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An Efficient Monte Carlo-Based Solver for 
Thermal Radiation in Participating Media 
 

Joseph A. Farmer & Somesh P. Roy 
Department of Mechanical Engineering, Marquette University, Milwaukee, WI, USA. 
 

ABSTRACT 
Monte Carlo-based solvers, while well-suited for accurate calculation of complex thermal radiation 
transport problems in participating media, are often deemed computationally unattractive for use in the 
solution of real-world problems. The main disadvantage of Monte Carlo (MC) solvers is their slow 
convergence rate and relatively high computational cost. This work presents a novel approach based on 
a low-discrepancy sequence (LDS) and is proposed for reducing the error bound of a Monte Carlo-based 
radiation solver. Sobols sequence – an LDS generated with a bit-by-bit exclusive-or operator – is used to 
develop a quasi-Monte Carlo (QMC) solver for thermal radiation in this work. Preliminary results for 
simple radiation problems in participating media show that the QMC-based solver has a lower error 
than the conventional MC-based solver. At the same time, QMC does not add any significant 
computational overhead. This essentially leads to a lower computational cost to achieve similar error 
levels from the QMC-based solver than the MC-based solver for thermal radiation. 
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1. INTRODUCTION 
Radiation is an important mode of heat transfer particularly in high temperature systems such as in 
combustion. Radiative heat transfer via participating media is a highly nonlocal process with strong 
nonlinear effects. It is modeled using the radiative transfer equation (RTE) [1] 

(1) 

𝑑𝑑𝑑𝑑η
𝑑𝑑𝑑𝑑 = 𝑠̂𝑠 • ∇𝐼𝐼𝜂𝜂 = 𝜅𝜅η𝐼𝐼𝑏𝑏η − βη𝐼𝐼η +
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where η represents wavenumber indicating the RTE is unique for each wavenumber. Equation 1 is a five-
dimensional, integro-differential equation. The difficulty of solving the RTE has led to various 
approximate solvers for different applications. For instance, the method of spherical harmonics (𝑃𝑃𝑁𝑁 
method) was introduced by J.H. Jeans [2] as a method of arbitrary order to solve the RTE in relation to 
radiation emitted from stars. The 𝑃𝑃𝑁𝑁 method was adapted for combustion-related applications later by 
Modest and co-workers [e.g., 3–7, etc.]. The method of discrete ordinates (𝑆𝑆𝑁𝑁 method), first introduced 
by S. Chandrasekhar [8], was proposed to solve RTE in relation to atmospheric radiation and was further 
developed by several researchers [e.g., 9–11, etc.]. The 𝑃𝑃𝑁𝑁 and 𝑆𝑆𝑁𝑁 methods both implement different 



techniques to deconstruct the RTE into a set of partial differential equations. Other methods include the 
zonal method introduced by Hottel [12], the moment method introduced by Eddington [13], etc. A 
detailed review of various methods can be found in various literature including [1, 10, 14–16]. 

The 𝑆𝑆𝑁𝑁 and 𝑃𝑃𝑁𝑁 methods are commonly chosen for combustion simulations. For development and 
detailed use of these and other RTE solvers in combustion applications, the reader is referred to articles 
such as [1, 9, 14, 17, and references therein]. However, these solvers have their limitations. For 
example, the 𝑆𝑆𝑁𝑁 method suffers from ray effects and false scattering [1]. The 𝑃𝑃𝑁𝑁 method converges 
slowly and is computationally expensive [17, 18]. Additionally, the approximate solvers are often limited 
to simple geometries and boundary conditions. 

Alternatively, a statistical Monte Carlo-based solver can produce the exact solution of the RTE 
irrespective of the complexity of the problem [1, 9]. However, for accurate solutions, Monte Carlo (MC) 
solvers require a statistically large number of samples which contributes to the high computational cost. 
For this reason, the use of Monte Carlo-based solvers remains limited. In this work, a novel scheme 
using low-discrepancy sequences (LDS) is proposed to increase the efficiency of a Monte Carlo-based 
thermal radiation solver for participating media. While LDS have been used in Monte Carlo-based 
solvers in the past, their use to solve radiation-related problems is mostly restricted to surface transfer 
[e.g., 19, 20, etc.]. The next section discusses the Monte Carlo method and LDS and the results obtained 
for one-dimensional plane parallel media cases. Finally the advantages of QMC are discussed in the 
conclusion. 

2. EFFICIENT (QUASI) MONTE CARLO METHOD 
The solution of radiative transfer via the Monte Carlo method is achieved by emitting and tracking a 
statistically large number of “rays” or “photon bundles”. A ray can be thought of as a bundle of photons 
with a finite amount of energy propagating through and interacting with the participating media. Each 
ray is characterized by its origin (𝑥𝑥;  𝑦𝑦;  𝑧𝑧), direction (θ;ϕ), wavenumber η, and an associated energy 
content. The first six variables for each ray are determined by sampling six uniformly distributed random 
numbers �𝑅𝑅𝑥𝑥;𝑅𝑅𝑦𝑦;𝑅𝑅𝑧𝑧;𝑅𝑅θ;𝑅𝑅ϕ, and 𝑅𝑅η� as outlined in [1, 21–23]. The accuracy of the method can be 
estimated by the statistical error, usually represented by the standard deviation of an evaluated variable 
over many iterations. Theoretically, with 𝑁𝑁 samples (in this case, 𝑁𝑁 rays), the error limit scales as 
𝑂𝑂(𝑁𝑁−0:5), whereas the computational cost usually increases linearly with number of rays. 

In this work, we propose to use a deterministic low-discrepancy sequence, instead of uniformly 
distributed random numbers in the conventional MC. This leads to a quasi-Monte Carlo (QMC) solver for 
radiation. Often random numbers for a Monte Carlo solution are generated using pseudo-random 
number generators [e.g., see 24], which follow deterministic algorithms, but still satisfy the statistical 
properties of a uniform random distribution reasonably well. Low discrepancy sequences are, on the 
other hand, deterministic sequences designed to produce equidistant points in the sequence [25]. By 
their nature, LDS can produce a low-variance distribution at the cost of true randomness. Because the 
samples are not random, the Monte Carlo approach using LDS is conventionally referred as quasi-Monte 
Carlo (QMC) [25]. These methods have been in development for many years and are extensively used in 
financial modeling [26]. A review of low-discrepancy sequences and QMC can be found in [25]. In 
general, QMC has shown promise in solving high-dimensional problems. For this study, Sobol’s sequence 
was chosen as the LDS of interest based on an empirical study of the computational efficiency of the 



sequence following the recommendations of [27, 28]. For details of conventional Monte Carlo solvers [1] 
and Sobol’s sequence [29, 30] the reader is directed to the respective literature. As the first attempt to 
use Sobol’s sequence in QMC to solve the RTE, the six random numbers required in the standard MC 
method �𝑅𝑅𝑥𝑥;𝑅𝑅𝑦𝑦;𝑅𝑅𝑧𝑧;𝑅𝑅θ;𝑅𝑅ϕ, and 𝑅𝑅η� are replaced by six samples from Sobol sequences generated with 
different primitive polynomials (a six-dimensional Sobol sequence). 

3. RESULTS AND DISCUSSION 
3.1 Target configurations 
In this work we present a proof-of-concept for the benefits of QMC using a Sobol’s sequence over 
conventional MC solvers for one-dimensional problems. Results from both MC and QMC solver are 
compared with analytical solutions of one-dimensional, plane-parallel media under seven different 
configurations. Out of the seven conditions shown here, five are gray medium and two are nongray. The 
cases are listed in Table 1. The comparison is made based on the divergence of radiative heat flux, ∇  •
 𝑄𝑄. 

Table 1 Target cases (one-dimensional plane-parallel medium) 
 

Case Absorption Coefficient (m−1) Medium Temperature (K) Wall Temperature (K) 
1 10 1200 800 
2 100 1200 800 
3 1 1200 800 
4 1 – 100 1680 – 1200 800 
5 20 – 80 1200 – 2200 800 
6 Nongray 2000 Cold (non-emitting) 
7 Nongray 2100 – 2700 Cold (non-emitting) 

 

In all seven cases the distance between the plates are kept at 0.1 m while the absorption coefficient and 
temperature of the medium are varied. In the first three cases (Case 1, 2, and 3), both the absorption 
coefficient and the medium temperature are kept uniform. In Case 4, both absorption coefficient and 
medium temperature are linearly varied (in opposite directions) between plates. Case 5 contains a 
square-wave-like distribution with step changes in both absorption coefficient and medium temperature 
(around 0.02 m from both plates). In Cases 1 – 5 the walls are assumed to be black and emitting at 800 
K. The last two cases contain nongray medium between the plates. We chose a uniformly distributed 
CO2 (mole fraction 0.2) for the radiatively participating gas in the medium. In Case 6, temperature 
distribution is also assumed uniform at 2000 K. In Case 7, temperature distribution is varied (somewhat 
arbitrarily) to achieve a condition with relatively sharp gradients in the medium. Walls for Case 6 and 7 
are assumed to be cold (non-emitting) and black. 

3.2 Accuracy and error estimation 
The accuracy of each method is shown in terms of distribution of relative error, as well as variation of 
average relative errors with number of rays used in each simulation. The relative error (𝜀𝜀) is computed 
at each computational cell 𝑖𝑖 by  

(2) 
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𝜀𝜀𝑖𝑖,𝑄𝑄𝑀𝑀𝐶𝐶 = �
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(∇ • 𝑄𝑄)𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
�, 

where 𝑁𝑁 is the number of statistical runs of MC. Because of its deterministic nature, only one instance 
of QMC simulation was sufficient for each configuration. The convergence rate is represented as the 
decrease in the spatially-averaged relative error with number of rays used in respective simulations. The 
spatially-averaged relative error is calculated as the arithmetic mean of relative errors over all 
computational cells. 

   
(a) Case 1 (b) Case 2 (c) Case 3 

Fig. 1 Comparison of ∇ • 𝑄𝑄 (a) Case 1 with 20,000 rays, (b) Case 2 with 120,000 rays, and (c) Case 3 with 
20,000 rays 

Cases 1, 2, and 3 – uniform medium 
Figure 1 presents the results from analytical, MC, and QMC solution for Cases 1 using 20,000 rays, Case 2 
using 120,000 rays, and Case 3 using 20,000 rays. Since Case 2 is optically thicker than Case 1 and 3, 
more rays were needed for this case to get a reasonably good solution. This is an expected phenomenon 
in Monte Carlo solution of optically thick media. Both MC and QMC show reasonable agreement with 
the analytical solution. The advantage of QMC over MC becomes more apparent in Fig. 2, where relative 
errors are shown for the three cases. For Case 1 and 2 the relative error from QMC is noticeably lower 
than MC for the same number of rays (Fig. 2a and 2c). For the optically thick Case 2, the errors at the 
center of the plates are very high (as expected from a Monte Carlo simulation for optically thick uniform 
medium). For the optically thin Case 3, there is no distinguishable advantage of QMC over MC (Fig. 2e). 
The convergence rate plots (Fig, 2b and 2d and 2f) show similar convergence rate for MC and QMC for 
Case 1 and 3. For the optically thick case, however, the convergence rate of standard MC is faster than 
QMC. While the relative convergence rate does not show any significant improvement for QMC, the 
actual error of QMC is at least a factor of two lower than MC. It is expected that with more rays the 
results from MC simulation will achieve similar or better results than QMC. However, increasing the 
number of rays will also increase the computational cost. This indicated that the QMC is advantageous 
in these configurations. 



Case 4 and 5 – non-uniform gray medium:  
Figure 3 presents the results from the analytical, MC, and QMC solution for Case 4. Both MC and QMC 
show agreement with the analytical solution. The advantage of QMC over MC is more apparent when 
comparing the relative error of each method (Fig. 3b and 3c). Similar to Cases 1-3, in optically thin 
regions there is little distinguishable advantage for the QMC method. In optically thick regions, relative 
error of the QMC method is, again, noticeably lower. The convergence rate plot (Fig. 3c) shows similar 
convergence rate; however, the actual error of QMC is again at least a factor of two smaller than MC. 
The same trends can be seen for Case 5 as presented in Fig. 4 

  
(a) Relative error for Case 1 with 20,000 rays (b) Convergence rate for Case 1 

  
(c) Relative error for Case 2 with 120,000 rays (d) Convergence rate for Case 2 

  
(e) Relative error for Case 3 with 20,000 rays (f) Convergence rate for Case 3 

Fig. 2 Relative errors and convergence rates for Cases 1, 2, and 3 



   

(a) Comparison of ∇•Q with 
75,000 rays 

(b) Relative error with 75,000 
rays 

(c) Convergence rates 

Fig. 3 Accuracy and convergence rates for Case 4 

   
(a) Comparison of ∇ · Q with 
75,000 rays 

(b) Relative error with 75,000 
rays 

(c) Convergence rates 

Fig. 4 Accuracy and convergence rates for Case 5 

Case 6 and 7 – Nongray medium:  
The nongray medium constitutes a uniform distribution of CO2. Nongray radiative properties of CO2 are 
calculated from a line-by-line database obtained from the HITEMP spectroscopic database [31]. In Case 
6, the medium temperature is at uniform 2000 K, whereas in Case 7, the medium temperature varies 
(somewhat arbitrarily) between 2100 K and 2700 K. Figures 5 and 6 show the results from Case 6 and 7 
respectively. Here we only presented the comparison of ∇ · Q with the exact solution and convergence 
rate plots for MC and QMC. 

  
(a) Comparison of ∇ · Q with 100,000 rays (b) Convergence rates 

Fig. 5 Accuracy and convergence rates for Case 6 



  
(a) Comparison of ∇ · Q with 100,000 rays (b) Convergence rates 

Fig. 6 Accuracy and convergence rates for Case 7 

The trends seen in nongray cases are similar to that seen in gray cases. Both MC and QMC reproduce the 
exact solution within reasonable accuracy (Fig. 5a and Fig. 6a). Comparison of convergence rates (Fig. 5b 
and Fig. 6b) reveal that both MC and QMC converge to the exact solution at approximately the same 
rate, but for a given sample size (number of rays), error from QMC is significantly smaller than that from 
MC. 

3.3 Computational cost 
We also estimated the computational cost associated with both MC and QMC simulations. All the 
simulations were run on a single core of an Intel Xeon E3-1230v5 processor. Table 2 shows the 
computational time for one statistical run for MC and QMC for Case 1 using different number of rays. 
The computational cost of both solvers are comparable. The same trend is observed for all other cases 
(not shown here for brevity). At this point, we would like to highlight that for a conventional MC solver, 
it is often necessary to perform a “smoothing” by averaging over several statistical runs (e.g., 10 
statistical runs used in this study), whereas for QMC just one single simulation is adequate because of 
the deterministic sampling. 

Table 2 Execution times (s) for MC and QMC for Case 1 

10000 Rays  5000 Rays  1000 Rays  
MC QMC MC QMC MC QMC 
0.39 0.38 0.21 0.20 0.06 0.05 

4. CONCLUSIONS 
This study shows a proof-of-concept for a quasi-Monte Carlo solver for radiation through participating 
media. Both MC and QMC solvers converge to the analytical solution. The results show clear advantages 
of QMC over standard MC simulations in plane-parallel gray and nongray medium. The advantage of low 
relative error from QMC is more prominent in optically thick regions than in optically thin regions. 
Computational cost of QMC is also comparable to MC. Combinations of lower error, deterministic 
sampling, and no additional computation overhead indicate that a fewer number of rays and only one 
statistical run may be needed in QMC to achieve similar levels of accuracy as the standard MC method in 
the studied configurations. Since the fundamental physics of the radiation in participating media does 
not change from configuration to configuration, it is expected that the advantages of QMC will also be 
evident in more complex radiative transfer problems in participating media. A detailed and systematic 



study of advantages of QMC is currently being explored in generic non-gray, three-dimensional 
problems. 
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NOMENCLATURE 
κη Absorption 

Coefficient  
( cm−1 ) 𝜎𝜎𝑠𝑠η Scattering Coefficient ( cm−1 ) 

𝐼𝐼𝑏𝑏η Planck Function ( Wcm−2sr−1 μ m−1 ) 𝑠̂𝑠𝑖𝑖  Direction (−) 
βη Extinction 

Coefficient 
( cm−1 ) η Wavenumber ( cm−1 ) 

𝐼𝐼η Radiative Intensity (Wcm−2) Φη(𝑠̂𝑠𝑖𝑖, 𝑠̂𝑠) Scattering Phase 
Function 

(sr) 

∇  ·  𝑄𝑄  Divergence of Heat 
Flux 

(Wm−3) 𝑖𝑖 Cell Number (−) 

𝜀𝜀 Relative Error (−)    
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