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ABSTRACT 

AUTO-GRADING OCT IMAGES DIAGNOSTIC TOOL FOR RETINAL 

DISEASE CLASSIFICATION 

Shiyu Tian 

Marquette University, 2021 

 Retinal eye disease is the most common reason for visual deterioration. Long-

term management and follow-up are critical to detect the changes in symptoms. Optical 

Coherence Tomography (OCT) is a non-invasive diagnostic tool for diagnosing and 

managing various retinal eye diseases. With the increasing desire for OCT image, the 

clinicians are suffered from the burden of time on diagnoses and treatment. This thesis 

proposes an auto-grading diagnostic tool to divide the OCT image for retinal disease 

classification. In the tool, the classification model implements convolutional neural 

networks (CNNs), and the model training is based on denoised OCT images. The tool can 

detect the uploaded OCT image and automatically generate a result of classification in 

the categories of Choroidal neovascularization (CNV), Diabetic macular edema (DME), 

Multiple drusen, and Normal. The system will definitely improve the performance of 

retinal eye disease diagnosis and alleviate the burden on the medical system.
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CHAPTER 1. INTRODUCTION 

 Vision is an essential sensor for individuals. Activities such as reading, writing, 

and driving require good vision, but retinal diseases can cause irreversible destruction of 

vision.  Age-related macular degeneration (AMD) is the most common cause of blindness 

in Americans over 60 years old, and diabetic macular edema (DME) is the leading cause 

of blindness in patients with diabetes [1, 2, 3, 9, 10, 11]. 

A vast number of people suffer from retinal diseases like AMD and DME every 

year. From 2000 to 2010, the number of AMD patients in the U.S. grew from 1.75 million 

to 2.07 million, and the number is expected to grow to more than 5 million by 2050 [26, 

27, 28, 30]. An ophthalmology study showed that 75,000 patients in the United States are 

affected by diabetic macular edema each year [31]. 

 Lack of awareness and treatment of DME and AMD among those that suffer from 

it can exacerbate its severity. One study demonstrated that AMD patients were often 

undertreated: about half of patients missed clinic appointments, and over 20% of patients 

had more than 100 days between appointments [24]. A study in 2012 indicated that 73% 

of diabetic retinopathy patients and 84% of AMD patients did not even know about their 

condition [25].  

 Financial expenditures on AMD and DME are enormous. It is estimated that the 

global cost of visual impairment caused by age-related macular degeneration is $343 

billion, including $255 billion in direct medical expenses [28]. Of the total annual 

medical costs of $245 billion related to diabetes in the US, $176 billion is attributable to 

direct medical expenses, and $69 billion is attributable to reduced productivity.  
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1.1    Diagnostic Markers for AMD and DME  

Between 2010 to 2050, the estimated number of people suffering from age-related 

macular degeneration (AMD) is expected to increase from 2.07 million to 5.44 million in 

the U.S., more than doubling. Another study estimates that the number of individuals who 

have diabetes mellitus (DM) will increase to 592 million by 2035, and approximately 

20% of DM patients suffer from diabetic macular edema (DME). Three main conditions, 

related to these diseases and identifiable by imaging, are the main target for analysis – 

Choroidal Neovascularization, Diabetic Macular Edema, and Drusen.  

 1.1.2 Choroidal Neovascularization 

Choroidal neovascularization (CNV) is a result of age-related macular 

degeneration represented by the abnormal growth of vessels extending above the Bruch’s 

membrane [1, 2, 3]. AMD is the most common reason for the irreversible destruction of 

vision in the elderly [4]. Among AMD cases, 85–90% of them are atrophic AMD, and 

10–15% of cases are neovascular AMD. CNV occurs mainly as the result of neovascular 

(exudative or wet) AMD [6]. CNV results from the new abnormal blood vessels in the 

choroid, which is a vascular layer of the retina. With accumulated vascular endothelial 

growth factor (VEGF) in AMD patients, new blood vessels proliferate from the choroid 

and invade the retina, forming CNV [5, 45]. Due to the immaturity of the resultant 

vessels, leakage occurs and causes macular edema, leading to neovascular AMD [7][8]. 

Generally, CNV is a characteristic manifestation of neovascular AMD. 
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1.1.3 Diabetic Macular Edema 

Diabetic macular edema (DME) is the primary cause of visual deterioration in 

diabetics [9]. High blood glucose levels affect retinal microcirculation, resulting in 

Diabetic retinopathy (DR) performing as retinal vascular hyperpermeability and other 

retinal alterations [10, 11]. Patients in any period of DR are susceptible to DME. The 

damage of inner blood-retinal barrier is the leading pathogenesis of DME. Because of the 

severe structural retinal changes, DME is one of the most frequent causes of blindness. 

1.1.4 Drusen 

 Clinically, drusen are yellowish focal deposits deep to the retina [13, 16]. Based 

on the evaluation of its characteristics such as distribution, number, size, and shape, 

drusen can be distinguished as physiological or pathological [15]. Soft drusen are 

considered as a clinical hallmark of early non-neovascular AMD, although small drusen 

can represent normal aging and are not equivalent to a potential progression of advanced 

AMD [13, 14]. 

1.1.5 Optical Coherence Tomography 

Optical coherence tomography (OCT) is a non-invasive, non-contact imaging technology 

[17]. OCT images are important medical data for retinopathy diagnosis. It takes high-

resolution cross-section retina images using light waves instead of ultrasound. The 

ophthalmologist, assisted by OCT, can observe the tissues in each retina layer and 

diagnose and manage various eye diseases. For example, it is used to monitor macular 

edema's response to treatment to follow the progression or regression and make 

adjustments accordingly [32]. By using OCT, clinicians can identify and evaluate the 

existence, characteristics, and severity of CNV, DME and drusen. 
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1.2 Data Mining and Medical Imaging  

As informatization continues to deepen, the importance of data mining, analysis, 

and application has become increasingly prominent in the medical industry. In terms of 

quantity, more than 80% of medical data comes from medical imaging data [38]. The 

medical imaging data complies with the 4V rule (the volume, variety, velocity, and 

veracity). For a vast volume of medical imaging data, the process leading up to diagnosis 

requires significant medical resources. The number of experts is limited, and most 

medical big data is not well structured, which makes it all but useless. Storage of data can 

become a burden to medical organizations.  

1.3 Technology in Assisting Eye Disease Diagnosis   

In recent years, the integration of artificial intelligence technology and the medical 

field has continued to deepen. In the field of artificial intelligence, voice interaction, 

computer vision, and cognitive computing have gradually matured. Therefore, the 

application scenarios of artificial intelligence have become more abundant. Artificial 

intelligence technology has gradually become an important factor affecting the 

development of the medical industry and improving the level of medical services. 

With the accumulation of high-quality big data, high performance computing 

environment, and optimized deep learning methods, the accuracy of the neural network 

model is increasing. However, with the increasing requirement of OCT image diagnoses, 

an auto-grading system is needed to assuage the burden on the clinicians. This thesis 

proposes an OCT image auto-grading system to benefit clinicians to diagnose and manage 

eye diseases. The application uses the Convolutional Neural Network (CNN) algorithm to 

classify the OCT images into four categories: Choroidal neovascularization (CNV), 
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Diabetic macular edema (DME), Multiple drusen, and Normal. Our auto-grading tool, 

implementing the CNN model, can quickly interpret the characteristics of the disease in 

the image. It assists the doctor in the analysis of the disease and improves the efficiency 

and accuracy of diagnoses and treatment.  

1.4 The Proposed Tool and Web Portal 

With the increasing requirement of OCT image diagnoses for retinal diseases, the 

auto-grading OCT image classification system is a competent tool to enhance the 

efficiency of medical systems. Since the number of individuals who have AMD/DME is 

increasing due to the rapid aging of the US population, the auto-grading tool can 

potentially save medical resources in multiple areas including disease prediction, 

intelligent decision-making, individualized treatment plan, and chronic disease 

management. 

Embedded with the CNN classification model, our web portal provides a usable 

user interface for clinicians to interact and generate OCT test results. This system can 

improve diagnostic capabilities and help rapid decision-making. By providing rapid 

preliminary diagnoses for ophthalmologists within seconds, the auto-grading OCT image 

classification tool can alleviate the burden on the clinicians, reduce the waiting time of 

patients, decrease repeated consultations, and improve the efficiency of diagnoses and 

treatment. 
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CHAPTER 2: RELATED WORK FROM IMAGING SEGMENTATION 

TOWARDS CONVOLUTIONAL NEURAL NETWORK 

The implementation of auto-grading system algorithms for optical coherence 

tomography images has undergone a long development. With the development of the 

neural network, researchers have explored the diagnostic tool with different methods. The 

application of an auto-grading system has also experienced a long development. Earlier 

algorithms began with an image segmentation model. Similar to the approach that human 

experts use, the segmentation algorithms detected the edge of the features and made 

diagnoses by a binary classification algorithm [18]. As the convolutional neural network 

(CNN) came to maturity, it was gradually implemented in the classification model. One 

study attempted to use CNN to recognize the features and make classifications [19]. In 

recent years, some CNN models have been customized to achieve higher accuracy [21, 

22].  

 Since the beginning of the 21st century, OCT technology is more frequently used 

in detecting the features of AMD and DME [35, 36, 37]. With the increasing desire for 

OCT image auto-grading, many organizations have put forth resources in this field to 

attempt to achieve more accurate models. In this chapter, some acknowledged tasks and 

models are introduced. 

2.1 Image segmentation 

 Development of automated image classification/grading systems started with an 

automated segmentation algorithm [18]. In 2014, [18] proposed an automated 

classification tool to recognize AMD and DME. They used image segmentation to detect 

the specific feature (RNFL and drusen) of AME and DME and made it the identifier of 
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the classification. Similar to a manual diagnosis method that ophthalmologists used, this 

paper implemented disease classification by the conditions in the retinal nerve fiber layer 

(RNFL), photoreceptor inner/outer segment (IS/OS), and retinal pigment epithelium 

(RPE). The algorithm extracted normality of RPE layer, bubble upper RPE layer, and 

bubble and in IS/OS layer as features and used binary classification algorithm to make the 

diagnoses result.  

 The image segmentation was achieved by threshold algorithm. This algorithm was 

a great start for the development of an auto-grading tool, but it required high quality 

images. The algorithm was sensitive to noise, and didn't work well if the gray levels of 

the image were not obvious or the gray levels contained overlapping parts. 

 

 

Figure 2.1  Flowchart of the method used in [18] 
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2.2  CNN 

 Convolutional neural network is a subclass of deep neural network. The neurons 

composed of convolution kernel can respond to surrounding units in the coverage area, 

performing excellent for image processing. Generally, it includes convolutional layer, 

pooling layer, and fully connected layer. Convolutional layers are implemented for 

feature extraction. Then after passing through a convolutional layer, images are slid 

across the convolution kernel and multiplied with the kernel matrix. Neurons have 

connections to some of the neurons of the prior layers to extract the local feature. Pooling 

layers calculate the average or max value of clusters of neurons at the previous layer. 

Compared with convolutional layers, pooling layers are more efficient in data 

dimensionality reduction. It reduces the requirement of the amount of computation and 

avoids overfitting. Fully connected layers are similar to regular artificial neural networks. 

The input of each neuron is connected to all activations in the previous layer to achieve 

classification. With satisfying performance, the convolutional neural network became the 

mainstream in the OCT image classification model.  

 In 2017, [39] presented an automatic segmentation framework based on 

convolutional neural networks and graph search methods (CNN-GS). They segmented the 

OCT images of non-exudative AMD patients to detect nine retinal layer boundaries. The 

algorithm first generated probability maps by the convolutional neural network. Then 

they used the CNN probability map to achieve layer segmentation. This was a novel use 

of convolutional neural network that customized the CNN and integrated with a 

segmentation algorithm. 
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Figure 2.2  CNN-GS algorithm [39] 

 [20] proposed surrogate-assisted retinal OCT image classification based on CNN 

for AMD and DME. The flowchart of the approach is presented in Figure 2.3. They kept 

the feature extraction process by generating surrogate images to emphasize the features of 

the data and reduce complexity. The surrogate images were composed of four regions 

with different pixel intensities. The authors built CNN models for the classification of 

surrogate images. The architecture of the model contained 4 convolutional layers and a 

fully connected layer, achieving 0.9783 in AUC of the local database and 0.9856 in AUC 

of the public database. This manually feature extraction process could cause the loss of 

features in the images because the mask extraction is sensitive to noise. 

 

 

Figure 2.3  The flowchart of the method [20] 
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 In 2018, Kermany et al. [19] collected and processed a vast number of OCT 

images and built a CNN model based on the denoised images. The dataset they processed 

has been published, which is also the training and testing dataset of the model described 

in this thesis.  

 Their structure employed Inception V3 architecture, which is presented in Figure 

2.4 [42]. This model had 3 inception modules, presented in Figure 2.5. The a, b, c in 

Figure 2.5 is the figure 5, 6, 7 in Figure 2.4. Convolution kernels were split into multiple 

small convolutional layers. It expended the depth of the network and increased the 

nonlinear fitting ability of the neural network. Their model achieved an accuracy of 

96.6%, with 97.8% for sensitivity and 97.4% for specificity. This model achieved a great 

accuracy, but its network is deep, which requires large computational complexity.  

 

 

Figure 2.4  Inception V3 architecture [42] 
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Figure 2.5  Inception module [42] 

 In the same year, O. Perdomo et al. [43] published the OCT-NET model to 

automatically classify diabetic macular edema and normal OCT images. For image 

resizing, they implemented the median filter to extract the Region of Interest and convert 

the retinal OCT images to the size of 224×224×3. OCT-NET deep learning model is a 

CNN model. As Figure 2.6 describes, the model has ten convolutional layers, three 

maxpooling layers, one dropout layer, and two fully connected layers. The OCT-NET 

model performed an accuracy of 93.75±3.125 %. The sensitivity and specificity of the 

model was 93.75%. 

 

 

Figure 2.6  OCT-NET model architecture [43] 
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 In [21], the researchers proposed a CNN architecture to classify the quality of 

OCT images and compared 4 CNN architectures (VGG-16, Inception-V3, ResNet-18, and 

ResNet-50) for OCT image classification and found ResNet-50 performed best with an 

overall accuracy of 96.25%. This system performed well for retinopathy detection and 

contributed to the design of a computer-aided diagnostic system (CADS). One innovative 

aspect of this research is that they created a quality classification network for OCT 

images. They evaluated the quality of the retinal OCT images into four categories: 

‘good,’ ‘off-center,’ ‘signal-shielded,’ and ‘other.’ By this method, poor retinal OCT 

images can be filtered out. The images with good features could improve the accuracy of 

the CNN model. 

 

 

Figure 2.7  Images with different quality [21] 

 In 2020, [22] built a CNN model for the classification of retinal OCT images. The 

authors designed a capsule network. The network architecture was composed of five 

convolution layers and primary caps (this was the sixth convolution layer with 32 × 8 

filters and 5 × 5 convolutional kernels) and constructed capsules in the following layer. 

This architecture improved the accuracy of the CNN model and achieved high accuracy 
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of 99.6%. Capsules network work well on detecting the exist and position of the feature, 

but it loses the translation invariance of the model, which is useful for image 

classification. 

 

 

Figure 2.8  Capsule network architecture [22] 
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CHAPTER 3: MATERIALS AND METHODOLOGY FOR OCT IMAGE 

CLASSIFICATION TOOL 

 The workflow of the project is presented in Figure 5.1. This chapter describes the 

materials and methods implemented in the auto-grading tool. 

 

 

Figure 3.1 Workflow  

3.1    Dataset 

 We used the OCT image dataset published by Kermany et al. for image-based 

medical deep learning study [9]. This dataset is available on the Kaggle website 

(https://www.kaggle.com/paultimothymooney/kermany2018, accessed on Dec 12, 2020), 

and includes 84495 OCT images (JPEG) comprised of 4 categories (NORMAL, CNV, 

DME, and DRUSEN). The training dataset includes 37205 images labeled CNV, 11348 

labeled DME, 8616 labeled drusen, and 26315 normal images. The test dataset contains 

250 images for each category. In model training, the training dataset is split into 90% 

training set and 10% validation set. 
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Figure 3.2 Representative OCT images [19] 

 

 

Figure 3.3 Dataset structure 

3.2    Model architecture 

 In the classification model, we started with the images resize process to modify 

the image size to 32 × 32, which was 512 × 512 originally, to dramatically reduce the 

computing capability requirements. In the OCT image resizing process, we used a high-

quality Lanczos filter to keep as much original signal as possible [23]. We implemented 

this through the LANCZOS algorithm in Pillow package. This process has two leading 

advantages. The first one is universality. All images require this process to interact with 
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the model, and undesired frequencies are filtered to make the model useable for OCT 

images from different sources. Another benefit is to emphasize the character of the OCT 

images. The augmentation of factors can promote the capability of the classification 

model and improve accuracy.  

 

 

Figure 3.4  Model structure 

 Figure 3.4 presents the structure of the model. Evolved from VGG-16 architecture 

[40], our model architecture utilizes small convolution filters of dimensions 3 × 3 and 

three fully connected layers. The structure is composed of three convolutional layers. The 

first convolution layer contains 32 filters with 3 × 3 convolution kernels and a stride of 1 

pixel. The second and third convolution layer have the same convolution kernels and the 

numbers of their channels are 64 and 128. Among the layers, 4 dropout layers are 

distributed in the model. In dropout layers, some of the neuron nodes are randomly 
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ignored to prevent the neural networks from overfitting [41]. The three fully connected 

layers are used for dimensional transformation. They change the high-dimensional data to 

low-dimensional ones and retain the useful features. Then, SoftMax layer, as the last layer 

of the model, receives the nodes and accomplishes the classification. 

 All convolution and fully connected layers in the model apply Rectified Linear 

Unit (ReLU) as the activation function. Compared with sigmoid function, ReLU function 

is a non-saturating activation function that can avoid the vanishing gradient problem. 

With easily calculated derivatives, ReLU can also accelerate network training.  

3.3    Performance 

 We trained the model for 200 epochs using Adam optimizer. The accuracy and 

cross-entropy loss are presented in Figure 3.5. Then, we assessed the trained model by the 

test dataset and achieved an accuracy of 99.59%. 

 

 

Figure 3.5  Train Performance 

 

 The model was evaluated with 1000 OCT images. Figure 5.6 presents the 

confusion matrix. Among the 1000 testing images, 1 DME image was misrecognized to 
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the normal set, and 3 drusen images were misrecognized to the normal set. We achieved 

100% accuracy for CNV images, 99.6% for DME, 98.8% for drusen, and 100% for 

normal cases. For binary classification, the accuracy, sensitivity, and specificity of CNV 

and DME were 100%, 100%, 100% for CNV, and 99.8%, 99.6%, 100% for DME. 

 

 

Figure 3.6 Confusion Matrix 

3.4    Sensitivity, and specificity 

 Any diagnostic indicator has two basic characteristics, namely sensitivity, and 

specificity. Sensitivity refers to the proportion of people with the disease who test 

positive. Specificity refers to the probability that the indicator will not be misdiagnosed 

when diagnosing a certain disease. Ideally, both sensitivity and specificity are desired to 

be as high as possible. However, an increase in diagnostic sensitivity will inevitably 

reduce its diagnostic specificity and vice versa.  

 The requirement of sensitivity and specificity are various for different diseases. 

Typically, the initial screening requires high sensitivity, and diagnosis requires high 



19 

specificity. Our model achieved 100% for specificity, which indicates the high accuracy 

of positive results. The sensitivity and specificity of the model performed well when 

compared with manual diagnoses from human experts [19].  

3.5    Other test dataset 

 We tested the model using a dataset from another source, Scholars Portal 

Dataverse [43]. The categories of the dataset were different from the categories in our 

training data. Therefore, the dataset involved in the extra test is the NORMAL category in 

Scholars Portal Dataverse dataset, since it is the only shared category between the two 

datasets. This dataset contained 206 OCT images of adult healthy retinas. After the 

classification was processed, the number of correct answers was 204. It achieved high 

accuracy of 99.5%. The test result indicates the high specificity of the model. Although 

more datasets are needed to evaluate the sensitivity, the model presented great generality. 

3.6    Comparison 

 Compared with models by other researchers that used the same dataset, the our 

model achieved the highest accuracy in all but one category.  

 

TABLE I.  ACCURACY COMPARISON 

 

 

Kermany et al. 

[19] 

T. Tsuji et al. [22] This thesis 

CNV 98.4% 99.6% 100% 

DME 94.4% 100% 99.6% 

DRUSEN 96.8% 99.6% 98.8% 

NORMAL 94.8% 100% 100% 
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 Kermany et al. [19] (the initial source of the dataset) proposed a CNN model to 

classify the OCT images and achieved an accuracy of 98.4% for CNV, 94.4% for DME, 

96.8% for drusen, and 94.8% for normal. Compared with the Inception V3 architecture 

CNN model in the research, our model achieved relatively higher accuracy.  

 [21] proposed a model with five convolution layers and a Primary Caps layer 

(32 × 8 filters, 5 × 5 convolutional kernels with a stride of 2 pixels) and achieved 99.6% 

for CNV, 100% for DME, 99.6% for drusen, and 100% for normal. It presents a similarly 

high accuracy as our model.  

 Moreover, compared with other networks, the computing complexity and training 

time of our algorithm was lower. Before training, the OCT images were resized to smaller 

images, while maintaining the maximum features by using the LANCZOS algorithm. Our 

methodology reduced the requirement of computing capability for training while 

maintaining high accuracy with fewer layers in the model.  

 

3.7 Implementation through web portal 

 For implementation, we built a web portal for convenient use. This chapter 

describes the features of the tool. Figure 6.1 presents the main interface of the tool. Users 

can upload the OCT image and receive a result based on the model. 
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Figure 3.7  Main interface 

3.8    Upload Image 

 Users can upload an OCT image from local storage. Once the image is 

successfully uploaded, the name of the file will present on the right of the “Choose File” 

button. The image can be reuploaded, and the web removes the previous image and 

reserves the latest uploaded image. 

 

 

Figure 3.8  Upload image 
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3.9    Predict Image 

 When the image is uploaded, the auto-grading system is ready to predict. The 

input OCT image includes no requirement for image size, because the resize algorithm is 

embedded in the prediction function. The result of the prediction is shown below the main 

section after the image is evaluated by the auto-grading system. 

 

 

Figure 3.9  Image uploaded  

 

 

Figure 3.10  Result prediction 
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CHAPTER 4: CONCLUSION AND FUTURE WORK 

4.1    Contribution 

 This thesis aims at developing an auto-grading OCT image classification tool for 

the diagnose of retinopathy (CNV, DME, drusen). The tool, performed as a web portal, is 

based on a convolutional neural network model, which is trained by resized OCT images. 

This tool achieved high accuracy and is universal enough to recognize data from different 

sources. 

4.2    Impact 

 Between 2010 to 2050, the estimated number of people suffering from AMD is 

expected to increase from 2.07 million to 5.44 million in the U.S., more than doubling. 

Another study estimates that the number of individuals who have DM will increase to 592 

million by 2035, and approximately 20% of DM patients suffer from DME. With the 

increasing requirement of OCT image diagnoses for retinal diseases, the auto-grading 

OCT image classification system is a competent tool to enhance the efficiency of medical 

systems. Since the number of individuals who have AMD/DME is increasing due to the 

rapid aging of the US population, the auto-grading tool can potentially save medical 

resources in multiple areas including disease prediction, intelligent decision-making, 

individualized treatment plan, and chronic disease management. 

4.3    Conclusion 

 The model of auto-grading OCT image classification tool achieved high accuracy 

for the OCT dataset from both the Kaggle and other sources. A web portal classification 

tool is built based on the model. Although the process of resizing images takes risk of 
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feature loss, the CNN model performs excellent results. It indicates the possibility of a 

more efficient model training process. 

 Embedded with the CNN classification model, the web portal provides a usable 

user interface for clinicians to interact and generate OCT test results. This system can 

improve diagnostic capabilities and help with rapid decision-making. By providing rapid 

preliminary diagnoses for ophthalmologists within seconds, the auto-grading OCT image 

classification tool can alleviate the burden on the clinicians, reduce the waiting time of 

patients, decrease repeated consultations, and improve the efficiency of diagnoses and 

treatment. 

4.4    Future Work 

 An electronic medical record (EMR) is a system composed of the patient's 

medical treatment files such as the records of text, symbols, charts, images, and slices 

data. The impressive data in the EMR system is obtained, sorted, and analyzed by 

medical staff through outpatient, physical examination, auxiliary examination, diagnoses, 

treatment, nursing, and other medical activities. It provides the most practical and 

abundant data for health management, medical diagnoses, treatment, and scientific 

research. EMR significantly improved medical quality, management level, and academic 

ability [33]. Besides, it is a cost-saving approach not only for paper and folders but also 

for labor and storage space.  
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Figure 4.1  EMR Demo 

 This auto-grading OCT image classification system is a brief diagnostic tool that 

can be used in an EMR system. In the treatment of AMD and DME, patients take OCT 

images frequently to monitor the changes in their disease. The integration of the auto-

grading OCT image classification system and EMR system can greatly improve the 

efficiency of retinopathy treatments. This system could provide a better quality of 

healthcare. With better access to test results and automatic diagnoses, the time that 

doctors spend on recognizing the test result can be considerably reduced, and patients 

could be aware of their test results and treatment method.  
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APPENDIX A 

A.1 Tools and Technology  

Listed below are the tools and technologies used to develop the auto-grading oct images 

diagnostic tool described in this thesis: 

• Language 

- Python 

- HTML 

- JavaScript 

- CSS 

- Bash 

• Frameworks 

- Django 

- TensorFlow 

- Karas 

- Numpy 

- Pillow 

• Tools 

- Git 

- Jupyter Notebook 

- Linux 
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