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Abstract: MicroRNAs (miRNAs) represent a family of short non-coding regulatory RNA molecules
that are produced in a tissue and time-specific manner to orchestrate gene expression post-transcription.
MiRNAs hybridize to target mRNA(s) to induce translation repression or mRNA degradation. Func-
tional studies have demonstrated that miRNAs are engaged in virtually every physiological process
and, consequently, miRNA dysregulations have been linked to multiple human pathologies. Thus,
miRNA mimics and anti-miRNAs that restore miRNA expression or downregulate aberrantly ex-
pressed miRNAs, respectively, are highly sought-after therapeutic strategies for effective manipula-
tion of miRNA levels. In this regard, carrier vehicles that facilitate proficient and safe delivery of
miRNA-based therapeutics are fundamental to the clinical success of these pharmaceuticals. Here, we
highlight the strengths and weaknesses of current state-of-the-art viral and non-viral miRNA delivery
systems and provide perspective on how these tools can be exploited to improve the outcomes of
miRNA-based therapeutics.

Keywords: miRNA; miRNA delivery; miRNA therapeutics; viral vectors; non-viral vectors

1. Introduction

The spatiotemporal expression of microRNAs (miRNAs) in eukaryotes, a class of
small single-stranded non-coding RNAs (18–25 nucleotides), plays a critical role in post-
transcriptional gene regulation [1]. MiRNAs serve as modulators of gene expression by
annealing to complementary sequences in the 3′ or 5′ untranslated regions (3′UTR or
5′UTR) of target mRNAs to block translation machinery and drive mRNA cleavage [2–5].
Currently, 4571 human miRNAs (1917 precursors, 2654 mature) are annotated in public
repositories [6], and it is estimated that these non-coding RNAs regulate >30% of protein-
coding genes involved in different biological processes [7,8]. Additionally, the availability
of the human miRNA tissue atlas, which provides a comprehensive catalogue of tissue-
specific miRNA distribution and expression patterns, enables investigators to probe the
physiological and pathological contributions of different miRNAs [9,10]. Several reports
implicate that dysregulated or dysfunctional miRNAs are associated with diverse human
pathologies, including cancer, cardiovascular, neurodegenerative, inflammatory, genetic,
and infectious diseases [11–17].

With the emerging evidence that miRNAs are involved in the onset and progression
of diverse biological anomalies, there has been a drastic surge of interest in miRNA-based
therapies over the last few decades [18,19]. Therapeutic approaches have been developed
to either suppress or restore the expression of disease-associated miRNAs (Table 1). In
circumstances where reduced miRNA expression drives the disease, miRNA mimics can
be used to restore their expression and function [19–22]. In contrast, anti-miRNAs (an-
tagomirs) are exploited to counteract the activity of upregulated miRNAs responsible for
disease [22–24]. However, the safe and efficient delivery of miRNA mimics or antagomirs
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to target tissues remains a significant challenge for miRNA-based therapies. Major limita-
tions associated with miRNA delivery are susceptibility to degradation by nucleases, rapid
clearance from blood, immunotoxicity, and low tissue permeability [25–29]. Chemical mod-
ifications of miRNAs have significantly improved their stability and provided protection
against nucleases [30–33]. Further, several oligonucleotide carriers have been developed
to enhance stability and improve tissue penetration. In vivo viral and non-viral delivery
miRNA methods, the challenges associated with the delivery methods, and strategies to
circumvent them for a multitude of diseases, with a focus on cancer therapy, have been
extensively reviewed [34–36]. These reviews also provide a detailed discussion on the
miRNA expression profiles implicated in cancers. From this perspective, we emphasize
the delivery aspects of miRNA in various human diseases and draw attention to some
newly evolving miRNA delivery techniques that have not been covered in the recent
reviews. Here, we provide a holistic overview of the viral and non-viral delivery systems
developed to maximize miRNA therapeutic efficacy, highlight selected examples of their
applications in various human diseases, comment on current clinical trials in the field, and
offer perspectives on the future design and development of miRNA delivery technologies.

Table 1. Selected list of miRNA-based therapeutics.

Delivery System miRNA Target Disease Cellular Targets Reference

Viral Systems

Lentiviral-Based Delivery Systems

Lentiviral miR-133b Spinal cord regeneration RhoA, Xylt1, Epha7, P2X, P2RX4 [37]

Lentiviral let-7 Non-small-cell lung cancer
(NSCLC)

RAS, MYC, HMGA2, CDC25A,
CDK6, cyclin-D2 [38]

Adeno-associated virus
(AAV) serotype 3

miR-26a
miR-122 Liver tumor PIK3C2α/Akt/HIF-1α/VEGFA

Bcl-2, Bcl-w, Bcl-xl, and Mcl-1 [39]

AAV serotype 9 miR-298 Spinal and bulbar
muscular atrophy Androgen receptor [40]

AAV serotype 5 miATXN3 Spinocerebellar ataxia type
3 (SCA3) ATXN3 [41]

Non-Viral Systems

Lipid-Based Delivery Systems

Lipid nanoparticle ds-miR-634 Pancreatic cancer OPA1, TFAM, APIP, XIAP, and
BIRC5, NRF2, LAMP2 [42]

Neutral liposome miR-34a Lung cancer BCL-2, c-Met, KRAS [43]
Cationic liposome anti-miR-712 Atherosclerosis TIMP3, MMPs, ADAMs [44]

Cationic liposome miR-143
miR-145 Colorectal carcinoma

ERK5, K-ras, CHEK2
MYCN, FOS, YES, FLI, cyclin D2,

cyclin CDK3, MAP3K3, MAPK4K4
[44]

Cationic liposome miR-7 Lung cancer IRS-1, RAF-1, EGFR [45]
Cationic liposome miR-29b Lung cancer CDK6, DNMT3B, MCL1 [46]
Ionizable liposome miR-200c Lung cancer PRDX2, SESN1, GAPB/Nrf2 [47]

Ionizable cationic lipid
nanoparticles miR-199b-5p

Colon, breast, prostate,
glioblastoma,

medulloblastoma cancer
Hes-1 [48]

Polymeric Delivery Systems

Polyethyleneimines
(PEI)

miR-145
miR-33a Colon carcinoma c-Myc, ERK5 [49]

PEI-PEG miR-34a Hepatocellular carcinoma SNAI1 [50]
PACE polymer anti-miR-21 Glioblastoma PTEN [51]

Polymer micelle anti-miR-21 Glioma PTEN [52]

Inorganic Compound-Based Delivery Systems

Carbonate apatite miR-29b
miR-4689 Colorectal cancers BCL-2, MCL1

KRAS, AKT1 [53,54]
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Table 1. Cont.

Delivery System miRNA Target Disease Cellular Targets Reference

Exosome-Based Delivery Systems

Exosomes miR-199a-3p Ovarian cancer c-Met, mTOR, IKKβ, and CD44 [55]
Exosome-GE11 peptide let-7 Breast cancer HMGA2 [56]

Exosome miR-122 Hepatocellular carcinoma ADAM10, IGF1R, CCNG1 [57]
Exosome miR-145 Lung cancer CDH2 [58]

2. Virus-Based miRNA and Anti-miRNA Oligonucleotide Delivery Systems

Genetically modified viruses can efficiently transfer desired oligonucleotides into
different tissue types and drive elevated levels of gene expression for protracted periods. In
the context of eukaryotic viruses, the pathogenic determinants are eliminated from the viral
genome to reduce toxicity and accommodate the transgene(s). Over the past few decades, a
variety of viral delivery vehicles have emerged that can be adapted for specific transgenes,
treatment purposes, and targeted cell types. Here, we identify distinct characteristics and
limitations of major virus-based vectors used for miRNA or anti-mRNA (also known as
antagomir) delivery, including retroviral, lentiviral, adenoviral and adeno-associated virus
(AAV) (reviewed in [59,60]), and bacteriophage-based virus-like particle (VLP) vectors
(Figure 1) [61,62].
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Figure 1. Key advantages and disadvantages of virus-based vectors used for miRNA delivery are
highlighted. Viral vectors represented here include retroviral, lentiviral, adeno-associated, and
bacteriophage-based VLP vectors. Figure was created with BioRender.com.

2.1. Retroviral and Lentiviral Vectors

Retroviral vectors (RVs), developed from lipid-enveloped RNA viruses, have been
pivotal for the stable transfer of therapeutic genes into dividing cells [60]. Most RVs are
derived from the Moloney murine leukemia viruses (MoMLVs) that have a relatively simple
genome structure encoding the Gag, Pol, and Env proteins flanked by long terminal repeats
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(LTR) [63]. Upon recognition and binding to specific cell surface-associated receptors, viral
RNA enters the cytoplasm, is reverse transcribed into dsDNA, and proceeds to randomly
integrate into one of the host chromosomes. The ability to integrate exogenous DNA
into the host chromosome imparts a “Janus-faced” character to RVs. While genomic
integration accentuates persistent transgene expression, insertional inactivation of critical
genes or their regulatory elements can be detrimental for the cell [64,65]. Nevertheless,
RV-mediated miRNA delivery has been shown to be promising in regenerative medicine.
For example, heightened expression of miR-138 in murine embryonic fibroblasts led to
the downregulation of the p53 signaling pathway and consequently favored induced
pluripotent stem (iPS) cell production, which has implications in regenerative medicine [66].

Members of the lentivirus genus of Retroviridae family, including immunodeficiency
viruses of bovine (BIV), feline (FIV), equine (EIAV), simian (SIV), and human (HIV-2), have
been tailored to develop lentiviral vectors (LVs) [67–71]. In contrast to RVs that can only
access the host chromosome when the nuclear membrane is dismantled during mitosis,
LVs can actively translocate across an intact nuclear membrane via the nuclear pores and,
thereby, can target both quiescent and non-quiescent cells [72]. Another major hurdle
associated with RVs is the significant risk of developing oncogenesis as a consequence
of insertional mutagenesis [73,74]. Because LVs preferably integrate within actively tran-
scribing units, they have reduced likelihood of triggering insertional oncogenesis [75–77].
Several studies have effectively used LVs for the delivery of therapeutic miRNA mimics or
antagonists. In a mouse model of chronic lymphocytic leukemia (CLL), lentiviral delivery
and subsequent elevated levels of microRNAs, miR-15a, and miR-16 caused the depletion
of malignant B cells and mitigated the disease [78]. Another study explored the therapeutic
potential of lentiviral miR-494 sponge and demonstrated that these anti-miRNAs could
sequester miR-494 molecules away from their cellular targets to reduce tumor growth and
metastasis [79].

2.2. Adenovirus and Adeno-Associated Virus Vectors

Adenoviruses (Ad) and adeno-associated viruses (AAV) are engineered from non-
enveloped viruses with double-stranded and single-stranded DNA genomes, respectively.
AAVs emerged as potent gene delivery systems owing to their non-pathogenic profile,
broad target tissue spectrum, and sustained presence in the system [80]. Additionally,
two key features of these viruses contribute to their therapeutic success. Similar to LVs,
both Ads and AAVs can infect resting or dividing cells. However, unlike RVs and LVs,
these viruses do not integrate into the host chromosome and hence are unlikely agents of
insertional oncogenic activation. Compared to RVs and LVs that can carry up to 8 Kb of
foreign nucleotide sequences, Ads can carry as much as 38 kb of alien DNA [60]. Although
AAVs have a fairly limited capacity for exogenous DNA (~4.8 Kb), they have sufficient
room to accommodate most miRNA cassettes [81]. Several DNA viral platforms have
been designed to deliver miRNAs (Table 1). Further, Miyazaki et al. reported that AAV
vector-mediated delivery of miR-196a can silence Elav-like family member 2 (CELF2) and
subsequently reduce androgen receptor (AR) mRNA stability, leading to the attenuation of
spinal and bulbar muscular atrophy (SBMA) phenotypes [82]. Recently, Tang et al. found
that recombinant adenovirus-delivered hemagglutinin-specific artificial miRNAs could
provide protection from lethal strains of influenza virus and mitigate disease manifesta-
tions [83]. In another study, Pourshafie et al. used an AAV delivery system with high
transduction efficiency to overexpress miR-298 and attenuated neuromuscular diseases
in mice models [40]. Despite these successes, studies in large animal and human patients
noted immune activation against AAV [84]. Indeed, several parameters, including specific
properties of the transgene, vector dose and serotype, administration route, host species,
and the presence of pre-existing neutralizing antibodies, may influence the development
of an immunological response against AAV [84]. Because the promoter and kinetics of
transgene expression strongly affect the immune response elicited to AAV, efforts have
been made to achieve focused transgene expression using highly compact tissue-specific
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promoters and enhancers [85]. In this context, investigators have incorporated tissue-
specific miRNA target sequences into the 3′-UTR of an AAV vector cassette to prevent
unintentional transgene expression in the liver without disrupting the transgene expression
in other tissues [86].

2.3. Bacteriophage-Based VLP Vectors

The success of eukaryotic virus-based miRNA delivery systems can be attributed to
their high transduction efficiency, broad tropism, and long-term expression. However, the
potency of these delivery vehicles is frequently restricted by their high cytotoxicity [87], car-
cinogenic potential [88], and strong immunogenicity [89]. To circumvent these challenges,
researchers have exploited the encapsidation system of viruses that infect bacteria, termed
bacteriophages, to deliver miRNAs. Pan et al. used Escherichia coli as cellular factories
to package miRNAs in capsids of bacteriophage MS2 and subsequently cross-linked the
miRNA carrying VLPs with cell-penetrating peptides (CPP) to achieve efficient transduc-
tion [61]. Succeeding studies have shown that MS2 VLP-based miRNA delivery systems
containing disease-specific miRNAs could be harnessed to treat a chronic autoimmune
disease, osteoclastogenesis, and hepatocellular carcinoma [90–92]. Another study has
demonstrated that targeted delivery of miRNA-23b via bacteriophage PP7 VLPs to hep-
atoma cells can inhibit the migration of these cells and potentially reduce the risks of various
associated cancers [62]. Another group has used folate-conjugated phage packaging RNA
(pRNA) as a vehicle to deliver artificial miRNAs targeting the 3′UTR of coxsackievirus
B3 (CVB3) strains Kandolf and CG, a common cause of myocarditis [93]. The pRNA is
a 117-nucleotide-long RNA molecule found in Bacillus subtilis bacteriophage phi 29 that
is essential for phage DNA encapsidation [94]. The unique structural features of pRNA
enable the formation of oligomeric assemblies, and consequently, pRNAs have the ability
to carry both therapeutic molecules and targeting ligands for efficient drug delivery [95].
Overall, research on phage-derived miRNA delivery systems is still in its early stages, and
future studies evaluating the immunogenicity profile and pharmaceutical production of
these vehicles will be imperative for the clinical exploitation of phage-derived vehicles for
miRNA delivery.

3. Non-Viral-Based miRNA and Anti-miRNA Oligonucleotide Delivery Systems

Despite the highly efficient viral-based miRNA delivery systems, they are associated
with high immunogenicity, toxicity, and size limitation. To overcome these challenges, less
toxic and biocompatible non-viral-based miRNA delivery approaches have come to light.
The non-viral delivery systems ensure successful delivery of miRNA or miRNA-expressing
vectors inside the cell without being subjected to nuclease degradation. Here, we discuss
the different chemical methods of non-viral miRNA delivery, including lipid, polymer,
inorganic, and extra-cellular vesicle carrier-based approaches (Figure 2).

3.1. Lipid-Based Delivery Systems

Lipid-based nanocarriers are the most widely used non-viral delivery methods [96].
Primarily, cationic lipids with hydrophilic heads and hydrophobic tails form a complex with
the anionic nucleic acid, resulting in a lipoplex [97,98]. These cationic lipoplexes have a high
affinity with the cell membrane, and they are non-immunogenic and easy to manufacture.
Many commercially available cationic lipoplexes—for example, Lipofectamine® RNAi-
MAX, SiPORT™ (Invitrogen) [99,100], SilentFect™ (Bio-Rad) [101], and DharmaFECT®

(Dharmacon) [102]—have been routinely used for miRNA delivery. Although cationic
liposomes have been used to deliver miRNA in vivo, the efficiency is low. Several mod-
ifications have been employed to circumvent this problem. Conjugating a polyethylene
glycol (PEG) functional group to the cationic lipids helps in evading phagocytosis, thereby
improving the overall efficiency [103]. A study reported that PEG-fused liposomes en-
abled successful miR-126 delivery, resulting in enhanced blood flow and angiogenesis
in a hindlimb ischemia model [104]. Several studies have shown the successful in vivo
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transport of lipoplexes, including the systemic delivery of miR-29b fused with DOTMA,
cholesterol, and PEG in non-small-cell lung cancer (NSCLC) cells [46] and miR-34a de-
livery mediated by lipid nanoparticles, consisting of cholesterol, DDAB [105]. Another
comparable cationic lipoplex mixture containing dimethyldioctadecyl ammonium bromide
(DDAB), cholesterol, and vitamin E TPGS transported pre-miR-107 to head and neck squa-
mous cell carcinoma (HNSCC) cells and greatly alleviated the tumorigenesis of HNSCC
in vitro and in vivo [106]. Cationic DOTAP enabled the co-delivery of doxorubicin and
miR-101 in hepatocellular carcinoma (HCC) cells and also yielded desirable results [107].
Another successful combination using cationic liposome nanocarriers has been developed
for treating melanoma [108]. These nanoparticles were successful in delivering paclitaxel
and Bcl-2 siRNA for treating melanoma synergistically. Besides cancer, cationic lipoplexes
containing anti-miR-712 were able to treat atherosclerosis in inflamed endothelial cells [44].
A major disadvantage of these cationic lipoplexes is their non-specific interactions with
other undesirable proteins, leading to adverse effects and their instability. This issue has
been alleviated by the recent use of neutral liposomes for miRNA delivery. Systemic ad-
ministration of miRNA-34a delivered by a neutral liposome emulsion in a NSCLC mouse
model yielded even distribution in desired tissues and a subsequent reduction in tumor
size. Neutral DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) liposomes were able
to deliver miRNA-506 mimics or miRNA-520 in an ovarian cancer orthotopic mouse model,
leading to significant tumor suppression [109,110]. Another example of DOPC liposomes
complexed with miR-2000 proved effective in inhibiting tumor growth in orthotopic lung
cancer [111].
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One of the concerns in liposome-based delivery may be the non-specific or systemic
accumulation of the miRNA. Several approaches have been employed to enhance targeted
miRNA delivery to specific cells or tissues. Using targeting ligands in the liposome
formulations that can bind specifically to receptors on the target cell enables tissue-specific
delivery. Generally, transferrin and folic acid are widely used ligands for targeting cancer
cell receptors. Antibodies against matrix metalloproteases (MMP), vascular endothelial
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growth factor (VEGF), vascular cell adhesion molecule-1 (VCAM), and integrins fused to
lipid nanoparticles can be used to specifically target cancer cells of interest [112]. A more
recent strategy employs the use of aptamers that bind desired cell surface receptors for
delivering miRNA or siRNA lipid nanoparticles [113].

3.2. Polymeric Delivery Systems

Polymeric delivery methods primarily use polyethyleneimines (PEIs), wherein the
positively charged amine groups form a complex with the anionic RNA, thereby shield-
ing the RNA from being degraded and enabling cellular uptake [114]. Both low- and
high-molecular-weight linear and branched PEIs have been utilized as miRNA carrier
systems [115]. Comparatively, low-molecular-weight PEIs are less cytotoxic and were
shown to effectively deliver miR-33a mimics and miR-145 into colon cancer xenograft mice,
resulting in decreased tumor growth [49]. However, low transfection efficiency and cyto-
toxicity render PEIs unfavorable for clinical applications. Other polymers, such as PEG or
poly L-Lysine (PLL), when covalently fused to PEI, help in improving its biocompatibility,
thereby making it less toxic to cells [116]. PEG/PEI nanocomplex polymeric vectors proved
to be stable and enabled effective miR-150 transfection in human leukemia cells [117]. A
copolymer of poly lactic acid (PLA) and poly glycolic acid, namely poly lactide-co-glycolide
(PGLA), is an FDA-approved biodegradable polyester implicated in anti-miRNA deliv-
ery [118]. The hydrophobicity of PGLA impairs its miRNA delivery efficacy. Positively
charged synthetic polyadenoamine (PAMAM) dendrimers are biodegradable and have
higher transfection efficiency and lower cytotoxicity compared to other polymers. An
intravenous injection of PAMAM dendrimers and PEG-nanographene oxide (NGO) linked
to anti-miR-21 was successfully delivered to target tumor tissues in a recent study [119].
Another approach that has been employed is the use of polymeric micelles, consisting of a
hydrophilic and a hydrophobic polymer. Doxorubicin and tumor suppressor miR-34a were
co-delivered to cancer cells using this polymeric micelle strategy [120]. In addition to these
synthetic polymers, less toxic, natural cell-penetrating peptides (CPPs) are also involved in
miRNA delivery. CPP from naturally occurring protamine acted as a carrier for miR-29b
transfer to osteogenic stem cells [121]. Chitosan is another example of a biocompatible,
natural polysaccharide and its galactosylated form drives miRNA-16 precursor transport
to mouse colonic macrophages [122–124].

3.3. Inorganic Compound-Based Delivery Systems

Inorganic compounds that are implicated in miRNA delivery primarily include
gold [125], Fe3O4-based [126], and silica-based nanoparticles [127]. These nanoparticles,
when fused to a functional thiol or amino groups, can ensure stronger interaction with the
cargo (miRNA), thereby facilitating its delivery [125]. Administration of thiol-modified
anti-miR-155 gold nanoparticles helped to restore cardiac function in a diabetic mouse
model [128]. Moreover, gold nanoparticles conjugated to PEG led to the successful delivery
of miR-1 cancer cells, associated with high transfection efficiency and low cytotoxicity [129].
Other examples include anti-miRNA-155 embedded in silica nanoparticles that form a
complex with dopamine and AS1411 aptamer resulted in tumor growth inhibition in
colorectal cancer [130]. Silica nanoparticles are thermostable, biocompatible, and have
large surface area and pore volume, making them favorable miRNA and anti-miRNA
vehicles [131]. A nanocomplex, consisting of Fe3O4 nanoparticles and polymers, namely
polyglutamic acid and PEI, showed promising results by delivering miR-100 in vivo. In
patient xenografts, systemic injection of this nanocomplex in combination with the routine
docetaxel chemotherapy suppressed tumor growth, thereby improving its therapeutic
potential [132].

3.4. Extracellular Vesicle-Based Delivery Systems

Extracellular vesicles (EVs) are heterogenous membrane vesicles involved in intercel-
lular communication, enabling transport of biomolecules, such as proteins, miRNA, etc.,
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via the bloodstream [133]. The presence of the CD47 marker on their surface protects them
from phagocytic clearance. Additionally, surface modification of EVs facilitates targeted
biomolecule delivery to specific tissues. These features render them promising miRNA
delivery vehicles [134]. Depending upon their biogenesis, EVs are classified into exosomes,
microvesicles, and apoptotic bodies. Exosomes (40–120 nm in diameter), primarily formed
from late endosomes, have been used as effective carriers of miRNA [135,136]. The low
cytotoxicity and antigenicity of exosome-based delivery makes it highly efficient. To enrich
exosomes with miRNAs, two strategies have been employed. A cell line overexpressing
the miRNA of interest is generated, resulting in increased miRNA expression and exo-
some secretion with the encapsulated miRNA. Another strategy is isolating exosomes and
then enriching them with miRNAs. Enrichment of exosomes with miRNA is commonly
achieved by transfecting adipose tissue-derived stem cells and mesenchymal stem cells
with the miRNA of choice. The potential of the EVs as carriers of exogenous therapeutic
miRNA has been discussed in detail in earlier reports [137]. MiRNA-enriched exosomes
have been used in a wide variety of diseases, including brain disorders [138–141], cardiac
diseases [142–144], muscular disorders [126,145], cancer [146,147] etc. Exosome-mediated
delivery of miR-193b helped to diminish amyloid precursor protein levels, in an attempt
to ameliorate Alzheimer’s disease. Synaptic transmission in astrocytes is enhanced by
miR-124a secretion via extracellular vesicles that regulate the glutamate transporter [148].
In myocardial infarction disease models, intravenous injection of miRNA-126-enriched
exosomes helped to ameliorate cardiac injury and fibrosis [144]. Additionally, miRNA-126–
3p and 5p successfully delivered by exosomes from endothelial progenitor cells helped to
regulate vascular permeability in cecal ligation and puncture (CLP)-triggered sepsis [149].
MSC-derived exosomes that deliver miR-92-a-3p suppress cartilage degeneration and
can be used as potential osteoarthritis treatment [145]. In another study, bone marrow
MSC-derived exosomes enriched with anti-miRNA-375 were used to restrict apoptosis
during islet transplantation in humanized mice [150]. In a recent study, exosomes were
engineered to co-deliver an anticancer drug along with miR-21 inhibitor in colorectal cancer
cell lines to circumvent drug resistance and improve the efficacy of cancer treatment. The
ability of exosomes to regulate immune system makes them an attractive tool for miRNA
delivery in autoimmune diseases [151,152]. The levels of circulating exosomes are high in
SLE, rendering them novel biomarkers of SLE progression [153]. Further advancements
in exosome-based miRNA delivery will prove beneficial for future clinical implications in
SLE. Besides exosomes, other EVs such as microvesicles and apoptotic bodies also function
as miRNA carriers. A study reported microvesicles enriched with miRNA-29a/c that
were able to suppress tumor development in gastric cancer [154]. Endothelial cell-derived
apoptotic bodies containing miR-126 induced CXCL12 secretion, thereby protecting mice
against atherosclerosis [155].

EVs enriched with the exogenous therapeutic miRNA have been used as efficient
delivery vehicles and their applications in cell-based delivery are rapidly emerging. Despite
their efficacy, the mass production of EVs remains a challenge. Further characterization
of the EVs, including regulation of their biogenesis, determining the source from which
they have been derived, and the route of administration, needs to be carried out to achieve
large-scale production on a clinical scale. Additionally, thorough immune profiling needs to
be conducted post exosome delivery to evaluate the recipient’s immune responses, thereby
determining the clinical feasibility of this method. Thus, advancements in the isolation of
EVs on a commercial scale, strategies to enhance miRNA loading on EVs, and safe delivery
to target tissues are exciting avenues that need further exploration.

3.5. Emerging Methods of miRNA Delivery Systems

As miRNA-based therapy is growing in popularity as a means for treating diverse
human diseases, novel oligonucleotide delivery strategies are being investigated to enhance
the treatment outcomes. Gasparello and colleagues found that argininocalix[4]arene 1,
a new synthetic cationic surfactant with basic amino acids clustered on a rigid macro-
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cyclic scaffold, can efficiently transfer miRNAs and anti-miRNA molecules to target cells
in vitro [156]. Another new multivalent macrocyclic carrier, tetraargininocalix[4]arene (1),
has been effectively used as a non-covalent vector for a peptide nucleic acid–anti-miR
nanocomplex [157]. Although such novel macrocyclic carriers showed high transfection
efficiency and low cytotoxicity in a variety of cell lines, in vivo validation of these charac-
teristics will be critical for the development of therapeutic protocols.

The low transfection efficiency of neutrons and the presence of the blood–brain barrier,
which prevents the delivery of miRNA-based therapeutics to the central nervous system,
present significant obstacles to the use of oligonucleotide-based therapies in the brain. In
this context, Soto-Sánchez et al. first demonstrated that a polymeric magnetic particle,
termed Neuromag®, could be employed to deliver nucleic acids to pyramidal cells in
the rat visual cortex [158]. In a recent study, investigators demonstrated the efficacy
of Neuromag®-complexed anti-miR-134 for silencing miR-134, a miRNA implicated in
excitatory neurotransmission, neuritogenesis, spinal growth, and neuroplasticity [159].

To overcome the restricted efficiency and specificity of non-viral oligonucleotide
carriers, researchers have engineered a nanobody-functionalized nucleic acid nanogel for
the targeted delivery of miRNAs to tumor cells and to prevent tumor growth [160]. In
another work, researchers engineered a multipronged DNA star motif that can carry three
miRNA molecules and form a Shuriken-like shape upon miRNA loading [161]. In this
proof-of-concept study, Qian et al. demonstrated that the DNA Shuriken nanostructure
could be used to deliver a tumor suppressive miRNA to human colorectal cancer cells [161].
Nahar et al. assembled a DNA nanostructure carrying multiple anti-miR overhangs for
the synergistic repression of multiple oncomiRs and prevented cell cycle progression
in cancer cells [162]. Together, these studies demonstrate that the programmability of
DNA nanostructures holds great promise to further explore the delivery of miRNA-based
therapeutics.

4. Conclusions

Concerted efforts from academic research laboratories and pharmaceutical companies
bolstered the progress of miRNA-based drug candidates to clinical trials for the treatment of
diverse pathologies, ranging from kidney diseases to cardiac abnormalities, from different
types of cancer to infectious diseases (Table 2 and reviewed in [7,163,164]). Currently, more
miRNA-based therapeutics are in the pre-clinical stage or in the development pipeline for
treating post-myocardial infarction remodeling, vascular disease, cardiac fibrosis, abnormal
red blood cell production such as polycythemia vera, cardiometabolic disease, peripheral
arterial disease, and chronic heart failure [164]. Despite these provocative advances,
miRNA drug candidates are yet to reach phase III clinical trial and receive clearance
from the US Food and Drug Administration (FDA) for medical intervention. Successful
translation of miRNA-based strategies from bench to bedside remains dependent on the
development of miRNA delivery vehicles that couple essential features such as high
loading capacity, stability, enhanced half-life in circulation, minimal toxicity, and prevent
the rapid degradation of their cargo.

Although several viral and non-viral miRNA delivery systems have been successfully
used in vivo, all of these approaches have pros and cons (Figures 1 and 2). While non-
viral vectors are safe, they have low delivery efficiency. In contrast, viral vectors have
higher transfection efficiency, but face the challenges of being immunogenic and cytotoxic.
Chemical modifications and conjugations are being designed to alleviate toxicity and
optimize transfection efficiency. For example, the half-life of lipid nanoparticles in sera was
greatly increased by the conjugation of the lipids with hydrophilic and flexible polyethylene
glycol (PEG) [165]. The potency of PAMAM has been improved through PEGylation
whereas that of PEI was enhanced by generating disulfide cross-linked low-molecular-
weight PEI that are assembled with biodetachable anionic groups [163]. Combined delivery
of miRNAs and drugs is also being explored to augment therapeutic efficacy. For instance,
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biocompatible silica-based nanostructures have been employed to co-deliver anti-miR-221
and Temozolomide (TMZ) for treating drug-resistant glioma cells [166].

Table 2. Selected list of miRNA-based clinical trials.

Developmental
Drug miRNA Disease Phase Agency/Company

Miravirsen anti-miR-122 Hepatitis C virus infection II Santaris Pharma

RG-101 anti-miR-122 Hepatitis C virus infection II Regulus
Therapeutics

MRX34 miR-34 Cancer treatment I Mirna
Therapeutics

RG-012 anti-miR-21 Alport syndrome I Regulus
Therapeutics

MesomiR-1 miR-16 Malignant pleural
mesothelioma or NSCLC I

EnGeneIC/Asbestos
Diseases Research

Institute

MRG-201 miR-29 Scleroderma I miRagen
Therapeutics

MRG-106 anti-miR-155 Cutaneous T cell
lymphoma I miRagen

Therapeutics

RG-125 anti-miR-
103/107

Non-alcoholic
steatohepatitis I Regulus

Therapeutics
RG-125

(AZD4076)
anti-miR-
103/107 Type 2 diabetes I AstraZeneca

RGLS4326 anti-miR-17 Polycystic kidney
disease (PKD) I Regulus

Therapeutics
Cobomarsen
(MRG-106) anti-miR-155 Cutaneous T-cell

lymphoma (CTCL) I miRagen
therapeutics

MRG-110 anti-miR-92a Ischemia I miRagen
therapeutics

TargomiRs miR-16 Malignant pleural
mesothelioma I

Asbestos Diseases
Research

Foundation

MRG-106 anti-miR-155
Cutaneous T cell

lymphoma
and mycosis fungoides

I miRagen
Therapeutics

MRG-107 anti-miR-155 Amyotrophic lateral
sclerosis (ALS)

Entering
clinical

trial

miRagen
therapeutics

Most in vivo administration of miRNA-based therapeutics relies on systemic injection,
which is expensive, has low efficacy, and can lead to adverse side effects. Therefore,
targeted miRNA delivery platforms that improve the homing of delivery vehicles to
specific tissues are being explored. Active targeting has been achieved by tethering ligands,
such as saccharides, vitamins, bisphosphonate, antibodies, peptides, and aptamers, to the
delivery vehicles [167,168]. For example, chemical conjugation of folic acid, a vitamin, to
bacteriophage pRNA-based delivery system enables specific recognition of folate receptors
that are overexpressed on the surface of cancer cells but are barely detectable on normal
tissues [169]. Zhang et al. successfully targeted miR-145 to prostate cancer cells through
the conjugation of polyarginine peptide (R11), a cell permeable peptide, to a branched
PEI containing disulfide linkages [170]. Decoration of nanoparticles with galactose and
glycyrrhetinic acid moieties significantly improved the efficiency and specificity of active
targeting to the liver [171].

Several groups are investigating new avenues to develop unconventional delivery
methods. EnGeneIC Ltd. (Sydney, Australia) developed an antibody-coated bacterially
derived minicell (400 nm) delivery system that can package and deliver chemotherapeutics
to targeted cells [172]. Later, several groups adapted this bacteria-based technology deliver
miRNAs in pre-clinical [173,174] and clinical trials (dubbed TargomiRs; see Table 2) for
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cancer treatment. A growing body of work is now focusing on developing 3D biomaterial
scaffolds, e.g., hydrogels, and electrospun fibers, for miRNA delivery (reviewed in [59]).
A limited number of recent studies have suggested that dietary, particularly plant-based,
delivery of miRNAs could provide an effective, noninvasive, and inexpensive treatment
regime for some human diseases [175]. With the recent advances in next-generation se-
quencing technologies and bioinformatic tools, the inventory of novel miRNAs associated
with human health and disease will continue to surge over the next decade. The devel-
opment of new delivery technologies and their evaluation in animal models will be a
promising research area. Additionally, future studies should focus on the characteriza-
tion of disease-specific markers on target tissues and explore new targeting ligands for
improving miRNA therapeutic efficacy.
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