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Abstract  33 

Coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 is an ongoing viral pandemic marked by 34 

increased risk of thrombotic events. However, the role of platelets in the elevated observed thrombotic 35 

risk in COVID-19 and utility of anti-platelet agents in attenuating thrombosis is unknown. We aimed to 36 

determine if human platelets express the known SARS-CoV-2 receptor-protease axis on their cell surface 37 

and assess whether the anti-platelet effect of aspirin may mitigate risk of myocardial infarction (MI), 38 

cerebrovascular accident (CVA), and venous thromboembolism (VTE) in COVID-19. Expression of ACE2 39 

and TMPRSS2 on human platelets were detected by immunoblotting and confirmed by confocal 40 

microscopy. We evaluated 22,072 symptomatic patients tested for COVID-19. Propensity-matched 41 

analyses were performed to determine if treatment with aspirin or non-steroidal anti-inflammatory 42 

drugs (NSAIDs) affected thrombotic outcomes in COVID-19. Neither aspirin nor NSAIDs affected 43 

mortality in COVID-19. However, both aspirin and NSAID therapies were associated with increased risk 44 

of the combined thrombotic endpoint of (MI), (CVA), and (VTE). Thus, while platelets clearly express 45 

ACE2-TMPRSS2 receptor-protease axis for SARS-CoV-2 infection, aspirin does not prevent thrombosis 46 

and death in COVID-19. The mechanisms of thrombosis in COVID-19, therefore, appears distinct and the 47 

role of platelets as direct mediators of SARS-CoV-2-mediated thrombosis warrants further investigation.  48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 
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Introduction 57 

COVID-19 is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and curiously 58 

displays a propensity for thrombosis in multiple vascular beds.  COVID-19-related thrombosis may 59 

contribute to severe organ injury and death. The incidence of thrombotic events was as high as 31% in 60 

one cohort 1.  Clinical and autopsy studies of COVID-19 patients suggest an increased risk of 61 

microthrombi, venous thromboembolism (VTE), and ischemic stroke2,3.  Activated platelets are 62 

circulating mediators of thrombosis and, therefore, may serve as a logical therapeutic target in COVID-63 

19.  Two registered clinical trials (NCT04363840 and NCT04365309) will prospectively evaluate patient 64 

outcomes following low dose aspirin in the context of SARS-CoV-2 infection. 65 

 66 

SARS-CoV-2 utilizes an spike glycoprotein to bind to the host transmembrane angiotensin-converting 67 

enzyme 2 (ACE2) and is then cleaved by the serine protease TMPRSS2 to coordinate entry into the host 68 

cell4,5. Therefore, co-expression of ACE2 and TMPRSS2 may be important for host cell entry and 69 

infectivity of SARS-CoV-2. Importantly, human tissue distribution of ACE2 and TMPRSS2 mirrors organ 70 

system involvement in COVID-19 and includes the lungs6-11, vascular endothelium9-12, heart11,13,14, 71 

kidneys8,10,13, liver8,10, digestive tract8,10,11,15, nasal epithelium7,10,11 and central nervous system10,14.  72 

Single-stranded RNA (ssRNA) viruses, including influenza, are engulfed by platelets and may contribute 73 

to immuno-thrombosis indirectly through developing neutrophil extracellular traps (NETs) by engaging 74 

the platelet toll-like receptor 7 (TLR7)16.  SARS-CoV-2, another SSRNA virus, utilizes platelets to modulate 75 

immunologic responses including the development of neutrophil extracellular traps (NETs) that are 76 

emerging as pro-thrombotic responses in patients with COVID-1917. Further, elevation of soluble P-77 

selectin and sCD40L in blood from patients with COVID-19 compared to controls provides indirect 78 

evidence of platelet activation in COVID-19 coagulopathy18.  SARS-CoV-2 is a ssRNA virus, and therefore 79 

may directly augment platelet activation causing myocardial infarction (MI), stroke, and VTE.   80 
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  81 

A recent report demonstrated that COVID-19 patients have a divergent platelet transcriptome from 82 

healthy individuals, and aspirin suppresses COVID-19 platelet activation in vitro19.  The platelet surface 83 

receptor for SARS-CoV-2 was not clarified in this study, while a similar investigation by another group 84 

identified mRNA for SARS-CoV-2 in human platelets20.  Thus, our goal was to determine if platelets 85 

express known SARS-CoV-2 receptor proteins and, as with influenza previously, contribute to thrombotic 86 

events in patients.  In the absence of clinical trial data, we sought to evaluate the potential benefit in 87 

mitigating thrombotic responses in vivo with use of aspirin or other NSAID antiplatelet therapies by 88 

propensity matching patients using real-world data.  89 

 90 

Methods 91 

Platelet Isolation 92 

Healthy volunteers without any known medical history or on antiplatelet therapy donated blood 93 

specimens in accordance with and approved by the Cleveland Clinic Foundation  Institutional Review 94 

Board (IRB) approval. For each subject, venous blood was drawn by a medical professional into citrate 95 

plasma tubes, then centrifuged in a tabletop centrifuge at 1100 RPM for 15 minutes. The platelet rich 96 

plasma (PRP), collected well above the buffy coat, was decanted and the platelets were centrifuged at 97 

2600 RPM for an additional 5 minutes. These washed platelets were then used in immunoblotting and 98 

fluorescence-activated cell sorting (FACS) analyses. 99 

 100 

Immunoblotting 101 

Washed platelets from healthy subjects or patients with coronary artery disease (CAD) enrolled at the 102 

Cleveland Clinic main campus in Ohio were isolated and proteins separated by SDS-PAGE as we have 103 

previously documented 21,22 and in accordance with IRB protocols (#19-1451 for patients and #20-413 104 
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for healthy volunteers).  We utilized human brain lysate, human placenta, and engineered human heart 105 

tissue as positive controls for TMPRSS2 and ACE2.  Human brain lysate is commercially available (Novus 106 

#NB820-59177).  Human placenta lysate was prepared as follows: placental villous tissue was collected 107 

immediately upon uncomplicated, full-term (37–42 weeks’ gestation), elective C-section deliveries at 108 

MetroHealth Hospital in Cleveland, Ohio and approved by the Cleveland Clinic and MetroHealth IRB 109 

(#16–1311 and #16–00335, respectively). This tissue was normally discarded placentas with intact fetal 110 

membranes, and following inclusion in the study no protected health information, identifiers, or clinical 111 

data were collected. A waiver of consent was approved by the Cleveland Clinic Foundation IRB as 112 

the placentas were collected anonymously. Engineered human heart tissue was obtained as follows:  113 

human-induced pluripotent stem cells (generated by the California Institute of Regenerative Medicine) 114 

were differentiated into beating ventricular-like cardiomyocytes (iCMs) and grown in a monolayer.  To 115 

enhance maturation, iCMs were subsequently grown as engineered heart tissues as we have previously 116 

described23. Immunoblotting was conducted using anti-TMPRSS2 (abcam #92323), anti-ACE2 (Abcam 117 

#15348), anti-tubulin (CST #3873S), and anti-GAPDH (CST #5174) antibodies.  The mean ratio of 118 

TMPRSS2 or ACE2 to loading control ± SEM is documented, unless stated otherwise. Primary antibody 119 

was used as in a 1:10000 titer overnight at 4°C in 3% bovine serum albumin/Tris-buffered saline-Tween 120 

20.  Secondary antibody (GE Healthcare, Buckinghamshire, UK) was used in a 1:2000 titer in 5% 121 

milk/Tris-buffered saline-Tween for 1 hour at room temperature.  Final autoradiographic films (Bioblot 122 

BXR, Laboratory Product Sales, Rochester, NY) were quantified by densitometry using ImageJ software 123 

(National Institutes of Health). All experiments were performed in accordance with relevant guidelines 124 

and regulations.  125 

 126 

 127 

 128 
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Confocal Microscopy 129 

Venous blood drawn into and separated as citrated plasma was lysed and fixed with BD FACS lysing 130 

solution (BD Biosciences, NJ, USA, cat# 349202) for 10 mins.  The platelet pellet was washed with 1X 131 

PBS, centrifuged at 1500g for 7 mins, resuspended in HEPES-buffered Tyrode solution supplemented 132 

with 2% FBS and then stained for 1 hour with the following: CD41 to confirm platelets (ThermoFisher 133 

eBio cat #11-0419-42), ACE2 antibody (Novus cat#NBP2-72117AF647), TMPRSS2 antibody (SantaCruz 134 

cat#sc-515727 AF488) and DAPI to eliminate any DNA components.  Mounted slides were resolved by 135 

fluorescent microscopy using a Scanning Disk Nikon A1 confocal microscope with 100x objective lens.  136 

All experiments were performed in accordance with relevant guidelines and regulations. 137 

 138 

Study Design 139 

Quality-assured clinical data from ambulatory and hospitalized Cleveland Clinic patients treated in 140 

Northeast Ohio and South Florida was used to appraise data on 22,072 symptomatic patients evaluated 141 

for COVID-19 with the goal of determining whether current aspirin use protects patients from death 142 

and/or the secondary composite outcome of MI, thrombotic stroke, and/or VTE. Positive testing for a 143 

SARS-CoV-2 amplicon by nasopharyngeal RT-PCR was used to determine infection status. The electronic 144 

medical record and hospital Medication Administration Record (MAR) was used to confirm new or 145 

ongoing administration of 81 mg aspirin or other NSAIDs for both outpatients and inpatients.  146 

 147 

Statistical Analysis 148 

Categorical factors are summarized using frequencies and percentages, while continuous factors are 149 

described using median and ranges.  Initial descriptive analyses were performed.  Comparisons were 150 

made between those with known death status and those with missing death information to identify if 151 

any differences exist in these cohorts.  Then among those with known death status, differences in COVID 152 
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positive and COVID negative patients were assessed.  Finally, after stratifying by COVID status, 153 

comparisons of those with and without aspirin use were performed.  For all tables, continuous measures 154 

were compared using nonparametric Wilcoxon rank sum tests, while categorical factors were compared 155 

using Pearson chi-square tests or Fisher exact tests, for rare events.   156 

 157 

Given the differences across many covariates, propensity score matching was performed to account for 158 

differences between those with and without aspirin use.  This approach used two steps.  First, multiple 159 

imputation was performed on all demographic and covariate measures within COVID status stratified 160 

datasets, using fully conditional specification methods.  Ten imputed datasets were created.  Then 161 

propensity score models were fit for each dataset, with aspirin use as the response and all other 162 

measures as predictors. Predicted probability of aspirin use from each model was calculated, and these 163 

probabilities were averaged across models for each patient.  Greedy matching was then performed 164 

using a caliper of 0.2 standard deviations of the logit to create matched datasets for both COVID positive 165 

and negative patients.  A small number of aspirin users could not be matched well and were excluded 166 

from the matched analysis.  Comparisons of outcomes were performed using mixed effect logistic 167 

regression models to account for the matching process.  Overlap weighting propensity score analyses 168 

were also performed24 which data with the same conclusions. This analysis was repeated using NSAID 169 

groups.  For significant effects, E-values25 that represent the magnitude of the association between an 170 

unobserved covariate and both the medication group and outcome necessary to make the result non-171 

significant was also calculated.  Analyses were performed using SAS software (version 9.4; Cary, NC).  A 172 

significance level of 0.05 was assumed for all tests.  173 

 174 

 175 

 176 
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Results  177 

Expression of ACE2 (n=6) and TMPRSS2 (n=3) on the platelet surface was observed by confocal 178 

microscopy (Figure 1).  Expression of TMPRSS2 in healthy subjects (mean age 40.1 ± 2.8 years, n=20) was 179 

also confirmed by immunoblotting at the expected molecular weight of ~50 KDa.   180 

 181 

 182 

 183 

Utilizing human brain as a positive control, TMPRSS2 expression was standardized to a loading control 184 

with no correlation between age and platelet TMPRSS2 expression (Figure 2A; r2=0.058, p=0.30).  Since 185 

ACE2 exists as multiple glycosylated proteins of variable molecular weight26-28, human brain29, human 186 

placenta30, and engineered heart tissue31 were utilized as positive controls to confirm predominant 187 

migration at ~100 kDa as expected.  Given that patients with confirmed CAD receive antiplatelet 188 

medications according to established guidelines, TMPRSS2 expression for healthy controls (n=20) was 189 

compared to patients with coronary artery disease (CAD, n=10) and, while numerically greater in CAD, 190 

was without a statistically significant difference (Figure 2A, p=0.15).   191 

 192 
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Similarly, expression of ACE2 in healthy subjects (n=20) was confirmed by immunoblotting.   ACE2 193 

expression standardized to tubulin did not correlate with age (Figure 2B; r2=0.0039, p=0.79).    194 

 195 

Platelet ACE2 in healthy subjects (n=20) was compared to patients with CAD (n=10) and, again, while 196 

numerically higher in CAD, was without a statistical difference (Figure 2B, p=0.11).  Further, we did not 197 

observe sex-specific differences in platelet expression of ACE2 or TMPRSS2 (20 men and 20 women in 198 
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each group). Full size, uncropped immunoblots for ACE2, TMPRSS2, and loading controls are found in 199 

Supplemental Figure 1A-C. 200 

 201 

22,072 patients tested for COVID-19 at two Cleveland Clinic hospitals between March 13, 2020 to May 202 

13, 2020 were evaluated.  Within this cohort, 11,507 patients had complete clinical data and 1,994 203 

tested positive for the SARS-CoV-2 amplicon by RT-PCR testing.  Amongst these 1,994 patients, 1,709 204 

were not exposed and 285 patients were exposed to aspirin.  In an attempt to differentiate an anti-205 

platelet drug effect with aspirin from a more general NSAID class effect, we propensity-matched 206 

patients 1,445 patients not exposed and 465 patients exposed to NSAID therapy (Figure 3).   207 

 208 

 209 

 210 

 211 

 212 
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Table 1 shows the unadjusted characteristics of each comparative cohort for aspirin.   213 

 214 
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Table 2 shows the unadjusted characteristics of each comparative cohort for NSAIDs.   215 

 216 
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The 248 propensity-matched patients either treated with aspirin or not demonstrated no significant 217 

group differences in demographics or clinical covariates.  Aspirin therapy did not alter mortality (13.3% 218 

vs 15.3%, p=0.53). The 444 propensity-matched patients either exposed or not to NSAIDs demonstrated 219 

no significant group differences in demographics or clinical covariates.  NSAID therapy did not alter 220 

mortality (7.0% vs 7.2%, p=0.90). In propensity-matched patients treated with aspirin, the incidence of 221 

MI (2.0% vs 0.81%, p=0.27) and VTE (4.0% vs 1.6%, p=0.12) were not significantly different, but aspirin 222 

therapy was associated with an increased risk of thrombotic stroke (3.6% vs 0.40%, p=0.036).  In 223 

propensity-matched patients treated with NSAIDs, the incidence of MI (0.68% vs 0.23%, p=0.34), VTE 224 

(2.0% vs 0.90%, p=0.17), and thrombotic stroke (1.1% vs 0.45%, p=0.27) was not affected.  Using the 225 

composite thrombotic endpoint of MI, VTE, and thrombotic stroke, both aspirin (9.3% aspirin vs 2.8% no 226 

aspirin, p=0.005) and NSAID therapy (3.8% NSAIDs vs 1.6% no NSAIDs, p=0.046) were associated with 227 

signals for thrombosis (Supplemental Figure 1).  Overall, there was no change in mortality in COVID-19 228 

for patient treated with either aspirin (OR 0.52, 95% CI: 0.51-1.41; p=0.52) or NSAIDs (OR 0.97, 95% CI: 229 

0.58-1.62; p=0.90) (Figure 4).  230 

231 

However, both aspirin and NSAID use in COVID-19 show signals for harm with increased thrombotic risk 232 
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with aspirin (OR 3.52, 95% CI: 1.48-8.40; p=0.005) and NSAIDs (OR 2.49, 95% CI: 0.58-1.62; p=0.046) for 233 

the composite endpoint of MI, thrombotic stroke, and VTE (Supplemental Figure 2).   234 

 235 

Discussion 236 

In this study, we make the observation that both ACE2 and TMPRSS2 proteins which bind and ligate 237 

SARS-CoV-2 are expressed in healthy human platelets. The expression of these receptors in platelets 238 

does not vary significantly with age and, while numerically higher, are not strikingly different in patients 239 

with CAD compared to healthy controls.  The presence of known SARS-CoV-2 receptors on platelets 240 

suggests the possibility that SARS-CoV-2 may directly activate platelets and contribute to thrombosis or 241 

promote thrombosis indirectly by mediators secreted from platelets .  242 

 243 

A recent investigation revealed platelet reactivity is enhanced in COVID-19 patients20,32-34 and appears to 244 

be suppressed by the presence of high dose aspirin in vitro33.  In the absence of randomized controlled 245 

data for aspirin in patients with COVID-19, we conducted a propensity-matched analysis of patients 246 

showing aspirin has no mortality benefit in patients with COVID-19, and, in fact, displays a slightly 247 

increased signal for harm driven mostly by thrombotic stroke.   Platelet reactivity data in vitro is often 248 

extrapolated to suggest a risk for harm, but it is important to acknowledge that the behavior of anti-249 

platelet medications in vivo can be markedly different from in vitro studies.  Our goal was to clarify this 250 

concern by using real-life data with both mortality and thrombotic end points. 251 

 252 

The failure to show a protective effect of the antiplatelet medication aspirin in patients with COVID-19 253 

may be related to the dose administered, an insensitivity to aspirin’s mechanism of platelet inhibition in 254 

COVID-19, or an altered platelet phenotype as was clearly demonstrated by Manne et al. comparing 255 

healthy platelets to platelets from patients with COVID-1933.  Cameron et al. previously demonstrated a 256 
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divergent platelet phenotype in patients with chronic arterial disease and diabetes with resistance to 257 

aspirin and clopidogrel therapy in diseased but not healthy platelets21.  Similarly, Liang et al 258 

demonstrated in platelets from patients with diabetes, surface P2Y12 receptors are arranged in a 259 

different conformation and are impressively resistant to inhibition by clopidogrel 35.   260 

 261 

Elbadawi et al. reported the absolute neutrophil count and not D-dimer, a traditional biomarker 262 

associated with thrombosis, is an independent predictor of thrombotic events in patients with COVID-263 

1936.  The mortality benefit of dexamethasone, an immunosuppressant and anti-inflammatory 264 

medication, in hospitalized patients with COVID-1937 and recent reports of immunothrombosis17,38-41 and 265 

microvascular occlusion18,42-44 by multiple independent groups suggest platelets may be indirect 266 

mediators of thrombosis and perhaps not the best direct targets for pharmacological intervention.  267 

Contemporaneous with submission of  this manuscript, a smaller, non-propensity matched study has 268 

shown aspirin treatment decreased mortality that was driven by reduced ICU level care and mechanical 269 

ventilatory needs but not thrombosis in patients with COVID-19.  This report suggests a protective effect 270 

of aspirin that is distinct from altering end-organ thrombosis 45, and possibly from immune-mediated 271 

acute respiratory distress syndrome (ARDS) as previously demonstrated46,47.  By evaluating another anti-272 

inflammatory mechanism using patients treated with NSAIDs in parallel with aspirin in the same hospital 273 

and locations in the U.S., we similarly show no effect on mortality, with all statistical models accounting 274 

for any contribution of prophylactic and therapeutic heparin use in hospitalized patients and subsequent 275 

outcomes. 276 

 277 

The signal for increased composite thrombotic events in COVID-19 patients treated with aspirin was 278 

surprising and driven mostly by stroke.  Recent observational studies show mixed results for COVID-19-279 

related stroke risk with one small study suggesting an increased risk in younger patients48, one large 280 
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study showing an overall low risk49, and one very large study paradoxically showing that COVID-19 281 

infection is associated with a decreased risk of thrombotic cerebrovascular stroke50.  A mechanistic 282 

explanation for our finding may be related to the known neuroprotective effect of interleukin-6 (IL-6)51 283 

which is greatly elevated in systemic SARS-CoV-2 infection52 and reported to be reduced by aspirin53. 284 

 285 

We show quite clearly in our study with investigators working independently of each other in different 286 

regions of the U.S. that human platelets contain the SARS-CoV-2 receptors ACE2 and TMPRSS2.  The 287 

inter-individual expression difference of platelet ACE2 and TMPRSS2 was striking.  Our overall 288 

observation is consistent with the findings of Zaid et al. who identified SARS-CoV-2 mRNA in human 289 

platelets implying a mechanism of entry must exist, and then a report by Zhang et al. who identified 290 

ACE2 on human platelets20,54.  Our data are at odds with Manne et al. who failed to detect ACE2 protein 291 

in platelets by immunoblotting using white blood cells (WBC) as a positive control 33.  Notably, Manne et 292 

al. employed a CD45 depletion step on isolated platelets to eliminate the possibility of WBC 293 

contamination prior to immunoblotting.  CD45 is also present on platelets, and we previously 294 

demonstrated this step decreases the platelet yield available for immunoblotting 22.  Lastly, Nassa et al. 295 

have very elegantly shown that the platelet transcriptome and proteome are dynamic and often mRNA 296 

to protein concordance is not observed but, rather, dependent on external platelet cues55.  Overall, our 297 

data are congruent with Koupenova et al. suggesting that the ssRNA virus SARS-CoV-2 may behave 298 

similarly to the ssRNA influenza virus by utilizing platelets to modulate immune function that ultimately 299 

may lead to immunothrombosis16. 300 

 301 

 302 

 303 

 304 
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Study Limitations 305 

The observational nature of this study from just two hospitals has intrinsic limitations, and the small 306 

patient sample to allow for propensity matching limits generalizability of our findings.  A few patients 307 

testing positive for SARS-CoV-2 were ambulatory and we relied on physician prescriptions making it 308 

impossible to confirm compliance to aspirin therapy. 309 

 310 

Conclusions 311 

SARS-CoV-2 high affinity receptors are present in platelets from healthy individuals. This finding crucially 312 

suggests platelets may be involved in COVID-19 pathogenesis and the observed thrombotic phenotype. 313 

However, our real-world clinical data suggests regular intake of low dose aspirin does not protect 314 

against adverse thrombotic events or death in COVID-19 patients.  Platelets are fastidious components 315 

of the circulatory system with a wide range of critical functions, including contributing to 316 

immunoinflammatory host responses.  Thus, targeting platelet thrombotic function may alter its roles in 317 

other domains. The nuanced mechanisms of thrombosis in COVID-19 may be unique and deserves 318 

further investigation. The use of traditional antiplatelet agents may not protect against thrombotic 319 

events or mortality in COVID-19, but, in fact, cause harm.  The awareness of this potential harm and role 320 

of randomized controlled drug trials in assessing the suitability of antiplatelet agents in COVID-19 is 321 

critical. 322 

 323 

 324 

 325 

 326 

 327 

 328 
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Figures 501 
 502 
Figure 1. Expression of ACE2 and TMPRSS2 in Platelets by Confocal Microscopy.   Platelets isolated 503 
from venous blood of healthy individuals was stained for 1h with the following antibodies: CD41 504 
(platelet-specific marker), ACE2, TMPRSS2, and DAPI to eliminate any DNA components.  Mounted slides 505 
were resolved by confocal fluorescent microscopy using a 100x objective lens.  Images are 506 
representative of n=6 donors for ACE2 and n=3 for TMPRSS2.  Each image represents a different donor.  507 
The scale bar is noted. 508 
 509 
Figure 2. A. Expression of TMPRSS2 in Platelets: Washed platelets from healthy individuals (mean age 510 
40.1 ± 2.8 years, n=20) were isolated and proteins separate by SDS-PAGE with molecular weight shown 511 
in KiloDaltons (KDa).  Immunoblotting was conducted an using an anti-TMPRSS2 antibody or anti-tubulin 512 
immunoblotting as a loading control.  The ratio of protein to loading control is expressed as a function of 513 
age and the correlation coefficient is noted (r ± 95% CI, P=0.30). Human brain lysate served as a positive 514 
control for TMPRSS2 migrating at the expected molecular weight (~50 KDa).  Data shown are 515 
representative of 20 healthy individuals (10 male and  10 female) and 10 patients with coronary artery 516 
disease (CAD).  The mean ratio of TMPRSS2/Tubulin ± SEM is noted, P=0.145 between healthy and CAD 517 
by Mann Whitney U). B. Expression of ACE2 in Platelets: Washed platelets from healthy individuals 518 
(mean age 40.1 ± 2.8 years, n=20) were isolated and proteins separate by SDS-PAGE with molecular 519 
weight shown in KiloDaltons (KDa).  Lane 1 is human platelet lysate, lane 2 is human brain lysate, lane 3 520 
is human placenta lysate, lane 4 is lysate from engineered human heart tissue.  Immunoblotting was 521 
conducted using an using anti-ACE2 antibody.  Anti-tubulin and anti-GAPDH are loading controls.  ACE2 522 
migrates at the expected molecular weight (~100 KDa) shown by an arrowhead with glycosylated forms 523 
indicated by *.  The ratio of ACE2 protein to loading control is expressed as a function of age and the 524 
correlation coefficient is noted (r	 ± 95% CI, P=0.79). Data shown are representative of 20 healthy 525 
individuals (10 male and  10 female) and 10 patients with coronary artery disease (CAD).  The mean ratio 526 
of ACE2/Tubulin ± SEM is noted, P=0.112 between healthy and CAD by Mann Whitney U). 527 
 528 
Figure 3.  Patients Testing Positive for SARS-CoV-2 taking Aspirin or NSAIDs.  Patients testing positive 529 
for a SARS-CoV-2 amplicon at two Cleveland Clinic hospitals were evaluated.  Patients initiated with 530 
aspirin or NSAID therapy or continuing aspirin or NSAID if admitted to the hospital were included in this 531 
study.  Clinical variables in each group where then re-evaluated following careful propensity matching . 532 
 533 
Table 1.  Characteristics of Population taking Aspirin Therapy:  Unadjusted data are for patients testing 534 
positive for SARS-CoV-2 not taking aspirin or with established aspirin therapy or initiated with low dose 535 
aspirin at the time of diagnosis.  536 
 537 
Table 2.  Characteristics of Population taking NSAID Therapy:  Unadjusted data are for patients testing 538 
positive for SARS-CoV-2 not taking NSAID or with established NSAID therapy or initiated with NSAID at 539 
the time of diagnosis.  540 
 541 
Figure 4. Mortality for Propensity-matched patients:  Propensity-matched data for patients testing 542 
positive for COVD-19 and outcomes taking either 81 mg aspirin (n=248 in each group) or NSAIDs (n=444 543 
in each group) at the time of diagnosis.  Forest plot representation of data as Odds Ratio (OR) with 95% 544 
confidence interval (C.I.) for the primary endpoint of death. 545 
 546 
 547 
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