*8, 10*10 

 3: for 3*2, 3*4, 3*6, 4*2, 4*4, 4*6 

 2: for 2*2, 2*3, 2*4, 2*6 

 1: for 1*2, 1*3, 1*4 
 

a The first number is the total number of approach lanes for a minor approach, and the second number is the total number of through lanes for 

a major approach (as per, Abdel-Aty and Haleem 2011) 
 

The crash data was provided by the police of Antwerp. The crash records featured the severity 235 

level of a crash, coordinates of a crash location, time and date of a crash, number of the vehicles involved 236 

and their type, maneuver of the involved vehicles at the time of the crash, data about the involved 237 

drivers, and road and pavement conditions. Only intersection and intersection-related crashes were used 238 

in the analysis. Because of the inconstancy in the definition of the influence area to classify a crash as 239 

intersection-related (Wang et al., 2008), we chose to use the HSM guidelines to differentiate the 240 

intersection and intersection-related crashes from the segment crashes. According to the HSM 241 

(AASHTO, 2014, 2010); 242 

- An intersection crash is the one that has occurred within the physical boundaries of 243 

an intersection area 244 

- An intersection related crash is the one that has occurred on the road segment but 245 

the presence of the intersection was the cause of that crash and it falls within its 246 

influence area 247 

Using the above definition, 5128 intersection and intersection related crashes were identified 248 

for analysis. To account for the potential variation in the SPFs by crash severity, those crashes were 249 

divided into total crashes, injury & fatal crashes and property damage only (PDO) crashes.  250 

The traffic data was acquired from Lantis, a mobility management company based in Antwerp. 251 

Lantis also provides its services to the Mobiliteit en Parkeren Antwerpen Ag, an office for parking and 252 

mobility services of Antwerp city. The data was received in two sets, actual counts and traffic model 253 



estimates. The actual counts were collected using either manual counting techniques or loop detectors 254 

installed at the random locations on the roads in the study network. The traffic model estimates were 255 

generated using a microsimulation traffic model called Dynamisch Model Kernstad Antwerpen 256 

(DMKA). It is important to note that the model was calibrated for the years 2010-2015, a period during 257 

which the crash data was recorded. Results from several runs of the simulation model were obtained 258 

and averaged to get a better convergence towards the actual counts. Actual counts and model generated 259 

counts were compared at locations where both were available to check for the residuals. An absolute 260 

difference of not greater than 5% between the simulation counts and actual counts was reported for the 261 

majority of locations. The outliers were discarded. The authors agreed to use a combination of actual 262 

counts and traffic model estimates to ensure as many intersections included in the SPFs estimation as 263 

possible with a maximum degree of accuracy. Table 2 provides the descriptive statistics of crash data 264 

(by severity) and traffic data for signalized and unsignalized intersections used to develop the SPFs. 265 

Table 2 Descriptive statistics of crash data (by severity) and traffic flow data for signalized and unsignalized intersections 266 

Variables Signalized Intersections  Unsignalized Intersections 

 Min. Max. Aver. Std. Dev.  Min. Max. Aver. Std. Dev. 

Total Crashes 0 87 13.899    13.848           0 51 4.347      5.223           

PDO Crashes 0 50 6.979    7.760            0 49 2.540      3.671           

Injury & Fatal 

Crashes 
0 39 6.919     7.224  0 25 1.806     2.557 

Ln (AADT)major 183 41915 14559 9424.8  13 30648 3511 2884.1 

Ln (AADT)minor 31 26837 5225 4905.8  9 7595 1001 815.2 

4. Results  267 

Table 3 and Table 4 present the parameter estimates (β) of the NB-1, NB-2, NB-P, and GP 268 

models developed by crash severity (total crashes, PDO crashes, and injury & fatal crashes) for 269 

signalized and unsignalized intersections, respectively. The numbers enclosed within the parenthesis 270 

correspond to their p-values. The SPFs show that the signs of estimated parameters are similar across 271 

different models developed for the same severity level. This indicates that given the same severity level, 272 

the potential impact of explanatory variables on the expected crash frequency obtained from different 273 

models is similar. The estimated parameters, however, vary slightly across different severity levels 274 

which could be one of the reasons that imply the need to develop separate models for each crash severity 275 



level. Using a 90% confidence level as in Vieira Gomes et al. (2012) for similar data, we found that 276 

five variables were significant in case of signalized intersections and four variables in case of 277 

unsignalized intersections. The significant variables included the traffic flow, the intersection skewness, 278 

the existence of crosswalk on a minor approach, the number of through lanes on a minor approach, and 279 

the number of approaches. To our surprise, the presence of exclusive left and right turn lanes were not 280 

significant in any model. The intersection size and the crosswalk on the major approaches were other 281 

insignificant explanatory variables.  282 

4.1 SPFs of signalized intersections 283 

Table 3 provides the SPF estimation results for signalized intersection. It shows that there was 284 

a statistically significant increase in the crash frequency with an increase in the natural logarithm of 285 

AADTs (which necessarily indicates an increase in traffic flow) of the major and the minor approaches 286 

of intersection. The crosswalk on a minor approach was significant only when it existed on both 287 

approaches of a signalized intersection across all developed models and all severity levels. However, 288 

there was an exception in case of the NB-2 and NB-P models of total crashes, for which, in addition to 289 

a crosswalk on each minor approach, a crosswalk variable was also significant when present on only 290 

one of the minor approaches of an intersection. The estimated coefficients in the former case were 291 

approximately double than that of the later. This was not true for other crash severity levels (the PDO, 292 

and injury & fatal crashes) and model types. The intersection skewness was significant only for total 293 

crashes (all the NB models only), and injury & fatal crashes (all models). The coefficient estimates were 294 

negative in the developed models. Since the higher skewness level was a base case, the negative sign 295 

indicates that no skewness or lower skewness (i.e., intersection angle greater than 75 degrees, please 296 

see the data section for details) results in a reduced crash frequency. In other words, intersections with 297 

no or lower skewness were safer than the intersections with higher skewness. This is a straight forward 298 

result since the presence of skewness causes larger intersection areas, obstructs views and affects sight 299 

distances. An important observation from the results was that the absence of skewness causes a greater 300 

decrease in the injury & fatal crashes than the total crash frequency.  301 



Table 3 Estimated models for urban signalized intersections 302 

   NB-1   NB-2   NB-P   GP 

Variables  β (p-value)   β (p-value)   β (p-value)   β (p-value) 

TOTAL CRASHES         

Intercept  
-3.9067 

(0.0000) 
 -4.2775 

(0.0000) 
 -4.2761 

(0.0000) 
 -3.7402 

(0.0000) 

AADT Major  
0.4058 

(0.0000) 
 0.3623 

(0.0000) 
 0.3621 

(0.0000) 
 0.3934 

(0.0000) 

AADT Minor  
0.2450  

(0.0000) 
 0.3002 

(0.0000) 
 0.3003 

(0.0000) 
 0.2425 

(0.0000) 

No crosswalk: 0 (Base)         

Crosswalk on one of the minor approaches: 1  
0.2747 

(0.3870) 
 

0.5547 

(0.0690) 
 

0.5551 

(0.0690) 
 

0.2578 

(0.3920) 

Crosswalk on each of the minor approach: 2  
0.8867  

(0.0050) 
 

1.2151 

(0.0000) 
 

1.2155 

(0.0000) 
 

0.8549 

(0.0040) 

Skewness: 1 (Base)         

Skewness: 2  
-0.1572 

(0.0970) 
 -0.2180 

(0.0360) 
 -0.2181 

(0.0360) 
 -0.1486 

(0.1190) 

Over-dispersion   4.1062  0.2977  0.2953  0.5778 

P  
1.000 

(0.0000) 
 2.000 

(0.0000) 
 2.0031 

(0.0000) 
  

Log La  -653.03  -640.65  -640.65  -651.79 

AIC  1320.06  1295.31  1297.31  1317.58 

BIC  1343.07  1318.33  1323.62  1340.60 

PDO CRASHES         

Intercept  
-4.4085 

(0.0000) 
 -4.8088 

(0.0000) 
 -4.8899 

(0.0000) 
 -4.2727 

(0.0000) 

AADT Major  
0.3396 

(0.0100) 
 0.2992 

(0.0010) 
 0.3153 

(0.0010) 
 0.3269 

(0.0010) 

AADT Minor  
0.2954 

(0.0000) 
 0.3367 

(0.0000) 
 0.3357 

(0.0000) 
 0.2942 

(0.0000) 

No crosswalk: 0 (Base)         

Crosswalk on one of the minor approaches: 1  
0.2377 

(0.5320) 
 

0.6326 

(0.1050) 
 

0.5671 

(0.1810) 
 

0.2382 

(0.5190) 

Crosswalk on each of the minor approaches: 2  
0.9062 

(0.0150) 
 

1.3397 

(0.0010) 
 

1.2820 

(0.0020) 
 

0.9008 

(0.0130) 

Over-dispersion  2.7650  0.3840  0.6319  0.5022 

P  
1.000 

(0.0000) 
 2.000 

(0.0000) 
 1.7530 

(0.0000) 
  

Log L  -538.89  -533.32  -532.91  -538.16 

AIC  1091.79  1080.65  1081.81  1090.33 

BIC  1114.80  1103.66  1108.12  1113.35 

INJURY & FATAL  CRASHES         

Intercept  
-4.9921 

(0.0000) 
 -5.6066 

(0.0000) 
 -5.6210 

(0.0000) 
 -4.9458 

(0.0000) 

AADT Major   
0.4963 

(0.0000) 
 0.4797 

(0.0000) 
 0.4835 

(0.0000) 
 0.4952 

(0.0000) 

AADT Minor  
0.1917 

(0.0030) 
 0.2586 

(0.0000) 
 0.2563 

(0.0000) 
 0.1879 

(0.0040) 

No crosswalk: 0 (Base)         

Crosswalk on one of the minor approaches: 1  
0.2618 

(0.4690) 
 

0.4785 

(0.2020) 
 

0.4738 

(0.2110) 
 

0.2631 

(0.0040) 

Crosswalk on each of the minor approaches: 2  
0.8633 

(0.0150) 
 1.0876 

(0.0030) 
 1.0856 

(0.0040) 
 0.8576 

(0.0140) 

Skewness: 1 (Base)         

Skewness: 2  
-0.2056 

(0.0620) 
 -0.3258 

(0.0070) 
 -0.3213 

(0.0090) 
 -0.1984 

(0.0740) 

Over-dispersion   2.3591  0.3324  0.3679  0.4727 

P  1.000  2.000  1.9500   



(0.0000) (0.0000) (0.0000) 

Log L  -531.95  524.40  -524.39  -530.87 

AIC  1077.91  1062.81  1064.77  1075.74 

BIC  1100.93  1085.83  1091.08  1098.76 

 

Notes: a Log L: Log Likelihood 303 

4.2 SPFs of unsignalized intersections 304 

Table 4 presents the coefficient estimates of the SPFs for unsignalized intersections. The traffic 305 

flows of major and minor approaches were significantly associated with crash frequency except for 306 

injury and fatal crashes where the AADT of the minor approach was found insignificant. The presence 307 

of a crosswalk on the minor approach was only significant for total crashes, and injury and fatal crashes 308 

across all developed models. Unlike signalized intersections, the crosswalk was significant when it was 309 

present on only one of the minor approaches of unsignalized intersections. The presence of crosswalk 310 

on one or both approaches was, however, significant only in case of injury and fatal crashes as can be 311 

seen in the NB-2 and NB-P models. The number of approaches/legs of an intersection was a significant 312 

predictor of total and PDO crashes at unsignalized intersections at a 90% confidence level. Intersections 313 

with three approaches/legs as a base, the positive signs of the estimated coefficients indicate higher 314 

expected crash frequency on intersections with four approaches compared to intersections with three 315 

approaches. Another statistically significant variable was the number of through lanes of the minor 316 

approaches of unsignalized intersection. A positive association was found between crash frequency and 317 

the number of through lanes of its minor approach for the total crashes, and injury & fatal crashes. 318 

While the first level of this variable was not significant, the second level, which represents four or 319 

greater number of through lanes of minor approaches was significant for total crashes. For injury & 320 

fatal crashes, all levels of the number of through lanes were significant. This means that a significant 321 

increase can be expected in total crashes, and injury & fatal crashes with an increase in the number of 322 

through lanes of the minor approach of an unsignalized intersection. It is noteworthy that this result can 323 

be generalized only to four-legged unsignalized intersections because through lanes were reported only 324 

for such facility type in this study. 325 

 



Table 4 Estimated models for urban unsignalized intersections 326 

  NB-1  NB-2  NB-P  GP 

Variables  β (p-value)  β (p-value)  β (p-value)  β (p-value) 

TOTAL CRASHES         

Intercept  
-1.2095 

(0.0000) 
 -1.4860 

(0.0000) 
 -1.4082 

(0.0000) 
 -1.1683 

(0.0000) 

AADT Major  
0.1948 

(0.0000) 
 0.2155 

(0.0000) 
 0.2113 

(0.0000) 
 0.1883 

(0.0000) 

AADT Minor  
0.1262 

(0.0010) 
 0.1539 

(0.0010) 
 0.1379 

(0.0010) 
 0.1266 

(0.0010) 

No crosswalk: 0 (Base)         

Crosswalk on one of the minor approaches: 1  
0.2668 

(0.0010) 
 0.1709 

(0.0500) 
 0.2485 

(0.0040) 
 0.2728 

(0.0010) 

Crosswalk on each of the minor approaches: 2  
0.1609 

(0.1690) 
 

0.1787 

(0.1970) 
 

0.1743 

(0.1650) 
 

0.1728 

(0.1380) 

No. of approaches: 3 (Base)         

No. of approaches: 4  
0.3878 

(0.0010) 
 0.2369 

(0.0950) 
 0.3547 

(0.0070) 
 0.3994 

(0.0010) 

No. of through lanes on the minor approaches: 0 

(Base) 
        

No. of through lanes on the minor approach: 1-3  
0.0330 

(0.7880) 
 0.1080 

(0.4730) 
 0.0578 

(0.6690) 
 0.0260 

(0.8310) 

No. of through lanes on the minor approach: 4 & 

4+ 
 

0.8029 

(0.0000) 
 

0.8797 

(0.0120) 
 

0.8176 

(0.0010) 
 

0.7760 

(0.0000) 

Over-dispersion   2.3705  0.5680  1.4209  0.4708 

P  
1.0000 

(0.0000) 
 2.0000 

(0.0000) 
 1.3598 

(0.0000) 
  

Log La  -1369.80  -1372.45  -1368.53  -1362.96 

AIC  2757.61  2762.89  2757.06  2743.93 

BIC  2796.61  2801.89  2800.39  2782.93 

PDO CRASHES         

Intercept  
-1.039 

(0.0020) 
 -1.2663 

(0.0000) 
 -1.2223 

(0.0010) 
 -1.0004 

(0.0030) 

AADT Major  
0.1011 

(0.0370) 
 0.0989 

(0.0600) 
 0.1067 

(0.038) 
 0.0987 

(0.0420) 

AADT Minor  
0.1619 

(0.0010) 
 0.2040 

(0.0000) 
 0.1842 

(0.0010) 
 0.1583 

(0.0010) 

No. of approaches: 3 (Base)         

No. of approaches: 4  
0.3189 

(0.0000) 
 0.2122 

(0.0280) 
 0.2912 

(0.0030) 
 0.3291 

(0.0000) 

Over-dispersion   1.7930  0.7114  1.1867  0.4167 

P  
1.0000 

(0.0000) 
 2.0000 

(0.0000) 
 1.4507 

(0.0000) 
  

Log L  -1149.44  -1149.70  -1148.76  -1140.98 

AIC  2308.87  2309.41  2309.51  2291.96 

BIC  2330.54  2331.07  2335.51  2313.63 

INJURY & FATAL  CRASHES         

Intercept  
-3.6679 

(0.0000) 
 -4.0729 

(0.0000) 
 -4.0075 

(0.0000) 
 -3.6730 

(0.0000) 

AADT Major  
0.4225 

(0.0000) 
 0.4507 

(0.0000) 
 0.4489 

(0.0000) 
 0.4229 

(0.0000) 

AADT Minor  
0.0727 

(0.1510) 
 0.0912 

(0.1060) 
 0.0857 

(0.1170) 
 0.0727 

(0.1530) 

No crosswalk: 0  (Base)         

Crosswalk on one of the minor approaches: 1  
0.3155 

(0.0030) 
 0.3582 

(0.0020) 
 0.3439 

(0.0020) 
 0.3136 

(0.0030) 

Crosswalk on each of the minor approaches: 2  
0.2379 

(0.1080) 
 

0.3740 

(0.0290) 
 

0.3091 

(0.0570) 
 

0.2425 

(0.1020) 

 No. of through lanes on the minor approaches: 0      

(Base) 
        

No. of through lanes on the minor approaches: 1-3  0.4208  0.5060  0.4678  0.4167 



(0.0100) (0.0080) (0.0090) (0.0110) 

No. of through lanes on the minor approaches: 4 & 

4+ 
 

1.2610 

(0.0000) 
 

1.2376 

(0.0020) 
 

1.2515 

(0.0000) 
 

1.2484 

(0.0000) 

Over-dispersion  1.2707  0.5680  0.9755  0.3489 

P  
1.0000 

(0.0000) 
 2.0000 

(0.0000) 
 1.4601 

(0.0000) 
  

Log L  -931.85  -933.04  -929.64  -931.01 

AIC  1881.70  1884.07  1879.28  1880.02 

BIC  1920.70  1923.07  1922.61  1919.02 
 

Notes: a Log L: Log Likelihood 327 

4.3 Comparison and performance evaluation of the developed SPFs 328 

The likelihood ratio test (LRT) was used for the comparison of either the NB-1 with the NB-P 329 

model or the NB-2 with the NB-P model since both the NB-1 and NB-2 are parametrically nested by 330 

the NB-P (Greene, 2008). The LTR was, however, not applied to compare the non-nested models, i.e., 331 

the NB-1 model against the NB-2 model, or the NB models against the GP model. Instead, the AIC and 332 

BIC were used as in Ismail and Jemain (2007).  333 

Table 5 Likelihood ratio (NB-1 vs NB-P and NB-2 vs NB-P) for signalized and unsignalized intersections 334 

 Signalized Intersections  Unsignalized Intersections 

TOTAL CRASHES 

Test/Criteria NB-1 
 

NB-P 
 

NB-1  NB-P 

Log La -653.028 
 

-640.655 
 

-1369.804  -1368.529 

Likelihood ratio (𝜒2)  
  

24.75 (0.0000) b 
 

  2.55 (0.1104) 

Test/Criteria NB-2 
 

NB-P 
 

NB-2  NB-P 

Log L -640.655 
 

-640.6552 
 

-1372.4456  -1368.529 

Likelihood ratio (𝜒2) 
  

0.0002 (0.9893) 
 

  7.83 (0.0051) 

PDO CRASHES        

Test/Criteria NB-1  NB-P  NB-1  NB-P 

Log L -538.894  -532.906  -1149.436  -1148.756 

Likelihood ratio (𝜒2)   11.98 (0.0005)    1.36 (0.2436) 

Test/Criteria NB-2  NB-P  NB-2  NB-P 

Log L -533.324  -532.906  -1149.705  -1148.756 

Likelihood ratio (𝜒2)   0.84 (0.3606)    1.90 (0.1682) 

INJURY & FATAL  CRASHES 
    

   

Test/Criteria NB-1 
 

NB-P 
 

NB-1  NB-P 

Log L -531.954 
 

-524.388 
 

-931.851  -929.6407 

Likelihood ratio (𝜒2) 
  

15.13 (0.0001) 
 

  4.42 (0.0355) 

Test/Criteria NB-2 
 

NB-P 
 

NB-2  NB-P 

Log L 524.404 
 

-524.388 
 

-933.036  -929.6407 

Likelihood ratio (𝜒2) 
  

0.03 (0.8569) 
 

  6.79 (0.0092) 

Notes: Bold values indicate statistically significant results of the LRT  335 
a Log L: Log Likelihood 336 
b Values in parenthesis indicate the p-value when the likelihood ratio (𝜒2) was computed 337 



The LRT indicated that the NB-P model performed better than the NB-1 model for total crashes, 338 

PDO crashes, and injury & fatal crashes in case of signalized intersections (Table 5). The result of the 339 

LTR test was, however, inconclusive when the NB-P and NB-2 were compared and, hence, it cannot 340 

be said with certainty which of the two was a better model.  Based on the other measures, i.e., log-341 

likelihood, the AIC, and the BIC (Table 3), it can be seen that NB-P and NB-2 performed relatively 342 

closely but both performed better than the NB-1 models and the GP models for crash severities. The 343 

functional parameter “P” of the estimated NB-P models was statistically significant across all severity 344 

levels. The estimated value of the functional parameter “P” of the NB-P models for total crashes, and 345 

injury & fatal crashes was close to 2 while for the PDO crashes it was significantly different from either 346 

1 or 2 (Table 3). Although this does not completely verify the assumption that the restricted variance 347 

structure of the NB-1 or NB-2 models may lead to biased estimates of model parameters, it does not 348 

entirely reject the possibility either, as indicated by the PDO crashes on signalized intersections and the 349 

result for the NB-1 models. 350 

The LRT for unsignalized intersections showed that the NB-P and NB-1 models performed 351 

equally closely in case of total crashes and the PDO crashes and we cannot say that the difference in 352 

the NB-P and NB-1 estimates was significant but for injury & fatal crashes, the results were in the favor 353 

of the NB-P models. The NB-P model, on the other hand, outperformed the NB-2 model for total 354 

crashes, and injury & fatal crash but there was no significant difference in the estimates of the NB-2 355 

and NB-P models for the PDO crashes. Based on the AIC and BIC values, the NB-1 models performed 356 

better than the NB-2 models (non-nested models comparison, Table 4) for total crashes and injury & 357 

fatal crashes while results for the PDO crashes were fairly close for the two traditional NB models. The 358 

AIC and BIC, however, showed better model fit for the GP models in all crash severity levels. So, it 359 

will be safe to say that the GP model outperformed all the NB models in the case of un-signalized 360 

intersections. The functional parameter “P” of variance structure was significant for the NB-P models 361 

across all severity levels and it was not close to either 1 or 2. This verifies the assumption that the 362 

restricted variance structure of the NB-1 and NB-2 models might lead to the biased estimates of model 363 

parameters for unsignalized intersection, and, hence the NB-P that takes into account the flexible 364 



variance structure would be more reliable in the accurate estimation of model parameters when there is 365 

no GP model considered. 366 

Besides the likelihood-based criteria, predictive ability-based measures were also computed to 367 

validate the developed models and examine their predictive performance. It is important to note that 368 

randomly selected 80% data were used for the estimation of models while the remaining 20% were used 369 

for validation of the developed models. We compute the MPB, MAD, MSPE, % CURE deviation and 370 

a validation factor. According to Oh et al. (2003), smaller the absolute values of the MPB, MAD, and 371 

MSPE, better is the performance of the developed models. The % CURE deviation, which denotes the 372 

percentage of the data points falling outside the two standard deviation limits of the Cumulative 373 

Residual (CURE) (Hauer, 2015), shows a good fit when its values are small (Wang et al., 2019). Finally, 374 

a factor, that we called a validation factor, was calculated as the ratio of the total predicted crashes to 375 

the total observed crashes using the validation data. A value close to one indicated a better model (Wang 376 

et al., 2019). Wang et al., (2019) called it a calibration factor. 377 

Table 6 Predictive performance evaluation and validation of estimated models of signalized and unsignalized intersections 378 

Crash Severity   Criteria   Signalized Intersections (198)   Unsignalized Intersections (562) 

      
 

NB-1 NB-2 NB-P GP   NB-1 NB-2 NB-P GP 

TOTAL 

CRASHES 
  MPB   -0.233 -0.268 -0.268 -0.237   -0.035 -0.034 -0.035 -0.034 

  MAD   1.083 1.082 1.082 1.088   0.509 0.510 0.507 0.509 

  MSPE   2.998 2.932 2.932 3.042   0.472 0.473 0.470 0.471 

  
CURE Deviation 

(%) 
  26 4 4 36   0 1 0 0 

  
Validation Factor 

(VF) 
  

1.094 1.110 1.110 1.096 
  0.954 0.952 0.953 0.955 

             

PDO 

CRASHES 
  MPB   0.043 0.031 0.040 0.041   -0.025 -0.027 -0.026 -0.027 

  MAD   0.688 0.693 0.693 0.691   0.340 0.337 0.337 0.337 

  MSPE   1.100 1.106 1.097 1.111   0.419 0.420 0.419 0.418 

  
CURE Deviation 

(%) 
  19 5 6 21   0 0 0 1 

  
Validation Factor 

(VF) 
  1.033 1.024 1.031 1.032   0.946 0.943 0.944 0.944 

             

INJURY  

& FATAL 

CRASHES 

  MPB   0.063 0.039 0.040 0.064   -0.002 0.002 -0.001 -0.002 

  MAD   0.629 0.623 0.624 0.629   0.248 0.246 0.247 0.246 

  MSPE   0.930 0.911 0.913 0.930   0.119 0.121 0.121 0.119 

  
CURE Deviation 

(%) 
  7 2 2 6   1 1 1 1 



  
Validation Factor 

(VF) 
  1.058 1.036 1.037 1.059   0.996 1.006 0.998 0.997 

Notes: MPB: Mean Prediction Bias, MAD: Mean Absolute Deviation, MSPE: Mean Squared Prediction Error   

In the case of signalized intersections, the predictive performance of the NB-2 and NB-P 379 

models, based on the measures in table 6, was better than the NB-1 model for all crash severity levels. 380 

Similarly, the NB-2 and NB-P models also outperformed the GP model for total crashes, the PDO 381 

crashes, and injury & fatal crashes. Of particular interest was the percentage CURE Deviation, the 382 

values of which were very high for all crash severity levels on the signalized intersections in case of the 383 

NB-1 and the GP models which clearly shows poor prediction performance. For the unsignalized 384 

intersections, the difference among the predictive performance measures across the developed SPFs 385 

was extremely small and somewhat inconsequential. However, a close observation shows that the 386 

performance of the NB-1, NB-P, and GP models was almost similar and slightly better than the NB-2 387 

model. This finding is in a line with the results of the AIC and BIC (Table 4) and the LRT (Table 5). 388 

To put things into perspective, the GP regression was the best among all four models for each severity 389 

level while the NB-P and NB-1 both performed closely and relatively better than the NB-2 model when 390 

only the NB models were considered. 391 

5. Discussion  392 

The current study investigated the application of the NB-1, NB-2, NB-P, and a GP model in the 393 

development of the SPFs with an aim to find a statistical model capable of improved estimation 394 

accuracy. For this purpose, a number of goodness of fit (likelihood-based) and predictive performance 395 

measures were calculated and compared. Because several variables were used in the development of 396 

the SPFs, a few of them were found to have a significant relationship with the crash occurrence on 397 

intersections. 398 

5.1 Predictor variables of crashes on urban intersections 399 

A positive association between the crash frequency and traffic volume of major and minor 400 

approaches of intersections was found for almost every severity level and every intersection type 401 

considered. This results was in accordance with our expectations. When the number of vehicles entering 402 

and/or leaving the intersection increases, it induces new turning and crossing maneuvers, that results in 403 



an increased risk of new conflicts, and those additional conflicts, in some cases, are translated into 404 

actual crashes. Similar results have been reported by many studies (Wang et al., 2019; Barbosa et al., 405 

2014; Ferreira and Couto, 2013; Vieira Gomes et al., 2012; Miaou and Lord, 2003; Greibe, 2003). It is 406 

important to note that, of all the models developed across all severity levels for both intersection types, 407 

only the traffic flow of a minor approach of unsignalized intersections in the models for injury & fatal 408 

crash was not significant. Since majority of unsignalized intersections were located on local streets 409 

where the traffic volume of minor approaches and the corresponding speed limits were relatively very 410 

low, it is possible that those factors might have contributed to reduced number of fatal and injury crashes 411 

and hence resulted in the insignificance of traffic volume of the minor approaches in models for fatal 412 

and injury crashes. 413 

The presence of crosswalk on the minor approaches although significant gave somewhat mixed 414 

results for signalized and unsignalized intersections. In the case of signalized intersections, the 415 

crosswalk on the minor approaches had a significant positive association with crash frequency only 416 

when it was present on both approaches. The crosswalk, however, was not significant when existed on 417 

one of the minor approaches. Further, the estimated coefficients were often more than the double for 418 

intersections with crosswalks on both minor approaches than intersections with crosswalks on only one 419 

approach, although not significant in the later case. A possible explanation could be that, at signalized 420 

intersections with crosswalks on both minor approaches, an existing and/or entering or turning traffic 421 

will have two possible vehicle-pedestrian interactions and thus the chances of involvement in crashes 422 

will be greater, while intersection with a crosswalk on only one minor approach will have one possible 423 

vehicle-pedestrian interaction and hence lower risk of a crash. In the case of unsignalized intersection, 424 

a crosswalk on a minor approach was significant across all developed models when it was present on 425 

only one of the minor approaches. As we know, two crosswalks on the minor approaches were only 426 

present on four-legged intersections but in unsignalized category, majority of intersections were three-427 

legged which could accommodate only one crosswalk on its minor approach at a time. Thus, the 428 

majority of three legged intersections, and the consequent presence of only one crosswalk on minor 429 

approach possibly contributed significantly to crashes on unsignalized intersections.  430 



The intersection skewness was statistically significant in the models for total crashes, and injury 431 

& fatal crashes in case of signalized intersections. The association found indicates that more crashes 432 

were expected on the intersections with higher skewness level than those with no or lower skewness 433 

level. For the recollection of reader, an intersection angle of less than or equal to 75 degrees was higher 434 

skewness level and an intersection angle of greater than 75 degrees was lower skewness or no skewness. 435 

Nightingale et al. (2017) and Harkey (2013) have reported similar results when studying the influence 436 

of the skew angle on the intersection crash frequency. However, Nightingale et al. (2017) studied the 437 

rural intersection. The significance of skewness in the SPFs for signalized intersection could be 438 

attributed to the fact that drivers tend to have greater perception of safety in the case of signalized 439 

intersections than the unsignalized intersections, which reduces an amount decision-making necessary 440 

for safe driving. When such drivers encounter a skewed intersection, this potentially lead to confusion, 441 

which when reinforced by other undesirable characteristics (obstructed views, distorted sight distances, 442 

large intersection area, large turns, etc.) of skewed intersection may result in a crash. 443 

The number of approaches of the intersection was found to influence the expected crash 444 

frequency at unsignalized intersections only. This was particularly true in the case of PDO crashes and 445 

total crashes. The intersections with four or more legs were expected to experience more crashes than 446 

the intersections with three legs. This was expected outcome. An increase in the number of 447 

legs/approaches increases the intersection complexity and it invites additional traffic, which could be 448 

related to an increased risk of involvement in a crash.  449 

Another significant predictor of crashes at un-signalized intersections was the number of 450 

through lanes of the minor approach. The association between the number of through lanes and the 451 

expected crash frequency was positive, which means more crashes with an increased number of through 452 

lanes. Abdel-Aty and Nawathe (2006) found similar results for urban intersection but their study was 453 

focused on signalized intersections. Zhao et al.  (2018) and Kamrani et al. (2017) also reported a 454 

significant positive association between crash frequency and the number of through lanes for 455 

intersections. The number of through lanes on a minor approach also indirectly informs about the size 456 

of an intersection and, thus, correspondingly higher traffic volumes. An intersection with a high number 457 



of through lanes on a minor approach could have a higher expected crash frequency because of its large 458 

size that carries more traffic. This result can be generalized only to four-legged unsignalized 459 

intersections since through lanes were only reported for such facility type. 460 

We also found some unexpected results, especially the insignificance of the exclusive left and 461 

right turn lanes in the developed models. It was rather opposite to the results of some studies (Al-Kaisy 462 

and Roefaro, 2012; Abdel-Aty and Haleem, 2011; Zhou et al., 2010). The reason may be that the number 463 

of intersections with exclusive left and right turn lanes in the study data was not enough to be significant 464 

in the final models. The influence of the intersection size on crash frequency was also insignificant as 465 

a predictor variable. This might be because other variables, like, the number of through lanes on a minor 466 

approaches and the number of legs/approaches of the intersection, could have acted as proxies for 467 

intersection size in the modelling process. 468 

5.2 The appropriate model(s) for crash estimation on urban intersections 469 

In case of signalized intersections, the comparison of likelihood-based and predictive ability-470 

based measures both revealed that the NB-P and NB-2 models performed better than the NB-1 and GP 471 

models. Similarly when compared for the un-signalized intersections, the GP model was a winner based 472 

on the goodness of fit (likelihood-based measures), however, the performance of the GP model for 473 

predictive ability-based measures was only marginally better than the NB-1 and NB-P models. When 474 

the comparison was made among the NB models only for unsignalized intersections, the NB-P and NB-475 

1 performed better than the NB-2. Generally, in situations where only the NB models were considered, 476 

the flexible variance structure allowed the NB-P model to outperform the traditional forms, either the 477 

NB-1 or NB. Another observation was that for one type of facility (un-signalized intersections), the 478 

better performing model was the NB-1, while for the other type of facility (signalized intersection), the 479 

better performing model the NB-2 when only the traditional NB models were compared. This finding 480 

suggests that it is necessary to check for an appropriate model form in advance.  481 

The use of several functional forms of the NB regression and the equally powerful but a relative 482 

less used GP model in our study revealed that the accurate estimation of crash frequency is subjected 483 

to the selection of the appropriate functional form and model type. The flexible variance structure of 484 



the NB model has the ability to improve the estimation accuracy. Further, the study results showed that 485 

it is possible that a model functional form appropriate for one sub-type of the same infrastructure might 486 

not be appropriate for another sub-type of that infrastructure. 487 

6. Conclusions 488 

In this study, we developed multiple SPFs by crash severity for urban intersections using the 489 

NB-1, NB-2, NB-P and GP regression in an attempt to obtain a model with a higher estimation accuracy. 490 

The data was obtained for the intersections of Antwerp, Belgium. Only those intersections were 491 

included in modeling for which a sufficient good quality data was available. Major and minor approach 492 

AADT and several other variables related to road infrastructure and geometry were used as the 493 

explanatory variables. Traffic volume was a significant predictor of crash frequency for almost all 494 

developed models and all crash severity levels. Other significant variables include the presence of a 495 

crosswalk on the minor approach and the intersection skewness in the case of signalized intersections. 496 

For unsignalized intersection, the presence of a crosswalk on the minor approach, the number of through 497 

lanes of the minor approach, and the number of legs were significant.  498 

For model comparison, two sets of measures were computed. The likelihood-based measures 499 

including the LRT, the AIC and BIC were used for the checking goodness of fit of the models while 500 

the predictive ability-based measures were used for the predictive performance and validation of the 501 

models. The likelihood-based measures showed that the NB-P and NB-2 models performed better than 502 

the NB-1 and GP models in case of the signalized intersections for all crash severity levels. For 503 

unsignalized intersections, however, the GP model was relatively better than the NB models. A 504 

comparison among the NB models showed that the NB-P and NB-1 outperformed the NB-2. The 505 

predictive ability-based measures also confirmed similar results by indicating an improvement in 506 

prediction accuracy in case of the NB-P model and the GP model for signalized and unsignalized 507 

intersections, respectively.  508 

The findings of this study showed that all functional forms of the NB model and the GP model 509 

were promising in the estimation of the SPFs for intersections. The developed models irrespective of 510 



the functional form or type showed similar results for the influence of the explanatory variables on crash 511 

occurrence. Further, it was shown that the use of the flexible variance structure of the NB-P model 512 

and/or an entirely different GP model could bring an improvement in the estimation accuracy as 513 

indicated by the comparison of the goodness of fit and later verification by the predictive performance 514 

measures applied to the validation dataset.  515 

Finally, it is hoped that the outcome of this study add to the knowledge of the SPF estimation 516 

with regard to the selection of the functional form and improvement in the accuracy and reliability of 517 

the crash estimates. Nonetheless, a future research efforts can focus on investigating the applications of 518 

the NB-P model to several other facility types or using the NB-P model in conjunction with other 519 

techniques, for instance, exploring the functional forms of the GP model of which a traditional form 520 

called GP-1 has already been used in this study. 521 
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