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Abstract: 
Despite the widespread use of Electroecephalography (EEG) as an imaging modality, neural generators of 
current dipoles measured by EEG at the scalp are not fully understood. Here, we use two morphologically 
accurate multicompartments neuron models (layer IV pyramidal cell and layer V spiny stellate cell) to 
characterize how spiking neurons generate current dipoles in response to synaptic input. The simulations 
indicate that the dipole generated by synaptic inputs required to drive a pyramidal cell to threshold is smaller 
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than the dipole associated the action potential itself. These results suggest a greater role of spiking neural 
activity toward EEG signals measured at the scalp than typically assumed. 

SECTION I. Introduction 
Electroencephalography (EEG) is a commonly used technique to measure electrical activity of the brain. It is 
used clinically to diagnose conditions from Alzheimer’s to Epilepsy. EEG has also permeated almost every area of 
neuroscience research, from mechanistic studies of motor control or sensory perception to neurological 
dysfunction. 

Though the mathematical principles by which electromagnetic fields propagate from the cortical surface to the 
scalp are well established [1], the link between neural generators of current dipoles that underlay EEG signals is 
under-explored [2]. The standard assumption is that EEG signals originate from post synaptic potentials on 
synchronously firing pyramidal cells. While this is a reasonable mechanism, other sources of current flow may 
also play a role in the generation of scalp potentials. The objective of the research reported here was to 
computationally investigate the components of cellular activity which most contribute to current dipoles 
associated with EEG. Murakami has computationally examined the dipoles generated by spiking neurons after 
being directly stimulated [8]. The simulations presented here expand the approach to examine individually 
spiking pyramidal cells and the relative contributions of post-synaptic potentials (PSPs) and spiking to the 
cellular current dipole following synaptic stimulation of the neuron. 

SECTION II. Approach 
In order to investigate how neuronal activity contributes to the current dipoles associated with EEG, we 
characterized layer IV pyramidal cells and spiny stellate cells under several conditions. Morphologically accurate 
multi-compartment neuron models were simulated to quantify the form and magnitude of the dipole response 
to synaptic input versus spiking activity. 

A. Cell Models 
Simulations of individual three dimensional neurons were conducted using the NEURON simulation 
environment [3]. Two neuron models were selected from the NEURON database (obtained from ModelDB 
accession number 2488 [4]), a model pyramidal cell and a spiny stellate cell. Details of the models including 
intrinsic currents and conductances used can be found in [5]. 

Chattering Pyramidal Cell 
The model pyramidal cell is a digital reconstruction of a layer V pyramidal cell located in the visual cortex of a 
cat. The dynamics of the ionic currents in combination with the dendritic morphology of the original pyramidal 
cell model caused the cell to fire in a chattering pattern (firing multiple subsequent action potentials) in 
response to a stimulus impulse. 

Regularly Spiking Pyramidal Cell 
Not all pyramidal cells exhibit chattering behaviour [5]. In order to also explore the current dipoles created by 
regularly spiking pyramidal cells, the calcium and calcium dependent potassium currents, which drive the 
chattering behaviour, were removed from all segments of a separate pyramidal cell model to characterize the 
dipole contribution of single action potentials in response to a stimulus impulse. 

Interneuron 
The brain contains several hundred different types of neurons [6]. As a first step toward characterizing the 
contribution of interneurons, we used a spiny stellate cell, which is one of the most common interneurons in the 



brain [7]. The spiny stellate model used was a digital reconstruction of a layer IV spiny stellate cell from the 
somatosensory cortex of a rat. 

B. Calculation of Current Dipole Moment 
The methodology for calculating the current dipoles resulting from stimulation of the NEURON cell models is a 
modified version of the approach used by Murakami and colleagues [8]. For each simulation, the current dipole 
was estimated using one of the three dimensional NEURON models discussed above. Each compartment of the 

neuron model was considered to have its own current dipole 𝑄𝑄
→
𝑘𝑘, denoting the vector quantity of the current 

dipole 𝑄𝑄
→

 oriented along the x, y, and z, axes, for the kth compartment. 𝑄𝑄
→
𝑘𝑘 was calculated as: 

𝑄𝑄
→
𝑘𝑘 = 𝐼𝐼𝐿𝐿𝑘𝑘𝑑𝑑𝑟𝑟

→ (1) 

where Ik is the longitudinal current in the compartment, Lk, is the length of the compartment and 𝑑𝑑𝑟𝑟
→

 is the 
compartment’s unit direction vector; defined as distance from the compartment’s most proximal xyz 
coordinates to the most distal xyz coordinates divided by the vector’s magnitude. The longitudinal current, I, 
was given by: 

𝐼𝐼𝑘𝑘 = −𝜋𝜋∗𝑎𝑎𝑘𝑘
2

𝜌𝜌𝐿𝐿

∂𝑣𝑣
∂𝑥𝑥

 (2) 

where ak is the radius of the compartment, ρL is the longitudinal resistivity, and ∂𝑣𝑣
∂𝑥𝑥

 is the partial derivative of 
voltage with respect to length along the compartment. The current dipole of the entire cell was calculated by 
taking a vector sum of dipoles across all compartments. Finally, since EEG electrodes are located on the scalp, 
only dipole contributions perpendicular to the pial surface were considered, by taking the dot product between 

the cellular current dipole vector, 𝑄𝑄
→

, and the unit vector perpendicular to the pial surface, 𝑑𝑑𝑟𝑟
→

. For pyramidal 
cells the unit vector perpendicular to the pial surface was defined as to be parallel to the primary apical 
dendrite. Since spiny stellate cells do not have a documented orientation with respect to the pial surface, 

a 𝑑𝑑𝑟𝑟
→

 was selected which maximized the dipole generated. Using this approach the complex geometry and 
electrophysiology of each neuron model was reduced to a single time series referred to as a Dipole Response 
Function (DRF). 

Dipole Response Function from Spiking Activity 
To calculate the current dipole associated with neural spiking activity, a current was injected directly into the 
soma of the cell via the NEURON IClamp function. For both chattering and regularly spiking pyramidal cell 
models a current of 0.12nA was injected for 400ms. For the spiny stellate cell model a current of 0.07nA was 
injected into the soma for a duration of 400ms. 

Dipole Response Function from Post Synaptic Potentials 
Creating a separate DRF for every synapse location on a neuron becomes computationally infeasible for 
networks with thousands of neurons and tens of thousands of synapses. To create a more scalable method of 
simulating synaptic DRFs a generic spatial average was created. For each cell model, a DRF was created for a 
generic excitatory post synaptic potential (EPSP) and a generic inhibitory post synaptic potential (IPSP). To 
simulate synaptic input, a difference of exponentials model was used to calculate a conductance change in the 
membrane due to activation of ligand gated ion channels in the membrane of the post synaptic cell. The time 
constant for the rising exponential was set to 1 ms, and the time constant for the decaying exponential was set 
to 6 ms [9]. The maximum resistance for the synapse was set to 6.5µΩ for excitatory synapses and -6.5µΩ for 
inhibitory synapses. 



According to the open field theory, excitatory (depolarizing) activity in the apical dendrites of a pyramidal cell 
are responsible for creating the current sink [11]. Therefore, the generic DRF for EPSPs on the apical dendrites 
was created by running a series of simulations where a synapse was placed separately on each dendritic 
compartment and the resulting DRF was calculated. The DRFs across dendritic compartments were then 
averaged to create a spatial average DRF representative of synaptic input across locations on the apical dendritic 
tree. Inhibitory synapses on pyramidal cells in the cortex are spatially localized to the soma and basal dendrites. 
Therefore, when estimating the DRF for inhibitory activity, synapses were placed separately on each dendritic 
compartment in the basal dendritic trees. Finally, since spiny stellate cells have no documented synaptic 
organization, the entire dendritic tree was used to create the spatial average DRF for the EPSP on the spiny 
stellate cell. 

C. Spiking vs synaptic contributions 
Comparing the relative contributions of PSPs to spike-related dipoles can be challenging, since the location and 
weighting of a synapse can greatly influence the magnitude and duration of the dipole created. To this end we 
conducted a separate series of simulations on the chattering pyramidal cell model designed to characterize the 
current dipole generated by excitatory post synaptic potentials that result in a somatic membrane voltage just 
below the threshold potential for an action potential. We conducted 9 simulations with varying numbers of 
synapses (2-10) located on the most distal portions of apical dendrites. We started with 2 synapses because a 
single synapse in a distal apical dendrite cannot generate enough current to cause a spike. For more than 10 
synapses the entire apical tree was depolarized. 

SECTION III. Results 
Fig. 1 (top row) shows the spike related DRFs for the cell models examined in sec. II-B. The spike-related DRF for 
the chattering pyramidal cell shows a spike in the DRF corresponding to each action potential together with a 
persistent negative envelope in the dipole that persists for the duration of the spiking activity consistent 
with [8]. The spikes had an amplitude of approximately 0.32 pA-m, while the amplitude of the envelope was -
0.41 pA-m. The duration of the dipole activity associated with each spike was approximately 8-10 ms, which is 
considerably longer than the action potential itself (~1-2 ms). The duration of the envelope was approximately 
50 ms (determined as the time from the onset of the first spike to the time the envelope decayed to 5% of its 
peak value). The spike-related DRF for the regularly spiking pyramidal cell had an initial spike with an amplitude 
of 0.325 pA-m and duration of 3 ms. The accompanying afterhyperpolarization had an amplitude of -0.1 pA-m 
and a duration of 18 ms. In contrast, the spike-related DRF for the the spiny stellate cell had an initial spike 
amplitude of -0.27 pA-m that lasted 0.8 ms followed by an afterhyperpolarization with an amplitude of 0.14 pA-
m and duration of 5.6 ms. 

 
Fig. 1. Dipole Response Functions (DRFs) associated with spiking and synaptic activity. (Top row) DRFs in 
response to an action potential generated through direct injection of current to the somas of a chattering 
pyramidal cell (top left), regularly spiking pyramidal cell (top middle), and spiny stellate cell (top right). (Bottom 
row) Spatial average DRFs in response to sub-threshold synaptic input for an EPSP on a pyramidal cell (bottom 
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left), IPSP on a pyramidal cell (bottom middle), and an EPSP on a spiny stellate cell (bottom right). Note the 
change in scale on the y-axis from the top row to the bottom row as well as between PSPs on the pyramidal cells 
versus the spiny stellate cell. 

 
Fig. 2. Time-lapse of membrane voltage for a regularly spiking pyramidal cell during an action potential. The top 
and bottom rows shows the spatial distribution of membrane voltage across the cell. Changes in membrane 
potential are coloured relative to the resting potential. The middle plot shows the DRF for the regularly spiking 
pyramidal cell shown in Fig. 1. The vertical lines indicate where the individual frames of the time-lapse are taken 
from. The color of each vertical line denotes the membrane voltage change of the axon for easier reference. 
Time stamps on the bottom of each frame are referenced from the initiation of the action potential. 
 

The DRFs resulting from post-synaptic potentials are shown in Fig. 1 (bottom row). The amplitude of the EPSP on 
the pyramidal cell was -0.0217 pA-m, while the amplitude of the IPSP on the pyramidal cell was -0.0290 pA-m. 
The duration of the EPSP was ~36 ms (determined as the time from onset until the PSP decayed to 5% of its peak 
value), while the duration of the IPSP was ~42 ms. The DRF for the EPSP on a spiny stellate cell was biphasic, 
with an amplitude -0.0017 pA-m and a duration of 5 ms for the initial negativity. The subsequent positive wave 
had an amplitude of 0.0003 pA-m and duration of 35 ms. 

Examination of the spatial distribution of membrange voltage changes showed that the spike-related DRFs were 
not generated directly by the action potential, but rather by the backpropagation of currents up the dendritic 
tree due to an excess of current generated at the axonal hilloc by the action potential. This effect is illustrated 
in Figs. 2 and 3. Fig. 2 shows the membrane voltages of a regularly spiking pyramidal cell in snapshots across 
time. The action potential can be seen forming in the axon at the 0 ms snapshot. Within 1 ms the action 
potential propagated the length of simulated portion of the axon. At the same time excess current propagated 
from the soma and axonal hilloc into the dendritic tree. The spike-related current dipole reached peak 
magnitude after approximately 1.25 ms, and lasted 3 ms; 2 ms after the action potential propagated the length 
of the simulated axon segments. 

The impact of backpropagating currents on the DRF was more pronounced for the chattering pyramidal cell (Fig. 
3). Following the generation of the initial action potential (seen at the 0 ms snapshot) the current propagated up 
the dendritic tree. After the backpropagation of current from the initial action potential faded, a persistent 
depolarization remained in the apical dendrites (see snapshots at 4.5 ms and 11.5 ms), which continued for the 
duration of the DRF (snapshots 4.5 ms - 52.5 ms) 

Fig. 4 shows the traces of the synaptic dipoles created by a varying number of excitatory synapses resulting in a 
somatic membrane voltage just below the threshold potential. The figure shows a remarkably consistent 
minimum dipole response with a mean of −0.21±0.02 pA-m, which corresponds to the largest dipole that can be 
created by EPSPs without generating an action potential (assuming no inhibitory activity). The amplitude is 
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roughly half that of the envelope of the spike-related dipole for a chattering pyramidal cell (−0.21 ± 0.02 pA-m 
vs −0.41 pA-m respectively). 

 
Fig. 3. Time-lapse of membrane voltage for a chattering pyramidal cell during an action potential. Individual 
plots of the pyramidal cell show the spatial distribution of membrane voltage across the cell. Changes in 
membrane potential are colored relative to resting potential. The bottom center plot shows the DRF for the 
chattering pyramidal cell as seen in fig. 1. The vertical lines indicate where the individual frames of the time-
lapse are taken from. The color of each vertical line denotes the membrane voltage change of the axon for 
easier reference. Times are referenced to the initiation of the initial action potential. 

SECTION IV. Discussion 
Post synaptic potentials are considered to be the leading contributor to EEG signals because they last 
considerably longer than action potentials [10], 10-30 ms vs 1-2 ms respectively. However, our simulations 
indicate that the current dipoles generated by spiking neurons are not driven by the action potential, but by the 
backpropagation of current from the axonal hillock into the dendrites. This backpropagation effect leads to 
current dipoles which can last considerably longer than the 1-2 ms time-frame typically associated with spiking 
activity. The spike-related dipole of an individual action potential for a chattering pyramidal cell lasted close to 8 
ms while the envelope lasted over 50 ms. The duration of the envelope was longer than that of the typical post 
synaptic potential providing additional time for the summation of spike-related dipole activity. Interestingly, 
even for regularly spiking pyramidal cells, afterhyperpolarization in spike-related current dipoles lasted for up to 
18 ms. This is roughly half the duration of an EPSP on the pyramidal cell (36 ms), but considerably longer than 
the 1-2 ms duration usually associated with spiking activity. 

In the final set of simulations we took the first steps toward characterizing the relative dipole contributions of 
EPSPs versus spike-related dipoles. These simulations show that the current dipole moment associated with 
excitatory synapses necessary to generate an action potential was approximately half the size of the envelope 
created in the spike-related current dipole of a chattering pyramidal cell. Additionally, the DRF for a regularly 
spiking pyramidal cell had an amplitude which was half that of the dipole generated by apical EPSPs. This 
suggests that spiking activity could contribute in a meaningful way to the current dipoles associated with EEG. 
Future work will to incorporate the DRF structure into networks of neurons in which the balance of excitatory 
and inhibitory connections can be established in an active network. In order to better understand the neural 
computations underlying EEG it is important to understand how individual neurons contribute to dipole layers 
on the cortical surface. This research takes the first steps toward that goal. 
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Fig. 4. Traces of the EPSP synaptic current dipole generated by excititory synapses on the apical dendrites of a 
pyramidal cell. The number of synapses in each simulations varied from 2 to 10. For each simulation the strength 
of the synapses was scaled to provide the maximal sub-threshold membrane depolarization at the soma. Bar 
graph shows peak dipole value for each simulation. 
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